ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
(Generate patch)

Comparing BasiliskII/src/Unix/sigsegv.cpp (file contents):
Revision 1.17 by gbeauche, 2002-05-20T17:49:04Z vs.
Revision 1.50 by gbeauche, 2004-12-11T13:07:38Z

# Line 4 | Line 4
4   *  Derived from Bruno Haible's work on his SIGSEGV library for clisp
5   *  <http://clisp.sourceforge.net/>
6   *
7 < *  Basilisk II (C) 1997-2002 Christian Bauer
7 > *  MacOS X support derived from the post by Timothy J. Wood to the
8 > *  omnigroup macosx-dev list:
9 > *    Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10 > *    tjw@omnigroup.com Sun, 4 Jun 2000
11 > *    www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12 > *
13 > *  Basilisk II (C) 1997-2004 Christian Bauer
14   *
15   *  This program is free software; you can redistribute it and/or modify
16   *  it under the terms of the GNU General Public License as published by
# Line 29 | Line 35
35   #include "config.h"
36   #endif
37  
38 + #include <list>
39 + #include <stdio.h>
40   #include <signal.h>
41   #include "sigsegv.h"
42  
43 + #ifndef NO_STD_NAMESPACE
44 + using std::list;
45 + #endif
46 +
47   // Return value type of a signal handler (standard type if not defined)
48   #ifndef RETSIGTYPE
49   #define RETSIGTYPE void
# Line 40 | Line 52
52   // Type of the system signal handler
53   typedef RETSIGTYPE (*signal_handler)(int);
54  
43 // Is the fault to be ignored?
44 static bool sigsegv_ignore_fault = false;
45
55   // User's SIGSEGV handler
56   static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
57  
# Line 57 | Line 66 | static bool sigsegv_do_install_handler(i
66   *  Instruction decoding aids
67   */
68  
60 // Transfer type
61 enum transfer_type_t {
62        TYPE_UNKNOWN,
63        TYPE_LOAD,
64        TYPE_STORE
65 };
66
69   // Transfer size
70   enum transfer_size_t {
71          SIZE_UNKNOWN,
72          SIZE_BYTE,
73 <        SIZE_WORD,
74 <        SIZE_LONG
73 >        SIZE_WORD, // 2 bytes
74 >        SIZE_LONG, // 4 bytes
75 >        SIZE_QUAD, // 8 bytes
76   };
77  
78 + // Transfer type
79 + typedef sigsegv_transfer_type_t transfer_type_t;
80 +
81   #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
82   // Addressing mode
83   enum addressing_mode_t {
# Line 91 | Line 97 | struct instruction_t {
97          char                            ra, rd;
98   };
99  
100 < static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned int * gpr)
100 > static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned long * gpr)
101   {
102          // Get opcode and divide into fields
103 <        unsigned int opcode = *((unsigned int *)nip);
103 >        unsigned int opcode = *((unsigned int *)(unsigned long)nip);
104          unsigned int primop = opcode >> 26;
105          unsigned int exop = (opcode >> 1) & 0x3ff;
106          unsigned int ra = (opcode >> 16) & 0x1f;
# Line 103 | Line 109 | static void powerpc_decode_instruction(i
109          signed int imm = (signed short)(opcode & 0xffff);
110          
111          // Analyze opcode
112 <        transfer_type_t transfer_type = TYPE_UNKNOWN;
112 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
113          transfer_size_t transfer_size = SIZE_UNKNOWN;
114          addressing_mode_t addr_mode = MODE_UNKNOWN;
115          switch (primop) {
116          case 31:
117                  switch (exop) {
118                  case 23:        // lwzx
119 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
119 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
120                  case 55:        // lwzux
121 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
121 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
122                  case 87:        // lbzx
123 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
123 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
124                  case 119:       // lbzux
125 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
125 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
126                  case 151:       // stwx
127 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
127 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
128                  case 183:       // stwux
129 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
129 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
130                  case 215:       // stbx
131 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
131 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
132                  case 247:       // stbux
133 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
133 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
134                  case 279:       // lhzx
135 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
135 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
136                  case 311:       // lhzux
137 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
137 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
138                  case 343:       // lhax
139 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
139 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
140                  case 375:       // lhaux
141 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
141 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
142                  case 407:       // sthx
143 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
143 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
144                  case 439:       // sthux
145 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
145 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
146                  }
147                  break;
148          
149          case 32:        // lwz
150 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
150 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
151          case 33:        // lwzu
152 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
152 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
153          case 34:        // lbz
154 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
154 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
155          case 35:        // lbzu
156 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
156 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
157          case 36:        // stw
158 <                transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
158 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
159          case 37:        // stwu
160 <                transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
160 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
161          case 38:        // stb
162 <                transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
162 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
163          case 39:        // stbu
164 <                transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
164 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
165          case 40:        // lhz
166 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
166 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
167          case 41:        // lhzu
168 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
168 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
169          case 42:        // lha
170 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
170 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
171          case 43:        // lhau
172 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
172 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
173          case 44:        // sth
174 <                transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
174 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
175          case 45:        // sthu
176 <                transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
176 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
177 >        case 58:        // ld, ldu, lwa
178 >                transfer_type = SIGSEGV_TRANSFER_LOAD;
179 >                transfer_size = SIZE_QUAD;
180 >                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
181 >                imm &= ~3;
182 >                break;
183 >        case 62:        // std, stdu, stq
184 >                transfer_type = SIGSEGV_TRANSFER_STORE;
185 >                transfer_size = SIZE_QUAD;
186 >                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
187 >                imm &= ~3;
188 >                break;
189          }
190          
191          // Calculate effective address
# Line 214 | Line 232 | static void powerpc_decode_instruction(i
232   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
233   #endif
234   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, siginfo_t *sip, void *scp
235 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
236 + #define SIGSEGV_FAULT_HANDLER_ARGS              sip, scp
237   #define SIGSEGV_FAULT_ADDRESS                   sip->si_addr
238 + #if (defined(sgi) || defined(__sgi))
239 + #include <ucontext.h>
240 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
241 + #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)SIGSEGV_CONTEXT_REGS[CTX_EPC]
242 + #if (defined(mips) || defined(__mips))
243 + #define SIGSEGV_REGISTER_FILE                   SIGSEGV_CONTEXT_REGS
244 + #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
245 + #endif
246 + #endif
247 + #if defined(__sun__)
248 + #if (defined(sparc) || defined(__sparc__))
249 + #include <sys/stack.h>
250 + #include <sys/regset.h>
251 + #include <sys/ucontext.h>
252 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
253 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[REG_PC]
254 + #define SIGSEGV_SPARC_GWINDOWS                  (((ucontext_t *)scp)->uc_mcontext.gwins)
255 + #define SIGSEGV_SPARC_RWINDOW                   (struct rwindow *)((char *)SIGSEGV_CONTEXT_REGS[REG_SP] + STACK_BIAS)
256 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)SIGSEGV_CONTEXT_REGS), SIGSEGV_SPARC_GWINDOWS, SIGSEGV_SPARC_RWINDOW
257 + #define SIGSEGV_SKIP_INSTRUCTION                sparc_skip_instruction
258 + #endif
259 + #endif
260 + #if defined(__FreeBSD__)
261   #if (defined(i386) || defined(__i386__))
262   #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_eip)
263 < #define SIGSEGV_REGISTER_FILE                   ((unsigned int *)&(((struct sigcontext *)scp)->sc_edi))
263 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
264   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
265   #endif
266 + #endif
267   #if defined(__linux__)
268   #if (defined(i386) || defined(__i386__))
269   #include <sys/ucontext.h>
270   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
271   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
272 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)SIGSEGV_CONTEXT_REGS
272 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
273 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
274 > #endif
275 > #if (defined(x86_64) || defined(__x86_64__))
276 > #include <sys/ucontext.h>
277 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
278 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
279 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
280   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
281   #endif
282   #if (defined(ia64) || defined(__ia64__))
# Line 235 | Line 286 | static void powerpc_decode_instruction(i
286   #include <sys/ucontext.h>
287   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.regs)
288   #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS->nip)
289 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned int *)(SIGSEGV_CONTEXT_REGS->gpr)
289 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned long *)(SIGSEGV_CONTEXT_REGS->gpr)
290   #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
291   #endif
292 + #if (defined(hppa) || defined(__hppa__))
293 + #undef  SIGSEGV_FAULT_ADDRESS
294 + #define SIGSEGV_FAULT_ADDRESS                   sip->si_ptr
295 + #endif
296 + #if (defined(arm) || defined(__arm__))
297 + #include <asm/ucontext.h> /* use kernel structure, glibc may not be in sync */
298 + #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
299 + #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.arm_pc)
300 + #define SIGSEGV_REGISTER_FILE                   (&SIGSEGV_CONTEXT_REGS.arm_r0)
301 + #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
302 + #endif
303   #endif
304   #endif
305  
# Line 248 | Line 310 | static void powerpc_decode_instruction(i
310   #if (defined(i386) || defined(__i386__))
311   #include <asm/sigcontext.h>
312   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext scs
313 < #define SIGSEGV_FAULT_ADDRESS                   scs.cr2
314 < #define SIGSEGV_FAULT_INSTRUCTION               scs.eip
315 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)(&scs)
313 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
314 > #define SIGSEGV_FAULT_HANDLER_ARGS              &scs
315 > #define SIGSEGV_FAULT_ADDRESS                   scp->cr2
316 > #define SIGSEGV_FAULT_INSTRUCTION               scp->eip
317 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)scp
318   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
319   #endif
320   #if (defined(sparc) || defined(__sparc__))
321   #include <asm/sigcontext.h>
322   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
323 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
324   #define SIGSEGV_FAULT_ADDRESS                   addr
325   #endif
326   #if (defined(powerpc) || defined(__powerpc__))
327   #include <asm/sigcontext.h>
328   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext *scp
329 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, scp
330   #define SIGSEGV_FAULT_ADDRESS                   scp->regs->dar
331   #define SIGSEGV_FAULT_INSTRUCTION               scp->regs->nip
332 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&scp->regs->nip, (unsigned int *)(scp->regs->gpr)
332 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&scp->regs->nip, (unsigned long *)(scp->regs->gpr)
333   #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
334   #endif
335   #if (defined(alpha) || defined(__alpha__))
336   #include <asm/sigcontext.h>
337   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
338 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
339   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
340   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
341 <
342 < // From Boehm's GC 6.0alpha8
343 < static sigsegv_address_t get_fault_address(struct sigcontext *scp)
344 < {
345 <        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
346 <        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
347 <        fault_address += (signed long)(signed short)(instruction & 0xffff);
348 <        return (sigsegv_address_t)fault_address;
349 < }
341 > #endif
342 > #if (defined(arm) || defined(__arm__))
343 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int r1, int r2, int r3, struct sigcontext sc
344 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
345 > #define SIGSEGV_FAULT_HANDLER_ARGS              &sc
346 > #define SIGSEGV_FAULT_ADDRESS                   scp->fault_address
347 > #define SIGSEGV_FAULT_INSTRUCTION               scp->arm_pc
348 > #define SIGSEGV_REGISTER_FILE                   &scp->arm_r0
349 > #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
350   #endif
351   #endif
352  
353   // Irix 5 or 6 on MIPS
354 < #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
354 > #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(_SYSTYPE_SVR4))
355   #include <ucontext.h>
356   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
357 < #define SIGSEGV_FAULT_ADDRESS                   scp->sc_badvaddr
357 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
358 > #define SIGSEGV_FAULT_ADDRESS                   (unsigned long)scp->sc_badvaddr
359 > #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)scp->sc_pc
360   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
361   #endif
362  
363   // HP-UX
364   #if (defined(hpux) || defined(__hpux__))
365   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
366 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
367   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_sl.sl_ss.ss_narrow.ss_cr21
368   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
369   #endif
# Line 302 | Line 372 | static sigsegv_address_t get_fault_addre
372   #if defined(__osf__)
373   #include <ucontext.h>
374   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
375 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
376   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_traparg_a0
377   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
378   #endif
# Line 309 | Line 380 | static sigsegv_address_t get_fault_addre
380   // AIX
381   #if defined(_AIX)
382   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
383 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
384   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_jmpbuf.jmp_context.o_vaddr
385   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
386   #endif
387  
388 < // NetBSD or FreeBSD
389 < #if defined(__NetBSD__) || defined(__FreeBSD__)
388 > // NetBSD
389 > #if defined(__NetBSD__)
390   #if (defined(m68k) || defined(__m68k__))
391   #include <m68k/frame.h>
392   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
393 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
394   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
395   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
396  
# Line 341 | Line 414 | static sigsegv_address_t get_fault_addre
414          }
415          return (sigsegv_address_t)fault_addr;
416   }
417 < #else
418 < #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, void *scp, char *addr
419 < #define SIGSEGV_FAULT_ADDRESS                   addr
417 > #endif
418 > #if (defined(alpha) || defined(__alpha__))
419 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
420 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
421 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
422   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
423   #endif
424 + #if (defined(i386) || defined(__i386__))
425 + #error "FIXME: need to decode instruction and compute EA"
426 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
427 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
428 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
429 + #endif
430   #endif
431 + #if defined(__FreeBSD__)
432 + #if (defined(i386) || defined(__i386__))
433 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
434 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
435 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
436 + #define SIGSEGV_FAULT_ADDRESS                   addr
437 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_eip
438 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&scp->sc_edi)
439 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
440 + #endif
441 + #if (defined(alpha) || defined(__alpha__))
442 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
443 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, char *addr, struct sigcontext *scp
444 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, addr, scp
445 + #define SIGSEGV_FAULT_ADDRESS                   addr
446 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
447 + #endif
448 + #endif
449 +
450 + // Extract fault address out of a sigcontext
451 + #if (defined(alpha) || defined(__alpha__))
452 + // From Boehm's GC 6.0alpha8
453 + static sigsegv_address_t get_fault_address(struct sigcontext *scp)
454 + {
455 +        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
456 +        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
457 +        fault_address += (signed long)(signed short)(instruction & 0xffff);
458 +        return (sigsegv_address_t)fault_address;
459 + }
460 + #endif
461 +
462  
463 < // MacOS X
463 > // MacOS X, not sure which version this works in. Under 10.1
464 > // vm_protect does not appear to work from a signal handler. Under
465 > // 10.2 signal handlers get siginfo type arguments but the si_addr
466 > // field is the address of the faulting instruction and not the
467 > // address that caused the SIGBUS. Maybe this works in 10.0? In any
468 > // case with Mach exception handlers there is a way to do what this
469 > // was meant to do.
470 > #ifndef HAVE_MACH_EXCEPTIONS
471   #if defined(__APPLE__) && defined(__MACH__)
472   #if (defined(ppc) || defined(__ppc__))
473   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
474 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
475   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
476   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_ir
477   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
# Line 371 | Line 491 | static sigsegv_address_t get_fault_addre
491   #endif
492   #endif
493   #endif
494 + #endif
495 +
496 + #if HAVE_WIN32_EXCEPTIONS
497 + #define WIN32_LEAN_AND_MEAN /* avoid including junk */
498 + #include <windows.h>
499 + #include <winerror.h>
500 +
501 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   EXCEPTION_POINTERS *ExceptionInfo
502 + #define SIGSEGV_FAULT_HANDLER_ARGS              ExceptionInfo
503 + #define SIGSEGV_FAULT_ADDRESS                   ExceptionInfo->ExceptionRecord->ExceptionInformation[1]
504 + #define SIGSEGV_CONTEXT_REGS                    ExceptionInfo->ContextRecord
505 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS->Eip
506 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&SIGSEGV_CONTEXT_REGS->Edi)
507 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
508 + #endif
509 +
510 + #if HAVE_MACH_EXCEPTIONS
511 +
512 + // This can easily be extended to other Mach systems, but really who
513 + // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
514 + // Mach 2.5/3.0?
515 + #if defined(__APPLE__) && defined(__MACH__)
516 +
517 + #include <sys/types.h>
518 + #include <stdlib.h>
519 + #include <stdio.h>
520 + #include <pthread.h>
521 +
522 + /*
523 + * If you are familiar with MIG then you will understand the frustration
524 + * that was necessary to get these embedded into C++ code by hand.
525 + */
526 + extern "C" {
527 + #include <mach/mach.h>
528 + #include <mach/mach_error.h>
529 +
530 + extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
531 + extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
532 +        mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
533 + extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
534 +        exception_type_t, exception_data_t, mach_msg_type_number_t);
535 + extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
536 +        exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
537 +        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
538 + extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
539 +        exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
540 +        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
541 + }
542 +
543 + // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
544 + #define HANDLER_COUNT 64
545 +
546 + // structure to tuck away existing exception handlers
547 + typedef struct _ExceptionPorts {
548 +        mach_msg_type_number_t maskCount;
549 +        exception_mask_t masks[HANDLER_COUNT];
550 +        exception_handler_t handlers[HANDLER_COUNT];
551 +        exception_behavior_t behaviors[HANDLER_COUNT];
552 +        thread_state_flavor_t flavors[HANDLER_COUNT];
553 + } ExceptionPorts;
554 +
555 + // exception handler thread
556 + static pthread_t exc_thread;
557 +
558 + // place where old exception handler info is stored
559 + static ExceptionPorts ports;
560 +
561 + // our exception port
562 + static mach_port_t _exceptionPort = MACH_PORT_NULL;
563 +
564 + #define MACH_CHECK_ERROR(name,ret) \
565 + if (ret != KERN_SUCCESS) { \
566 +        mach_error(#name, ret); \
567 +        exit (1); \
568 + }
569 +
570 + #define SIGSEGV_FAULT_ADDRESS                   code[1]
571 + #define SIGSEGV_FAULT_INSTRUCTION               get_fault_instruction(thread, state)
572 + #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  ((code[0] == KERN_PROTECTION_FAILURE) ? sigsegv_fault_handler(ADDR, IP) : SIGSEGV_RETURN_FAILURE)
573 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   mach_port_t thread, exception_data_t code, ppc_thread_state_t *state
574 + #define SIGSEGV_FAULT_HANDLER_ARGS              thread, code, &state
575 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
576 + #define SIGSEGV_REGISTER_FILE                   &state->srr0, &state->r0
577 +
578 + // Given a suspended thread, stuff the current instruction and
579 + // registers into state.
580 + //
581 + // It would have been nice to have this be ppc/x86 independant which
582 + // could have been done easily with a thread_state_t instead of
583 + // ppc_thread_state_t, but because of the way this is called it is
584 + // easier to do it this way.
585 + #if (defined(ppc) || defined(__ppc__))
586 + static inline sigsegv_address_t get_fault_instruction(mach_port_t thread, ppc_thread_state_t *state)
587 + {
588 +        kern_return_t krc;
589 +        mach_msg_type_number_t count;
590 +
591 +        count = MACHINE_THREAD_STATE_COUNT;
592 +        krc = thread_get_state(thread, MACHINE_THREAD_STATE, (thread_state_t)state, &count);
593 +        MACH_CHECK_ERROR (thread_get_state, krc);
594 +
595 +        return (sigsegv_address_t)state->srr0;
596 + }
597 + #endif
598 +
599 + // Since there can only be one exception thread running at any time
600 + // this is not a problem.
601 + #define MSG_SIZE 512
602 + static char msgbuf[MSG_SIZE];
603 + static char replybuf[MSG_SIZE];
604 +
605 + /*
606 + * This is the entry point for the exception handler thread. The job
607 + * of this thread is to wait for exception messages on the exception
608 + * port that was setup beforehand and to pass them on to exc_server.
609 + * exc_server is a MIG generated function that is a part of Mach.
610 + * Its job is to decide what to do with the exception message. In our
611 + * case exc_server calls catch_exception_raise on our behalf. After
612 + * exc_server returns, it is our responsibility to send the reply.
613 + */
614 + static void *
615 + handleExceptions(void *priv)
616 + {
617 +        mach_msg_header_t *msg, *reply;
618 +        kern_return_t krc;
619 +
620 +        msg = (mach_msg_header_t *)msgbuf;
621 +        reply = (mach_msg_header_t *)replybuf;
622 +
623 +        for (;;) {
624 +                krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
625 +                                _exceptionPort, 0, MACH_PORT_NULL);
626 +                MACH_CHECK_ERROR(mach_msg, krc);
627 +
628 +                if (!exc_server(msg, reply)) {
629 +                        fprintf(stderr, "exc_server hated the message\n");
630 +                        exit(1);
631 +                }
632 +
633 +                krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
634 +                                 msg->msgh_local_port, 0, MACH_PORT_NULL);
635 +                if (krc != KERN_SUCCESS) {
636 +                        fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
637 +                                krc, mach_error_string(krc));
638 +                        exit(1);
639 +                }
640 +        }
641 + }
642 + #endif
643 + #endif
644  
645  
646   /*
# Line 379 | Line 649 | static sigsegv_address_t get_fault_addre
649  
650   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
651   // Decode and skip X86 instruction
652 < #if (defined(i386) || defined(__i386__))
652 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
653   #if defined(__linux__)
654   enum {
655 + #if (defined(i386) || defined(__i386__))
656          X86_REG_EIP = 14,
657          X86_REG_EAX = 11,
658          X86_REG_ECX = 10,
# Line 391 | Line 662 | enum {
662          X86_REG_EBP = 6,
663          X86_REG_ESI = 5,
664          X86_REG_EDI = 4
665 + #endif
666 + #if defined(__x86_64__)
667 +        X86_REG_R8  = 0,
668 +        X86_REG_R9  = 1,
669 +        X86_REG_R10 = 2,
670 +        X86_REG_R11 = 3,
671 +        X86_REG_R12 = 4,
672 +        X86_REG_R13 = 5,
673 +        X86_REG_R14 = 6,
674 +        X86_REG_R15 = 7,
675 +        X86_REG_EDI = 8,
676 +        X86_REG_ESI = 9,
677 +        X86_REG_EBP = 10,
678 +        X86_REG_EBX = 11,
679 +        X86_REG_EDX = 12,
680 +        X86_REG_EAX = 13,
681 +        X86_REG_ECX = 14,
682 +        X86_REG_ESP = 15,
683 +        X86_REG_EIP = 16
684 + #endif
685   };
686   #endif
687   #if defined(__NetBSD__) || defined(__FreeBSD__)
688   enum {
689 + #if (defined(i386) || defined(__i386__))
690          X86_REG_EIP = 10,
691          X86_REG_EAX = 7,
692          X86_REG_ECX = 6,
# Line 404 | Line 696 | enum {
696          X86_REG_EBP = 2,
697          X86_REG_ESI = 1,
698          X86_REG_EDI = 0
699 + #endif
700 + };
701 + #endif
702 + #if defined(_WIN32)
703 + enum {
704 + #if (defined(i386) || defined(__i386__))
705 +        X86_REG_EIP = 7,
706 +        X86_REG_EAX = 5,
707 +        X86_REG_ECX = 4,
708 +        X86_REG_EDX = 3,
709 +        X86_REG_EBX = 2,
710 +        X86_REG_ESP = 10,
711 +        X86_REG_EBP = 6,
712 +        X86_REG_ESI = 1,
713 +        X86_REG_EDI = 0
714 + #endif
715   };
716   #endif
717   // FIXME: this is partly redundant with the instruction decoding phase
# Line 440 | Line 748 | static inline int ix86_step_over_modrm(u
748          return offset;
749   }
750  
751 < static bool ix86_skip_instruction(unsigned int * regs)
751 > static bool ix86_skip_instruction(unsigned long * regs)
752   {
753          unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
754  
755          if (eip == 0)
756                  return false;
757 + #ifdef _WIN32
758 +        if (IsBadCodePtr((FARPROC)eip))
759 +                return false;
760 + #endif
761          
762 <        transfer_type_t transfer_type = TYPE_UNKNOWN;
762 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
763          transfer_size_t transfer_size = SIZE_LONG;
764          
765          int reg = -1;
766          int len = 0;
767 <        
767 >
768 > #if DEBUG
769 >        printf("IP: %p [%02x %02x %02x %02x...]\n",
770 >                   eip, eip[0], eip[1], eip[2], eip[3]);
771 > #endif
772 >
773          // Operand size prefix
774          if (*eip == 0x66) {
775                  eip++;
# Line 460 | Line 777 | static bool ix86_skip_instruction(unsign
777                  transfer_size = SIZE_WORD;
778          }
779  
780 +        // REX prefix
781 + #if defined(__x86_64__)
782 +        struct rex_t {
783 +                unsigned char W;
784 +                unsigned char R;
785 +                unsigned char X;
786 +                unsigned char B;
787 +        };
788 +        rex_t rex = { 0, 0, 0, 0 };
789 +        bool has_rex = false;
790 +        if ((*eip & 0xf0) == 0x40) {
791 +                has_rex = true;
792 +                const unsigned char b = *eip;
793 +                rex.W = b & (1 << 3);
794 +                rex.R = b & (1 << 2);
795 +                rex.X = b & (1 << 1);
796 +                rex.B = b & (1 << 0);
797 + #if DEBUG
798 +                printf("REX: %c,%c,%c,%c\n",
799 +                           rex.W ? 'W' : '_',
800 +                           rex.R ? 'R' : '_',
801 +                           rex.X ? 'X' : '_',
802 +                           rex.B ? 'B' : '_');
803 + #endif
804 +                eip++;
805 +                len++;
806 +                if (rex.W)
807 +                        transfer_size = SIZE_QUAD;
808 +        }
809 + #else
810 +        const bool has_rex = false;
811 + #endif
812 +
813          // Decode instruction
814 +        int target_size = SIZE_UNKNOWN;
815          switch (eip[0]) {
816          case 0x0f:
817 <            if (eip[1] == 0xb7) { // MOVZX r32, r/m16
818 <                switch (eip[2] & 0xc0) {
819 <                case 0x80:
820 <                    reg = (eip[2] >> 3) & 7;
821 <                    transfer_type = TYPE_LOAD;
822 <                    break;
823 <                case 0x40:
824 <                    reg = (eip[2] >> 3) & 7;
825 <                    transfer_type = TYPE_LOAD;
826 <                    break;
827 <                case 0x00:
828 <                    reg = (eip[2] >> 3) & 7;
829 <                    transfer_type = TYPE_LOAD;
830 <                    break;
831 <                }
832 <                len += 3 + ix86_step_over_modrm(eip + 2);
817 >                target_size = transfer_size;
818 >            switch (eip[1]) {
819 >                case 0xbe: // MOVSX r32, r/m8
820 >            case 0xb6: // MOVZX r32, r/m8
821 >                        transfer_size = SIZE_BYTE;
822 >                        goto do_mov_extend;
823 >                case 0xbf: // MOVSX r32, r/m16
824 >            case 0xb7: // MOVZX r32, r/m16
825 >                        transfer_size = SIZE_WORD;
826 >                        goto do_mov_extend;
827 >                  do_mov_extend:
828 >                        switch (eip[2] & 0xc0) {
829 >                        case 0x80:
830 >                                reg = (eip[2] >> 3) & 7;
831 >                                transfer_type = SIGSEGV_TRANSFER_LOAD;
832 >                                break;
833 >                        case 0x40:
834 >                                reg = (eip[2] >> 3) & 7;
835 >                                transfer_type = SIGSEGV_TRANSFER_LOAD;
836 >                                break;
837 >                        case 0x00:
838 >                                reg = (eip[2] >> 3) & 7;
839 >                                transfer_type = SIGSEGV_TRANSFER_LOAD;
840 >                                break;
841 >                        }
842 >                        len += 3 + ix86_step_over_modrm(eip + 2);
843 >                        break;
844              }
845            break;
846          case 0x8a: // MOV r8, r/m8
# Line 487 | Line 849 | static bool ix86_skip_instruction(unsign
849                  switch (eip[1] & 0xc0) {
850                  case 0x80:
851                          reg = (eip[1] >> 3) & 7;
852 <                        transfer_type = TYPE_LOAD;
852 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
853                          break;
854                  case 0x40:
855                          reg = (eip[1] >> 3) & 7;
856 <                        transfer_type = TYPE_LOAD;
856 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
857                          break;
858                  case 0x00:
859                          reg = (eip[1] >> 3) & 7;
860 <                        transfer_type = TYPE_LOAD;
860 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
861                          break;
862                  }
863                  len += 2 + ix86_step_over_modrm(eip + 1);
# Line 506 | Line 868 | static bool ix86_skip_instruction(unsign
868                  switch (eip[1] & 0xc0) {
869                  case 0x80:
870                          reg = (eip[1] >> 3) & 7;
871 <                        transfer_type = TYPE_STORE;
871 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
872                          break;
873                  case 0x40:
874                          reg = (eip[1] >> 3) & 7;
875 <                        transfer_type = TYPE_STORE;
875 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
876                          break;
877                  case 0x00:
878                          reg = (eip[1] >> 3) & 7;
879 <                        transfer_type = TYPE_STORE;
879 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
880                          break;
881                  }
882                  len += 2 + ix86_step_over_modrm(eip + 1);
883                  break;
884          }
885 +        if (target_size == SIZE_UNKNOWN)
886 +                target_size = transfer_size;
887  
888 <        if (transfer_type == TYPE_UNKNOWN) {
888 >        if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
889                  // Unknown machine code, let it crash. Then patch the decoder
890                  return false;
891          }
892  
893 <        if (transfer_type == TYPE_LOAD && reg != -1) {
894 <                static const int x86_reg_map[8] = {
893 > #if defined(__x86_64__)
894 >        if (rex.R)
895 >                reg += 8;
896 > #endif
897 >
898 >        if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
899 >                static const int x86_reg_map[] = {
900                          X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
901 <                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI
901 >                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI,
902 > #if defined(__x86_64__)
903 >                        X86_REG_R8,  X86_REG_R9,  X86_REG_R10, X86_REG_R11,
904 >                        X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15,
905 > #endif
906                  };
907                  
908 <                if (reg < 0 || reg >= 8)
908 >                if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1))
909                          return false;
910  
911 +                // Set 0 to the relevant register part
912 +                // NOTE: this is only valid for MOV alike instructions
913                  int rloc = x86_reg_map[reg];
914 <                switch (transfer_size) {
914 >                switch (target_size) {
915                  case SIZE_BYTE:
916 <                        regs[rloc] = (regs[rloc] & ~0xff);
916 >                        if (has_rex || reg < 4)
917 >                                regs[rloc] = (regs[rloc] & ~0x00ffL);
918 >                        else {
919 >                                rloc = x86_reg_map[reg - 4];
920 >                                regs[rloc] = (regs[rloc] & ~0xff00L);
921 >                        }
922                          break;
923                  case SIZE_WORD:
924 <                        regs[rloc] = (regs[rloc] & ~0xffff);
924 >                        regs[rloc] = (regs[rloc] & ~0xffffL);
925                          break;
926                  case SIZE_LONG:
927 +                case SIZE_QUAD: // zero-extension
928                          regs[rloc] = 0;
929                          break;
930                  }
# Line 551 | Line 932 | static bool ix86_skip_instruction(unsign
932  
933   #if DEBUG
934          printf("%08x: %s %s access", regs[X86_REG_EIP],
935 <                   transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : "long",
936 <                   transfer_type == TYPE_LOAD ? "read" : "write");
935 >                   transfer_size == SIZE_BYTE ? "byte" :
936 >                   transfer_size == SIZE_WORD ? "word" :
937 >                   transfer_size == SIZE_LONG ? "long" :
938 >                   transfer_size == SIZE_QUAD ? "quad" : "unknown",
939 >                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
940          
941          if (reg != -1) {
942 <                static const char * x86_reg_str_map[8] = {
943 <                        "eax", "ecx", "edx", "ebx",
944 <                        "esp", "ebp", "esi", "edi"
942 >                static const char * x86_byte_reg_str_map[] = {
943 >                        "al",   "cl",   "dl",   "bl",
944 >                        "spl",  "bpl",  "sil",  "dil",
945 >                        "r8b",  "r9b",  "r10b", "r11b",
946 >                        "r12b", "r13b", "r14b", "r15b",
947 >                        "ah",   "ch",   "dh",   "bh",
948 >                };
949 >                static const char * x86_word_reg_str_map[] = {
950 >                        "ax",   "cx",   "dx",   "bx",
951 >                        "sp",   "bp",   "si",   "di",
952 >                        "r8w",  "r9w",  "r10w", "r11w",
953 >                        "r12w", "r13w", "r14w", "r15w",
954                  };
955 <                printf(" %s register %%%s", transfer_type == TYPE_LOAD ? "to" : "from", x86_reg_str_map[reg]);
955 >                static const char *x86_long_reg_str_map[] = {
956 >                        "eax",  "ecx",  "edx",  "ebx",
957 >                        "esp",  "ebp",  "esi",  "edi",
958 >                        "r8d",  "r9d",  "r10d", "r11d",
959 >                        "r12d", "r13d", "r14d", "r15d",
960 >                };
961 >                static const char *x86_quad_reg_str_map[] = {
962 >                        "rax", "rcx", "rdx", "rbx",
963 >                        "rsp", "rbp", "rsi", "rdi",
964 >                        "r8",  "r9",  "r10", "r11",
965 >                        "r12", "r13", "r14", "r15",
966 >                };
967 >                const char * reg_str = NULL;
968 >                switch (target_size) {
969 >                case SIZE_BYTE:
970 >                        reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg];
971 >                        break;
972 >                case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break;
973 >                case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break;
974 >                case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break;
975 >                }
976 >                if (reg_str)
977 >                        printf(" %s register %%%s",
978 >                                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from",
979 >                                   reg_str);
980          }
981          printf(", %d bytes instruction\n", len);
982   #endif
# Line 571 | Line 988 | static bool ix86_skip_instruction(unsign
988  
989   // Decode and skip PPC instruction
990   #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
991 < static bool powerpc_skip_instruction(unsigned int * nip_p, unsigned int * regs)
991 > static bool powerpc_skip_instruction(unsigned long * nip_p, unsigned long * regs)
992   {
993          instruction_t instr;
994          powerpc_decode_instruction(&instr, *nip_p, regs);
995          
996 <        if (instr.transfer_type == TYPE_UNKNOWN) {
996 >        if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
997                  // Unknown machine code, let it crash. Then patch the decoder
998                  return false;
999          }
1000  
1001   #if DEBUG
1002          printf("%08x: %s %s access", *nip_p,
1003 <                   instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : "long",
1004 <                   instr.transfer_type == TYPE_LOAD ? "read" : "write");
1003 >                   instr.transfer_size == SIZE_BYTE ? "byte" :
1004 >                   instr.transfer_size == SIZE_WORD ? "word" :
1005 >                   instr.transfer_size == SIZE_LONG ? "long" : "quad",
1006 >                   instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1007          
1008          if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
1009                  printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
1010 <        if (instr.transfer_type == TYPE_LOAD)
1010 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
1011                  printf(" r%d (rd = 0)\n", instr.rd);
1012   #endif
1013          
1014          if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
1015                  regs[instr.ra] = instr.addr;
1016 <        if (instr.transfer_type == TYPE_LOAD)
1016 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
1017                  regs[instr.rd] = 0;
1018          
1019          *nip_p += 4;
1020          return true;
1021   }
1022   #endif
1023 +
1024 + // Decode and skip MIPS instruction
1025 + #if (defined(mips) || defined(__mips))
1026 + enum {
1027 + #if (defined(sgi) || defined(__sgi))
1028 +  MIPS_REG_EPC = 35,
1029 + #endif
1030 + };
1031 + static bool mips_skip_instruction(greg_t * regs)
1032 + {
1033 +  unsigned int * epc = (unsigned int *)(unsigned long)regs[MIPS_REG_EPC];
1034 +
1035 +  if (epc == 0)
1036 +        return false;
1037 +
1038 + #if DEBUG
1039 +  printf("IP: %p [%08x]\n", epc, epc[0]);
1040 + #endif
1041 +
1042 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1043 +  transfer_size_t transfer_size = SIZE_LONG;
1044 +  int direction = 0;
1045 +
1046 +  const unsigned int opcode = epc[0];
1047 +  switch (opcode >> 26) {
1048 +  case 32: // Load Byte
1049 +  case 36: // Load Byte Unsigned
1050 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1051 +        transfer_size = SIZE_BYTE;
1052 +        break;
1053 +  case 33: // Load Halfword
1054 +  case 37: // Load Halfword Unsigned
1055 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1056 +        transfer_size = SIZE_WORD;
1057 +        break;
1058 +  case 35: // Load Word
1059 +  case 39: // Load Word Unsigned
1060 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1061 +        transfer_size = SIZE_LONG;
1062 +        break;
1063 +  case 34: // Load Word Left
1064 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1065 +        transfer_size = SIZE_LONG;
1066 +        direction = -1;
1067 +        break;
1068 +  case 38: // Load Word Right
1069 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1070 +        transfer_size = SIZE_LONG;
1071 +        direction = 1;
1072 +        break;
1073 +  case 55: // Load Doubleword
1074 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1075 +        transfer_size = SIZE_QUAD;
1076 +        break;
1077 +  case 26: // Load Doubleword Left
1078 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1079 +        transfer_size = SIZE_QUAD;
1080 +        direction = -1;
1081 +        break;
1082 +  case 27: // Load Doubleword Right
1083 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1084 +        transfer_size = SIZE_QUAD;
1085 +        direction = 1;
1086 +        break;
1087 +  case 40: // Store Byte
1088 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1089 +        transfer_size = SIZE_BYTE;
1090 +        break;
1091 +  case 41: // Store Halfword
1092 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1093 +        transfer_size = SIZE_WORD;
1094 +        break;
1095 +  case 43: // Store Word
1096 +  case 42: // Store Word Left
1097 +  case 46: // Store Word Right
1098 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1099 +        transfer_size = SIZE_LONG;
1100 +        break;
1101 +  case 63: // Store Doubleword
1102 +  case 44: // Store Doubleword Left
1103 +  case 45: // Store Doubleword Right
1104 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1105 +        transfer_size = SIZE_QUAD;
1106 +        break;
1107 +  /* Misc instructions unlikely to be used within CPU emulators */
1108 +  case 48: // Load Linked Word
1109 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1110 +        transfer_size = SIZE_LONG;
1111 +        break;
1112 +  case 52: // Load Linked Doubleword
1113 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1114 +        transfer_size = SIZE_QUAD;
1115 +        break;
1116 +  case 56: // Store Conditional Word
1117 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1118 +        transfer_size = SIZE_LONG;
1119 +        break;
1120 +  case 60: // Store Conditional Doubleword
1121 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1122 +        transfer_size = SIZE_QUAD;
1123 +        break;
1124 +  }
1125 +
1126 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1127 +        // Unknown machine code, let it crash. Then patch the decoder
1128 +        return false;
1129 +  }
1130 +
1131 +  // Zero target register in case of a load operation
1132 +  const int reg = (opcode >> 16) & 0x1f;
1133 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD) {
1134 +        if (direction == 0)
1135 +          regs[reg] = 0;
1136 +        else {
1137 +          // FIXME: untested code
1138 +          unsigned long ea = regs[(opcode >> 21) & 0x1f];
1139 +          ea += (signed long)(signed int)(signed short)(opcode & 0xffff);
1140 +          const int offset = ea & (transfer_size == SIZE_LONG ? 3 : 7);
1141 +          unsigned long value;
1142 +          if (direction > 0) {
1143 +                const unsigned long rmask = ~((1L << ((offset + 1) * 8)) - 1);
1144 +                value = regs[reg] & rmask;
1145 +          }
1146 +          else {
1147 +                const unsigned long lmask = (1L << (offset * 8)) - 1;
1148 +                value = regs[reg] & lmask;
1149 +          }
1150 +          // restore most significant bits
1151 +          if (transfer_size == SIZE_LONG)
1152 +                value = (signed long)(signed int)value;
1153 +          regs[reg] = value;
1154 +        }
1155 +  }
1156 +
1157 + #if DEBUG
1158 + #if (defined(_ABIN32) || defined(_ABI64))
1159 +  static const char * mips_gpr_names[32] = {
1160 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1161 +        "t0",   "t1",   "t2",   "t3",   "t4",   "t5",   "t6",   "t7",
1162 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1163 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1164 +  };
1165 + #else
1166 +  static const char * mips_gpr_names[32] = {
1167 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1168 +        "a4",   "a5",   "a6",   "a7",   "t0",   "t1",   "t2",   "t3",
1169 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1170 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1171 +  };
1172 + #endif
1173 +  printf("%s %s register %s\n",
1174 +                 transfer_size == SIZE_BYTE ? "byte" :
1175 +                 transfer_size == SIZE_WORD ? "word" :
1176 +                 transfer_size == SIZE_LONG ? "long" :
1177 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1178 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1179 +                 mips_gpr_names[reg]);
1180 + #endif
1181 +
1182 +  regs[MIPS_REG_EPC] += 4;
1183 +  return true;
1184 + }
1185 + #endif
1186 +
1187 + // Decode and skip SPARC instruction
1188 + #if (defined(sparc) || defined(__sparc__))
1189 + enum {
1190 + #if (defined(__sun__))
1191 +  SPARC_REG_G1 = REG_G1,
1192 +  SPARC_REG_O0 = REG_O0,
1193 +  SPARC_REG_PC = REG_PC,
1194 + #endif
1195 + };
1196 + static bool sparc_skip_instruction(unsigned long * regs, gwindows_t * gwins, struct rwindow * rwin)
1197 + {
1198 +  unsigned int * pc = (unsigned int *)regs[SPARC_REG_PC];
1199 +
1200 +  if (pc == 0)
1201 +        return false;
1202 +
1203 + #if DEBUG
1204 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1205 + #endif
1206 +
1207 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1208 +  transfer_size_t transfer_size = SIZE_LONG;
1209 +  bool register_pair = false;
1210 +
1211 +  const unsigned int opcode = pc[0];
1212 +  if ((opcode >> 30) != 3)
1213 +        return false;
1214 +  switch ((opcode >> 19) & 0x3f) {
1215 +  case 9: // Load Signed Byte
1216 +  case 1: // Load Unsigned Byte
1217 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1218 +        transfer_size = SIZE_BYTE;
1219 +        break;
1220 +  case 10:// Load Signed Halfword
1221 +  case 2: // Load Unsigned Word
1222 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1223 +        transfer_size = SIZE_WORD;
1224 +        break;
1225 +  case 8: // Load Word
1226 +  case 0: // Load Unsigned Word
1227 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1228 +        transfer_size = SIZE_LONG;
1229 +        break;
1230 +  case 11:// Load Extended Word
1231 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1232 +        transfer_size = SIZE_QUAD;
1233 +        break;
1234 +  case 3: // Load Doubleword
1235 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1236 +        transfer_size = SIZE_LONG;
1237 +        register_pair = true;
1238 +        break;
1239 +  case 5: // Store Byte
1240 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1241 +        transfer_size = SIZE_BYTE;
1242 +        break;
1243 +  case 6: // Store Halfword
1244 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1245 +        transfer_size = SIZE_WORD;
1246 +        break;
1247 +  case 4: // Store Word
1248 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1249 +        transfer_size = SIZE_LONG;
1250 +        break;
1251 +  case 14:// Store Extended Word
1252 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1253 +        transfer_size = SIZE_QUAD;
1254 +        break;
1255 +  case 7: // Store Doubleword
1256 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1257 +        transfer_size = SIZE_WORD;
1258 +        register_pair = true;
1259 +        break;
1260 +  }
1261 +
1262 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1263 +        // Unknown machine code, let it crash. Then patch the decoder
1264 +        return false;
1265 +  }
1266 +
1267 +  // Zero target register in case of a load operation
1268 +  const int reg = (opcode >> 25) & 0x1f;
1269 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != 0) {
1270 +        // FIXME: code to handle local & input registers is not tested
1271 +        if (reg >= 1 && reg <= 7) {
1272 +          // global registers
1273 +          regs[reg - 1 + SPARC_REG_G1] = 0;
1274 +        }
1275 +        else if (reg >= 8 && reg <= 15) {
1276 +          // output registers
1277 +          regs[reg - 8 + SPARC_REG_O0] = 0;
1278 +        }
1279 +        else if (reg >= 16 && reg <= 23) {
1280 +          // local registers (in register windows)
1281 +          if (gwins)
1282 +                gwins->wbuf->rw_local[reg - 16] = 0;
1283 +          else
1284 +                rwin->rw_local[reg - 16] = 0;
1285 +        }
1286 +        else {
1287 +          // input registers (in register windows)
1288 +          if (gwins)
1289 +                gwins->wbuf->rw_in[reg - 24] = 0;
1290 +          else
1291 +                rwin->rw_in[reg - 24] = 0;
1292 +        }
1293 +  }
1294 +
1295 + #if DEBUG
1296 +  static const char * reg_names[] = {
1297 +        "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
1298 +        "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
1299 +        "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
1300 +        "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7"
1301 +  };
1302 +  printf("%s %s register %s\n",
1303 +                 transfer_size == SIZE_BYTE ? "byte" :
1304 +                 transfer_size == SIZE_WORD ? "word" :
1305 +                 transfer_size == SIZE_LONG ? "long" :
1306 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1307 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1308 +                 reg_names[reg]);
1309 + #endif
1310 +
1311 +  regs[SPARC_REG_PC] += 4;
1312 +  return true;
1313 + }
1314 + #endif
1315   #endif
1316  
1317 + // Decode and skip ARM instruction
1318 + #if (defined(arm) || defined(__arm__))
1319 + enum {
1320 + #if (defined(__linux__))
1321 +  ARM_REG_PC = 15,
1322 +  ARM_REG_CPSR = 16
1323 + #endif
1324 + };
1325 + static bool arm_skip_instruction(unsigned long * regs)
1326 + {
1327 +  unsigned int * pc = (unsigned int *)regs[ARM_REG_PC];
1328 +
1329 +  if (pc == 0)
1330 +        return false;
1331 +
1332 + #if DEBUG
1333 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1334 + #endif
1335 +
1336 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1337 +  transfer_size_t transfer_size = SIZE_UNKNOWN;
1338 +  enum { op_sdt = 1, op_sdth = 2 };
1339 +  int op = 0;
1340 +
1341 +  // Handle load/store instructions only
1342 +  const unsigned int opcode = pc[0];
1343 +  switch ((opcode >> 25) & 7) {
1344 +  case 0: // Halfword and Signed Data Transfer (LDRH, STRH, LDRSB, LDRSH)
1345 +        op = op_sdth;
1346 +        // Determine transfer size (S/H bits)
1347 +        switch ((opcode >> 5) & 3) {
1348 +        case 0: // SWP instruction
1349 +          break;
1350 +        case 1: // Unsigned halfwords
1351 +        case 3: // Signed halfwords
1352 +          transfer_size = SIZE_WORD;
1353 +          break;
1354 +        case 2: // Signed byte
1355 +          transfer_size = SIZE_BYTE;
1356 +          break;
1357 +        }
1358 +        break;
1359 +  case 2:
1360 +  case 3: // Single Data Transfer (LDR, STR)
1361 +        op = op_sdt;
1362 +        // Determine transfer size (B bit)
1363 +        if (((opcode >> 22) & 1) == 1)
1364 +          transfer_size = SIZE_BYTE;
1365 +        else
1366 +          transfer_size = SIZE_LONG;
1367 +        break;
1368 +  default:
1369 +        // FIXME: support load/store mutliple?
1370 +        return false;
1371 +  }
1372 +
1373 +  // Check for invalid transfer size (SWP instruction?)
1374 +  if (transfer_size == SIZE_UNKNOWN)
1375 +        return false;
1376 +
1377 +  // Determine transfer type (L bit)
1378 +  if (((opcode >> 20) & 1) == 1)
1379 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1380 +  else
1381 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1382 +
1383 +  // Compute offset
1384 +  int offset;
1385 +  if (((opcode >> 25) & 1) == 0) {
1386 +        if (op == op_sdt)
1387 +          offset = opcode & 0xfff;
1388 +        else if (op == op_sdth) {
1389 +          int rm = opcode & 0xf;
1390 +          if (((opcode >> 22) & 1) == 0) {
1391 +                // register offset
1392 +                offset = regs[rm];
1393 +          }
1394 +          else {
1395 +                // immediate offset
1396 +                offset = ((opcode >> 4) & 0xf0) | (opcode & 0x0f);
1397 +          }
1398 +        }
1399 +  }
1400 +  else {
1401 +        const int rm = opcode & 0xf;
1402 +        const int sh = (opcode >> 7) & 0x1f;
1403 +        if (((opcode >> 4) & 1) == 1) {
1404 +          // we expect only legal load/store instructions
1405 +          printf("FATAL: invalid shift operand\n");
1406 +          return false;
1407 +        }
1408 +        const unsigned int v = regs[rm];
1409 +        switch ((opcode >> 5) & 3) {
1410 +        case 0: // logical shift left
1411 +          offset = sh ? v << sh : v;
1412 +          break;
1413 +        case 1: // logical shift right
1414 +          offset = sh ? v >> sh : 0;
1415 +          break;
1416 +        case 2: // arithmetic shift right
1417 +          if (sh)
1418 +                offset = ((signed int)v) >> sh;
1419 +          else
1420 +                offset = (v & 0x80000000) ? 0xffffffff : 0;
1421 +          break;
1422 +        case 3: // rotate right
1423 +          if (sh)
1424 +                offset = (v >> sh) | (v << (32 - sh));
1425 +          else
1426 +                offset = (v >> 1) | ((regs[ARM_REG_CPSR] << 2) & 0x80000000);
1427 +          break;
1428 +        }
1429 +  }
1430 +  if (((opcode >> 23) & 1) == 0)
1431 +        offset = -offset;
1432 +
1433 +  int rd = (opcode >> 12) & 0xf;
1434 +  int rn = (opcode >> 16) & 0xf;
1435 + #if DEBUG
1436 +  static const char * reg_names[] = {
1437 +        "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1438 +        "r9", "r9", "sl", "fp", "ip", "sp", "lr", "pc"
1439 +  };
1440 +  printf("%s %s register %s\n",
1441 +                 transfer_size == SIZE_BYTE ? "byte" :
1442 +                 transfer_size == SIZE_WORD ? "word" :
1443 +                 transfer_size == SIZE_LONG ? "long" : "unknown",
1444 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1445 +                 reg_names[rd]);
1446 + #endif
1447 +
1448 +  unsigned int base = regs[rn];
1449 +  if (((opcode >> 24) & 1) == 1)
1450 +        base += offset;
1451 +
1452 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD)
1453 +        regs[rd] = 0;
1454 +
1455 +  if (((opcode >> 24) & 1) == 0)                // post-index addressing
1456 +        regs[rn] += offset;
1457 +  else if (((opcode >> 21) & 1) == 1)   // write-back address into base
1458 +        regs[rn] = base;
1459 +
1460 +  regs[ARM_REG_PC] += 4;
1461 +  return true;
1462 + }
1463 + #endif
1464 +
1465 +
1466   // Fallbacks
1467   #ifndef SIGSEGV_FAULT_INSTRUCTION
1468   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_PC
1469   #endif
1470 + #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
1471 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
1472 + #endif
1473 + #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
1474 + #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  sigsegv_fault_handler(ADDR, IP)
1475 + #endif
1476  
1477   // SIGSEGV recovery supported ?
1478   #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
# Line 618 | Line 1484 | static bool powerpc_skip_instruction(uns
1484   *  SIGSEGV global handler
1485   */
1486  
1487 < #ifdef HAVE_SIGSEGV_RECOVERY
1488 < static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1487 > // This function handles the badaccess to memory.
1488 > // It is called from the signal handler or the exception handler.
1489 > static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
1490   {
1491          sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
1492          sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
626        bool fault_recovered = false;
1493          
1494          // Call user's handler and reinstall the global handler, if required
1495 <        if (sigsegv_fault_handler(fault_address, fault_instruction)) {
1496 < #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1497 <                sigsegv_do_install_handler(sig);
1495 >        switch (SIGSEGV_FAULT_HANDLER_INVOKE(fault_address, fault_instruction)) {
1496 >        case SIGSEGV_RETURN_SUCCESS:
1497 >                return true;
1498 >
1499 > #if HAVE_SIGSEGV_SKIP_INSTRUCTION
1500 >        case SIGSEGV_RETURN_SKIP_INSTRUCTION:
1501 >                // Call the instruction skipper with the register file
1502 >                // available
1503 >                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
1504 > #ifdef HAVE_MACH_EXCEPTIONS
1505 >                        // Unlike UNIX signals where the thread state
1506 >                        // is modified off of the stack, in Mach we
1507 >                        // need to actually call thread_set_state to
1508 >                        // have the register values updated.
1509 >                        kern_return_t krc;
1510 >
1511 >                        krc = thread_set_state(thread,
1512 >                                                                   MACHINE_THREAD_STATE, (thread_state_t)state,
1513 >                                                                   MACHINE_THREAD_STATE_COUNT);
1514 >                        MACH_CHECK_ERROR (thread_get_state, krc);
1515 > #endif
1516 >                        return true;
1517 >                }
1518 >                break;
1519   #endif
1520 <                fault_recovered = true;
1520 >        case SIGSEGV_RETURN_FAILURE:
1521 >                // We can't do anything with the fault_address, dump state?
1522 >                if (sigsegv_state_dumper != 0)
1523 >                        sigsegv_state_dumper(fault_address, fault_instruction);
1524 >                break;
1525          }
1526 < #if HAVE_SIGSEGV_SKIP_INSTRUCTION
1527 <        else if (sigsegv_ignore_fault) {
1528 <                // Call the instruction skipper with the register file available
1529 <                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE))
1530 <                        fault_recovered = true;
1526 >
1527 >        return false;
1528 > }
1529 >
1530 >
1531 > /*
1532 > * There are two mechanisms for handling a bad memory access,
1533 > * Mach exceptions and UNIX signals. The implementation specific
1534 > * code appears below. Its reponsibility is to call handle_badaccess
1535 > * which is the routine that handles the fault in an implementation
1536 > * agnostic manner. The implementation specific code below is then
1537 > * reponsible for checking whether handle_badaccess was able
1538 > * to handle the memory access error and perform any implementation
1539 > * specific tasks necessary afterwards.
1540 > */
1541 >
1542 > #ifdef HAVE_MACH_EXCEPTIONS
1543 > /*
1544 > * We need to forward all exceptions that we do not handle.
1545 > * This is important, there are many exceptions that may be
1546 > * handled by other exception handlers. For example debuggers
1547 > * use exceptions and the exception hander is in another
1548 > * process in such a case. (Timothy J. Wood states in his
1549 > * message to the list that he based this code on that from
1550 > * gdb for Darwin.)
1551 > */
1552 > static inline kern_return_t
1553 > forward_exception(mach_port_t thread_port,
1554 >                                  mach_port_t task_port,
1555 >                                  exception_type_t exception_type,
1556 >                                  exception_data_t exception_data,
1557 >                                  mach_msg_type_number_t data_count,
1558 >                                  ExceptionPorts *oldExceptionPorts)
1559 > {
1560 >        kern_return_t kret;
1561 >        unsigned int portIndex;
1562 >        mach_port_t port;
1563 >        exception_behavior_t behavior;
1564 >        thread_state_flavor_t flavor;
1565 >        thread_state_t thread_state;
1566 >        mach_msg_type_number_t thread_state_count;
1567 >
1568 >        for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
1569 >                if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
1570 >                        // This handler wants the exception
1571 >                        break;
1572 >                }
1573 >        }
1574 >
1575 >        if (portIndex >= oldExceptionPorts->maskCount) {
1576 >                fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
1577 >                return KERN_FAILURE;
1578 >        }
1579 >
1580 >        port = oldExceptionPorts->handlers[portIndex];
1581 >        behavior = oldExceptionPorts->behaviors[portIndex];
1582 >        flavor = oldExceptionPorts->flavors[portIndex];
1583 >
1584 >        /*
1585 >         fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
1586 >         */
1587 >
1588 >        if (behavior != EXCEPTION_DEFAULT) {
1589 >                thread_state_count = THREAD_STATE_MAX;
1590 >                kret = thread_get_state (thread_port, flavor, thread_state,
1591 >                                                                 &thread_state_count);
1592 >                MACH_CHECK_ERROR (thread_get_state, kret);
1593          }
1594 +
1595 +        switch (behavior) {
1596 +        case EXCEPTION_DEFAULT:
1597 +          // fprintf(stderr, "forwarding to exception_raise\n");
1598 +          kret = exception_raise(port, thread_port, task_port, exception_type,
1599 +                                                         exception_data, data_count);
1600 +          MACH_CHECK_ERROR (exception_raise, kret);
1601 +          break;
1602 +        case EXCEPTION_STATE:
1603 +          // fprintf(stderr, "forwarding to exception_raise_state\n");
1604 +          kret = exception_raise_state(port, exception_type, exception_data,
1605 +                                                                   data_count, &flavor,
1606 +                                                                   thread_state, thread_state_count,
1607 +                                                                   thread_state, &thread_state_count);
1608 +          MACH_CHECK_ERROR (exception_raise_state, kret);
1609 +          break;
1610 +        case EXCEPTION_STATE_IDENTITY:
1611 +          // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
1612 +          kret = exception_raise_state_identity(port, thread_port, task_port,
1613 +                                                                                        exception_type, exception_data,
1614 +                                                                                        data_count, &flavor,
1615 +                                                                                        thread_state, thread_state_count,
1616 +                                                                                        thread_state, &thread_state_count);
1617 +          MACH_CHECK_ERROR (exception_raise_state_identity, kret);
1618 +          break;
1619 +        default:
1620 +          fprintf(stderr, "forward_exception got unknown behavior\n");
1621 +          break;
1622 +        }
1623 +
1624 +        if (behavior != EXCEPTION_DEFAULT) {
1625 +                kret = thread_set_state (thread_port, flavor, thread_state,
1626 +                                                                 thread_state_count);
1627 +                MACH_CHECK_ERROR (thread_set_state, kret);
1628 +        }
1629 +
1630 +        return KERN_SUCCESS;
1631 + }
1632 +
1633 + /*
1634 + * This is the code that actually handles the exception.
1635 + * It is called by exc_server. For Darwin 5 Apple changed
1636 + * this a bit from how this family of functions worked in
1637 + * Mach. If you are familiar with that it is a little
1638 + * different. The main variation that concerns us here is
1639 + * that code is an array of exception specific codes and
1640 + * codeCount is a count of the number of codes in the code
1641 + * array. In typical Mach all exceptions have a code
1642 + * and sub-code. It happens to be the case that for a
1643 + * EXC_BAD_ACCESS exception the first entry is the type of
1644 + * bad access that occurred and the second entry is the
1645 + * faulting address so these entries correspond exactly to
1646 + * how the code and sub-code are used on Mach.
1647 + *
1648 + * This is a MIG interface. No code in Basilisk II should
1649 + * call this directley. This has to have external C
1650 + * linkage because that is what exc_server expects.
1651 + */
1652 + kern_return_t
1653 + catch_exception_raise(mach_port_t exception_port,
1654 +                                          mach_port_t thread,
1655 +                                          mach_port_t task,
1656 +                                          exception_type_t exception,
1657 +                                          exception_data_t code,
1658 +                                          mach_msg_type_number_t codeCount)
1659 + {
1660 +        ppc_thread_state_t state;
1661 +        kern_return_t krc;
1662 +
1663 +        if ((exception == EXC_BAD_ACCESS)  && (codeCount >= 2)) {
1664 +                if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
1665 +                        return KERN_SUCCESS;
1666 +        }
1667 +
1668 +        // In Mach we do not need to remove the exception handler.
1669 +        // If we forward the exception, eventually some exception handler
1670 +        // will take care of this exception.
1671 +        krc = forward_exception(thread, task, exception, code, codeCount, &ports);
1672 +
1673 +        return krc;
1674 + }
1675   #endif
1676  
1677 <        if (!fault_recovered) {
1678 <                // FAIL: reinstall default handler for "safe" crash
1677 > #ifdef HAVE_SIGSEGV_RECOVERY
1678 > // Handle bad memory accesses with signal handler
1679 > static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1680 > {
1681 >        // Call handler and reinstall the global handler, if required
1682 >        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
1683 > #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1684 >                sigsegv_do_install_handler(sig);
1685 > #endif
1686 >                return;
1687 >        }
1688 >
1689 >        // Failure: reinstall default handler for "safe" crash
1690   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1691 <                SIGSEGV_ALL_SIGNALS
1691 >        SIGSEGV_ALL_SIGNALS
1692   #undef FAULT_HANDLER
648                
649                // We can't do anything with the fault_address, dump state?
650                if (sigsegv_state_dumper != 0)
651                        sigsegv_state_dumper(fault_address, fault_instruction);
652        }
1693   }
1694   #endif
1695  
# Line 663 | Line 1703 | static bool sigsegv_do_install_handler(i
1703   {
1704          // Setup SIGSEGV handler to process writes to frame buffer
1705   #ifdef HAVE_SIGACTION
1706 <        struct sigaction vosf_sa;
1707 <        sigemptyset(&vosf_sa.sa_mask);
1708 <        vosf_sa.sa_sigaction = sigsegv_handler;
1709 <        vosf_sa.sa_flags = SA_SIGINFO;
1710 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1706 >        struct sigaction sigsegv_sa;
1707 >        sigemptyset(&sigsegv_sa.sa_mask);
1708 >        sigsegv_sa.sa_sigaction = sigsegv_handler;
1709 >        sigsegv_sa.sa_flags = SA_SIGINFO;
1710 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1711   #else
1712          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1713   #endif
# Line 679 | Line 1719 | static bool sigsegv_do_install_handler(i
1719   {
1720          // Setup SIGSEGV handler to process writes to frame buffer
1721   #ifdef HAVE_SIGACTION
1722 <        struct sigaction vosf_sa;
1723 <        sigemptyset(&vosf_sa.sa_mask);
1724 <        vosf_sa.sa_handler = (signal_handler)sigsegv_handler;
1722 >        struct sigaction sigsegv_sa;
1723 >        sigemptyset(&sigsegv_sa.sa_mask);
1724 >        sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
1725 >        sigsegv_sa.sa_flags = 0;
1726   #if !EMULATED_68K && defined(__NetBSD__)
1727 <        sigaddset(&vosf_sa.sa_mask, SIGALRM);
1728 <        vosf_sa.sa_flags = SA_ONSTACK;
688 < #else
689 <        vosf_sa.sa_flags = 0;
1727 >        sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
1728 >        sigsegv_sa.sa_flags |= SA_ONSTACK;
1729   #endif
1730 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1730 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1731   #else
1732          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1733   #endif
1734   }
1735   #endif
1736  
1737 < bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1737 > #if defined(HAVE_MACH_EXCEPTIONS)
1738 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1739   {
1740 < #ifdef HAVE_SIGSEGV_RECOVERY
1740 >        /*
1741 >         * Except for the exception port functions, this should be
1742 >         * pretty much stock Mach. If later you choose to support
1743 >         * other Mach's besides Darwin, just check for __MACH__
1744 >         * here and __APPLE__ where the actual differences are.
1745 >         */
1746 > #if defined(__APPLE__) && defined(__MACH__)
1747 >        if (sigsegv_fault_handler != NULL) {
1748 >                sigsegv_fault_handler = handler;
1749 >                return true;
1750 >        }
1751 >
1752 >        kern_return_t krc;
1753 >
1754 >        // create the the exception port
1755 >        krc = mach_port_allocate(mach_task_self(),
1756 >                          MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
1757 >        if (krc != KERN_SUCCESS) {
1758 >                mach_error("mach_port_allocate", krc);
1759 >                return false;
1760 >        }
1761 >
1762 >        // add a port send right
1763 >        krc = mach_port_insert_right(mach_task_self(),
1764 >                              _exceptionPort, _exceptionPort,
1765 >                              MACH_MSG_TYPE_MAKE_SEND);
1766 >        if (krc != KERN_SUCCESS) {
1767 >                mach_error("mach_port_insert_right", krc);
1768 >                return false;
1769 >        }
1770 >
1771 >        // get the old exception ports
1772 >        ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
1773 >        krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
1774 >                                &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
1775 >        if (krc != KERN_SUCCESS) {
1776 >                mach_error("thread_get_exception_ports", krc);
1777 >                return false;
1778 >        }
1779 >
1780 >        // set the new exception port
1781 >        //
1782 >        // We could have used EXCEPTION_STATE_IDENTITY instead of
1783 >        // EXCEPTION_DEFAULT to get the thread state in the initial
1784 >        // message, but it turns out that in the common case this is not
1785 >        // neccessary. If we need it we can later ask for it from the
1786 >        // suspended thread.
1787 >        //
1788 >        // Even with THREAD_STATE_NONE, Darwin provides the program
1789 >        // counter in the thread state.  The comments in the header file
1790 >        // seem to imply that you can count on the GPR's on an exception
1791 >        // as well but just to be safe I use MACHINE_THREAD_STATE because
1792 >        // you have to ask for all of the GPR's anyway just to get the
1793 >        // program counter. In any case because of update effective
1794 >        // address from immediate and update address from effective
1795 >        // addresses of ra and rb modes (as good an name as any for these
1796 >        // addressing modes) used in PPC instructions, you will need the
1797 >        // GPR state anyway.
1798 >        krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
1799 >                                EXCEPTION_DEFAULT, MACHINE_THREAD_STATE);
1800 >        if (krc != KERN_SUCCESS) {
1801 >                mach_error("thread_set_exception_ports", krc);
1802 >                return false;
1803 >        }
1804 >
1805 >        // create the exception handler thread
1806 >        if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
1807 >                (void)fprintf(stderr, "creation of exception thread failed\n");
1808 >                return false;
1809 >        }
1810 >
1811 >        // do not care about the exception thread any longer, let is run standalone
1812 >        (void)pthread_detach(exc_thread);
1813 >
1814 >        sigsegv_fault_handler = handler;
1815 >        return true;
1816 > #else
1817 >        return false;
1818 > #endif
1819 > }
1820 > #endif
1821 >
1822 > #ifdef HAVE_WIN32_EXCEPTIONS
1823 > static LONG WINAPI main_exception_filter(EXCEPTION_POINTERS *ExceptionInfo)
1824 > {
1825 >        if (sigsegv_fault_handler != NULL
1826 >                && ExceptionInfo->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION
1827 >                && ExceptionInfo->ExceptionRecord->NumberParameters == 2
1828 >                && handle_badaccess(ExceptionInfo))
1829 >                return EXCEPTION_CONTINUE_EXECUTION;
1830 >
1831 >        return EXCEPTION_CONTINUE_SEARCH;
1832 > }
1833 >
1834 > #if defined __CYGWIN__ && defined __i386__
1835 > /* In Cygwin programs, SetUnhandledExceptionFilter has no effect because Cygwin
1836 >   installs a global exception handler.  We have to dig deep in order to install
1837 >   our main_exception_filter.  */
1838 >
1839 > /* Data structures for the current thread's exception handler chain.
1840 >   On the x86 Windows uses register fs, offset 0 to point to the current
1841 >   exception handler; Cygwin mucks with it, so we must do the same... :-/ */
1842 >
1843 > /* Magic taken from winsup/cygwin/include/exceptions.h.  */
1844 >
1845 > struct exception_list {
1846 >    struct exception_list *prev;
1847 >    int (*handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
1848 > };
1849 > typedef struct exception_list exception_list;
1850 >
1851 > /* Magic taken from winsup/cygwin/exceptions.cc.  */
1852 >
1853 > __asm__ (".equ __except_list,0");
1854 >
1855 > extern exception_list *_except_list __asm__ ("%fs:__except_list");
1856 >
1857 > /* For debugging.  _except_list is not otherwise accessible from gdb.  */
1858 > static exception_list *
1859 > debug_get_except_list ()
1860 > {
1861 >  return _except_list;
1862 > }
1863 >
1864 > /* Cygwin's original exception handler.  */
1865 > static int (*cygwin_exception_handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
1866 >
1867 > /* Our exception handler.  */
1868 > static int
1869 > libsigsegv_exception_handler (EXCEPTION_RECORD *exception, void *frame, CONTEXT *context, void *dispatch)
1870 > {
1871 >  EXCEPTION_POINTERS ExceptionInfo;
1872 >  ExceptionInfo.ExceptionRecord = exception;
1873 >  ExceptionInfo.ContextRecord = context;
1874 >  if (main_exception_filter (&ExceptionInfo) == EXCEPTION_CONTINUE_SEARCH)
1875 >    return cygwin_exception_handler (exception, frame, context, dispatch);
1876 >  else
1877 >    return 0;
1878 > }
1879 >
1880 > static void
1881 > do_install_main_exception_filter ()
1882 > {
1883 >  /* We cannot insert any handler into the chain, because such handlers
1884 >     must lie on the stack (?).  Instead, we have to replace(!) Cygwin's
1885 >     global exception handler.  */
1886 >  cygwin_exception_handler = _except_list->handler;
1887 >  _except_list->handler = libsigsegv_exception_handler;
1888 > }
1889 >
1890 > #else
1891 >
1892 > static void
1893 > do_install_main_exception_filter ()
1894 > {
1895 >  SetUnhandledExceptionFilter ((LPTOP_LEVEL_EXCEPTION_FILTER) &main_exception_filter);
1896 > }
1897 > #endif
1898 >
1899 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1900 > {
1901 >        static bool main_exception_filter_installed = false;
1902 >        if (!main_exception_filter_installed) {
1903 >                do_install_main_exception_filter();
1904 >                main_exception_filter_installed = true;
1905 >        }
1906          sigsegv_fault_handler = handler;
1907 +        return true;
1908 + }
1909 + #endif
1910 +
1911 + bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1912 + {
1913 + #if defined(HAVE_SIGSEGV_RECOVERY)
1914          bool success = true;
1915   #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
1916          SIGSEGV_ALL_SIGNALS
1917   #undef FAULT_HANDLER
1918 +        if (success)
1919 +            sigsegv_fault_handler = handler;
1920          return success;
1921 + #elif defined(HAVE_MACH_EXCEPTIONS) || defined(HAVE_WIN32_EXCEPTIONS)
1922 +        return sigsegv_do_install_handler(handler);
1923   #else
1924          // FAIL: no siginfo_t nor sigcontext subterfuge is available
1925          return false;
# Line 717 | Line 1933 | bool sigsegv_install_handler(sigsegv_fau
1933  
1934   void sigsegv_deinstall_handler(void)
1935   {
1936 +  // We do nothing for Mach exceptions, the thread would need to be
1937 +  // suspended if not already so, and we might mess with other
1938 +  // exception handlers that came after we registered ours. There is
1939 +  // no need to remove the exception handler, in fact this function is
1940 +  // not called anywhere in Basilisk II.
1941   #ifdef HAVE_SIGSEGV_RECOVERY
1942          sigsegv_fault_handler = 0;
1943   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1944          SIGSEGV_ALL_SIGNALS
1945   #undef FAULT_HANDLER
1946   #endif
1947 < }
1948 <
1949 <
729 < /*
730 < *  SIGSEGV ignore state modifier
731 < */
732 <
733 < void sigsegv_set_ignore_state(bool ignore_fault)
734 < {
735 <        sigsegv_ignore_fault = ignore_fault;
1947 > #ifdef HAVE_WIN32_EXCEPTIONS
1948 >        sigsegv_fault_handler = NULL;
1949 > #endif
1950   }
1951  
1952  
# Line 754 | Line 1968 | void sigsegv_set_dump_state(sigsegv_stat
1968   #include <stdio.h>
1969   #include <stdlib.h>
1970   #include <fcntl.h>
1971 + #ifdef HAVE_SYS_MMAN_H
1972   #include <sys/mman.h>
1973 + #endif
1974   #include "vm_alloc.h"
1975  
1976 + const int REF_INDEX = 123;
1977 + const int REF_VALUE = 45;
1978 +
1979   static int page_size;
1980   static volatile char * page = 0;
1981   static volatile int handler_called = 0;
1982  
1983 < static bool sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1983 > #ifdef __GNUC__
1984 > // Code range where we expect the fault to come from
1985 > static void *b_region, *e_region;
1986 > #endif
1987 >
1988 > static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1989   {
1990 + #if DEBUG
1991 +        printf("sigsegv_test_handler(%p, %p)\n", fault_address, instruction_address);
1992 +        printf("expected fault at %p\n", page + REF_INDEX);
1993 + #ifdef __GNUC__
1994 +        printf("expected instruction address range: %p-%p\n", b_region, e_region);
1995 + #endif
1996 + #endif
1997          handler_called++;
1998 <        if ((fault_address - 123) != page)
1999 <                exit(1);
1998 >        if ((fault_address - REF_INDEX) != page)
1999 >                exit(10);
2000 > #ifdef __GNUC__
2001 >        // Make sure reported fault instruction address falls into
2002 >        // expected code range
2003 >        if (instruction_address != SIGSEGV_INVALID_PC
2004 >                && ((instruction_address <  (sigsegv_address_t)b_region) ||
2005 >                        (instruction_address >= (sigsegv_address_t)e_region)))
2006 >                exit(11);
2007 > #endif
2008          if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
2009 <                exit(1);
2010 <        return true;
2009 >                exit(12);
2010 >        return SIGSEGV_RETURN_SUCCESS;
2011   }
2012  
2013   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
2014 < static bool sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2014 > static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2015   {
2016 <        return false;
2016 > #if DEBUG
2017 >        printf("sigsegv_insn_handler(%p, %p)\n", fault_address, instruction_address);
2018 > #endif
2019 >        if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
2020 > #ifdef __GNUC__
2021 >                // Make sure reported fault instruction address falls into
2022 >                // expected code range
2023 >                if (instruction_address != SIGSEGV_INVALID_PC
2024 >                        && ((instruction_address <  (sigsegv_address_t)b_region) ||
2025 >                                (instruction_address >= (sigsegv_address_t)e_region)))
2026 >                        return SIGSEGV_RETURN_FAILURE;
2027 > #endif
2028 >                return SIGSEGV_RETURN_SKIP_INSTRUCTION;
2029 >        }
2030 >
2031 >        return SIGSEGV_RETURN_FAILURE;
2032 > }
2033 >
2034 > // More sophisticated tests for instruction skipper
2035 > static bool arch_insn_skipper_tests()
2036 > {
2037 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
2038 >        static const unsigned char code[] = {
2039 >                0x8a, 0x00,                    // mov    (%eax),%al
2040 >                0x8a, 0x2c, 0x18,              // mov    (%eax,%ebx,1),%ch
2041 >                0x88, 0x20,                    // mov    %ah,(%eax)
2042 >                0x88, 0x08,                    // mov    %cl,(%eax)
2043 >                0x66, 0x8b, 0x00,              // mov    (%eax),%ax
2044 >                0x66, 0x8b, 0x0c, 0x18,        // mov    (%eax,%ebx,1),%cx
2045 >                0x66, 0x89, 0x00,              // mov    %ax,(%eax)
2046 >                0x66, 0x89, 0x0c, 0x18,        // mov    %cx,(%eax,%ebx,1)
2047 >                0x8b, 0x00,                    // mov    (%eax),%eax
2048 >                0x8b, 0x0c, 0x18,              // mov    (%eax,%ebx,1),%ecx
2049 >                0x89, 0x00,                    // mov    %eax,(%eax)
2050 >                0x89, 0x0c, 0x18,              // mov    %ecx,(%eax,%ebx,1)
2051 > #if defined(__x86_64__)
2052 >                0x44, 0x8a, 0x00,              // mov    (%rax),%r8b
2053 >                0x44, 0x8a, 0x20,              // mov    (%rax),%r12b
2054 >                0x42, 0x8a, 0x3c, 0x10,        // mov    (%rax,%r10,1),%dil
2055 >                0x44, 0x88, 0x00,              // mov    %r8b,(%rax)
2056 >                0x44, 0x88, 0x20,              // mov    %r12b,(%rax)
2057 >                0x42, 0x88, 0x3c, 0x10,        // mov    %dil,(%rax,%r10,1)
2058 >                0x66, 0x44, 0x8b, 0x00,        // mov    (%rax),%r8w
2059 >                0x66, 0x42, 0x8b, 0x0c, 0x10,  // mov    (%rax,%r10,1),%cx
2060 >                0x66, 0x44, 0x89, 0x00,        // mov    %r8w,(%rax)
2061 >                0x66, 0x42, 0x89, 0x0c, 0x10,  // mov    %cx,(%rax,%r10,1)
2062 >                0x44, 0x8b, 0x00,              // mov    (%rax),%r8d
2063 >                0x42, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%ecx
2064 >                0x44, 0x89, 0x00,              // mov    %r8d,(%rax)
2065 >                0x42, 0x89, 0x0c, 0x10,        // mov    %ecx,(%rax,%r10,1)
2066 >                0x48, 0x8b, 0x08,              // mov    (%rax),%rcx
2067 >                0x4c, 0x8b, 0x18,              // mov    (%rax),%r11
2068 >                0x4a, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%rcx
2069 >                0x4e, 0x8b, 0x1c, 0x10,        // mov    (%rax,%r10,1),%r11
2070 >                0x48, 0x89, 0x08,              // mov    %rcx,(%rax)
2071 >                0x4c, 0x89, 0x18,              // mov    %r11,(%rax)
2072 >                0x4a, 0x89, 0x0c, 0x10,        // mov    %rcx,(%rax,%r10,1)
2073 >                0x4e, 0x89, 0x1c, 0x10,        // mov    %r11,(%rax,%r10,1)
2074 > #endif
2075 >                0                              // end
2076 >        };
2077 >        const int N_REGS = 20;
2078 >        unsigned long regs[N_REGS];
2079 >        for (int i = 0; i < N_REGS; i++)
2080 >                regs[i] = i;
2081 >        const unsigned long start_code = (unsigned long)&code;
2082 >        regs[X86_REG_EIP] = start_code;
2083 >        while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1)
2084 >                   && ix86_skip_instruction(regs))
2085 >                ; /* simply iterate */
2086 >        return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1);
2087 > #endif
2088 >        return true;
2089   }
2090   #endif
2091  
# Line 783 | Line 2094 | int main(void)
2094          if (vm_init() < 0)
2095                  return 1;
2096  
2097 + #ifdef _WIN32
2098 +        page_size = 4096;
2099 + #else
2100          page_size = getpagesize();
2101 + #endif
2102          if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
2103 <                return 1;
2103 >                return 2;
2104          
2105 +        memset((void *)page, 0, page_size);
2106          if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
2107 <                return 1;
2107 >                return 3;
2108          
2109          if (!sigsegv_install_handler(sigsegv_test_handler))
2110 <                return 1;
795 <        
796 <        page[123] = 45;
797 <        page[123] = 45;
2110 >                return 4;
2111          
2112 + #ifdef __GNUC__
2113 +        b_region = &&L_b_region1;
2114 +        e_region = &&L_e_region1;
2115 + #endif
2116 + L_b_region1:
2117 +        page[REF_INDEX] = REF_VALUE;
2118 +        if (page[REF_INDEX] != REF_VALUE)
2119 +          exit(20);
2120 +        page[REF_INDEX] = REF_VALUE;
2121 + L_e_region1:
2122 +
2123          if (handler_called != 1)
2124 <                return 1;
2124 >                return 5;
2125  
2126   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
2127          if (!sigsegv_install_handler(sigsegv_insn_handler))
2128 <                return 1;
2128 >                return 6;
2129          
2130          if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
2131 <                return 1;
2131 >                return 7;
2132          
2133          for (int i = 0; i < page_size; i++)
2134                  page[i] = (i + 1) % page_size;
2135          
2136          if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
2137 <                return 1;
2137 >                return 8;
2138          
815        sigsegv_set_ignore_state(true);
816
2139   #define TEST_SKIP_INSTRUCTION(TYPE) do {                                \
2140 <                const unsigned int TAG = 0x12345678;                    \
2140 >                const unsigned long TAG = 0x12345678 |                  \
2141 >                (sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0);   \
2142                  TYPE data = *((TYPE *)(page + sizeof(TYPE)));   \
2143 <                volatile unsigned int effect = data + TAG;              \
2143 >                volatile unsigned long effect = data + TAG;             \
2144                  if (effect != TAG)                                                              \
2145 <                        return 1;                                                                       \
2145 >                        return 9;                                                                       \
2146          } while (0)
2147          
2148 + #ifdef __GNUC__
2149 +        b_region = &&L_b_region2;
2150 +        e_region = &&L_e_region2;
2151 + #endif
2152 + L_b_region2:
2153          TEST_SKIP_INSTRUCTION(unsigned char);
2154          TEST_SKIP_INSTRUCTION(unsigned short);
2155          TEST_SKIP_INSTRUCTION(unsigned int);
2156 +        TEST_SKIP_INSTRUCTION(unsigned long);
2157 +        TEST_SKIP_INSTRUCTION(signed char);
2158 +        TEST_SKIP_INSTRUCTION(signed short);
2159 +        TEST_SKIP_INSTRUCTION(signed int);
2160 +        TEST_SKIP_INSTRUCTION(signed long);
2161 + L_e_region2:
2162 +
2163 +        if (!arch_insn_skipper_tests())
2164 +                return 20;
2165   #endif
2166  
2167          vm_exit();

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines