ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
(Generate patch)

Comparing BasiliskII/src/Unix/sigsegv.cpp (file contents):
Revision 1.17 by gbeauche, 2002-05-20T17:49:04Z vs.
Revision 1.54 by gbeauche, 2005-03-23T21:37:24Z

# Line 4 | Line 4
4   *  Derived from Bruno Haible's work on his SIGSEGV library for clisp
5   *  <http://clisp.sourceforge.net/>
6   *
7 < *  Basilisk II (C) 1997-2002 Christian Bauer
7 > *  MacOS X support derived from the post by Timothy J. Wood to the
8 > *  omnigroup macosx-dev list:
9 > *    Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10 > *    tjw@omnigroup.com Sun, 4 Jun 2000
11 > *    www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12 > *
13 > *  Basilisk II (C) 1997-2005 Christian Bauer
14   *
15   *  This program is free software; you can redistribute it and/or modify
16   *  it under the terms of the GNU General Public License as published by
# Line 29 | Line 35
35   #include "config.h"
36   #endif
37  
38 + #include <list>
39 + #include <stdio.h>
40   #include <signal.h>
41   #include "sigsegv.h"
42  
43 + #ifndef NO_STD_NAMESPACE
44 + using std::list;
45 + #endif
46 +
47   // Return value type of a signal handler (standard type if not defined)
48   #ifndef RETSIGTYPE
49   #define RETSIGTYPE void
# Line 40 | Line 52
52   // Type of the system signal handler
53   typedef RETSIGTYPE (*signal_handler)(int);
54  
43 // Is the fault to be ignored?
44 static bool sigsegv_ignore_fault = false;
45
55   // User's SIGSEGV handler
56   static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
57  
# Line 57 | Line 66 | static bool sigsegv_do_install_handler(i
66   *  Instruction decoding aids
67   */
68  
60 // Transfer type
61 enum transfer_type_t {
62        TYPE_UNKNOWN,
63        TYPE_LOAD,
64        TYPE_STORE
65 };
66
69   // Transfer size
70   enum transfer_size_t {
71          SIZE_UNKNOWN,
72          SIZE_BYTE,
73 <        SIZE_WORD,
74 <        SIZE_LONG
73 >        SIZE_WORD, // 2 bytes
74 >        SIZE_LONG, // 4 bytes
75 >        SIZE_QUAD, // 8 bytes
76   };
77  
78 + // Transfer type
79 + typedef sigsegv_transfer_type_t transfer_type_t;
80 +
81   #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
82   // Addressing mode
83   enum addressing_mode_t {
# Line 91 | Line 97 | struct instruction_t {
97          char                            ra, rd;
98   };
99  
100 < static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned int * gpr)
100 > static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned long * gpr)
101   {
102          // Get opcode and divide into fields
103 <        unsigned int opcode = *((unsigned int *)nip);
103 >        unsigned int opcode = *((unsigned int *)(unsigned long)nip);
104          unsigned int primop = opcode >> 26;
105          unsigned int exop = (opcode >> 1) & 0x3ff;
106          unsigned int ra = (opcode >> 16) & 0x1f;
# Line 103 | Line 109 | static void powerpc_decode_instruction(i
109          signed int imm = (signed short)(opcode & 0xffff);
110          
111          // Analyze opcode
112 <        transfer_type_t transfer_type = TYPE_UNKNOWN;
112 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
113          transfer_size_t transfer_size = SIZE_UNKNOWN;
114          addressing_mode_t addr_mode = MODE_UNKNOWN;
115          switch (primop) {
116          case 31:
117                  switch (exop) {
118                  case 23:        // lwzx
119 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
119 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
120                  case 55:        // lwzux
121 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
121 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
122                  case 87:        // lbzx
123 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
123 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
124                  case 119:       // lbzux
125 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
125 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
126                  case 151:       // stwx
127 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
127 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
128                  case 183:       // stwux
129 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
129 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
130                  case 215:       // stbx
131 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
131 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
132                  case 247:       // stbux
133 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
133 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
134                  case 279:       // lhzx
135 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
135 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
136                  case 311:       // lhzux
137 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
137 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
138                  case 343:       // lhax
139 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
139 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
140                  case 375:       // lhaux
141 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
141 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
142                  case 407:       // sthx
143 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
143 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
144                  case 439:       // sthux
145 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
145 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
146                  }
147                  break;
148          
149          case 32:        // lwz
150 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
150 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
151          case 33:        // lwzu
152 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
152 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
153          case 34:        // lbz
154 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
154 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
155          case 35:        // lbzu
156 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
156 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
157          case 36:        // stw
158 <                transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
158 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
159          case 37:        // stwu
160 <                transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
160 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
161          case 38:        // stb
162 <                transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
162 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
163          case 39:        // stbu
164 <                transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
164 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
165          case 40:        // lhz
166 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
166 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
167          case 41:        // lhzu
168 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
168 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
169          case 42:        // lha
170 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
170 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
171          case 43:        // lhau
172 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
172 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
173          case 44:        // sth
174 <                transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
174 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
175          case 45:        // sthu
176 <                transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
176 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
177 >        case 58:        // ld, ldu, lwa
178 >                transfer_type = SIGSEGV_TRANSFER_LOAD;
179 >                transfer_size = SIZE_QUAD;
180 >                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
181 >                imm &= ~3;
182 >                break;
183 >        case 62:        // std, stdu, stq
184 >                transfer_type = SIGSEGV_TRANSFER_STORE;
185 >                transfer_size = SIZE_QUAD;
186 >                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
187 >                imm &= ~3;
188 >                break;
189          }
190          
191          // Calculate effective address
# Line 208 | Line 226 | static void powerpc_decode_instruction(i
226  
227   #if HAVE_SIGINFO_T
228   // Generic extended signal handler
229 < #if defined(__NetBSD__) || defined(__FreeBSD__)
229 > #if defined(__FreeBSD__)
230   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
231   #else
232   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
233   #endif
234   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, siginfo_t *sip, void *scp
235 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
236 + #define SIGSEGV_FAULT_HANDLER_ARGS              sip, scp
237   #define SIGSEGV_FAULT_ADDRESS                   sip->si_addr
238 + #if (defined(sgi) || defined(__sgi))
239 + #include <ucontext.h>
240 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
241 + #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)SIGSEGV_CONTEXT_REGS[CTX_EPC]
242 + #if (defined(mips) || defined(__mips))
243 + #define SIGSEGV_REGISTER_FILE                   SIGSEGV_CONTEXT_REGS
244 + #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
245 + #endif
246 + #endif
247 + #if defined(__sun__)
248 + #if (defined(sparc) || defined(__sparc__))
249 + #include <sys/stack.h>
250 + #include <sys/regset.h>
251 + #include <sys/ucontext.h>
252 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
253 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[REG_PC]
254 + #define SIGSEGV_SPARC_GWINDOWS                  (((ucontext_t *)scp)->uc_mcontext.gwins)
255 + #define SIGSEGV_SPARC_RWINDOW                   (struct rwindow *)((char *)SIGSEGV_CONTEXT_REGS[REG_SP] + STACK_BIAS)
256 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)SIGSEGV_CONTEXT_REGS), SIGSEGV_SPARC_GWINDOWS, SIGSEGV_SPARC_RWINDOW
257 + #define SIGSEGV_SKIP_INSTRUCTION                sparc_skip_instruction
258 + #endif
259 + #if defined(__i386__)
260 + #include <sys/regset.h>
261 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
262 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[EIP]
263 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
264 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
265 + #endif
266 + #endif
267 + #if defined(__FreeBSD__)
268   #if (defined(i386) || defined(__i386__))
269   #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_eip)
270 < #define SIGSEGV_REGISTER_FILE                   ((unsigned int *)&(((struct sigcontext *)scp)->sc_edi))
270 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
271 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
272 > #endif
273 > #endif
274 > #if defined(__NetBSD__)
275 > #if (defined(i386) || defined(__i386__))
276 > #include <sys/ucontext.h>
277 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
278 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_EIP]
279 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
280   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
281   #endif
282 + #if (defined(powerpc) || defined(__powerpc__))
283 + #include <sys/ucontext.h>
284 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
285 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_PC]
286 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_PC], (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_R0]
287 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
288 + #endif
289 + #endif
290   #if defined(__linux__)
291   #if (defined(i386) || defined(__i386__))
292   #include <sys/ucontext.h>
293   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
294   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
295 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)SIGSEGV_CONTEXT_REGS
295 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
296 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
297 > #endif
298 > #if (defined(x86_64) || defined(__x86_64__))
299 > #include <sys/ucontext.h>
300 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
301 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
302 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
303   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
304   #endif
305   #if (defined(ia64) || defined(__ia64__))
# Line 235 | Line 309 | static void powerpc_decode_instruction(i
309   #include <sys/ucontext.h>
310   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.regs)
311   #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS->nip)
312 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned int *)(SIGSEGV_CONTEXT_REGS->gpr)
312 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned long *)(SIGSEGV_CONTEXT_REGS->gpr)
313   #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
314   #endif
315 + #if (defined(hppa) || defined(__hppa__))
316 + #undef  SIGSEGV_FAULT_ADDRESS
317 + #define SIGSEGV_FAULT_ADDRESS                   sip->si_ptr
318 + #endif
319 + #if (defined(arm) || defined(__arm__))
320 + #include <asm/ucontext.h> /* use kernel structure, glibc may not be in sync */
321 + #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
322 + #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.arm_pc)
323 + #define SIGSEGV_REGISTER_FILE                   (&SIGSEGV_CONTEXT_REGS.arm_r0)
324 + #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
325 + #endif
326   #endif
327   #endif
328  
# Line 248 | Line 333 | static void powerpc_decode_instruction(i
333   #if (defined(i386) || defined(__i386__))
334   #include <asm/sigcontext.h>
335   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext scs
336 < #define SIGSEGV_FAULT_ADDRESS                   scs.cr2
337 < #define SIGSEGV_FAULT_INSTRUCTION               scs.eip
338 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)(&scs)
336 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
337 > #define SIGSEGV_FAULT_HANDLER_ARGS              &scs
338 > #define SIGSEGV_FAULT_ADDRESS                   scp->cr2
339 > #define SIGSEGV_FAULT_INSTRUCTION               scp->eip
340 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)scp
341   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
342   #endif
343   #if (defined(sparc) || defined(__sparc__))
344   #include <asm/sigcontext.h>
345   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
346 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
347   #define SIGSEGV_FAULT_ADDRESS                   addr
348   #endif
349   #if (defined(powerpc) || defined(__powerpc__))
350   #include <asm/sigcontext.h>
351   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext *scp
352 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, scp
353   #define SIGSEGV_FAULT_ADDRESS                   scp->regs->dar
354   #define SIGSEGV_FAULT_INSTRUCTION               scp->regs->nip
355 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&scp->regs->nip, (unsigned int *)(scp->regs->gpr)
355 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&scp->regs->nip, (unsigned long *)(scp->regs->gpr)
356   #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
357   #endif
358   #if (defined(alpha) || defined(__alpha__))
359   #include <asm/sigcontext.h>
360   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
361 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
362   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
363   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
364 <
365 < // From Boehm's GC 6.0alpha8
366 < static sigsegv_address_t get_fault_address(struct sigcontext *scp)
367 < {
368 <        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
369 <        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
370 <        fault_address += (signed long)(signed short)(instruction & 0xffff);
371 <        return (sigsegv_address_t)fault_address;
372 < }
364 > #endif
365 > #if (defined(arm) || defined(__arm__))
366 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int r1, int r2, int r3, struct sigcontext sc
367 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
368 > #define SIGSEGV_FAULT_HANDLER_ARGS              &sc
369 > #define SIGSEGV_FAULT_ADDRESS                   scp->fault_address
370 > #define SIGSEGV_FAULT_INSTRUCTION               scp->arm_pc
371 > #define SIGSEGV_REGISTER_FILE                   &scp->arm_r0
372 > #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
373   #endif
374   #endif
375  
376   // Irix 5 or 6 on MIPS
377 < #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
377 > #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(_SYSTYPE_SVR4))
378   #include <ucontext.h>
379   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
380 < #define SIGSEGV_FAULT_ADDRESS                   scp->sc_badvaddr
380 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
381 > #define SIGSEGV_FAULT_ADDRESS                   (unsigned long)scp->sc_badvaddr
382 > #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)scp->sc_pc
383   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
384   #endif
385  
386   // HP-UX
387   #if (defined(hpux) || defined(__hpux__))
388   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
389 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
390   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_sl.sl_ss.ss_narrow.ss_cr21
391   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
392   #endif
# Line 302 | Line 395 | static sigsegv_address_t get_fault_addre
395   #if defined(__osf__)
396   #include <ucontext.h>
397   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
398 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
399   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_traparg_a0
400   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
401   #endif
# Line 309 | Line 403 | static sigsegv_address_t get_fault_addre
403   // AIX
404   #if defined(_AIX)
405   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
406 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
407   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_jmpbuf.jmp_context.o_vaddr
408   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
409   #endif
410  
411 < // NetBSD or FreeBSD
412 < #if defined(__NetBSD__) || defined(__FreeBSD__)
411 > // NetBSD
412 > #if defined(__NetBSD__)
413   #if (defined(m68k) || defined(__m68k__))
414   #include <m68k/frame.h>
415   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
416 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
417   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
418   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
419  
# Line 341 | Line 437 | static sigsegv_address_t get_fault_addre
437          }
438          return (sigsegv_address_t)fault_addr;
439   }
440 < #else
441 < #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, void *scp, char *addr
442 < #define SIGSEGV_FAULT_ADDRESS                   addr
440 > #endif
441 > #if (defined(alpha) || defined(__alpha__))
442 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
443 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
444 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
445   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
446   #endif
447 + #if (defined(i386) || defined(__i386__))
448 + #error "FIXME: need to decode instruction and compute EA"
449 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
450 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
451 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
452 + #endif
453 + #endif
454 + #if defined(__FreeBSD__)
455 + #if (defined(i386) || defined(__i386__))
456 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
457 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
458 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
459 + #define SIGSEGV_FAULT_ADDRESS                   addr
460 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_eip
461 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&scp->sc_edi)
462 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
463 + #endif
464 + #if (defined(alpha) || defined(__alpha__))
465 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
466 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, char *addr, struct sigcontext *scp
467 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, addr, scp
468 + #define SIGSEGV_FAULT_ADDRESS                   addr
469 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
470 + #endif
471   #endif
472  
473 < // MacOS X
473 > // Extract fault address out of a sigcontext
474 > #if (defined(alpha) || defined(__alpha__))
475 > // From Boehm's GC 6.0alpha8
476 > static sigsegv_address_t get_fault_address(struct sigcontext *scp)
477 > {
478 >        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
479 >        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
480 >        fault_address += (signed long)(signed short)(instruction & 0xffff);
481 >        return (sigsegv_address_t)fault_address;
482 > }
483 > #endif
484 >
485 >
486 > // MacOS X, not sure which version this works in. Under 10.1
487 > // vm_protect does not appear to work from a signal handler. Under
488 > // 10.2 signal handlers get siginfo type arguments but the si_addr
489 > // field is the address of the faulting instruction and not the
490 > // address that caused the SIGBUS. Maybe this works in 10.0? In any
491 > // case with Mach exception handlers there is a way to do what this
492 > // was meant to do.
493 > #ifndef HAVE_MACH_EXCEPTIONS
494   #if defined(__APPLE__) && defined(__MACH__)
495   #if (defined(ppc) || defined(__ppc__))
496   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
497 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
498   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
499   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_ir
500   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
# Line 371 | Line 514 | static sigsegv_address_t get_fault_addre
514   #endif
515   #endif
516   #endif
517 + #endif
518 +
519 + #if HAVE_WIN32_EXCEPTIONS
520 + #define WIN32_LEAN_AND_MEAN /* avoid including junk */
521 + #include <windows.h>
522 + #include <winerror.h>
523 +
524 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   EXCEPTION_POINTERS *ExceptionInfo
525 + #define SIGSEGV_FAULT_HANDLER_ARGS              ExceptionInfo
526 + #define SIGSEGV_FAULT_ADDRESS                   ExceptionInfo->ExceptionRecord->ExceptionInformation[1]
527 + #define SIGSEGV_CONTEXT_REGS                    ExceptionInfo->ContextRecord
528 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS->Eip
529 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&SIGSEGV_CONTEXT_REGS->Edi)
530 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
531 + #endif
532 +
533 + #if HAVE_MACH_EXCEPTIONS
534 +
535 + // This can easily be extended to other Mach systems, but really who
536 + // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
537 + // Mach 2.5/3.0?
538 + #if defined(__APPLE__) && defined(__MACH__)
539 +
540 + #include <sys/types.h>
541 + #include <stdlib.h>
542 + #include <stdio.h>
543 + #include <pthread.h>
544 +
545 + /*
546 + * If you are familiar with MIG then you will understand the frustration
547 + * that was necessary to get these embedded into C++ code by hand.
548 + */
549 + extern "C" {
550 + #include <mach/mach.h>
551 + #include <mach/mach_error.h>
552 +
553 + extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
554 + extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
555 +        mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
556 + extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
557 +        exception_type_t, exception_data_t, mach_msg_type_number_t);
558 + extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
559 +        exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
560 +        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
561 + extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
562 +        exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
563 +        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
564 + }
565 +
566 + // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
567 + #define HANDLER_COUNT 64
568 +
569 + // structure to tuck away existing exception handlers
570 + typedef struct _ExceptionPorts {
571 +        mach_msg_type_number_t maskCount;
572 +        exception_mask_t masks[HANDLER_COUNT];
573 +        exception_handler_t handlers[HANDLER_COUNT];
574 +        exception_behavior_t behaviors[HANDLER_COUNT];
575 +        thread_state_flavor_t flavors[HANDLER_COUNT];
576 + } ExceptionPorts;
577 +
578 + // exception handler thread
579 + static pthread_t exc_thread;
580 +
581 + // place where old exception handler info is stored
582 + static ExceptionPorts ports;
583 +
584 + // our exception port
585 + static mach_port_t _exceptionPort = MACH_PORT_NULL;
586 +
587 + #define MACH_CHECK_ERROR(name,ret) \
588 + if (ret != KERN_SUCCESS) { \
589 +        mach_error(#name, ret); \
590 +        exit (1); \
591 + }
592 +
593 + #define SIGSEGV_FAULT_ADDRESS                   code[1]
594 + #define SIGSEGV_FAULT_INSTRUCTION               get_fault_instruction(thread, state)
595 + #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  ((code[0] == KERN_PROTECTION_FAILURE) ? sigsegv_fault_handler(ADDR, IP) : SIGSEGV_RETURN_FAILURE)
596 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   mach_port_t thread, exception_data_t code, ppc_thread_state_t *state
597 + #define SIGSEGV_FAULT_HANDLER_ARGS              thread, code, &state
598 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
599 + #define SIGSEGV_REGISTER_FILE                   &state->srr0, &state->r0
600 +
601 + // Given a suspended thread, stuff the current instruction and
602 + // registers into state.
603 + //
604 + // It would have been nice to have this be ppc/x86 independant which
605 + // could have been done easily with a thread_state_t instead of
606 + // ppc_thread_state_t, but because of the way this is called it is
607 + // easier to do it this way.
608 + #if (defined(ppc) || defined(__ppc__))
609 + static inline sigsegv_address_t get_fault_instruction(mach_port_t thread, ppc_thread_state_t *state)
610 + {
611 +        kern_return_t krc;
612 +        mach_msg_type_number_t count;
613 +
614 +        count = MACHINE_THREAD_STATE_COUNT;
615 +        krc = thread_get_state(thread, MACHINE_THREAD_STATE, (thread_state_t)state, &count);
616 +        MACH_CHECK_ERROR (thread_get_state, krc);
617 +
618 +        return (sigsegv_address_t)state->srr0;
619 + }
620 + #endif
621 +
622 + // Since there can only be one exception thread running at any time
623 + // this is not a problem.
624 + #define MSG_SIZE 512
625 + static char msgbuf[MSG_SIZE];
626 + static char replybuf[MSG_SIZE];
627 +
628 + /*
629 + * This is the entry point for the exception handler thread. The job
630 + * of this thread is to wait for exception messages on the exception
631 + * port that was setup beforehand and to pass them on to exc_server.
632 + * exc_server is a MIG generated function that is a part of Mach.
633 + * Its job is to decide what to do with the exception message. In our
634 + * case exc_server calls catch_exception_raise on our behalf. After
635 + * exc_server returns, it is our responsibility to send the reply.
636 + */
637 + static void *
638 + handleExceptions(void *priv)
639 + {
640 +        mach_msg_header_t *msg, *reply;
641 +        kern_return_t krc;
642 +
643 +        msg = (mach_msg_header_t *)msgbuf;
644 +        reply = (mach_msg_header_t *)replybuf;
645 +
646 +        for (;;) {
647 +                krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
648 +                                _exceptionPort, 0, MACH_PORT_NULL);
649 +                MACH_CHECK_ERROR(mach_msg, krc);
650 +
651 +                if (!exc_server(msg, reply)) {
652 +                        fprintf(stderr, "exc_server hated the message\n");
653 +                        exit(1);
654 +                }
655 +
656 +                krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
657 +                                 msg->msgh_local_port, 0, MACH_PORT_NULL);
658 +                if (krc != KERN_SUCCESS) {
659 +                        fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
660 +                                krc, mach_error_string(krc));
661 +                        exit(1);
662 +                }
663 +        }
664 + }
665 + #endif
666 + #endif
667  
668  
669   /*
# Line 379 | Line 672 | static sigsegv_address_t get_fault_addre
672  
673   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
674   // Decode and skip X86 instruction
675 < #if (defined(i386) || defined(__i386__))
675 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
676   #if defined(__linux__)
677   enum {
678 + #if (defined(i386) || defined(__i386__))
679          X86_REG_EIP = 14,
680          X86_REG_EAX = 11,
681          X86_REG_ECX = 10,
# Line 391 | Line 685 | enum {
685          X86_REG_EBP = 6,
686          X86_REG_ESI = 5,
687          X86_REG_EDI = 4
688 + #endif
689 + #if defined(__x86_64__)
690 +        X86_REG_R8  = 0,
691 +        X86_REG_R9  = 1,
692 +        X86_REG_R10 = 2,
693 +        X86_REG_R11 = 3,
694 +        X86_REG_R12 = 4,
695 +        X86_REG_R13 = 5,
696 +        X86_REG_R14 = 6,
697 +        X86_REG_R15 = 7,
698 +        X86_REG_EDI = 8,
699 +        X86_REG_ESI = 9,
700 +        X86_REG_EBP = 10,
701 +        X86_REG_EBX = 11,
702 +        X86_REG_EDX = 12,
703 +        X86_REG_EAX = 13,
704 +        X86_REG_ECX = 14,
705 +        X86_REG_ESP = 15,
706 +        X86_REG_EIP = 16
707 + #endif
708   };
709   #endif
710 < #if defined(__NetBSD__) || defined(__FreeBSD__)
710 > #if defined(__NetBSD__)
711   enum {
712 + #if (defined(i386) || defined(__i386__))
713 +        X86_REG_EIP = _REG_EIP,
714 +        X86_REG_EAX = _REG_EAX,
715 +        X86_REG_ECX = _REG_ECX,
716 +        X86_REG_EDX = _REG_EDX,
717 +        X86_REG_EBX = _REG_EBX,
718 +        X86_REG_ESP = _REG_ESP,
719 +        X86_REG_EBP = _REG_EBP,
720 +        X86_REG_ESI = _REG_ESI,
721 +        X86_REG_EDI = _REG_EDI
722 + #endif
723 + };
724 + #endif
725 + #if defined(__FreeBSD__)
726 + enum {
727 + #if (defined(i386) || defined(__i386__))
728          X86_REG_EIP = 10,
729          X86_REG_EAX = 7,
730          X86_REG_ECX = 6,
# Line 404 | Line 734 | enum {
734          X86_REG_EBP = 2,
735          X86_REG_ESI = 1,
736          X86_REG_EDI = 0
737 + #endif
738 + };
739 + #endif
740 + #if defined(__sun__)
741 + // Same as for Linux, need to check for x86-64
742 + enum {
743 + #if defined(__i386__)
744 +        X86_REG_EIP = EIP,
745 +        X86_REG_EAX = EAX,
746 +        X86_REG_ECX = ECX,
747 +        X86_REG_EDX = EDX,
748 +        X86_REG_EBX = EBX,
749 +        X86_REG_ESP = ESP,
750 +        X86_REG_EBP = EBP,
751 +        X86_REG_ESI = ESI,
752 +        X86_REG_EDI = EDI
753 + #endif
754 + };
755 + #endif
756 + #if defined(_WIN32)
757 + enum {
758 + #if (defined(i386) || defined(__i386__))
759 +        X86_REG_EIP = 7,
760 +        X86_REG_EAX = 5,
761 +        X86_REG_ECX = 4,
762 +        X86_REG_EDX = 3,
763 +        X86_REG_EBX = 2,
764 +        X86_REG_ESP = 10,
765 +        X86_REG_EBP = 6,
766 +        X86_REG_ESI = 1,
767 +        X86_REG_EDI = 0
768 + #endif
769   };
770   #endif
771   // FIXME: this is partly redundant with the instruction decoding phase
# Line 440 | Line 802 | static inline int ix86_step_over_modrm(u
802          return offset;
803   }
804  
805 < static bool ix86_skip_instruction(unsigned int * regs)
805 > static bool ix86_skip_instruction(unsigned long * regs)
806   {
807          unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
808  
809          if (eip == 0)
810                  return false;
811 + #ifdef _WIN32
812 +        if (IsBadCodePtr((FARPROC)eip))
813 +                return false;
814 + #endif
815          
816 <        transfer_type_t transfer_type = TYPE_UNKNOWN;
816 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
817          transfer_size_t transfer_size = SIZE_LONG;
818          
819          int reg = -1;
820          int len = 0;
821 <        
821 >
822 > #if DEBUG
823 >        printf("IP: %p [%02x %02x %02x %02x...]\n",
824 >                   eip, eip[0], eip[1], eip[2], eip[3]);
825 > #endif
826 >
827          // Operand size prefix
828          if (*eip == 0x66) {
829                  eip++;
# Line 460 | Line 831 | static bool ix86_skip_instruction(unsign
831                  transfer_size = SIZE_WORD;
832          }
833  
834 +        // REX prefix
835 + #if defined(__x86_64__)
836 +        struct rex_t {
837 +                unsigned char W;
838 +                unsigned char R;
839 +                unsigned char X;
840 +                unsigned char B;
841 +        };
842 +        rex_t rex = { 0, 0, 0, 0 };
843 +        bool has_rex = false;
844 +        if ((*eip & 0xf0) == 0x40) {
845 +                has_rex = true;
846 +                const unsigned char b = *eip;
847 +                rex.W = b & (1 << 3);
848 +                rex.R = b & (1 << 2);
849 +                rex.X = b & (1 << 1);
850 +                rex.B = b & (1 << 0);
851 + #if DEBUG
852 +                printf("REX: %c,%c,%c,%c\n",
853 +                           rex.W ? 'W' : '_',
854 +                           rex.R ? 'R' : '_',
855 +                           rex.X ? 'X' : '_',
856 +                           rex.B ? 'B' : '_');
857 + #endif
858 +                eip++;
859 +                len++;
860 +                if (rex.W)
861 +                        transfer_size = SIZE_QUAD;
862 +        }
863 + #else
864 +        const bool has_rex = false;
865 + #endif
866 +
867          // Decode instruction
868 +        int target_size = SIZE_UNKNOWN;
869          switch (eip[0]) {
870          case 0x0f:
871 <            if (eip[1] == 0xb7) { // MOVZX r32, r/m16
872 <                switch (eip[2] & 0xc0) {
873 <                case 0x80:
874 <                    reg = (eip[2] >> 3) & 7;
875 <                    transfer_type = TYPE_LOAD;
876 <                    break;
877 <                case 0x40:
878 <                    reg = (eip[2] >> 3) & 7;
879 <                    transfer_type = TYPE_LOAD;
880 <                    break;
881 <                case 0x00:
882 <                    reg = (eip[2] >> 3) & 7;
883 <                    transfer_type = TYPE_LOAD;
884 <                    break;
885 <                }
886 <                len += 3 + ix86_step_over_modrm(eip + 2);
871 >                target_size = transfer_size;
872 >            switch (eip[1]) {
873 >                case 0xbe: // MOVSX r32, r/m8
874 >            case 0xb6: // MOVZX r32, r/m8
875 >                        transfer_size = SIZE_BYTE;
876 >                        goto do_mov_extend;
877 >                case 0xbf: // MOVSX r32, r/m16
878 >            case 0xb7: // MOVZX r32, r/m16
879 >                        transfer_size = SIZE_WORD;
880 >                        goto do_mov_extend;
881 >                  do_mov_extend:
882 >                        switch (eip[2] & 0xc0) {
883 >                        case 0x80:
884 >                                reg = (eip[2] >> 3) & 7;
885 >                                transfer_type = SIGSEGV_TRANSFER_LOAD;
886 >                                break;
887 >                        case 0x40:
888 >                                reg = (eip[2] >> 3) & 7;
889 >                                transfer_type = SIGSEGV_TRANSFER_LOAD;
890 >                                break;
891 >                        case 0x00:
892 >                                reg = (eip[2] >> 3) & 7;
893 >                                transfer_type = SIGSEGV_TRANSFER_LOAD;
894 >                                break;
895 >                        }
896 >                        len += 3 + ix86_step_over_modrm(eip + 2);
897 >                        break;
898              }
899            break;
900          case 0x8a: // MOV r8, r/m8
# Line 487 | Line 903 | static bool ix86_skip_instruction(unsign
903                  switch (eip[1] & 0xc0) {
904                  case 0x80:
905                          reg = (eip[1] >> 3) & 7;
906 <                        transfer_type = TYPE_LOAD;
906 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
907                          break;
908                  case 0x40:
909                          reg = (eip[1] >> 3) & 7;
910 <                        transfer_type = TYPE_LOAD;
910 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
911                          break;
912                  case 0x00:
913                          reg = (eip[1] >> 3) & 7;
914 <                        transfer_type = TYPE_LOAD;
914 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
915                          break;
916                  }
917                  len += 2 + ix86_step_over_modrm(eip + 1);
# Line 506 | Line 922 | static bool ix86_skip_instruction(unsign
922                  switch (eip[1] & 0xc0) {
923                  case 0x80:
924                          reg = (eip[1] >> 3) & 7;
925 <                        transfer_type = TYPE_STORE;
925 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
926                          break;
927                  case 0x40:
928                          reg = (eip[1] >> 3) & 7;
929 <                        transfer_type = TYPE_STORE;
929 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
930                          break;
931                  case 0x00:
932                          reg = (eip[1] >> 3) & 7;
933 <                        transfer_type = TYPE_STORE;
933 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
934                          break;
935                  }
936                  len += 2 + ix86_step_over_modrm(eip + 1);
937                  break;
938          }
939 +        if (target_size == SIZE_UNKNOWN)
940 +                target_size = transfer_size;
941  
942 <        if (transfer_type == TYPE_UNKNOWN) {
942 >        if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
943                  // Unknown machine code, let it crash. Then patch the decoder
944                  return false;
945          }
946  
947 <        if (transfer_type == TYPE_LOAD && reg != -1) {
948 <                static const int x86_reg_map[8] = {
947 > #if defined(__x86_64__)
948 >        if (rex.R)
949 >                reg += 8;
950 > #endif
951 >
952 >        if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
953 >                static const int x86_reg_map[] = {
954                          X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
955 <                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI
955 >                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI,
956 > #if defined(__x86_64__)
957 >                        X86_REG_R8,  X86_REG_R9,  X86_REG_R10, X86_REG_R11,
958 >                        X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15,
959 > #endif
960                  };
961                  
962 <                if (reg < 0 || reg >= 8)
962 >                if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1))
963                          return false;
964  
965 +                // Set 0 to the relevant register part
966 +                // NOTE: this is only valid for MOV alike instructions
967                  int rloc = x86_reg_map[reg];
968 <                switch (transfer_size) {
968 >                switch (target_size) {
969                  case SIZE_BYTE:
970 <                        regs[rloc] = (regs[rloc] & ~0xff);
970 >                        if (has_rex || reg < 4)
971 >                                regs[rloc] = (regs[rloc] & ~0x00ffL);
972 >                        else {
973 >                                rloc = x86_reg_map[reg - 4];
974 >                                regs[rloc] = (regs[rloc] & ~0xff00L);
975 >                        }
976                          break;
977                  case SIZE_WORD:
978 <                        regs[rloc] = (regs[rloc] & ~0xffff);
978 >                        regs[rloc] = (regs[rloc] & ~0xffffL);
979                          break;
980                  case SIZE_LONG:
981 +                case SIZE_QUAD: // zero-extension
982                          regs[rloc] = 0;
983                          break;
984                  }
# Line 551 | Line 986 | static bool ix86_skip_instruction(unsign
986  
987   #if DEBUG
988          printf("%08x: %s %s access", regs[X86_REG_EIP],
989 <                   transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : "long",
990 <                   transfer_type == TYPE_LOAD ? "read" : "write");
989 >                   transfer_size == SIZE_BYTE ? "byte" :
990 >                   transfer_size == SIZE_WORD ? "word" :
991 >                   transfer_size == SIZE_LONG ? "long" :
992 >                   transfer_size == SIZE_QUAD ? "quad" : "unknown",
993 >                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
994          
995          if (reg != -1) {
996 <                static const char * x86_reg_str_map[8] = {
997 <                        "eax", "ecx", "edx", "ebx",
998 <                        "esp", "ebp", "esi", "edi"
996 >                static const char * x86_byte_reg_str_map[] = {
997 >                        "al",   "cl",   "dl",   "bl",
998 >                        "spl",  "bpl",  "sil",  "dil",
999 >                        "r8b",  "r9b",  "r10b", "r11b",
1000 >                        "r12b", "r13b", "r14b", "r15b",
1001 >                        "ah",   "ch",   "dh",   "bh",
1002 >                };
1003 >                static const char * x86_word_reg_str_map[] = {
1004 >                        "ax",   "cx",   "dx",   "bx",
1005 >                        "sp",   "bp",   "si",   "di",
1006 >                        "r8w",  "r9w",  "r10w", "r11w",
1007 >                        "r12w", "r13w", "r14w", "r15w",
1008 >                };
1009 >                static const char *x86_long_reg_str_map[] = {
1010 >                        "eax",  "ecx",  "edx",  "ebx",
1011 >                        "esp",  "ebp",  "esi",  "edi",
1012 >                        "r8d",  "r9d",  "r10d", "r11d",
1013 >                        "r12d", "r13d", "r14d", "r15d",
1014                  };
1015 <                printf(" %s register %%%s", transfer_type == TYPE_LOAD ? "to" : "from", x86_reg_str_map[reg]);
1015 >                static const char *x86_quad_reg_str_map[] = {
1016 >                        "rax", "rcx", "rdx", "rbx",
1017 >                        "rsp", "rbp", "rsi", "rdi",
1018 >                        "r8",  "r9",  "r10", "r11",
1019 >                        "r12", "r13", "r14", "r15",
1020 >                };
1021 >                const char * reg_str = NULL;
1022 >                switch (target_size) {
1023 >                case SIZE_BYTE:
1024 >                        reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg];
1025 >                        break;
1026 >                case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break;
1027 >                case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break;
1028 >                case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break;
1029 >                }
1030 >                if (reg_str)
1031 >                        printf(" %s register %%%s",
1032 >                                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from",
1033 >                                   reg_str);
1034          }
1035          printf(", %d bytes instruction\n", len);
1036   #endif
# Line 571 | Line 1042 | static bool ix86_skip_instruction(unsign
1042  
1043   // Decode and skip PPC instruction
1044   #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
1045 < static bool powerpc_skip_instruction(unsigned int * nip_p, unsigned int * regs)
1045 > static bool powerpc_skip_instruction(unsigned long * nip_p, unsigned long * regs)
1046   {
1047          instruction_t instr;
1048          powerpc_decode_instruction(&instr, *nip_p, regs);
1049          
1050 <        if (instr.transfer_type == TYPE_UNKNOWN) {
1050 >        if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1051                  // Unknown machine code, let it crash. Then patch the decoder
1052                  return false;
1053          }
1054  
1055   #if DEBUG
1056          printf("%08x: %s %s access", *nip_p,
1057 <                   instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : "long",
1058 <                   instr.transfer_type == TYPE_LOAD ? "read" : "write");
1057 >                   instr.transfer_size == SIZE_BYTE ? "byte" :
1058 >                   instr.transfer_size == SIZE_WORD ? "word" :
1059 >                   instr.transfer_size == SIZE_LONG ? "long" : "quad",
1060 >                   instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1061          
1062          if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
1063                  printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
1064 <        if (instr.transfer_type == TYPE_LOAD)
1064 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
1065                  printf(" r%d (rd = 0)\n", instr.rd);
1066   #endif
1067          
1068          if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
1069                  regs[instr.ra] = instr.addr;
1070 <        if (instr.transfer_type == TYPE_LOAD)
1070 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
1071                  regs[instr.rd] = 0;
1072          
1073          *nip_p += 4;
1074          return true;
1075   }
1076   #endif
1077 +
1078 + // Decode and skip MIPS instruction
1079 + #if (defined(mips) || defined(__mips))
1080 + enum {
1081 + #if (defined(sgi) || defined(__sgi))
1082 +  MIPS_REG_EPC = 35,
1083 + #endif
1084 + };
1085 + static bool mips_skip_instruction(greg_t * regs)
1086 + {
1087 +  unsigned int * epc = (unsigned int *)(unsigned long)regs[MIPS_REG_EPC];
1088 +
1089 +  if (epc == 0)
1090 +        return false;
1091 +
1092 + #if DEBUG
1093 +  printf("IP: %p [%08x]\n", epc, epc[0]);
1094 + #endif
1095 +
1096 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1097 +  transfer_size_t transfer_size = SIZE_LONG;
1098 +  int direction = 0;
1099 +
1100 +  const unsigned int opcode = epc[0];
1101 +  switch (opcode >> 26) {
1102 +  case 32: // Load Byte
1103 +  case 36: // Load Byte Unsigned
1104 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1105 +        transfer_size = SIZE_BYTE;
1106 +        break;
1107 +  case 33: // Load Halfword
1108 +  case 37: // Load Halfword Unsigned
1109 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1110 +        transfer_size = SIZE_WORD;
1111 +        break;
1112 +  case 35: // Load Word
1113 +  case 39: // Load Word Unsigned
1114 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1115 +        transfer_size = SIZE_LONG;
1116 +        break;
1117 +  case 34: // Load Word Left
1118 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1119 +        transfer_size = SIZE_LONG;
1120 +        direction = -1;
1121 +        break;
1122 +  case 38: // Load Word Right
1123 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1124 +        transfer_size = SIZE_LONG;
1125 +        direction = 1;
1126 +        break;
1127 +  case 55: // Load Doubleword
1128 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1129 +        transfer_size = SIZE_QUAD;
1130 +        break;
1131 +  case 26: // Load Doubleword Left
1132 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1133 +        transfer_size = SIZE_QUAD;
1134 +        direction = -1;
1135 +        break;
1136 +  case 27: // Load Doubleword Right
1137 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1138 +        transfer_size = SIZE_QUAD;
1139 +        direction = 1;
1140 +        break;
1141 +  case 40: // Store Byte
1142 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1143 +        transfer_size = SIZE_BYTE;
1144 +        break;
1145 +  case 41: // Store Halfword
1146 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1147 +        transfer_size = SIZE_WORD;
1148 +        break;
1149 +  case 43: // Store Word
1150 +  case 42: // Store Word Left
1151 +  case 46: // Store Word Right
1152 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1153 +        transfer_size = SIZE_LONG;
1154 +        break;
1155 +  case 63: // Store Doubleword
1156 +  case 44: // Store Doubleword Left
1157 +  case 45: // Store Doubleword Right
1158 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1159 +        transfer_size = SIZE_QUAD;
1160 +        break;
1161 +  /* Misc instructions unlikely to be used within CPU emulators */
1162 +  case 48: // Load Linked Word
1163 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1164 +        transfer_size = SIZE_LONG;
1165 +        break;
1166 +  case 52: // Load Linked Doubleword
1167 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1168 +        transfer_size = SIZE_QUAD;
1169 +        break;
1170 +  case 56: // Store Conditional Word
1171 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1172 +        transfer_size = SIZE_LONG;
1173 +        break;
1174 +  case 60: // Store Conditional Doubleword
1175 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1176 +        transfer_size = SIZE_QUAD;
1177 +        break;
1178 +  }
1179 +
1180 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1181 +        // Unknown machine code, let it crash. Then patch the decoder
1182 +        return false;
1183 +  }
1184 +
1185 +  // Zero target register in case of a load operation
1186 +  const int reg = (opcode >> 16) & 0x1f;
1187 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD) {
1188 +        if (direction == 0)
1189 +          regs[reg] = 0;
1190 +        else {
1191 +          // FIXME: untested code
1192 +          unsigned long ea = regs[(opcode >> 21) & 0x1f];
1193 +          ea += (signed long)(signed int)(signed short)(opcode & 0xffff);
1194 +          const int offset = ea & (transfer_size == SIZE_LONG ? 3 : 7);
1195 +          unsigned long value;
1196 +          if (direction > 0) {
1197 +                const unsigned long rmask = ~((1L << ((offset + 1) * 8)) - 1);
1198 +                value = regs[reg] & rmask;
1199 +          }
1200 +          else {
1201 +                const unsigned long lmask = (1L << (offset * 8)) - 1;
1202 +                value = regs[reg] & lmask;
1203 +          }
1204 +          // restore most significant bits
1205 +          if (transfer_size == SIZE_LONG)
1206 +                value = (signed long)(signed int)value;
1207 +          regs[reg] = value;
1208 +        }
1209 +  }
1210 +
1211 + #if DEBUG
1212 + #if (defined(_ABIN32) || defined(_ABI64))
1213 +  static const char * mips_gpr_names[32] = {
1214 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1215 +        "t0",   "t1",   "t2",   "t3",   "t4",   "t5",   "t6",   "t7",
1216 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1217 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1218 +  };
1219 + #else
1220 +  static const char * mips_gpr_names[32] = {
1221 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1222 +        "a4",   "a5",   "a6",   "a7",   "t0",   "t1",   "t2",   "t3",
1223 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1224 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1225 +  };
1226 + #endif
1227 +  printf("%s %s register %s\n",
1228 +                 transfer_size == SIZE_BYTE ? "byte" :
1229 +                 transfer_size == SIZE_WORD ? "word" :
1230 +                 transfer_size == SIZE_LONG ? "long" :
1231 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1232 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1233 +                 mips_gpr_names[reg]);
1234 + #endif
1235 +
1236 +  regs[MIPS_REG_EPC] += 4;
1237 +  return true;
1238 + }
1239 + #endif
1240 +
1241 + // Decode and skip SPARC instruction
1242 + #if (defined(sparc) || defined(__sparc__))
1243 + enum {
1244 + #if (defined(__sun__))
1245 +  SPARC_REG_G1 = REG_G1,
1246 +  SPARC_REG_O0 = REG_O0,
1247 +  SPARC_REG_PC = REG_PC,
1248 + #endif
1249 + };
1250 + static bool sparc_skip_instruction(unsigned long * regs, gwindows_t * gwins, struct rwindow * rwin)
1251 + {
1252 +  unsigned int * pc = (unsigned int *)regs[SPARC_REG_PC];
1253 +
1254 +  if (pc == 0)
1255 +        return false;
1256 +
1257 + #if DEBUG
1258 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1259 + #endif
1260 +
1261 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1262 +  transfer_size_t transfer_size = SIZE_LONG;
1263 +  bool register_pair = false;
1264 +
1265 +  const unsigned int opcode = pc[0];
1266 +  if ((opcode >> 30) != 3)
1267 +        return false;
1268 +  switch ((opcode >> 19) & 0x3f) {
1269 +  case 9: // Load Signed Byte
1270 +  case 1: // Load Unsigned Byte
1271 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1272 +        transfer_size = SIZE_BYTE;
1273 +        break;
1274 +  case 10:// Load Signed Halfword
1275 +  case 2: // Load Unsigned Word
1276 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1277 +        transfer_size = SIZE_WORD;
1278 +        break;
1279 +  case 8: // Load Word
1280 +  case 0: // Load Unsigned Word
1281 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1282 +        transfer_size = SIZE_LONG;
1283 +        break;
1284 +  case 11:// Load Extended Word
1285 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1286 +        transfer_size = SIZE_QUAD;
1287 +        break;
1288 +  case 3: // Load Doubleword
1289 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1290 +        transfer_size = SIZE_LONG;
1291 +        register_pair = true;
1292 +        break;
1293 +  case 5: // Store Byte
1294 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1295 +        transfer_size = SIZE_BYTE;
1296 +        break;
1297 +  case 6: // Store Halfword
1298 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1299 +        transfer_size = SIZE_WORD;
1300 +        break;
1301 +  case 4: // Store Word
1302 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1303 +        transfer_size = SIZE_LONG;
1304 +        break;
1305 +  case 14:// Store Extended Word
1306 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1307 +        transfer_size = SIZE_QUAD;
1308 +        break;
1309 +  case 7: // Store Doubleword
1310 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1311 +        transfer_size = SIZE_WORD;
1312 +        register_pair = true;
1313 +        break;
1314 +  }
1315 +
1316 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1317 +        // Unknown machine code, let it crash. Then patch the decoder
1318 +        return false;
1319 +  }
1320 +
1321 +  // Zero target register in case of a load operation
1322 +  const int reg = (opcode >> 25) & 0x1f;
1323 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != 0) {
1324 +        // FIXME: code to handle local & input registers is not tested
1325 +        if (reg >= 1 && reg <= 7) {
1326 +          // global registers
1327 +          regs[reg - 1 + SPARC_REG_G1] = 0;
1328 +        }
1329 +        else if (reg >= 8 && reg <= 15) {
1330 +          // output registers
1331 +          regs[reg - 8 + SPARC_REG_O0] = 0;
1332 +        }
1333 +        else if (reg >= 16 && reg <= 23) {
1334 +          // local registers (in register windows)
1335 +          if (gwins)
1336 +                gwins->wbuf->rw_local[reg - 16] = 0;
1337 +          else
1338 +                rwin->rw_local[reg - 16] = 0;
1339 +        }
1340 +        else {
1341 +          // input registers (in register windows)
1342 +          if (gwins)
1343 +                gwins->wbuf->rw_in[reg - 24] = 0;
1344 +          else
1345 +                rwin->rw_in[reg - 24] = 0;
1346 +        }
1347 +  }
1348 +
1349 + #if DEBUG
1350 +  static const char * reg_names[] = {
1351 +        "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
1352 +        "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
1353 +        "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
1354 +        "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7"
1355 +  };
1356 +  printf("%s %s register %s\n",
1357 +                 transfer_size == SIZE_BYTE ? "byte" :
1358 +                 transfer_size == SIZE_WORD ? "word" :
1359 +                 transfer_size == SIZE_LONG ? "long" :
1360 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1361 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1362 +                 reg_names[reg]);
1363 + #endif
1364 +
1365 +  regs[SPARC_REG_PC] += 4;
1366 +  return true;
1367 + }
1368 + #endif
1369 + #endif
1370 +
1371 + // Decode and skip ARM instruction
1372 + #if (defined(arm) || defined(__arm__))
1373 + enum {
1374 + #if (defined(__linux__))
1375 +  ARM_REG_PC = 15,
1376 +  ARM_REG_CPSR = 16
1377 + #endif
1378 + };
1379 + static bool arm_skip_instruction(unsigned long * regs)
1380 + {
1381 +  unsigned int * pc = (unsigned int *)regs[ARM_REG_PC];
1382 +
1383 +  if (pc == 0)
1384 +        return false;
1385 +
1386 + #if DEBUG
1387 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1388 + #endif
1389 +
1390 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1391 +  transfer_size_t transfer_size = SIZE_UNKNOWN;
1392 +  enum { op_sdt = 1, op_sdth = 2 };
1393 +  int op = 0;
1394 +
1395 +  // Handle load/store instructions only
1396 +  const unsigned int opcode = pc[0];
1397 +  switch ((opcode >> 25) & 7) {
1398 +  case 0: // Halfword and Signed Data Transfer (LDRH, STRH, LDRSB, LDRSH)
1399 +        op = op_sdth;
1400 +        // Determine transfer size (S/H bits)
1401 +        switch ((opcode >> 5) & 3) {
1402 +        case 0: // SWP instruction
1403 +          break;
1404 +        case 1: // Unsigned halfwords
1405 +        case 3: // Signed halfwords
1406 +          transfer_size = SIZE_WORD;
1407 +          break;
1408 +        case 2: // Signed byte
1409 +          transfer_size = SIZE_BYTE;
1410 +          break;
1411 +        }
1412 +        break;
1413 +  case 2:
1414 +  case 3: // Single Data Transfer (LDR, STR)
1415 +        op = op_sdt;
1416 +        // Determine transfer size (B bit)
1417 +        if (((opcode >> 22) & 1) == 1)
1418 +          transfer_size = SIZE_BYTE;
1419 +        else
1420 +          transfer_size = SIZE_LONG;
1421 +        break;
1422 +  default:
1423 +        // FIXME: support load/store mutliple?
1424 +        return false;
1425 +  }
1426 +
1427 +  // Check for invalid transfer size (SWP instruction?)
1428 +  if (transfer_size == SIZE_UNKNOWN)
1429 +        return false;
1430 +
1431 +  // Determine transfer type (L bit)
1432 +  if (((opcode >> 20) & 1) == 1)
1433 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1434 +  else
1435 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1436 +
1437 +  // Compute offset
1438 +  int offset;
1439 +  if (((opcode >> 25) & 1) == 0) {
1440 +        if (op == op_sdt)
1441 +          offset = opcode & 0xfff;
1442 +        else if (op == op_sdth) {
1443 +          int rm = opcode & 0xf;
1444 +          if (((opcode >> 22) & 1) == 0) {
1445 +                // register offset
1446 +                offset = regs[rm];
1447 +          }
1448 +          else {
1449 +                // immediate offset
1450 +                offset = ((opcode >> 4) & 0xf0) | (opcode & 0x0f);
1451 +          }
1452 +        }
1453 +  }
1454 +  else {
1455 +        const int rm = opcode & 0xf;
1456 +        const int sh = (opcode >> 7) & 0x1f;
1457 +        if (((opcode >> 4) & 1) == 1) {
1458 +          // we expect only legal load/store instructions
1459 +          printf("FATAL: invalid shift operand\n");
1460 +          return false;
1461 +        }
1462 +        const unsigned int v = regs[rm];
1463 +        switch ((opcode >> 5) & 3) {
1464 +        case 0: // logical shift left
1465 +          offset = sh ? v << sh : v;
1466 +          break;
1467 +        case 1: // logical shift right
1468 +          offset = sh ? v >> sh : 0;
1469 +          break;
1470 +        case 2: // arithmetic shift right
1471 +          if (sh)
1472 +                offset = ((signed int)v) >> sh;
1473 +          else
1474 +                offset = (v & 0x80000000) ? 0xffffffff : 0;
1475 +          break;
1476 +        case 3: // rotate right
1477 +          if (sh)
1478 +                offset = (v >> sh) | (v << (32 - sh));
1479 +          else
1480 +                offset = (v >> 1) | ((regs[ARM_REG_CPSR] << 2) & 0x80000000);
1481 +          break;
1482 +        }
1483 +  }
1484 +  if (((opcode >> 23) & 1) == 0)
1485 +        offset = -offset;
1486 +
1487 +  int rd = (opcode >> 12) & 0xf;
1488 +  int rn = (opcode >> 16) & 0xf;
1489 + #if DEBUG
1490 +  static const char * reg_names[] = {
1491 +        "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1492 +        "r9", "r9", "sl", "fp", "ip", "sp", "lr", "pc"
1493 +  };
1494 +  printf("%s %s register %s\n",
1495 +                 transfer_size == SIZE_BYTE ? "byte" :
1496 +                 transfer_size == SIZE_WORD ? "word" :
1497 +                 transfer_size == SIZE_LONG ? "long" : "unknown",
1498 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1499 +                 reg_names[rd]);
1500 + #endif
1501 +
1502 +  unsigned int base = regs[rn];
1503 +  if (((opcode >> 24) & 1) == 1)
1504 +        base += offset;
1505 +
1506 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD)
1507 +        regs[rd] = 0;
1508 +
1509 +  if (((opcode >> 24) & 1) == 0)                // post-index addressing
1510 +        regs[rn] += offset;
1511 +  else if (((opcode >> 21) & 1) == 1)   // write-back address into base
1512 +        regs[rn] = base;
1513 +
1514 +  regs[ARM_REG_PC] += 4;
1515 +  return true;
1516 + }
1517   #endif
1518  
1519 +
1520   // Fallbacks
1521   #ifndef SIGSEGV_FAULT_INSTRUCTION
1522   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_PC
1523   #endif
1524 + #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
1525 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
1526 + #endif
1527 + #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
1528 + #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  sigsegv_fault_handler(ADDR, IP)
1529 + #endif
1530  
1531   // SIGSEGV recovery supported ?
1532   #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
# Line 618 | Line 1538 | static bool powerpc_skip_instruction(uns
1538   *  SIGSEGV global handler
1539   */
1540  
1541 < #ifdef HAVE_SIGSEGV_RECOVERY
1542 < static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1541 > // This function handles the badaccess to memory.
1542 > // It is called from the signal handler or the exception handler.
1543 > static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
1544   {
1545          sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
1546          sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
626        bool fault_recovered = false;
1547          
1548          // Call user's handler and reinstall the global handler, if required
1549 <        if (sigsegv_fault_handler(fault_address, fault_instruction)) {
1550 < #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1551 <                sigsegv_do_install_handler(sig);
1549 >        switch (SIGSEGV_FAULT_HANDLER_INVOKE(fault_address, fault_instruction)) {
1550 >        case SIGSEGV_RETURN_SUCCESS:
1551 >                return true;
1552 >
1553 > #if HAVE_SIGSEGV_SKIP_INSTRUCTION
1554 >        case SIGSEGV_RETURN_SKIP_INSTRUCTION:
1555 >                // Call the instruction skipper with the register file
1556 >                // available
1557 >                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
1558 > #ifdef HAVE_MACH_EXCEPTIONS
1559 >                        // Unlike UNIX signals where the thread state
1560 >                        // is modified off of the stack, in Mach we
1561 >                        // need to actually call thread_set_state to
1562 >                        // have the register values updated.
1563 >                        kern_return_t krc;
1564 >
1565 >                        krc = thread_set_state(thread,
1566 >                                                                   MACHINE_THREAD_STATE, (thread_state_t)state,
1567 >                                                                   MACHINE_THREAD_STATE_COUNT);
1568 >                        MACH_CHECK_ERROR (thread_get_state, krc);
1569 > #endif
1570 >                        return true;
1571 >                }
1572 >                break;
1573   #endif
1574 <                fault_recovered = true;
1574 >        case SIGSEGV_RETURN_FAILURE:
1575 >                // We can't do anything with the fault_address, dump state?
1576 >                if (sigsegv_state_dumper != 0)
1577 >                        sigsegv_state_dumper(fault_address, fault_instruction);
1578 >                break;
1579          }
1580 < #if HAVE_SIGSEGV_SKIP_INSTRUCTION
1581 <        else if (sigsegv_ignore_fault) {
1582 <                // Call the instruction skipper with the register file available
1583 <                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE))
1584 <                        fault_recovered = true;
1580 >
1581 >        return false;
1582 > }
1583 >
1584 >
1585 > /*
1586 > * There are two mechanisms for handling a bad memory access,
1587 > * Mach exceptions and UNIX signals. The implementation specific
1588 > * code appears below. Its reponsibility is to call handle_badaccess
1589 > * which is the routine that handles the fault in an implementation
1590 > * agnostic manner. The implementation specific code below is then
1591 > * reponsible for checking whether handle_badaccess was able
1592 > * to handle the memory access error and perform any implementation
1593 > * specific tasks necessary afterwards.
1594 > */
1595 >
1596 > #ifdef HAVE_MACH_EXCEPTIONS
1597 > /*
1598 > * We need to forward all exceptions that we do not handle.
1599 > * This is important, there are many exceptions that may be
1600 > * handled by other exception handlers. For example debuggers
1601 > * use exceptions and the exception hander is in another
1602 > * process in such a case. (Timothy J. Wood states in his
1603 > * message to the list that he based this code on that from
1604 > * gdb for Darwin.)
1605 > */
1606 > static inline kern_return_t
1607 > forward_exception(mach_port_t thread_port,
1608 >                                  mach_port_t task_port,
1609 >                                  exception_type_t exception_type,
1610 >                                  exception_data_t exception_data,
1611 >                                  mach_msg_type_number_t data_count,
1612 >                                  ExceptionPorts *oldExceptionPorts)
1613 > {
1614 >        kern_return_t kret;
1615 >        unsigned int portIndex;
1616 >        mach_port_t port;
1617 >        exception_behavior_t behavior;
1618 >        thread_state_flavor_t flavor;
1619 >        thread_state_t thread_state;
1620 >        mach_msg_type_number_t thread_state_count;
1621 >
1622 >        for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
1623 >                if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
1624 >                        // This handler wants the exception
1625 >                        break;
1626 >                }
1627          }
1628 +
1629 +        if (portIndex >= oldExceptionPorts->maskCount) {
1630 +                fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
1631 +                return KERN_FAILURE;
1632 +        }
1633 +
1634 +        port = oldExceptionPorts->handlers[portIndex];
1635 +        behavior = oldExceptionPorts->behaviors[portIndex];
1636 +        flavor = oldExceptionPorts->flavors[portIndex];
1637 +
1638 +        /*
1639 +         fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
1640 +         */
1641 +
1642 +        if (behavior != EXCEPTION_DEFAULT) {
1643 +                thread_state_count = THREAD_STATE_MAX;
1644 +                kret = thread_get_state (thread_port, flavor, thread_state,
1645 +                                                                 &thread_state_count);
1646 +                MACH_CHECK_ERROR (thread_get_state, kret);
1647 +        }
1648 +
1649 +        switch (behavior) {
1650 +        case EXCEPTION_DEFAULT:
1651 +          // fprintf(stderr, "forwarding to exception_raise\n");
1652 +          kret = exception_raise(port, thread_port, task_port, exception_type,
1653 +                                                         exception_data, data_count);
1654 +          MACH_CHECK_ERROR (exception_raise, kret);
1655 +          break;
1656 +        case EXCEPTION_STATE:
1657 +          // fprintf(stderr, "forwarding to exception_raise_state\n");
1658 +          kret = exception_raise_state(port, exception_type, exception_data,
1659 +                                                                   data_count, &flavor,
1660 +                                                                   thread_state, thread_state_count,
1661 +                                                                   thread_state, &thread_state_count);
1662 +          MACH_CHECK_ERROR (exception_raise_state, kret);
1663 +          break;
1664 +        case EXCEPTION_STATE_IDENTITY:
1665 +          // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
1666 +          kret = exception_raise_state_identity(port, thread_port, task_port,
1667 +                                                                                        exception_type, exception_data,
1668 +                                                                                        data_count, &flavor,
1669 +                                                                                        thread_state, thread_state_count,
1670 +                                                                                        thread_state, &thread_state_count);
1671 +          MACH_CHECK_ERROR (exception_raise_state_identity, kret);
1672 +          break;
1673 +        default:
1674 +          fprintf(stderr, "forward_exception got unknown behavior\n");
1675 +          break;
1676 +        }
1677 +
1678 +        if (behavior != EXCEPTION_DEFAULT) {
1679 +                kret = thread_set_state (thread_port, flavor, thread_state,
1680 +                                                                 thread_state_count);
1681 +                MACH_CHECK_ERROR (thread_set_state, kret);
1682 +        }
1683 +
1684 +        return KERN_SUCCESS;
1685 + }
1686 +
1687 + /*
1688 + * This is the code that actually handles the exception.
1689 + * It is called by exc_server. For Darwin 5 Apple changed
1690 + * this a bit from how this family of functions worked in
1691 + * Mach. If you are familiar with that it is a little
1692 + * different. The main variation that concerns us here is
1693 + * that code is an array of exception specific codes and
1694 + * codeCount is a count of the number of codes in the code
1695 + * array. In typical Mach all exceptions have a code
1696 + * and sub-code. It happens to be the case that for a
1697 + * EXC_BAD_ACCESS exception the first entry is the type of
1698 + * bad access that occurred and the second entry is the
1699 + * faulting address so these entries correspond exactly to
1700 + * how the code and sub-code are used on Mach.
1701 + *
1702 + * This is a MIG interface. No code in Basilisk II should
1703 + * call this directley. This has to have external C
1704 + * linkage because that is what exc_server expects.
1705 + */
1706 + kern_return_t
1707 + catch_exception_raise(mach_port_t exception_port,
1708 +                                          mach_port_t thread,
1709 +                                          mach_port_t task,
1710 +                                          exception_type_t exception,
1711 +                                          exception_data_t code,
1712 +                                          mach_msg_type_number_t codeCount)
1713 + {
1714 +        ppc_thread_state_t state;
1715 +        kern_return_t krc;
1716 +
1717 +        if ((exception == EXC_BAD_ACCESS)  && (codeCount >= 2)) {
1718 +                if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
1719 +                        return KERN_SUCCESS;
1720 +        }
1721 +
1722 +        // In Mach we do not need to remove the exception handler.
1723 +        // If we forward the exception, eventually some exception handler
1724 +        // will take care of this exception.
1725 +        krc = forward_exception(thread, task, exception, code, codeCount, &ports);
1726 +
1727 +        return krc;
1728 + }
1729   #endif
1730  
1731 <        if (!fault_recovered) {
1732 <                // FAIL: reinstall default handler for "safe" crash
1731 > #ifdef HAVE_SIGSEGV_RECOVERY
1732 > // Handle bad memory accesses with signal handler
1733 > static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1734 > {
1735 >        // Call handler and reinstall the global handler, if required
1736 >        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
1737 > #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1738 >                sigsegv_do_install_handler(sig);
1739 > #endif
1740 >                return;
1741 >        }
1742 >
1743 >        // Failure: reinstall default handler for "safe" crash
1744   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1745 <                SIGSEGV_ALL_SIGNALS
1745 >        SIGSEGV_ALL_SIGNALS
1746   #undef FAULT_HANDLER
648                
649                // We can't do anything with the fault_address, dump state?
650                if (sigsegv_state_dumper != 0)
651                        sigsegv_state_dumper(fault_address, fault_instruction);
652        }
1747   }
1748   #endif
1749  
# Line 663 | Line 1757 | static bool sigsegv_do_install_handler(i
1757   {
1758          // Setup SIGSEGV handler to process writes to frame buffer
1759   #ifdef HAVE_SIGACTION
1760 <        struct sigaction vosf_sa;
1761 <        sigemptyset(&vosf_sa.sa_mask);
1762 <        vosf_sa.sa_sigaction = sigsegv_handler;
1763 <        vosf_sa.sa_flags = SA_SIGINFO;
1764 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1760 >        struct sigaction sigsegv_sa;
1761 >        sigemptyset(&sigsegv_sa.sa_mask);
1762 >        sigsegv_sa.sa_sigaction = sigsegv_handler;
1763 >        sigsegv_sa.sa_flags = SA_SIGINFO;
1764 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1765   #else
1766          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1767   #endif
# Line 679 | Line 1773 | static bool sigsegv_do_install_handler(i
1773   {
1774          // Setup SIGSEGV handler to process writes to frame buffer
1775   #ifdef HAVE_SIGACTION
1776 <        struct sigaction vosf_sa;
1777 <        sigemptyset(&vosf_sa.sa_mask);
1778 <        vosf_sa.sa_handler = (signal_handler)sigsegv_handler;
1776 >        struct sigaction sigsegv_sa;
1777 >        sigemptyset(&sigsegv_sa.sa_mask);
1778 >        sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
1779 >        sigsegv_sa.sa_flags = 0;
1780   #if !EMULATED_68K && defined(__NetBSD__)
1781 <        sigaddset(&vosf_sa.sa_mask, SIGALRM);
1782 <        vosf_sa.sa_flags = SA_ONSTACK;
688 < #else
689 <        vosf_sa.sa_flags = 0;
1781 >        sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
1782 >        sigsegv_sa.sa_flags |= SA_ONSTACK;
1783   #endif
1784 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1784 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1785   #else
1786          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1787   #endif
1788   }
1789   #endif
1790  
1791 < bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1791 > #if defined(HAVE_MACH_EXCEPTIONS)
1792 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1793   {
1794 < #ifdef HAVE_SIGSEGV_RECOVERY
1794 >        /*
1795 >         * Except for the exception port functions, this should be
1796 >         * pretty much stock Mach. If later you choose to support
1797 >         * other Mach's besides Darwin, just check for __MACH__
1798 >         * here and __APPLE__ where the actual differences are.
1799 >         */
1800 > #if defined(__APPLE__) && defined(__MACH__)
1801 >        if (sigsegv_fault_handler != NULL) {
1802 >                sigsegv_fault_handler = handler;
1803 >                return true;
1804 >        }
1805 >
1806 >        kern_return_t krc;
1807 >
1808 >        // create the the exception port
1809 >        krc = mach_port_allocate(mach_task_self(),
1810 >                          MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
1811 >        if (krc != KERN_SUCCESS) {
1812 >                mach_error("mach_port_allocate", krc);
1813 >                return false;
1814 >        }
1815 >
1816 >        // add a port send right
1817 >        krc = mach_port_insert_right(mach_task_self(),
1818 >                              _exceptionPort, _exceptionPort,
1819 >                              MACH_MSG_TYPE_MAKE_SEND);
1820 >        if (krc != KERN_SUCCESS) {
1821 >                mach_error("mach_port_insert_right", krc);
1822 >                return false;
1823 >        }
1824 >
1825 >        // get the old exception ports
1826 >        ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
1827 >        krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
1828 >                                &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
1829 >        if (krc != KERN_SUCCESS) {
1830 >                mach_error("thread_get_exception_ports", krc);
1831 >                return false;
1832 >        }
1833 >
1834 >        // set the new exception port
1835 >        //
1836 >        // We could have used EXCEPTION_STATE_IDENTITY instead of
1837 >        // EXCEPTION_DEFAULT to get the thread state in the initial
1838 >        // message, but it turns out that in the common case this is not
1839 >        // neccessary. If we need it we can later ask for it from the
1840 >        // suspended thread.
1841 >        //
1842 >        // Even with THREAD_STATE_NONE, Darwin provides the program
1843 >        // counter in the thread state.  The comments in the header file
1844 >        // seem to imply that you can count on the GPR's on an exception
1845 >        // as well but just to be safe I use MACHINE_THREAD_STATE because
1846 >        // you have to ask for all of the GPR's anyway just to get the
1847 >        // program counter. In any case because of update effective
1848 >        // address from immediate and update address from effective
1849 >        // addresses of ra and rb modes (as good an name as any for these
1850 >        // addressing modes) used in PPC instructions, you will need the
1851 >        // GPR state anyway.
1852 >        krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
1853 >                                EXCEPTION_DEFAULT, MACHINE_THREAD_STATE);
1854 >        if (krc != KERN_SUCCESS) {
1855 >                mach_error("thread_set_exception_ports", krc);
1856 >                return false;
1857 >        }
1858 >
1859 >        // create the exception handler thread
1860 >        if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
1861 >                (void)fprintf(stderr, "creation of exception thread failed\n");
1862 >                return false;
1863 >        }
1864 >
1865 >        // do not care about the exception thread any longer, let is run standalone
1866 >        (void)pthread_detach(exc_thread);
1867 >
1868          sigsegv_fault_handler = handler;
1869 +        return true;
1870 + #else
1871 +        return false;
1872 + #endif
1873 + }
1874 + #endif
1875 +
1876 + #ifdef HAVE_WIN32_EXCEPTIONS
1877 + static LONG WINAPI main_exception_filter(EXCEPTION_POINTERS *ExceptionInfo)
1878 + {
1879 +        if (sigsegv_fault_handler != NULL
1880 +                && ExceptionInfo->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION
1881 +                && ExceptionInfo->ExceptionRecord->NumberParameters == 2
1882 +                && handle_badaccess(ExceptionInfo))
1883 +                return EXCEPTION_CONTINUE_EXECUTION;
1884 +
1885 +        return EXCEPTION_CONTINUE_SEARCH;
1886 + }
1887 +
1888 + #if defined __CYGWIN__ && defined __i386__
1889 + /* In Cygwin programs, SetUnhandledExceptionFilter has no effect because Cygwin
1890 +   installs a global exception handler.  We have to dig deep in order to install
1891 +   our main_exception_filter.  */
1892 +
1893 + /* Data structures for the current thread's exception handler chain.
1894 +   On the x86 Windows uses register fs, offset 0 to point to the current
1895 +   exception handler; Cygwin mucks with it, so we must do the same... :-/ */
1896 +
1897 + /* Magic taken from winsup/cygwin/include/exceptions.h.  */
1898 +
1899 + struct exception_list {
1900 +    struct exception_list *prev;
1901 +    int (*handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
1902 + };
1903 + typedef struct exception_list exception_list;
1904 +
1905 + /* Magic taken from winsup/cygwin/exceptions.cc.  */
1906 +
1907 + __asm__ (".equ __except_list,0");
1908 +
1909 + extern exception_list *_except_list __asm__ ("%fs:__except_list");
1910 +
1911 + /* For debugging.  _except_list is not otherwise accessible from gdb.  */
1912 + static exception_list *
1913 + debug_get_except_list ()
1914 + {
1915 +  return _except_list;
1916 + }
1917 +
1918 + /* Cygwin's original exception handler.  */
1919 + static int (*cygwin_exception_handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
1920 +
1921 + /* Our exception handler.  */
1922 + static int
1923 + libsigsegv_exception_handler (EXCEPTION_RECORD *exception, void *frame, CONTEXT *context, void *dispatch)
1924 + {
1925 +  EXCEPTION_POINTERS ExceptionInfo;
1926 +  ExceptionInfo.ExceptionRecord = exception;
1927 +  ExceptionInfo.ContextRecord = context;
1928 +  if (main_exception_filter (&ExceptionInfo) == EXCEPTION_CONTINUE_SEARCH)
1929 +    return cygwin_exception_handler (exception, frame, context, dispatch);
1930 +  else
1931 +    return 0;
1932 + }
1933 +
1934 + static void
1935 + do_install_main_exception_filter ()
1936 + {
1937 +  /* We cannot insert any handler into the chain, because such handlers
1938 +     must lie on the stack (?).  Instead, we have to replace(!) Cygwin's
1939 +     global exception handler.  */
1940 +  cygwin_exception_handler = _except_list->handler;
1941 +  _except_list->handler = libsigsegv_exception_handler;
1942 + }
1943 +
1944 + #else
1945 +
1946 + static void
1947 + do_install_main_exception_filter ()
1948 + {
1949 +  SetUnhandledExceptionFilter ((LPTOP_LEVEL_EXCEPTION_FILTER) &main_exception_filter);
1950 + }
1951 + #endif
1952 +
1953 + static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1954 + {
1955 +        static bool main_exception_filter_installed = false;
1956 +        if (!main_exception_filter_installed) {
1957 +                do_install_main_exception_filter();
1958 +                main_exception_filter_installed = true;
1959 +        }
1960 +        sigsegv_fault_handler = handler;
1961 +        return true;
1962 + }
1963 + #endif
1964 +
1965 + bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1966 + {
1967 + #if defined(HAVE_SIGSEGV_RECOVERY)
1968          bool success = true;
1969   #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
1970          SIGSEGV_ALL_SIGNALS
1971   #undef FAULT_HANDLER
1972 +        if (success)
1973 +            sigsegv_fault_handler = handler;
1974          return success;
1975 + #elif defined(HAVE_MACH_EXCEPTIONS) || defined(HAVE_WIN32_EXCEPTIONS)
1976 +        return sigsegv_do_install_handler(handler);
1977   #else
1978          // FAIL: no siginfo_t nor sigcontext subterfuge is available
1979          return false;
# Line 717 | Line 1987 | bool sigsegv_install_handler(sigsegv_fau
1987  
1988   void sigsegv_deinstall_handler(void)
1989   {
1990 +  // We do nothing for Mach exceptions, the thread would need to be
1991 +  // suspended if not already so, and we might mess with other
1992 +  // exception handlers that came after we registered ours. There is
1993 +  // no need to remove the exception handler, in fact this function is
1994 +  // not called anywhere in Basilisk II.
1995   #ifdef HAVE_SIGSEGV_RECOVERY
1996          sigsegv_fault_handler = 0;
1997   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1998          SIGSEGV_ALL_SIGNALS
1999   #undef FAULT_HANDLER
2000   #endif
2001 < }
2002 <
2003 <
729 < /*
730 < *  SIGSEGV ignore state modifier
731 < */
732 <
733 < void sigsegv_set_ignore_state(bool ignore_fault)
734 < {
735 <        sigsegv_ignore_fault = ignore_fault;
2001 > #ifdef HAVE_WIN32_EXCEPTIONS
2002 >        sigsegv_fault_handler = NULL;
2003 > #endif
2004   }
2005  
2006  
# Line 754 | Line 2022 | void sigsegv_set_dump_state(sigsegv_stat
2022   #include <stdio.h>
2023   #include <stdlib.h>
2024   #include <fcntl.h>
2025 + #ifdef HAVE_SYS_MMAN_H
2026   #include <sys/mman.h>
2027 + #endif
2028   #include "vm_alloc.h"
2029  
2030 + const int REF_INDEX = 123;
2031 + const int REF_VALUE = 45;
2032 +
2033   static int page_size;
2034   static volatile char * page = 0;
2035   static volatile int handler_called = 0;
2036  
2037 < static bool sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2037 > #ifdef __GNUC__
2038 > // Code range where we expect the fault to come from
2039 > static void *b_region, *e_region;
2040 > #endif
2041 >
2042 > static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2043   {
2044 + #if DEBUG
2045 +        printf("sigsegv_test_handler(%p, %p)\n", fault_address, instruction_address);
2046 +        printf("expected fault at %p\n", page + REF_INDEX);
2047 + #ifdef __GNUC__
2048 +        printf("expected instruction address range: %p-%p\n", b_region, e_region);
2049 + #endif
2050 + #endif
2051          handler_called++;
2052 <        if ((fault_address - 123) != page)
2053 <                exit(1);
2052 >        if ((fault_address - REF_INDEX) != page)
2053 >                exit(10);
2054 > #ifdef __GNUC__
2055 >        // Make sure reported fault instruction address falls into
2056 >        // expected code range
2057 >        if (instruction_address != SIGSEGV_INVALID_PC
2058 >                && ((instruction_address <  (sigsegv_address_t)b_region) ||
2059 >                        (instruction_address >= (sigsegv_address_t)e_region)))
2060 >                exit(11);
2061 > #endif
2062          if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
2063 <                exit(1);
2064 <        return true;
2063 >                exit(12);
2064 >        return SIGSEGV_RETURN_SUCCESS;
2065   }
2066  
2067   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
2068 < static bool sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2068 > static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2069   {
2070 <        return false;
2070 > #if DEBUG
2071 >        printf("sigsegv_insn_handler(%p, %p)\n", fault_address, instruction_address);
2072 > #endif
2073 >        if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
2074 > #ifdef __GNUC__
2075 >                // Make sure reported fault instruction address falls into
2076 >                // expected code range
2077 >                if (instruction_address != SIGSEGV_INVALID_PC
2078 >                        && ((instruction_address <  (sigsegv_address_t)b_region) ||
2079 >                                (instruction_address >= (sigsegv_address_t)e_region)))
2080 >                        return SIGSEGV_RETURN_FAILURE;
2081 > #endif
2082 >                return SIGSEGV_RETURN_SKIP_INSTRUCTION;
2083 >        }
2084 >
2085 >        return SIGSEGV_RETURN_FAILURE;
2086 > }
2087 >
2088 > // More sophisticated tests for instruction skipper
2089 > static bool arch_insn_skipper_tests()
2090 > {
2091 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
2092 >        static const unsigned char code[] = {
2093 >                0x8a, 0x00,                    // mov    (%eax),%al
2094 >                0x8a, 0x2c, 0x18,              // mov    (%eax,%ebx,1),%ch
2095 >                0x88, 0x20,                    // mov    %ah,(%eax)
2096 >                0x88, 0x08,                    // mov    %cl,(%eax)
2097 >                0x66, 0x8b, 0x00,              // mov    (%eax),%ax
2098 >                0x66, 0x8b, 0x0c, 0x18,        // mov    (%eax,%ebx,1),%cx
2099 >                0x66, 0x89, 0x00,              // mov    %ax,(%eax)
2100 >                0x66, 0x89, 0x0c, 0x18,        // mov    %cx,(%eax,%ebx,1)
2101 >                0x8b, 0x00,                    // mov    (%eax),%eax
2102 >                0x8b, 0x0c, 0x18,              // mov    (%eax,%ebx,1),%ecx
2103 >                0x89, 0x00,                    // mov    %eax,(%eax)
2104 >                0x89, 0x0c, 0x18,              // mov    %ecx,(%eax,%ebx,1)
2105 > #if defined(__x86_64__)
2106 >                0x44, 0x8a, 0x00,              // mov    (%rax),%r8b
2107 >                0x44, 0x8a, 0x20,              // mov    (%rax),%r12b
2108 >                0x42, 0x8a, 0x3c, 0x10,        // mov    (%rax,%r10,1),%dil
2109 >                0x44, 0x88, 0x00,              // mov    %r8b,(%rax)
2110 >                0x44, 0x88, 0x20,              // mov    %r12b,(%rax)
2111 >                0x42, 0x88, 0x3c, 0x10,        // mov    %dil,(%rax,%r10,1)
2112 >                0x66, 0x44, 0x8b, 0x00,        // mov    (%rax),%r8w
2113 >                0x66, 0x42, 0x8b, 0x0c, 0x10,  // mov    (%rax,%r10,1),%cx
2114 >                0x66, 0x44, 0x89, 0x00,        // mov    %r8w,(%rax)
2115 >                0x66, 0x42, 0x89, 0x0c, 0x10,  // mov    %cx,(%rax,%r10,1)
2116 >                0x44, 0x8b, 0x00,              // mov    (%rax),%r8d
2117 >                0x42, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%ecx
2118 >                0x44, 0x89, 0x00,              // mov    %r8d,(%rax)
2119 >                0x42, 0x89, 0x0c, 0x10,        // mov    %ecx,(%rax,%r10,1)
2120 >                0x48, 0x8b, 0x08,              // mov    (%rax),%rcx
2121 >                0x4c, 0x8b, 0x18,              // mov    (%rax),%r11
2122 >                0x4a, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%rcx
2123 >                0x4e, 0x8b, 0x1c, 0x10,        // mov    (%rax,%r10,1),%r11
2124 >                0x48, 0x89, 0x08,              // mov    %rcx,(%rax)
2125 >                0x4c, 0x89, 0x18,              // mov    %r11,(%rax)
2126 >                0x4a, 0x89, 0x0c, 0x10,        // mov    %rcx,(%rax,%r10,1)
2127 >                0x4e, 0x89, 0x1c, 0x10,        // mov    %r11,(%rax,%r10,1)
2128 > #endif
2129 >                0                              // end
2130 >        };
2131 >        const int N_REGS = 20;
2132 >        unsigned long regs[N_REGS];
2133 >        for (int i = 0; i < N_REGS; i++)
2134 >                regs[i] = i;
2135 >        const unsigned long start_code = (unsigned long)&code;
2136 >        regs[X86_REG_EIP] = start_code;
2137 >        while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1)
2138 >                   && ix86_skip_instruction(regs))
2139 >                ; /* simply iterate */
2140 >        return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1);
2141 > #endif
2142 >        return true;
2143   }
2144   #endif
2145  
# Line 783 | Line 2148 | int main(void)
2148          if (vm_init() < 0)
2149                  return 1;
2150  
2151 <        page_size = getpagesize();
2151 >        page_size = vm_get_page_size();
2152          if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
2153 <                return 1;
2153 >                return 2;
2154          
2155 +        memset((void *)page, 0, page_size);
2156          if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
2157 <                return 1;
2157 >                return 3;
2158          
2159          if (!sigsegv_install_handler(sigsegv_test_handler))
2160 <                return 1;
795 <        
796 <        page[123] = 45;
797 <        page[123] = 45;
2160 >                return 4;
2161          
2162 + #ifdef __GNUC__
2163 +        b_region = &&L_b_region1;
2164 +        e_region = &&L_e_region1;
2165 + #endif
2166 + L_b_region1:
2167 +        page[REF_INDEX] = REF_VALUE;
2168 +        if (page[REF_INDEX] != REF_VALUE)
2169 +          exit(20);
2170 +        page[REF_INDEX] = REF_VALUE;
2171 + L_e_region1:
2172 +
2173          if (handler_called != 1)
2174 <                return 1;
2174 >                return 5;
2175  
2176   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
2177          if (!sigsegv_install_handler(sigsegv_insn_handler))
2178 <                return 1;
2178 >                return 6;
2179          
2180          if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
2181 <                return 1;
2181 >                return 7;
2182          
2183          for (int i = 0; i < page_size; i++)
2184                  page[i] = (i + 1) % page_size;
2185          
2186          if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
2187 <                return 1;
2187 >                return 8;
2188          
815        sigsegv_set_ignore_state(true);
816
2189   #define TEST_SKIP_INSTRUCTION(TYPE) do {                                \
2190 <                const unsigned int TAG = 0x12345678;                    \
2190 >                const unsigned long TAG = 0x12345678 |                  \
2191 >                (sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0);   \
2192                  TYPE data = *((TYPE *)(page + sizeof(TYPE)));   \
2193 <                volatile unsigned int effect = data + TAG;              \
2193 >                volatile unsigned long effect = data + TAG;             \
2194                  if (effect != TAG)                                                              \
2195 <                        return 1;                                                                       \
2195 >                        return 9;                                                                       \
2196          } while (0)
2197          
2198 + #ifdef __GNUC__
2199 +        b_region = &&L_b_region2;
2200 +        e_region = &&L_e_region2;
2201 + #endif
2202 + L_b_region2:
2203          TEST_SKIP_INSTRUCTION(unsigned char);
2204          TEST_SKIP_INSTRUCTION(unsigned short);
2205          TEST_SKIP_INSTRUCTION(unsigned int);
2206 +        TEST_SKIP_INSTRUCTION(unsigned long);
2207 +        TEST_SKIP_INSTRUCTION(signed char);
2208 +        TEST_SKIP_INSTRUCTION(signed short);
2209 +        TEST_SKIP_INSTRUCTION(signed int);
2210 +        TEST_SKIP_INSTRUCTION(signed long);
2211 + L_e_region2:
2212 +
2213 +        if (!arch_insn_skipper_tests())
2214 +                return 20;
2215   #endif
2216  
2217          vm_exit();

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines