ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
(Generate patch)

Comparing BasiliskII/src/Unix/sigsegv.cpp (file contents):
Revision 1.17 by gbeauche, 2002-05-20T17:49:04Z vs.
Revision 1.37 by gbeauche, 2003-12-20T07:43:56Z

# Line 4 | Line 4
4   *  Derived from Bruno Haible's work on his SIGSEGV library for clisp
5   *  <http://clisp.sourceforge.net/>
6   *
7 + *  MacOS X support derived from the post by Timothy J. Wood to the
8 + *  omnigroup macosx-dev list:
9 + *    Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10 + *    tjw@omnigroup.com Sun, 4 Jun 2000
11 + *    www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12 + *
13   *  Basilisk II (C) 1997-2002 Christian Bauer
14   *
15   *  This program is free software; you can redistribute it and/or modify
# Line 29 | Line 35
35   #include "config.h"
36   #endif
37  
38 + #include <list>
39   #include <signal.h>
40   #include "sigsegv.h"
41  
42 + #ifndef NO_STD_NAMESPACE
43 + using std::list;
44 + #endif
45 +
46   // Return value type of a signal handler (standard type if not defined)
47   #ifndef RETSIGTYPE
48   #define RETSIGTYPE void
# Line 40 | Line 51
51   // Type of the system signal handler
52   typedef RETSIGTYPE (*signal_handler)(int);
53  
43 // Is the fault to be ignored?
44 static bool sigsegv_ignore_fault = false;
45
54   // User's SIGSEGV handler
55   static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
56  
# Line 57 | Line 65 | static bool sigsegv_do_install_handler(i
65   *  Instruction decoding aids
66   */
67  
60 // Transfer type
61 enum transfer_type_t {
62        TYPE_UNKNOWN,
63        TYPE_LOAD,
64        TYPE_STORE
65 };
66
68   // Transfer size
69   enum transfer_size_t {
70          SIZE_UNKNOWN,
71          SIZE_BYTE,
72 <        SIZE_WORD,
73 <        SIZE_LONG
72 >        SIZE_WORD, // 2 bytes
73 >        SIZE_LONG, // 4 bytes
74 >        SIZE_QUAD, // 8 bytes
75   };
76  
77 + // Transfer type
78 + typedef sigsegv_transfer_type_t transfer_type_t;
79 +
80   #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
81   // Addressing mode
82   enum addressing_mode_t {
# Line 103 | Line 108 | static void powerpc_decode_instruction(i
108          signed int imm = (signed short)(opcode & 0xffff);
109          
110          // Analyze opcode
111 <        transfer_type_t transfer_type = TYPE_UNKNOWN;
111 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
112          transfer_size_t transfer_size = SIZE_UNKNOWN;
113          addressing_mode_t addr_mode = MODE_UNKNOWN;
114          switch (primop) {
115          case 31:
116                  switch (exop) {
117                  case 23:        // lwzx
118 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
118 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
119                  case 55:        // lwzux
120 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
120 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
121                  case 87:        // lbzx
122 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
122 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
123                  case 119:       // lbzux
124 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
124 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
125                  case 151:       // stwx
126 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
126 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
127                  case 183:       // stwux
128 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
128 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
129                  case 215:       // stbx
130 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
130 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
131                  case 247:       // stbux
132 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
132 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
133                  case 279:       // lhzx
134 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
134 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
135                  case 311:       // lhzux
136 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
136 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
137                  case 343:       // lhax
138 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
138 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
139                  case 375:       // lhaux
140 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
140 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
141                  case 407:       // sthx
142 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
142 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
143                  case 439:       // sthux
144 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
144 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
145                  }
146                  break;
147          
148          case 32:        // lwz
149 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
149 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
150          case 33:        // lwzu
151 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
151 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
152          case 34:        // lbz
153 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
153 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
154          case 35:        // lbzu
155 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
155 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
156          case 36:        // stw
157 <                transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
157 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
158          case 37:        // stwu
159 <                transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
159 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
160          case 38:        // stb
161 <                transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
161 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
162          case 39:        // stbu
163 <                transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
163 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
164          case 40:        // lhz
165 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
165 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
166          case 41:        // lhzu
167 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
167 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
168          case 42:        // lha
169 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
169 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
170          case 43:        // lhau
171 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
171 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
172          case 44:        // sth
173 <                transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
173 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
174          case 45:        // sthu
175 <                transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
175 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
176          }
177          
178          // Calculate effective address
# Line 214 | Line 219 | static void powerpc_decode_instruction(i
219   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
220   #endif
221   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, siginfo_t *sip, void *scp
222 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
223 + #define SIGSEGV_FAULT_HANDLER_ARGS              sip, scp
224   #define SIGSEGV_FAULT_ADDRESS                   sip->si_addr
225 + #if (defined(sgi) || defined(__sgi))
226 + #include <ucontext.h>
227 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
228 + #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)SIGSEGV_CONTEXT_REGS[CTX_EPC]
229 + #endif
230 + #if defined(__sun__)
231 + #if (defined(sparc) || defined(__sparc__))
232 + #include <sys/ucontext.h>
233 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
234 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[REG_PC]
235 + #endif
236 + #endif
237 + #if defined(__FreeBSD__)
238   #if (defined(i386) || defined(__i386__))
239   #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_eip)
240 < #define SIGSEGV_REGISTER_FILE                   ((unsigned int *)&(((struct sigcontext *)scp)->sc_edi))
240 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
241   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
242   #endif
243 + #endif
244   #if defined(__linux__)
245   #if (defined(i386) || defined(__i386__))
246   #include <sys/ucontext.h>
247   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
248   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
249 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)SIGSEGV_CONTEXT_REGS
249 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
250 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
251 > #endif
252 > #if (defined(x86_64) || defined(__x86_64__))
253 > #include <sys/ucontext.h>
254 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
255 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
256 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
257   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
258   #endif
259   #if (defined(ia64) || defined(__ia64__))
# Line 248 | Line 276 | static void powerpc_decode_instruction(i
276   #if (defined(i386) || defined(__i386__))
277   #include <asm/sigcontext.h>
278   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext scs
279 < #define SIGSEGV_FAULT_ADDRESS                   scs.cr2
280 < #define SIGSEGV_FAULT_INSTRUCTION               scs.eip
281 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)(&scs)
279 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
280 > #define SIGSEGV_FAULT_HANDLER_ARGS              &scs
281 > #define SIGSEGV_FAULT_ADDRESS                   scp->cr2
282 > #define SIGSEGV_FAULT_INSTRUCTION               scp->eip
283 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)scp
284   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
285   #endif
286   #if (defined(sparc) || defined(__sparc__))
287   #include <asm/sigcontext.h>
288   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
289 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
290   #define SIGSEGV_FAULT_ADDRESS                   addr
291   #endif
292   #if (defined(powerpc) || defined(__powerpc__))
293   #include <asm/sigcontext.h>
294   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext *scp
295 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, scp
296   #define SIGSEGV_FAULT_ADDRESS                   scp->regs->dar
297   #define SIGSEGV_FAULT_INSTRUCTION               scp->regs->nip
298   #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&scp->regs->nip, (unsigned int *)(scp->regs->gpr)
# Line 269 | Line 301 | static void powerpc_decode_instruction(i
301   #if (defined(alpha) || defined(__alpha__))
302   #include <asm/sigcontext.h>
303   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
304 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
305   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
306   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
274
275 // From Boehm's GC 6.0alpha8
276 static sigsegv_address_t get_fault_address(struct sigcontext *scp)
277 {
278        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
279        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
280        fault_address += (signed long)(signed short)(instruction & 0xffff);
281        return (sigsegv_address_t)fault_address;
282 }
307   #endif
308   #endif
309  
310   // Irix 5 or 6 on MIPS
311 < #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
311 > #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(_SYSTYPE_SVR4))
312   #include <ucontext.h>
313   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
314 < #define SIGSEGV_FAULT_ADDRESS                   scp->sc_badvaddr
314 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
315 > #define SIGSEGV_FAULT_ADDRESS                   (unsigned long)scp->sc_badvaddr
316 > #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)scp->sc_pc
317   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
318   #endif
319  
320   // HP-UX
321   #if (defined(hpux) || defined(__hpux__))
322   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
323 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
324   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_sl.sl_ss.ss_narrow.ss_cr21
325   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
326   #endif
# Line 302 | Line 329 | static sigsegv_address_t get_fault_addre
329   #if defined(__osf__)
330   #include <ucontext.h>
331   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
332 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
333   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_traparg_a0
334   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
335   #endif
# Line 309 | Line 337 | static sigsegv_address_t get_fault_addre
337   // AIX
338   #if defined(_AIX)
339   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
340 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
341   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_jmpbuf.jmp_context.o_vaddr
342   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
343   #endif
344  
345 < // NetBSD or FreeBSD
346 < #if defined(__NetBSD__) || defined(__FreeBSD__)
345 > // NetBSD
346 > #if defined(__NetBSD__)
347   #if (defined(m68k) || defined(__m68k__))
348   #include <m68k/frame.h>
349   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
350 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
351   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
352   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
353  
# Line 341 | Line 371 | static sigsegv_address_t get_fault_addre
371          }
372          return (sigsegv_address_t)fault_addr;
373   }
374 < #else
375 < #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, void *scp, char *addr
376 < #define SIGSEGV_FAULT_ADDRESS                   addr
374 > #endif
375 > #if (defined(alpha) || defined(__alpha__))
376 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
377 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
378 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
379 > #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
380 > #endif
381 > #if (defined(i386) || defined(__i386__))
382 > #error "FIXME: need to decode instruction and compute EA"
383 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
384 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
385 > #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
386 > #endif
387 > #endif
388 > #if defined(__FreeBSD__)
389   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
390 + #if (defined(i386) || defined(__i386__))
391 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
392 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
393 + #define SIGSEGV_FAULT_ADDRESS                   addr
394 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_eip
395 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&scp->sc_edi)
396 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
397 + #endif
398   #endif
399 +
400 + // Extract fault address out of a sigcontext
401 + #if (defined(alpha) || defined(__alpha__))
402 + // From Boehm's GC 6.0alpha8
403 + static sigsegv_address_t get_fault_address(struct sigcontext *scp)
404 + {
405 +        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
406 +        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
407 +        fault_address += (signed long)(signed short)(instruction & 0xffff);
408 +        return (sigsegv_address_t)fault_address;
409 + }
410   #endif
411  
412 < // MacOS X
412 >
413 > // MacOS X, not sure which version this works in. Under 10.1
414 > // vm_protect does not appear to work from a signal handler. Under
415 > // 10.2 signal handlers get siginfo type arguments but the si_addr
416 > // field is the address of the faulting instruction and not the
417 > // address that caused the SIGBUS. Maybe this works in 10.0? In any
418 > // case with Mach exception handlers there is a way to do what this
419 > // was meant to do.
420 > #ifndef HAVE_MACH_EXCEPTIONS
421   #if defined(__APPLE__) && defined(__MACH__)
422   #if (defined(ppc) || defined(__ppc__))
423   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
424 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
425   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
426   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_ir
427   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
# Line 371 | Line 441 | static sigsegv_address_t get_fault_addre
441   #endif
442   #endif
443   #endif
444 + #endif
445 +
446 + #if HAVE_MACH_EXCEPTIONS
447 +
448 + // This can easily be extended to other Mach systems, but really who
449 + // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
450 + // Mach 2.5/3.0?
451 + #if defined(__APPLE__) && defined(__MACH__)
452 +
453 + #include <sys/types.h>
454 + #include <stdlib.h>
455 + #include <stdio.h>
456 + #include <pthread.h>
457 +
458 + /*
459 + * If you are familiar with MIG then you will understand the frustration
460 + * that was necessary to get these embedded into C++ code by hand.
461 + */
462 + extern "C" {
463 + #include <mach/mach.h>
464 + #include <mach/mach_error.h>
465 +
466 + extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
467 + extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
468 +        mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
469 + extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
470 +        exception_type_t, exception_data_t, mach_msg_type_number_t);
471 + extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
472 +        exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
473 +        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
474 + extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
475 +        exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
476 +        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
477 + }
478 +
479 + // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
480 + #define HANDLER_COUNT 64
481 +
482 + // structure to tuck away existing exception handlers
483 + typedef struct _ExceptionPorts {
484 +        mach_msg_type_number_t maskCount;
485 +        exception_mask_t masks[HANDLER_COUNT];
486 +        exception_handler_t handlers[HANDLER_COUNT];
487 +        exception_behavior_t behaviors[HANDLER_COUNT];
488 +        thread_state_flavor_t flavors[HANDLER_COUNT];
489 + } ExceptionPorts;
490 +
491 + // exception handler thread
492 + static pthread_t exc_thread;
493 +
494 + // place where old exception handler info is stored
495 + static ExceptionPorts ports;
496 +
497 + // our exception port
498 + static mach_port_t _exceptionPort = MACH_PORT_NULL;
499 +
500 + #define MACH_CHECK_ERROR(name,ret) \
501 + if (ret != KERN_SUCCESS) { \
502 +        mach_error(#name, ret); \
503 +        exit (1); \
504 + }
505 +
506 + #define SIGSEGV_FAULT_ADDRESS                   code[1]
507 + #define SIGSEGV_FAULT_INSTRUCTION               get_fault_instruction(thread, state)
508 + #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  ((code[0] == KERN_PROTECTION_FAILURE) ? sigsegv_fault_handler(ADDR, IP) : SIGSEGV_RETURN_FAILURE)
509 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   mach_port_t thread, exception_data_t code, ppc_thread_state_t *state
510 + #define SIGSEGV_FAULT_HANDLER_ARGS              thread, code, &state
511 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
512 + #define SIGSEGV_REGISTER_FILE                   &state->srr0, &state->r0
513 +
514 + // Given a suspended thread, stuff the current instruction and
515 + // registers into state.
516 + //
517 + // It would have been nice to have this be ppc/x86 independant which
518 + // could have been done easily with a thread_state_t instead of
519 + // ppc_thread_state_t, but because of the way this is called it is
520 + // easier to do it this way.
521 + #if (defined(ppc) || defined(__ppc__))
522 + static inline sigsegv_address_t get_fault_instruction(mach_port_t thread, ppc_thread_state_t *state)
523 + {
524 +        kern_return_t krc;
525 +        mach_msg_type_number_t count;
526 +
527 +        count = MACHINE_THREAD_STATE_COUNT;
528 +        krc = thread_get_state(thread, MACHINE_THREAD_STATE, (thread_state_t)state, &count);
529 +        MACH_CHECK_ERROR (thread_get_state, krc);
530 +
531 +        return (sigsegv_address_t)state->srr0;
532 + }
533 + #endif
534 +
535 + // Since there can only be one exception thread running at any time
536 + // this is not a problem.
537 + #define MSG_SIZE 512
538 + static char msgbuf[MSG_SIZE];
539 + static char replybuf[MSG_SIZE];
540 +
541 + /*
542 + * This is the entry point for the exception handler thread. The job
543 + * of this thread is to wait for exception messages on the exception
544 + * port that was setup beforehand and to pass them on to exc_server.
545 + * exc_server is a MIG generated function that is a part of Mach.
546 + * Its job is to decide what to do with the exception message. In our
547 + * case exc_server calls catch_exception_raise on our behalf. After
548 + * exc_server returns, it is our responsibility to send the reply.
549 + */
550 + static void *
551 + handleExceptions(void *priv)
552 + {
553 +        mach_msg_header_t *msg, *reply;
554 +        kern_return_t krc;
555 +
556 +        msg = (mach_msg_header_t *)msgbuf;
557 +        reply = (mach_msg_header_t *)replybuf;
558 +
559 +        for (;;) {
560 +                krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
561 +                                _exceptionPort, 0, MACH_PORT_NULL);
562 +                MACH_CHECK_ERROR(mach_msg, krc);
563 +
564 +                if (!exc_server(msg, reply)) {
565 +                        fprintf(stderr, "exc_server hated the message\n");
566 +                        exit(1);
567 +                }
568 +
569 +                krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
570 +                                 msg->msgh_local_port, 0, MACH_PORT_NULL);
571 +                if (krc != KERN_SUCCESS) {
572 +                        fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
573 +                                krc, mach_error_string(krc));
574 +                        exit(1);
575 +                }
576 +        }
577 + }
578 + #endif
579 + #endif
580  
581  
582   /*
# Line 379 | Line 585 | static sigsegv_address_t get_fault_addre
585  
586   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
587   // Decode and skip X86 instruction
588 < #if (defined(i386) || defined(__i386__))
588 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
589   #if defined(__linux__)
590   enum {
591 + #if (defined(i386) || defined(__i386__))
592          X86_REG_EIP = 14,
593          X86_REG_EAX = 11,
594          X86_REG_ECX = 10,
# Line 391 | Line 598 | enum {
598          X86_REG_EBP = 6,
599          X86_REG_ESI = 5,
600          X86_REG_EDI = 4
601 + #endif
602 + #if defined(__x86_64__)
603 +        X86_REG_R8  = 0,
604 +        X86_REG_R9  = 1,
605 +        X86_REG_R10 = 2,
606 +        X86_REG_R11 = 3,
607 +        X86_REG_R12 = 4,
608 +        X86_REG_R13 = 5,
609 +        X86_REG_R14 = 6,
610 +        X86_REG_R15 = 7,
611 +        X86_REG_EDI = 8,
612 +        X86_REG_ESI = 9,
613 +        X86_REG_EBP = 10,
614 +        X86_REG_EBX = 11,
615 +        X86_REG_EDX = 12,
616 +        X86_REG_EAX = 13,
617 +        X86_REG_ECX = 14,
618 +        X86_REG_ESP = 15,
619 +        X86_REG_EIP = 16
620 + #endif
621   };
622   #endif
623   #if defined(__NetBSD__) || defined(__FreeBSD__)
624   enum {
625 + #if (defined(i386) || defined(__i386__))
626          X86_REG_EIP = 10,
627          X86_REG_EAX = 7,
628          X86_REG_ECX = 6,
# Line 404 | Line 632 | enum {
632          X86_REG_EBP = 2,
633          X86_REG_ESI = 1,
634          X86_REG_EDI = 0
635 + #endif
636   };
637   #endif
638   // FIXME: this is partly redundant with the instruction decoding phase
# Line 440 | Line 669 | static inline int ix86_step_over_modrm(u
669          return offset;
670   }
671  
672 < static bool ix86_skip_instruction(unsigned int * regs)
672 > static bool ix86_skip_instruction(unsigned long * regs)
673   {
674          unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
675  
676          if (eip == 0)
677                  return false;
678          
679 <        transfer_type_t transfer_type = TYPE_UNKNOWN;
679 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
680          transfer_size_t transfer_size = SIZE_LONG;
681          
682          int reg = -1;
683          int len = 0;
684 <        
684 >
685 > #if DEBUG
686 >        printf("IP: %p [%02x %02x %02x %02x...]\n",
687 >                   eip, eip[0], eip[1], eip[2], eip[3]);
688 > #endif
689 >
690          // Operand size prefix
691          if (*eip == 0x66) {
692                  eip++;
# Line 460 | Line 694 | static bool ix86_skip_instruction(unsign
694                  transfer_size = SIZE_WORD;
695          }
696  
697 +        // REX prefix
698 + #if defined(__x86_64__)
699 +        struct rex_t {
700 +                unsigned char W;
701 +                unsigned char R;
702 +                unsigned char X;
703 +                unsigned char B;
704 +        };
705 +        rex_t rex = { 0, 0, 0, 0 };
706 +        bool has_rex = false;
707 +        if ((*eip & 0xf0) == 0x40) {
708 +                has_rex = true;
709 +                const unsigned char b = *eip;
710 +                rex.W = b & (1 << 3);
711 +                rex.R = b & (1 << 2);
712 +                rex.X = b & (1 << 1);
713 +                rex.B = b & (1 << 0);
714 + #if DEBUG
715 +                printf("REX: %c,%c,%c,%c\n",
716 +                           rex.W ? 'W' : '_',
717 +                           rex.R ? 'R' : '_',
718 +                           rex.X ? 'X' : '_',
719 +                           rex.B ? 'B' : '_');
720 + #endif
721 +                eip++;
722 +                len++;
723 +                if (rex.W)
724 +                        transfer_size = SIZE_QUAD;
725 +        }
726 + #else
727 +        const bool has_rex = false;
728 + #endif
729 +
730          // Decode instruction
731          switch (eip[0]) {
732          case 0x0f:
733 <            if (eip[1] == 0xb7) { // MOVZX r32, r/m16
733 >            switch (eip[1]) {
734 >            case 0xb6: // MOVZX r32, r/m8
735 >            case 0xb7: // MOVZX r32, r/m16
736                  switch (eip[2] & 0xc0) {
737                  case 0x80:
738                      reg = (eip[2] >> 3) & 7;
739 <                    transfer_type = TYPE_LOAD;
739 >                    transfer_type = SIGSEGV_TRANSFER_LOAD;
740                      break;
741                  case 0x40:
742                      reg = (eip[2] >> 3) & 7;
743 <                    transfer_type = TYPE_LOAD;
743 >                    transfer_type = SIGSEGV_TRANSFER_LOAD;
744                      break;
745                  case 0x00:
746                      reg = (eip[2] >> 3) & 7;
747 <                    transfer_type = TYPE_LOAD;
747 >                    transfer_type = SIGSEGV_TRANSFER_LOAD;
748                      break;
749                  }
750                  len += 3 + ix86_step_over_modrm(eip + 2);
751 +                break;
752              }
753            break;
754          case 0x8a: // MOV r8, r/m8
# Line 487 | Line 757 | static bool ix86_skip_instruction(unsign
757                  switch (eip[1] & 0xc0) {
758                  case 0x80:
759                          reg = (eip[1] >> 3) & 7;
760 <                        transfer_type = TYPE_LOAD;
760 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
761                          break;
762                  case 0x40:
763                          reg = (eip[1] >> 3) & 7;
764 <                        transfer_type = TYPE_LOAD;
764 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
765                          break;
766                  case 0x00:
767                          reg = (eip[1] >> 3) & 7;
768 <                        transfer_type = TYPE_LOAD;
768 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
769                          break;
770                  }
771                  len += 2 + ix86_step_over_modrm(eip + 1);
# Line 506 | Line 776 | static bool ix86_skip_instruction(unsign
776                  switch (eip[1] & 0xc0) {
777                  case 0x80:
778                          reg = (eip[1] >> 3) & 7;
779 <                        transfer_type = TYPE_STORE;
779 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
780                          break;
781                  case 0x40:
782                          reg = (eip[1] >> 3) & 7;
783 <                        transfer_type = TYPE_STORE;
783 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
784                          break;
785                  case 0x00:
786                          reg = (eip[1] >> 3) & 7;
787 <                        transfer_type = TYPE_STORE;
787 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
788                          break;
789                  }
790                  len += 2 + ix86_step_over_modrm(eip + 1);
791                  break;
792          }
793  
794 <        if (transfer_type == TYPE_UNKNOWN) {
794 >        if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
795                  // Unknown machine code, let it crash. Then patch the decoder
796                  return false;
797          }
798  
799 <        if (transfer_type == TYPE_LOAD && reg != -1) {
800 <                static const int x86_reg_map[8] = {
799 > #if defined(__x86_64__)
800 >        if (rex.R)
801 >                reg += 8;
802 > #endif
803 >
804 >        if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
805 >                static const int x86_reg_map[] = {
806                          X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
807 <                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI
807 >                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI,
808 > #if defined(__x86_64__)
809 >                        X86_REG_R8,  X86_REG_R9,  X86_REG_R10, X86_REG_R11,
810 >                        X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15,
811 > #endif
812                  };
813                  
814 <                if (reg < 0 || reg >= 8)
814 >                if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1))
815                          return false;
816  
817 +                // Set 0 to the relevant register part
818 +                // NOTE: this is only valid for MOV alike instructions
819                  int rloc = x86_reg_map[reg];
820                  switch (transfer_size) {
821                  case SIZE_BYTE:
822 <                        regs[rloc] = (regs[rloc] & ~0xff);
822 >                        if (has_rex || reg < 4)
823 >                                regs[rloc] = (regs[rloc] & ~0x00ffL);
824 >                        else {
825 >                                rloc = x86_reg_map[reg - 4];
826 >                                regs[rloc] = (regs[rloc] & ~0xff00L);
827 >                        }
828                          break;
829                  case SIZE_WORD:
830 <                        regs[rloc] = (regs[rloc] & ~0xffff);
830 >                        regs[rloc] = (regs[rloc] & ~0xffffL);
831                          break;
832                  case SIZE_LONG:
833 +                case SIZE_QUAD: // zero-extension
834                          regs[rloc] = 0;
835                          break;
836                  }
# Line 551 | Line 838 | static bool ix86_skip_instruction(unsign
838  
839   #if DEBUG
840          printf("%08x: %s %s access", regs[X86_REG_EIP],
841 <                   transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : "long",
842 <                   transfer_type == TYPE_LOAD ? "read" : "write");
841 >                   transfer_size == SIZE_BYTE ? "byte" :
842 >                   transfer_size == SIZE_WORD ? "word" :
843 >                   transfer_size == SIZE_LONG ? "long" :
844 >                   transfer_size == SIZE_QUAD ? "quad" : "unknown",
845 >                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
846          
847          if (reg != -1) {
848 <                static const char * x86_reg_str_map[8] = {
849 <                        "eax", "ecx", "edx", "ebx",
850 <                        "esp", "ebp", "esi", "edi"
848 >                static const char * x86_byte_reg_str_map[] = {
849 >                        "al",   "cl",   "dl",   "bl",
850 >                        "spl",  "bpl",  "sil",  "dil",
851 >                        "r8b",  "r9b",  "r10b", "r11b",
852 >                        "r12b", "r13b", "r14b", "r15b",
853 >                        "ah",   "ch",   "dh",   "bh",
854 >                };
855 >                static const char * x86_word_reg_str_map[] = {
856 >                        "ax",   "cx",   "dx",   "bx",
857 >                        "sp",   "bp",   "si",   "di",
858 >                        "r8w",  "r9w",  "r10w", "r11w",
859 >                        "r12w", "r13w", "r14w", "r15w",
860 >                };
861 >                static const char *x86_long_reg_str_map[] = {
862 >                        "eax",  "ecx",  "edx",  "ebx",
863 >                        "esp",  "ebp",  "esi",  "edi",
864 >                        "r8d",  "r9d",  "r10d", "r11d",
865 >                        "r12d", "r13d", "r14d", "r15d",
866                  };
867 <                printf(" %s register %%%s", transfer_type == TYPE_LOAD ? "to" : "from", x86_reg_str_map[reg]);
867 >                static const char *x86_quad_reg_str_map[] = {
868 >                        "rax", "rcx", "rdx", "rbx",
869 >                        "rsp", "rbp", "rsi", "rdi",
870 >                        "r8",  "r9",  "r10", "r11",
871 >                        "r12", "r13", "r14", "r15",
872 >                };
873 >                const char * reg_str = NULL;
874 >                switch (transfer_size) {
875 >                case SIZE_BYTE:
876 >                        reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg];
877 >                        break;
878 >                case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break;
879 >                case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break;
880 >                case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break;
881 >                }
882 >                if (reg_str)
883 >                        printf(" %s register %%%s",
884 >                                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from",
885 >                                   reg_str);
886          }
887          printf(", %d bytes instruction\n", len);
888   #endif
# Line 576 | Line 899 | static bool powerpc_skip_instruction(uns
899          instruction_t instr;
900          powerpc_decode_instruction(&instr, *nip_p, regs);
901          
902 <        if (instr.transfer_type == TYPE_UNKNOWN) {
902 >        if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
903                  // Unknown machine code, let it crash. Then patch the decoder
904                  return false;
905          }
# Line 584 | Line 907 | static bool powerpc_skip_instruction(uns
907   #if DEBUG
908          printf("%08x: %s %s access", *nip_p,
909                     instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : "long",
910 <                   instr.transfer_type == TYPE_LOAD ? "read" : "write");
910 >                   instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
911          
912          if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
913                  printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
914 <        if (instr.transfer_type == TYPE_LOAD)
914 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
915                  printf(" r%d (rd = 0)\n", instr.rd);
916   #endif
917          
918          if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
919                  regs[instr.ra] = instr.addr;
920 <        if (instr.transfer_type == TYPE_LOAD)
920 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
921                  regs[instr.rd] = 0;
922          
923          *nip_p += 4;
# Line 607 | Line 930 | static bool powerpc_skip_instruction(uns
930   #ifndef SIGSEGV_FAULT_INSTRUCTION
931   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_PC
932   #endif
933 + #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
934 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
935 + #endif
936 + #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
937 + #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  sigsegv_fault_handler(ADDR, IP)
938 + #endif
939  
940   // SIGSEGV recovery supported ?
941   #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
# Line 618 | Line 947 | static bool powerpc_skip_instruction(uns
947   *  SIGSEGV global handler
948   */
949  
950 < #ifdef HAVE_SIGSEGV_RECOVERY
951 < static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
950 > #if defined(HAVE_SIGSEGV_RECOVERY) || defined(HAVE_MACH_EXCEPTIONS)
951 > // This function handles the badaccess to memory.
952 > // It is called from the signal handler or the exception handler.
953 > static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
954   {
955          sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
956          sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
626        bool fault_recovered = false;
957          
958          // Call user's handler and reinstall the global handler, if required
959 <        if (sigsegv_fault_handler(fault_address, fault_instruction)) {
960 < #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
961 <                sigsegv_do_install_handler(sig);
959 >        switch (SIGSEGV_FAULT_HANDLER_INVOKE(fault_address, fault_instruction)) {
960 >        case SIGSEGV_RETURN_SUCCESS:
961 >                return true;
962 >
963 > #if HAVE_SIGSEGV_SKIP_INSTRUCTION
964 >        case SIGSEGV_RETURN_SKIP_INSTRUCTION:
965 >                // Call the instruction skipper with the register file
966 >                // available
967 >                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
968 > #ifdef HAVE_MACH_EXCEPTIONS
969 >                        // Unlike UNIX signals where the thread state
970 >                        // is modified off of the stack, in Mach we
971 >                        // need to actually call thread_set_state to
972 >                        // have the register values updated.
973 >                        kern_return_t krc;
974 >
975 >                        krc = thread_set_state(thread,
976 >                                                                   MACHINE_THREAD_STATE, (thread_state_t)state,
977 >                                                                   MACHINE_THREAD_STATE_COUNT);
978 >                        MACH_CHECK_ERROR (thread_get_state, krc);
979 > #endif
980 >                        return true;
981 >                }
982 >                break;
983   #endif
633                fault_recovered = true;
984          }
985 < #if HAVE_SIGSEGV_SKIP_INSTRUCTION
986 <        else if (sigsegv_ignore_fault) {
987 <                // Call the instruction skipper with the register file available
988 <                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE))
989 <                        fault_recovered = true;
985 >        
986 >        // We can't do anything with the fault_address, dump state?
987 >        if (sigsegv_state_dumper != 0)
988 >                sigsegv_state_dumper(fault_address, fault_instruction);
989 >
990 >        return false;
991 > }
992 > #endif
993 >
994 >
995 > /*
996 > * There are two mechanisms for handling a bad memory access,
997 > * Mach exceptions and UNIX signals. The implementation specific
998 > * code appears below. Its reponsibility is to call handle_badaccess
999 > * which is the routine that handles the fault in an implementation
1000 > * agnostic manner. The implementation specific code below is then
1001 > * reponsible for checking whether handle_badaccess was able
1002 > * to handle the memory access error and perform any implementation
1003 > * specific tasks necessary afterwards.
1004 > */
1005 >
1006 > #ifdef HAVE_MACH_EXCEPTIONS
1007 > /*
1008 > * We need to forward all exceptions that we do not handle.
1009 > * This is important, there are many exceptions that may be
1010 > * handled by other exception handlers. For example debuggers
1011 > * use exceptions and the exception hander is in another
1012 > * process in such a case. (Timothy J. Wood states in his
1013 > * message to the list that he based this code on that from
1014 > * gdb for Darwin.)
1015 > */
1016 > static inline kern_return_t
1017 > forward_exception(mach_port_t thread_port,
1018 >                                  mach_port_t task_port,
1019 >                                  exception_type_t exception_type,
1020 >                                  exception_data_t exception_data,
1021 >                                  mach_msg_type_number_t data_count,
1022 >                                  ExceptionPorts *oldExceptionPorts)
1023 > {
1024 >        kern_return_t kret;
1025 >        unsigned int portIndex;
1026 >        mach_port_t port;
1027 >        exception_behavior_t behavior;
1028 >        thread_state_flavor_t flavor;
1029 >        thread_state_t thread_state;
1030 >        mach_msg_type_number_t thread_state_count;
1031 >
1032 >        for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
1033 >                if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
1034 >                        // This handler wants the exception
1035 >                        break;
1036 >                }
1037 >        }
1038 >
1039 >        if (portIndex >= oldExceptionPorts->maskCount) {
1040 >                fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
1041 >                return KERN_FAILURE;
1042 >        }
1043 >
1044 >        port = oldExceptionPorts->handlers[portIndex];
1045 >        behavior = oldExceptionPorts->behaviors[portIndex];
1046 >        flavor = oldExceptionPorts->flavors[portIndex];
1047 >
1048 >        /*
1049 >         fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
1050 >         */
1051 >
1052 >        if (behavior != EXCEPTION_DEFAULT) {
1053 >                thread_state_count = THREAD_STATE_MAX;
1054 >                kret = thread_get_state (thread_port, flavor, thread_state,
1055 >                                                                 &thread_state_count);
1056 >                MACH_CHECK_ERROR (thread_get_state, kret);
1057          }
1058 +
1059 +        switch (behavior) {
1060 +        case EXCEPTION_DEFAULT:
1061 +          // fprintf(stderr, "forwarding to exception_raise\n");
1062 +          kret = exception_raise(port, thread_port, task_port, exception_type,
1063 +                                                         exception_data, data_count);
1064 +          MACH_CHECK_ERROR (exception_raise, kret);
1065 +          break;
1066 +        case EXCEPTION_STATE:
1067 +          // fprintf(stderr, "forwarding to exception_raise_state\n");
1068 +          kret = exception_raise_state(port, exception_type, exception_data,
1069 +                                                                   data_count, &flavor,
1070 +                                                                   thread_state, thread_state_count,
1071 +                                                                   thread_state, &thread_state_count);
1072 +          MACH_CHECK_ERROR (exception_raise_state, kret);
1073 +          break;
1074 +        case EXCEPTION_STATE_IDENTITY:
1075 +          // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
1076 +          kret = exception_raise_state_identity(port, thread_port, task_port,
1077 +                                                                                        exception_type, exception_data,
1078 +                                                                                        data_count, &flavor,
1079 +                                                                                        thread_state, thread_state_count,
1080 +                                                                                        thread_state, &thread_state_count);
1081 +          MACH_CHECK_ERROR (exception_raise_state_identity, kret);
1082 +          break;
1083 +        default:
1084 +          fprintf(stderr, "forward_exception got unknown behavior\n");
1085 +          break;
1086 +        }
1087 +
1088 +        if (behavior != EXCEPTION_DEFAULT) {
1089 +                kret = thread_set_state (thread_port, flavor, thread_state,
1090 +                                                                 thread_state_count);
1091 +                MACH_CHECK_ERROR (thread_set_state, kret);
1092 +        }
1093 +
1094 +        return KERN_SUCCESS;
1095 + }
1096 +
1097 + /*
1098 + * This is the code that actually handles the exception.
1099 + * It is called by exc_server. For Darwin 5 Apple changed
1100 + * this a bit from how this family of functions worked in
1101 + * Mach. If you are familiar with that it is a little
1102 + * different. The main variation that concerns us here is
1103 + * that code is an array of exception specific codes and
1104 + * codeCount is a count of the number of codes in the code
1105 + * array. In typical Mach all exceptions have a code
1106 + * and sub-code. It happens to be the case that for a
1107 + * EXC_BAD_ACCESS exception the first entry is the type of
1108 + * bad access that occurred and the second entry is the
1109 + * faulting address so these entries correspond exactly to
1110 + * how the code and sub-code are used on Mach.
1111 + *
1112 + * This is a MIG interface. No code in Basilisk II should
1113 + * call this directley. This has to have external C
1114 + * linkage because that is what exc_server expects.
1115 + */
1116 + kern_return_t
1117 + catch_exception_raise(mach_port_t exception_port,
1118 +                                          mach_port_t thread,
1119 +                                          mach_port_t task,
1120 +                                          exception_type_t exception,
1121 +                                          exception_data_t code,
1122 +                                          mach_msg_type_number_t codeCount)
1123 + {
1124 +        ppc_thread_state_t state;
1125 +        kern_return_t krc;
1126 +
1127 +        if ((exception == EXC_BAD_ACCESS)  && (codeCount >= 2)) {
1128 +                if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
1129 +                        return KERN_SUCCESS;
1130 +        }
1131 +
1132 +        // In Mach we do not need to remove the exception handler.
1133 +        // If we forward the exception, eventually some exception handler
1134 +        // will take care of this exception.
1135 +        krc = forward_exception(thread, task, exception, code, codeCount, &ports);
1136 +
1137 +        return krc;
1138 + }
1139 + #endif
1140 +
1141 + #ifdef HAVE_SIGSEGV_RECOVERY
1142 + // Handle bad memory accesses with signal handler
1143 + static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1144 + {
1145 +        // Call handler and reinstall the global handler, if required
1146 +        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
1147 + #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1148 +                sigsegv_do_install_handler(sig);
1149   #endif
1150 +                return;
1151 +        }
1152  
1153 <        if (!fault_recovered) {
644 <                // FAIL: reinstall default handler for "safe" crash
1153 >        // Failure: reinstall default handler for "safe" crash
1154   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1155 <                SIGSEGV_ALL_SIGNALS
1155 >        SIGSEGV_ALL_SIGNALS
1156   #undef FAULT_HANDLER
648                
649                // We can't do anything with the fault_address, dump state?
650                if (sigsegv_state_dumper != 0)
651                        sigsegv_state_dumper(fault_address, fault_instruction);
652        }
1157   }
1158   #endif
1159  
# Line 663 | Line 1167 | static bool sigsegv_do_install_handler(i
1167   {
1168          // Setup SIGSEGV handler to process writes to frame buffer
1169   #ifdef HAVE_SIGACTION
1170 <        struct sigaction vosf_sa;
1171 <        sigemptyset(&vosf_sa.sa_mask);
1172 <        vosf_sa.sa_sigaction = sigsegv_handler;
1173 <        vosf_sa.sa_flags = SA_SIGINFO;
1174 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1170 >        struct sigaction sigsegv_sa;
1171 >        sigemptyset(&sigsegv_sa.sa_mask);
1172 >        sigsegv_sa.sa_sigaction = sigsegv_handler;
1173 >        sigsegv_sa.sa_flags = SA_SIGINFO;
1174 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1175   #else
1176          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1177   #endif
# Line 679 | Line 1183 | static bool sigsegv_do_install_handler(i
1183   {
1184          // Setup SIGSEGV handler to process writes to frame buffer
1185   #ifdef HAVE_SIGACTION
1186 <        struct sigaction vosf_sa;
1187 <        sigemptyset(&vosf_sa.sa_mask);
1188 <        vosf_sa.sa_handler = (signal_handler)sigsegv_handler;
1186 >        struct sigaction sigsegv_sa;
1187 >        sigemptyset(&sigsegv_sa.sa_mask);
1188 >        sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
1189 >        sigsegv_sa.sa_flags = 0;
1190   #if !EMULATED_68K && defined(__NetBSD__)
1191 <        sigaddset(&vosf_sa.sa_mask, SIGALRM);
1192 <        vosf_sa.sa_flags = SA_ONSTACK;
688 < #else
689 <        vosf_sa.sa_flags = 0;
1191 >        sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
1192 >        sigsegv_sa.sa_flags |= SA_ONSTACK;
1193   #endif
1194 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1194 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1195   #else
1196          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1197   #endif
1198   }
1199   #endif
1200  
1201 < bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1201 > #if defined(HAVE_MACH_EXCEPTIONS)
1202 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1203   {
1204 < #ifdef HAVE_SIGSEGV_RECOVERY
1204 >        /*
1205 >         * Except for the exception port functions, this should be
1206 >         * pretty much stock Mach. If later you choose to support
1207 >         * other Mach's besides Darwin, just check for __MACH__
1208 >         * here and __APPLE__ where the actual differences are.
1209 >         */
1210 > #if defined(__APPLE__) && defined(__MACH__)
1211 >        if (sigsegv_fault_handler != NULL) {
1212 >                sigsegv_fault_handler = handler;
1213 >                return true;
1214 >        }
1215 >
1216 >        kern_return_t krc;
1217 >
1218 >        // create the the exception port
1219 >        krc = mach_port_allocate(mach_task_self(),
1220 >                          MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
1221 >        if (krc != KERN_SUCCESS) {
1222 >                mach_error("mach_port_allocate", krc);
1223 >                return false;
1224 >        }
1225 >
1226 >        // add a port send right
1227 >        krc = mach_port_insert_right(mach_task_self(),
1228 >                              _exceptionPort, _exceptionPort,
1229 >                              MACH_MSG_TYPE_MAKE_SEND);
1230 >        if (krc != KERN_SUCCESS) {
1231 >                mach_error("mach_port_insert_right", krc);
1232 >                return false;
1233 >        }
1234 >
1235 >        // get the old exception ports
1236 >        ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
1237 >        krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
1238 >                                &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
1239 >        if (krc != KERN_SUCCESS) {
1240 >                mach_error("thread_get_exception_ports", krc);
1241 >                return false;
1242 >        }
1243 >
1244 >        // set the new exception port
1245 >        //
1246 >        // We could have used EXCEPTION_STATE_IDENTITY instead of
1247 >        // EXCEPTION_DEFAULT to get the thread state in the initial
1248 >        // message, but it turns out that in the common case this is not
1249 >        // neccessary. If we need it we can later ask for it from the
1250 >        // suspended thread.
1251 >        //
1252 >        // Even with THREAD_STATE_NONE, Darwin provides the program
1253 >        // counter in the thread state.  The comments in the header file
1254 >        // seem to imply that you can count on the GPR's on an exception
1255 >        // as well but just to be safe I use MACHINE_THREAD_STATE because
1256 >        // you have to ask for all of the GPR's anyway just to get the
1257 >        // program counter. In any case because of update effective
1258 >        // address from immediate and update address from effective
1259 >        // addresses of ra and rb modes (as good an name as any for these
1260 >        // addressing modes) used in PPC instructions, you will need the
1261 >        // GPR state anyway.
1262 >        krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
1263 >                                EXCEPTION_DEFAULT, MACHINE_THREAD_STATE);
1264 >        if (krc != KERN_SUCCESS) {
1265 >                mach_error("thread_set_exception_ports", krc);
1266 >                return false;
1267 >        }
1268 >
1269 >        // create the exception handler thread
1270 >        if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
1271 >                (void)fprintf(stderr, "creation of exception thread failed\n");
1272 >                return false;
1273 >        }
1274 >
1275 >        // do not care about the exception thread any longer, let is run standalone
1276 >        (void)pthread_detach(exc_thread);
1277 >
1278          sigsegv_fault_handler = handler;
1279 +        return true;
1280 + #else
1281 +        return false;
1282 + #endif
1283 + }
1284 + #endif
1285 +
1286 + bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1287 + {
1288 + #if defined(HAVE_SIGSEGV_RECOVERY)
1289          bool success = true;
1290   #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
1291          SIGSEGV_ALL_SIGNALS
1292   #undef FAULT_HANDLER
1293 +        if (success)
1294 +            sigsegv_fault_handler = handler;
1295          return success;
1296 + #elif defined(HAVE_MACH_EXCEPTIONS)
1297 +        return sigsegv_do_install_handler(handler);
1298   #else
1299          // FAIL: no siginfo_t nor sigcontext subterfuge is available
1300          return false;
# Line 717 | Line 1308 | bool sigsegv_install_handler(sigsegv_fau
1308  
1309   void sigsegv_deinstall_handler(void)
1310   {
1311 +  // We do nothing for Mach exceptions, the thread would need to be
1312 +  // suspended if not already so, and we might mess with other
1313 +  // exception handlers that came after we registered ours. There is
1314 +  // no need to remove the exception handler, in fact this function is
1315 +  // not called anywhere in Basilisk II.
1316   #ifdef HAVE_SIGSEGV_RECOVERY
1317          sigsegv_fault_handler = 0;
1318   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
# Line 727 | Line 1323 | void sigsegv_deinstall_handler(void)
1323  
1324  
1325   /*
730 *  SIGSEGV ignore state modifier
731 */
732
733 void sigsegv_set_ignore_state(bool ignore_fault)
734 {
735        sigsegv_ignore_fault = ignore_fault;
736 }
737
738
739 /*
1326   *  Set callback function when we cannot handle the fault
1327   */
1328  
# Line 757 | Line 1343 | void sigsegv_set_dump_state(sigsegv_stat
1343   #include <sys/mman.h>
1344   #include "vm_alloc.h"
1345  
1346 + const int REF_INDEX = 123;
1347 + const int REF_VALUE = 45;
1348 +
1349   static int page_size;
1350   static volatile char * page = 0;
1351   static volatile int handler_called = 0;
1352  
1353 < static bool sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1353 > #ifdef __GNUC__
1354 > // Code range where we expect the fault to come from
1355 > static void *b_region, *e_region;
1356 > #endif
1357 >
1358 > static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1359   {
1360          handler_called++;
1361 <        if ((fault_address - 123) != page)
1362 <                exit(1);
1361 >        if ((fault_address - REF_INDEX) != page)
1362 >                exit(10);
1363 > #ifdef __GNUC__
1364 >        // Make sure reported fault instruction address falls into
1365 >        // expected code range
1366 >        if (instruction_address != SIGSEGV_INVALID_PC
1367 >                && ((instruction_address <  (sigsegv_address_t)b_region) ||
1368 >                        (instruction_address >= (sigsegv_address_t)e_region)))
1369 >                exit(11);
1370 > #endif
1371          if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
1372 <                exit(1);
1373 <        return true;
1372 >                exit(12);
1373 >        return SIGSEGV_RETURN_SUCCESS;
1374   }
1375  
1376   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1377 < static bool sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1377 > static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1378   {
1379 <        return false;
1379 >        if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
1380 > #ifdef __GNUC__
1381 >                // Make sure reported fault instruction address falls into
1382 >                // expected code range
1383 >                if (instruction_address != SIGSEGV_INVALID_PC
1384 >                        && ((instruction_address <  (sigsegv_address_t)b_region) ||
1385 >                                (instruction_address >= (sigsegv_address_t)e_region)))
1386 >                        return SIGSEGV_RETURN_FAILURE;
1387 > #endif
1388 >                return SIGSEGV_RETURN_SKIP_INSTRUCTION;
1389 >        }
1390 >
1391 >        return SIGSEGV_RETURN_FAILURE;
1392 > }
1393 >
1394 > // More sophisticated tests for instruction skipper
1395 > static bool arch_insn_skipper_tests()
1396 > {
1397 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
1398 >        static const unsigned char code[] = {
1399 >                0x8a, 0x00,                    // mov    (%eax),%al
1400 >                0x8a, 0x2c, 0x18,              // mov    (%eax,%ebx,1),%ch
1401 >                0x88, 0x20,                    // mov    %ah,(%eax)
1402 >                0x88, 0x08,                    // mov    %cl,(%eax)
1403 >                0x66, 0x8b, 0x00,              // mov    (%eax),%ax
1404 >                0x66, 0x8b, 0x0c, 0x18,        // mov    (%eax,%ebx,1),%cx
1405 >                0x66, 0x89, 0x00,              // mov    %ax,(%eax)
1406 >                0x66, 0x89, 0x0c, 0x18,        // mov    %cx,(%eax,%ebx,1)
1407 >                0x8b, 0x00,                    // mov    (%eax),%eax
1408 >                0x8b, 0x0c, 0x18,              // mov    (%eax,%ebx,1),%ecx
1409 >                0x89, 0x00,                    // mov    %eax,(%eax)
1410 >                0x89, 0x0c, 0x18,              // mov    %ecx,(%eax,%ebx,1)
1411 > #if defined(__x86_64__)
1412 >                0x44, 0x8a, 0x00,              // mov    (%rax),%r8b
1413 >                0x44, 0x8a, 0x20,              // mov    (%rax),%r12b
1414 >                0x42, 0x8a, 0x3c, 0x10,        // mov    (%rax,%r10,1),%dil
1415 >                0x44, 0x88, 0x00,              // mov    %r8b,(%rax)
1416 >                0x44, 0x88, 0x20,              // mov    %r12b,(%rax)
1417 >                0x42, 0x88, 0x3c, 0x10,        // mov    %dil,(%rax,%r10,1)
1418 >                0x66, 0x44, 0x8b, 0x00,        // mov    (%rax),%r8w
1419 >                0x66, 0x42, 0x8b, 0x0c, 0x10,  // mov    (%rax,%r10,1),%cx
1420 >                0x66, 0x44, 0x89, 0x00,        // mov    %r8w,(%rax)
1421 >                0x66, 0x42, 0x89, 0x0c, 0x10,  // mov    %cx,(%rax,%r10,1)
1422 >                0x44, 0x8b, 0x00,              // mov    (%rax),%r8d
1423 >                0x42, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%ecx
1424 >                0x44, 0x89, 0x00,              // mov    %r8d,(%rax)
1425 >                0x42, 0x89, 0x0c, 0x10,        // mov    %ecx,(%rax,%r10,1)
1426 >                0x48, 0x8b, 0x08,              // mov    (%rax),%rcx
1427 >                0x4c, 0x8b, 0x18,              // mov    (%rax),%r11
1428 >                0x4a, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%rcx
1429 >                0x4e, 0x8b, 0x1c, 0x10,        // mov    (%rax,%r10,1),%r11
1430 >                0x48, 0x89, 0x08,              // mov    %rcx,(%rax)
1431 >                0x4c, 0x89, 0x18,              // mov    %r11,(%rax)
1432 >                0x4a, 0x89, 0x0c, 0x10,        // mov    %rcx,(%rax,%r10,1)
1433 >                0x4e, 0x89, 0x1c, 0x10,        // mov    %r11,(%rax,%r10,1)
1434 > #endif
1435 >                0                              // end
1436 >        };
1437 >        const int N_REGS = 20;
1438 >        unsigned long regs[N_REGS];
1439 >        for (int i = 0; i < N_REGS; i++)
1440 >                regs[i] = i;
1441 >        const unsigned long start_code = (unsigned long)&code;
1442 >        regs[X86_REG_EIP] = start_code;
1443 >        while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1)
1444 >                   && ix86_skip_instruction(regs))
1445 >                ; /* simply iterate */
1446 >        return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1);
1447 > #endif
1448 >        return true;
1449   }
1450   #endif
1451  
# Line 785 | Line 1456 | int main(void)
1456  
1457          page_size = getpagesize();
1458          if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
1459 <                return 1;
1459 >                return 2;
1460          
1461 +        memset((void *)page, 0, page_size);
1462          if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
1463 <                return 1;
1463 >                return 3;
1464          
1465          if (!sigsegv_install_handler(sigsegv_test_handler))
1466 <                return 1;
795 <        
796 <        page[123] = 45;
797 <        page[123] = 45;
1466 >                return 4;
1467          
1468 + #ifdef __GNUC__
1469 +        b_region = &&L_b_region1;
1470 +        e_region = &&L_e_region1;
1471 + #endif
1472 + L_b_region1:
1473 +        page[REF_INDEX] = REF_VALUE;
1474 +        if (page[REF_INDEX] != REF_VALUE)
1475 +          exit(20);
1476 +        page[REF_INDEX] = REF_VALUE;
1477 + L_e_region1:
1478 +
1479          if (handler_called != 1)
1480 <                return 1;
1480 >                return 5;
1481  
1482   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1483          if (!sigsegv_install_handler(sigsegv_insn_handler))
1484 <                return 1;
1484 >                return 6;
1485          
1486          if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
1487 <                return 1;
1487 >                return 7;
1488          
1489          for (int i = 0; i < page_size; i++)
1490                  page[i] = (i + 1) % page_size;
1491          
1492          if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
1493 <                return 1;
1493 >                return 8;
1494          
815        sigsegv_set_ignore_state(true);
816
1495   #define TEST_SKIP_INSTRUCTION(TYPE) do {                                \
1496 <                const unsigned int TAG = 0x12345678;                    \
1496 >                const unsigned long TAG = 0x12345678 |                  \
1497 >                (sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0);   \
1498                  TYPE data = *((TYPE *)(page + sizeof(TYPE)));   \
1499 <                volatile unsigned int effect = data + TAG;              \
1499 >                volatile unsigned long effect = data + TAG;             \
1500                  if (effect != TAG)                                                              \
1501 <                        return 1;                                                                       \
1501 >                        return 9;                                                                       \
1502          } while (0)
1503          
1504 + #ifdef __GNUC__
1505 +        b_region = &&L_b_region2;
1506 +        e_region = &&L_e_region2;
1507 + #endif
1508 + L_b_region2:
1509          TEST_SKIP_INSTRUCTION(unsigned char);
1510          TEST_SKIP_INSTRUCTION(unsigned short);
1511          TEST_SKIP_INSTRUCTION(unsigned int);
1512 +        TEST_SKIP_INSTRUCTION(unsigned long);
1513 + L_e_region2:
1514 +
1515 +        if (!arch_insn_skipper_tests())
1516 +                return 20;
1517   #endif
1518  
1519          vm_exit();

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines