ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
Revision: 1.33
Committed: 2003-10-21T23:10:19Z (21 years, 1 month ago) by gbeauche
Branch: MAIN
Changes since 1.32: +37 -15 lines
Log Message:
- FreeBSD/i386 sigcontext subterfuge support for instruction skipper
- NetBSD/alpha support from Boehm GC
- NetBSD/i386 won't work in sigcontext subterfuge mode unless instruction
  is decoded more accurately to compute the effective address. Also note
  that NetBSD 1.6 does not support siginfo_t yet.

File Contents

# Content
1 /*
2 * sigsegv.cpp - SIGSEGV signals support
3 *
4 * Derived from Bruno Haible's work on his SIGSEGV library for clisp
5 * <http://clisp.sourceforge.net/>
6 *
7 * MacOS X support derived from the post by Timothy J. Wood to the
8 * omnigroup macosx-dev list:
9 * Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10 * tjw@omnigroup.com Sun, 4 Jun 2000
11 * www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12 *
13 * Basilisk II (C) 1997-2002 Christian Bauer
14 *
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
19 *
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 * GNU General Public License for more details.
24 *
25 * You should have received a copy of the GNU General Public License
26 * along with this program; if not, write to the Free Software
27 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
28 */
29
30 #ifdef HAVE_UNISTD_H
31 #include <unistd.h>
32 #endif
33
34 #ifdef HAVE_CONFIG_H
35 #include "config.h"
36 #endif
37
38 #include <list>
39 #include <signal.h>
40 #include "sigsegv.h"
41
42 #ifndef NO_STD_NAMESPACE
43 using std::list;
44 #endif
45
46 // Return value type of a signal handler (standard type if not defined)
47 #ifndef RETSIGTYPE
48 #define RETSIGTYPE void
49 #endif
50
51 // Type of the system signal handler
52 typedef RETSIGTYPE (*signal_handler)(int);
53
54 // User's SIGSEGV handler
55 static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
56
57 // Function called to dump state if we can't handle the fault
58 static sigsegv_state_dumper_t sigsegv_state_dumper = 0;
59
60 // Actual SIGSEGV handler installer
61 static bool sigsegv_do_install_handler(int sig);
62
63
64 /*
65 * Instruction decoding aids
66 */
67
68 // Transfer size
69 enum transfer_size_t {
70 SIZE_UNKNOWN,
71 SIZE_BYTE,
72 SIZE_WORD,
73 SIZE_LONG
74 };
75
76 // Transfer type
77 typedef sigsegv_transfer_type_t transfer_type_t;
78
79 #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
80 // Addressing mode
81 enum addressing_mode_t {
82 MODE_UNKNOWN,
83 MODE_NORM,
84 MODE_U,
85 MODE_X,
86 MODE_UX
87 };
88
89 // Decoded instruction
90 struct instruction_t {
91 transfer_type_t transfer_type;
92 transfer_size_t transfer_size;
93 addressing_mode_t addr_mode;
94 unsigned int addr;
95 char ra, rd;
96 };
97
98 static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned int * gpr)
99 {
100 // Get opcode and divide into fields
101 unsigned int opcode = *((unsigned int *)nip);
102 unsigned int primop = opcode >> 26;
103 unsigned int exop = (opcode >> 1) & 0x3ff;
104 unsigned int ra = (opcode >> 16) & 0x1f;
105 unsigned int rb = (opcode >> 11) & 0x1f;
106 unsigned int rd = (opcode >> 21) & 0x1f;
107 signed int imm = (signed short)(opcode & 0xffff);
108
109 // Analyze opcode
110 transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
111 transfer_size_t transfer_size = SIZE_UNKNOWN;
112 addressing_mode_t addr_mode = MODE_UNKNOWN;
113 switch (primop) {
114 case 31:
115 switch (exop) {
116 case 23: // lwzx
117 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
118 case 55: // lwzux
119 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
120 case 87: // lbzx
121 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
122 case 119: // lbzux
123 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
124 case 151: // stwx
125 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
126 case 183: // stwux
127 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
128 case 215: // stbx
129 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
130 case 247: // stbux
131 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
132 case 279: // lhzx
133 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
134 case 311: // lhzux
135 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
136 case 343: // lhax
137 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
138 case 375: // lhaux
139 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
140 case 407: // sthx
141 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
142 case 439: // sthux
143 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
144 }
145 break;
146
147 case 32: // lwz
148 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
149 case 33: // lwzu
150 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
151 case 34: // lbz
152 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
153 case 35: // lbzu
154 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
155 case 36: // stw
156 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
157 case 37: // stwu
158 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
159 case 38: // stb
160 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
161 case 39: // stbu
162 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
163 case 40: // lhz
164 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
165 case 41: // lhzu
166 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
167 case 42: // lha
168 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
169 case 43: // lhau
170 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
171 case 44: // sth
172 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
173 case 45: // sthu
174 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
175 }
176
177 // Calculate effective address
178 unsigned int addr = 0;
179 switch (addr_mode) {
180 case MODE_X:
181 case MODE_UX:
182 if (ra == 0)
183 addr = gpr[rb];
184 else
185 addr = gpr[ra] + gpr[rb];
186 break;
187 case MODE_NORM:
188 case MODE_U:
189 if (ra == 0)
190 addr = (signed int)(signed short)imm;
191 else
192 addr = gpr[ra] + (signed int)(signed short)imm;
193 break;
194 default:
195 break;
196 }
197
198 // Commit decoded instruction
199 instruction->addr = addr;
200 instruction->addr_mode = addr_mode;
201 instruction->transfer_type = transfer_type;
202 instruction->transfer_size = transfer_size;
203 instruction->ra = ra;
204 instruction->rd = rd;
205 }
206 #endif
207
208
209 /*
210 * OS-dependant SIGSEGV signals support section
211 */
212
213 #if HAVE_SIGINFO_T
214 // Generic extended signal handler
215 #if defined(__NetBSD__) || defined(__FreeBSD__)
216 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
217 #else
218 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
219 #endif
220 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, siginfo_t *sip, void *scp
221 #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
222 #define SIGSEGV_FAULT_HANDLER_ARGS sip, scp
223 #define SIGSEGV_FAULT_ADDRESS sip->si_addr
224 #if defined(__sun__)
225 #if (defined(sparc) || defined(__sparc__))
226 #include <sys/ucontext.h>
227 #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
228 #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[REG_PC]
229 #endif
230 #endif
231 #if defined(__FreeBSD__)
232 #if (defined(i386) || defined(__i386__))
233 #define SIGSEGV_FAULT_INSTRUCTION (((struct sigcontext *)scp)->sc_eip)
234 #define SIGSEGV_REGISTER_FILE ((unsigned int *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
235 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
236 #endif
237 #endif
238 #if defined(__linux__)
239 #if (defined(i386) || defined(__i386__))
240 #include <sys/ucontext.h>
241 #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
242 #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
243 #define SIGSEGV_REGISTER_FILE (unsigned int *)SIGSEGV_CONTEXT_REGS
244 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
245 #endif
246 #if (defined(x86_64) || defined(__x86_64__))
247 #include <sys/ucontext.h>
248 #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
249 #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
250 #define SIGSEGV_REGISTER_FILE (unsigned long *)SIGSEGV_CONTEXT_REGS
251 #endif
252 #if (defined(ia64) || defined(__ia64__))
253 #define SIGSEGV_FAULT_INSTRUCTION (((struct sigcontext *)scp)->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
254 #endif
255 #if (defined(powerpc) || defined(__powerpc__))
256 #include <sys/ucontext.h>
257 #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.regs)
258 #define SIGSEGV_FAULT_INSTRUCTION (SIGSEGV_CONTEXT_REGS->nip)
259 #define SIGSEGV_REGISTER_FILE (unsigned int *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned int *)(SIGSEGV_CONTEXT_REGS->gpr)
260 #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
261 #endif
262 #endif
263 #endif
264
265 #if HAVE_SIGCONTEXT_SUBTERFUGE
266 // Linux kernels prior to 2.4 ?
267 #if defined(__linux__)
268 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
269 #if (defined(i386) || defined(__i386__))
270 #include <asm/sigcontext.h>
271 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, struct sigcontext scs
272 #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
273 #define SIGSEGV_FAULT_HANDLER_ARGS &scs
274 #define SIGSEGV_FAULT_ADDRESS scp->cr2
275 #define SIGSEGV_FAULT_INSTRUCTION scp->eip
276 #define SIGSEGV_REGISTER_FILE (unsigned int *)scp
277 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
278 #endif
279 #if (defined(sparc) || defined(__sparc__))
280 #include <asm/sigcontext.h>
281 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp, char *addr
282 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp, addr
283 #define SIGSEGV_FAULT_ADDRESS addr
284 #endif
285 #if (defined(powerpc) || defined(__powerpc__))
286 #include <asm/sigcontext.h>
287 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, struct sigcontext *scp
288 #define SIGSEGV_FAULT_HANDLER_ARGS sig, scp
289 #define SIGSEGV_FAULT_ADDRESS scp->regs->dar
290 #define SIGSEGV_FAULT_INSTRUCTION scp->regs->nip
291 #define SIGSEGV_REGISTER_FILE (unsigned int *)&scp->regs->nip, (unsigned int *)(scp->regs->gpr)
292 #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
293 #endif
294 #if (defined(alpha) || defined(__alpha__))
295 #include <asm/sigcontext.h>
296 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
297 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
298 #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
299 #define SIGSEGV_FAULT_INSTRUCTION scp->sc_pc
300 #endif
301 #endif
302
303 // Irix 5 or 6 on MIPS
304 #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
305 #include <ucontext.h>
306 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
307 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
308 #define SIGSEGV_FAULT_ADDRESS scp->sc_badvaddr
309 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
310 #endif
311
312 // HP-UX
313 #if (defined(hpux) || defined(__hpux__))
314 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
315 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
316 #define SIGSEGV_FAULT_ADDRESS scp->sc_sl.sl_ss.ss_narrow.ss_cr21
317 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
318 #endif
319
320 // OSF/1 on Alpha
321 #if defined(__osf__)
322 #include <ucontext.h>
323 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
324 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
325 #define SIGSEGV_FAULT_ADDRESS scp->sc_traparg_a0
326 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
327 #endif
328
329 // AIX
330 #if defined(_AIX)
331 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
332 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
333 #define SIGSEGV_FAULT_ADDRESS scp->sc_jmpbuf.jmp_context.o_vaddr
334 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
335 #endif
336
337 // NetBSD
338 #if defined(__NetBSD__)
339 #if (defined(m68k) || defined(__m68k__))
340 #include <m68k/frame.h>
341 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
342 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
343 #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
344 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
345
346 // Use decoding scheme from BasiliskII/m68k native
347 static sigsegv_address_t get_fault_address(struct sigcontext *scp)
348 {
349 struct sigstate {
350 int ss_flags;
351 struct frame ss_frame;
352 };
353 struct sigstate *state = (struct sigstate *)scp->sc_ap;
354 char *fault_addr;
355 switch (state->ss_frame.f_format) {
356 case 7: /* 68040 access error */
357 /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */
358 fault_addr = state->ss_frame.f_fmt7.f_fa;
359 break;
360 default:
361 fault_addr = (char *)code;
362 break;
363 }
364 return (sigsegv_address_t)fault_addr;
365 }
366 #endif
367 #if (defined(alpha) || defined(__alpha__))
368 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
369 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
370 #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
371 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
372 #endif
373 #if (defined(i386) || defined(__i386__))
374 #error "FIXME: need to decode instruction and compute EA"
375 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
376 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
377 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
378 #endif
379 #endif
380 #if defined(__FreeBSD__)
381 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
382 #if (defined(i386) || defined(__i386__))
383 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp, char *addr
384 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp, addr
385 #define SIGSEGV_FAULT_ADDRESS addr
386 #define SIGSEGV_FAULT_INSTRUCTION scp->sc_eip
387 #define SIGSEGV_REGISTER_FILE ((unsigned int *)&scp->sc_edi)
388 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
389 #endif
390 #endif
391
392 // Extract fault address out of a sigcontext
393 #if (defined(alpha) || defined(__alpha__))
394 // From Boehm's GC 6.0alpha8
395 static sigsegv_address_t get_fault_address(struct sigcontext *scp)
396 {
397 unsigned int instruction = *((unsigned int *)(scp->sc_pc));
398 unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
399 fault_address += (signed long)(signed short)(instruction & 0xffff);
400 return (sigsegv_address_t)fault_address;
401 }
402 #endif
403
404
405 // MacOS X, not sure which version this works in. Under 10.1
406 // vm_protect does not appear to work from a signal handler. Under
407 // 10.2 signal handlers get siginfo type arguments but the si_addr
408 // field is the address of the faulting instruction and not the
409 // address that caused the SIGBUS. Maybe this works in 10.0? In any
410 // case with Mach exception handlers there is a way to do what this
411 // was meant to do.
412 #ifndef HAVE_MACH_EXCEPTIONS
413 #if defined(__APPLE__) && defined(__MACH__)
414 #if (defined(ppc) || defined(__ppc__))
415 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
416 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
417 #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
418 #define SIGSEGV_FAULT_INSTRUCTION scp->sc_ir
419 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
420 #define SIGSEGV_REGISTER_FILE (unsigned int *)&scp->sc_ir, &((unsigned int *) scp->sc_regs)[2]
421 #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
422
423 // Use decoding scheme from SheepShaver
424 static sigsegv_address_t get_fault_address(struct sigcontext *scp)
425 {
426 unsigned int nip = (unsigned int) scp->sc_ir;
427 unsigned int * gpr = &((unsigned int *) scp->sc_regs)[2];
428 instruction_t instr;
429
430 powerpc_decode_instruction(&instr, nip, gpr);
431 return (sigsegv_address_t)instr.addr;
432 }
433 #endif
434 #endif
435 #endif
436 #endif
437
438 #if HAVE_MACH_EXCEPTIONS
439
440 // This can easily be extended to other Mach systems, but really who
441 // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
442 // Mach 2.5/3.0?
443 #if defined(__APPLE__) && defined(__MACH__)
444
445 #include <sys/types.h>
446 #include <stdlib.h>
447 #include <stdio.h>
448 #include <pthread.h>
449
450 /*
451 * If you are familiar with MIG then you will understand the frustration
452 * that was necessary to get these embedded into C++ code by hand.
453 */
454 extern "C" {
455 #include <mach/mach.h>
456 #include <mach/mach_error.h>
457
458 extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
459 extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
460 mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
461 extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
462 exception_type_t, exception_data_t, mach_msg_type_number_t);
463 extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
464 exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
465 thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
466 extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
467 exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
468 thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
469 }
470
471 // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
472 #define HANDLER_COUNT 64
473
474 // structure to tuck away existing exception handlers
475 typedef struct _ExceptionPorts {
476 mach_msg_type_number_t maskCount;
477 exception_mask_t masks[HANDLER_COUNT];
478 exception_handler_t handlers[HANDLER_COUNT];
479 exception_behavior_t behaviors[HANDLER_COUNT];
480 thread_state_flavor_t flavors[HANDLER_COUNT];
481 } ExceptionPorts;
482
483 // exception handler thread
484 static pthread_t exc_thread;
485
486 // place where old exception handler info is stored
487 static ExceptionPorts ports;
488
489 // our exception port
490 static mach_port_t _exceptionPort = MACH_PORT_NULL;
491
492 #define MACH_CHECK_ERROR(name,ret) \
493 if (ret != KERN_SUCCESS) { \
494 mach_error(#name, ret); \
495 exit (1); \
496 }
497
498 #define SIGSEGV_FAULT_ADDRESS code[1]
499 #define SIGSEGV_FAULT_INSTRUCTION get_fault_instruction(thread, state)
500 #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP) ((code[0] == KERN_PROTECTION_FAILURE) ? sigsegv_fault_handler(ADDR, IP) : SIGSEGV_RETURN_FAILURE)
501 #define SIGSEGV_FAULT_HANDLER_ARGLIST mach_port_t thread, exception_data_t code, ppc_thread_state_t *state
502 #define SIGSEGV_FAULT_HANDLER_ARGS thread, code, &state
503 #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
504 #define SIGSEGV_REGISTER_FILE &state->srr0, &state->r0
505
506 // Given a suspended thread, stuff the current instruction and
507 // registers into state.
508 //
509 // It would have been nice to have this be ppc/x86 independant which
510 // could have been done easily with a thread_state_t instead of
511 // ppc_thread_state_t, but because of the way this is called it is
512 // easier to do it this way.
513 #if (defined(ppc) || defined(__ppc__))
514 static inline sigsegv_address_t get_fault_instruction(mach_port_t thread, ppc_thread_state_t *state)
515 {
516 kern_return_t krc;
517 mach_msg_type_number_t count;
518
519 count = MACHINE_THREAD_STATE_COUNT;
520 krc = thread_get_state(thread, MACHINE_THREAD_STATE, (thread_state_t)state, &count);
521 MACH_CHECK_ERROR (thread_get_state, krc);
522
523 return (sigsegv_address_t)state->srr0;
524 }
525 #endif
526
527 // Since there can only be one exception thread running at any time
528 // this is not a problem.
529 #define MSG_SIZE 512
530 static char msgbuf[MSG_SIZE];
531 static char replybuf[MSG_SIZE];
532
533 /*
534 * This is the entry point for the exception handler thread. The job
535 * of this thread is to wait for exception messages on the exception
536 * port that was setup beforehand and to pass them on to exc_server.
537 * exc_server is a MIG generated function that is a part of Mach.
538 * Its job is to decide what to do with the exception message. In our
539 * case exc_server calls catch_exception_raise on our behalf. After
540 * exc_server returns, it is our responsibility to send the reply.
541 */
542 static void *
543 handleExceptions(void *priv)
544 {
545 mach_msg_header_t *msg, *reply;
546 kern_return_t krc;
547
548 msg = (mach_msg_header_t *)msgbuf;
549 reply = (mach_msg_header_t *)replybuf;
550
551 for (;;) {
552 krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
553 _exceptionPort, 0, MACH_PORT_NULL);
554 MACH_CHECK_ERROR(mach_msg, krc);
555
556 if (!exc_server(msg, reply)) {
557 fprintf(stderr, "exc_server hated the message\n");
558 exit(1);
559 }
560
561 krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
562 msg->msgh_local_port, 0, MACH_PORT_NULL);
563 if (krc != KERN_SUCCESS) {
564 fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
565 krc, mach_error_string(krc));
566 exit(1);
567 }
568 }
569 }
570 #endif
571 #endif
572
573
574 /*
575 * Instruction skipping
576 */
577
578 #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
579 // Decode and skip X86 instruction
580 #if (defined(i386) || defined(__i386__))
581 #if defined(__linux__)
582 enum {
583 X86_REG_EIP = 14,
584 X86_REG_EAX = 11,
585 X86_REG_ECX = 10,
586 X86_REG_EDX = 9,
587 X86_REG_EBX = 8,
588 X86_REG_ESP = 7,
589 X86_REG_EBP = 6,
590 X86_REG_ESI = 5,
591 X86_REG_EDI = 4
592 };
593 #endif
594 #if defined(__NetBSD__) || defined(__FreeBSD__)
595 enum {
596 X86_REG_EIP = 10,
597 X86_REG_EAX = 7,
598 X86_REG_ECX = 6,
599 X86_REG_EDX = 5,
600 X86_REG_EBX = 4,
601 X86_REG_ESP = 13,
602 X86_REG_EBP = 2,
603 X86_REG_ESI = 1,
604 X86_REG_EDI = 0
605 };
606 #endif
607 // FIXME: this is partly redundant with the instruction decoding phase
608 // to discover transfer type and register number
609 static inline int ix86_step_over_modrm(unsigned char * p)
610 {
611 int mod = (p[0] >> 6) & 3;
612 int rm = p[0] & 7;
613 int offset = 0;
614
615 // ModR/M Byte
616 switch (mod) {
617 case 0: // [reg]
618 if (rm == 5) return 4; // disp32
619 break;
620 case 1: // disp8[reg]
621 offset = 1;
622 break;
623 case 2: // disp32[reg]
624 offset = 4;
625 break;
626 case 3: // register
627 return 0;
628 }
629
630 // SIB Byte
631 if (rm == 4) {
632 if (mod == 0 && (p[1] & 7) == 5)
633 offset = 5; // disp32[index]
634 else
635 offset++;
636 }
637
638 return offset;
639 }
640
641 static bool ix86_skip_instruction(unsigned int * regs)
642 {
643 unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
644
645 if (eip == 0)
646 return false;
647
648 transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
649 transfer_size_t transfer_size = SIZE_LONG;
650
651 int reg = -1;
652 int len = 0;
653
654 // Operand size prefix
655 if (*eip == 0x66) {
656 eip++;
657 len++;
658 transfer_size = SIZE_WORD;
659 }
660
661 // Decode instruction
662 switch (eip[0]) {
663 case 0x0f:
664 switch (eip[1]) {
665 case 0xb6: // MOVZX r32, r/m8
666 case 0xb7: // MOVZX r32, r/m16
667 switch (eip[2] & 0xc0) {
668 case 0x80:
669 reg = (eip[2] >> 3) & 7;
670 transfer_type = SIGSEGV_TRANSFER_LOAD;
671 break;
672 case 0x40:
673 reg = (eip[2] >> 3) & 7;
674 transfer_type = SIGSEGV_TRANSFER_LOAD;
675 break;
676 case 0x00:
677 reg = (eip[2] >> 3) & 7;
678 transfer_type = SIGSEGV_TRANSFER_LOAD;
679 break;
680 }
681 len += 3 + ix86_step_over_modrm(eip + 2);
682 break;
683 }
684 break;
685 case 0x8a: // MOV r8, r/m8
686 transfer_size = SIZE_BYTE;
687 case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
688 switch (eip[1] & 0xc0) {
689 case 0x80:
690 reg = (eip[1] >> 3) & 7;
691 transfer_type = SIGSEGV_TRANSFER_LOAD;
692 break;
693 case 0x40:
694 reg = (eip[1] >> 3) & 7;
695 transfer_type = SIGSEGV_TRANSFER_LOAD;
696 break;
697 case 0x00:
698 reg = (eip[1] >> 3) & 7;
699 transfer_type = SIGSEGV_TRANSFER_LOAD;
700 break;
701 }
702 len += 2 + ix86_step_over_modrm(eip + 1);
703 break;
704 case 0x88: // MOV r/m8, r8
705 transfer_size = SIZE_BYTE;
706 case 0x89: // MOV r/m32, r32 (or 16-bit operation)
707 switch (eip[1] & 0xc0) {
708 case 0x80:
709 reg = (eip[1] >> 3) & 7;
710 transfer_type = SIGSEGV_TRANSFER_STORE;
711 break;
712 case 0x40:
713 reg = (eip[1] >> 3) & 7;
714 transfer_type = SIGSEGV_TRANSFER_STORE;
715 break;
716 case 0x00:
717 reg = (eip[1] >> 3) & 7;
718 transfer_type = SIGSEGV_TRANSFER_STORE;
719 break;
720 }
721 len += 2 + ix86_step_over_modrm(eip + 1);
722 break;
723 }
724
725 if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
726 // Unknown machine code, let it crash. Then patch the decoder
727 return false;
728 }
729
730 if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
731 static const int x86_reg_map[8] = {
732 X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
733 X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI
734 };
735
736 if (reg < 0 || reg >= 8)
737 return false;
738
739 int rloc = x86_reg_map[reg];
740 switch (transfer_size) {
741 case SIZE_BYTE:
742 regs[rloc] = (regs[rloc] & ~0xff);
743 break;
744 case SIZE_WORD:
745 regs[rloc] = (regs[rloc] & ~0xffff);
746 break;
747 case SIZE_LONG:
748 regs[rloc] = 0;
749 break;
750 }
751 }
752
753 #if DEBUG
754 printf("%08x: %s %s access", regs[X86_REG_EIP],
755 transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : "long",
756 transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
757
758 if (reg != -1) {
759 static const char * x86_reg_str_map[8] = {
760 "eax", "ecx", "edx", "ebx",
761 "esp", "ebp", "esi", "edi"
762 };
763 printf(" %s register %%%s", transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from", x86_reg_str_map[reg]);
764 }
765 printf(", %d bytes instruction\n", len);
766 #endif
767
768 regs[X86_REG_EIP] += len;
769 return true;
770 }
771 #endif
772
773 // Decode and skip PPC instruction
774 #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
775 static bool powerpc_skip_instruction(unsigned int * nip_p, unsigned int * regs)
776 {
777 instruction_t instr;
778 powerpc_decode_instruction(&instr, *nip_p, regs);
779
780 if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
781 // Unknown machine code, let it crash. Then patch the decoder
782 return false;
783 }
784
785 #if DEBUG
786 printf("%08x: %s %s access", *nip_p,
787 instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : "long",
788 instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
789
790 if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
791 printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
792 if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
793 printf(" r%d (rd = 0)\n", instr.rd);
794 #endif
795
796 if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
797 regs[instr.ra] = instr.addr;
798 if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
799 regs[instr.rd] = 0;
800
801 *nip_p += 4;
802 return true;
803 }
804 #endif
805 #endif
806
807 // Fallbacks
808 #ifndef SIGSEGV_FAULT_INSTRUCTION
809 #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_INVALID_PC
810 #endif
811 #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
812 #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
813 #endif
814 #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
815 #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP) sigsegv_fault_handler(ADDR, IP)
816 #endif
817
818 // SIGSEGV recovery supported ?
819 #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
820 #define HAVE_SIGSEGV_RECOVERY
821 #endif
822
823
824 /*
825 * SIGSEGV global handler
826 */
827
828 #if defined(HAVE_SIGSEGV_RECOVERY) || defined(HAVE_MACH_EXCEPTIONS)
829 // This function handles the badaccess to memory.
830 // It is called from the signal handler or the exception handler.
831 static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
832 {
833 sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
834 sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
835
836 // Call user's handler and reinstall the global handler, if required
837 switch (SIGSEGV_FAULT_HANDLER_INVOKE(fault_address, fault_instruction)) {
838 case SIGSEGV_RETURN_SUCCESS:
839 return true;
840
841 #if HAVE_SIGSEGV_SKIP_INSTRUCTION
842 case SIGSEGV_RETURN_SKIP_INSTRUCTION:
843 // Call the instruction skipper with the register file
844 // available
845 if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
846 #ifdef HAVE_MACH_EXCEPTIONS
847 // Unlike UNIX signals where the thread state
848 // is modified off of the stack, in Mach we
849 // need to actually call thread_set_state to
850 // have the register values updated.
851 kern_return_t krc;
852
853 krc = thread_set_state(thread,
854 MACHINE_THREAD_STATE, (thread_state_t)state,
855 MACHINE_THREAD_STATE_COUNT);
856 MACH_CHECK_ERROR (thread_get_state, krc);
857 #endif
858 return true;
859 }
860 break;
861 #endif
862 }
863
864 // We can't do anything with the fault_address, dump state?
865 if (sigsegv_state_dumper != 0)
866 sigsegv_state_dumper(fault_address, fault_instruction);
867
868 return false;
869 }
870 #endif
871
872
873 /*
874 * There are two mechanisms for handling a bad memory access,
875 * Mach exceptions and UNIX signals. The implementation specific
876 * code appears below. Its reponsibility is to call handle_badaccess
877 * which is the routine that handles the fault in an implementation
878 * agnostic manner. The implementation specific code below is then
879 * reponsible for checking whether handle_badaccess was able
880 * to handle the memory access error and perform any implementation
881 * specific tasks necessary afterwards.
882 */
883
884 #ifdef HAVE_MACH_EXCEPTIONS
885 /*
886 * We need to forward all exceptions that we do not handle.
887 * This is important, there are many exceptions that may be
888 * handled by other exception handlers. For example debuggers
889 * use exceptions and the exception hander is in another
890 * process in such a case. (Timothy J. Wood states in his
891 * message to the list that he based this code on that from
892 * gdb for Darwin.)
893 */
894 static inline kern_return_t
895 forward_exception(mach_port_t thread_port,
896 mach_port_t task_port,
897 exception_type_t exception_type,
898 exception_data_t exception_data,
899 mach_msg_type_number_t data_count,
900 ExceptionPorts *oldExceptionPorts)
901 {
902 kern_return_t kret;
903 unsigned int portIndex;
904 mach_port_t port;
905 exception_behavior_t behavior;
906 thread_state_flavor_t flavor;
907 thread_state_t thread_state;
908 mach_msg_type_number_t thread_state_count;
909
910 for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
911 if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
912 // This handler wants the exception
913 break;
914 }
915 }
916
917 if (portIndex >= oldExceptionPorts->maskCount) {
918 fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
919 return KERN_FAILURE;
920 }
921
922 port = oldExceptionPorts->handlers[portIndex];
923 behavior = oldExceptionPorts->behaviors[portIndex];
924 flavor = oldExceptionPorts->flavors[portIndex];
925
926 /*
927 fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
928 */
929
930 if (behavior != EXCEPTION_DEFAULT) {
931 thread_state_count = THREAD_STATE_MAX;
932 kret = thread_get_state (thread_port, flavor, thread_state,
933 &thread_state_count);
934 MACH_CHECK_ERROR (thread_get_state, kret);
935 }
936
937 switch (behavior) {
938 case EXCEPTION_DEFAULT:
939 // fprintf(stderr, "forwarding to exception_raise\n");
940 kret = exception_raise(port, thread_port, task_port, exception_type,
941 exception_data, data_count);
942 MACH_CHECK_ERROR (exception_raise, kret);
943 break;
944 case EXCEPTION_STATE:
945 // fprintf(stderr, "forwarding to exception_raise_state\n");
946 kret = exception_raise_state(port, exception_type, exception_data,
947 data_count, &flavor,
948 thread_state, thread_state_count,
949 thread_state, &thread_state_count);
950 MACH_CHECK_ERROR (exception_raise_state, kret);
951 break;
952 case EXCEPTION_STATE_IDENTITY:
953 // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
954 kret = exception_raise_state_identity(port, thread_port, task_port,
955 exception_type, exception_data,
956 data_count, &flavor,
957 thread_state, thread_state_count,
958 thread_state, &thread_state_count);
959 MACH_CHECK_ERROR (exception_raise_state_identity, kret);
960 break;
961 default:
962 fprintf(stderr, "forward_exception got unknown behavior\n");
963 break;
964 }
965
966 if (behavior != EXCEPTION_DEFAULT) {
967 kret = thread_set_state (thread_port, flavor, thread_state,
968 thread_state_count);
969 MACH_CHECK_ERROR (thread_set_state, kret);
970 }
971
972 return KERN_SUCCESS;
973 }
974
975 /*
976 * This is the code that actually handles the exception.
977 * It is called by exc_server. For Darwin 5 Apple changed
978 * this a bit from how this family of functions worked in
979 * Mach. If you are familiar with that it is a little
980 * different. The main variation that concerns us here is
981 * that code is an array of exception specific codes and
982 * codeCount is a count of the number of codes in the code
983 * array. In typical Mach all exceptions have a code
984 * and sub-code. It happens to be the case that for a
985 * EXC_BAD_ACCESS exception the first entry is the type of
986 * bad access that occurred and the second entry is the
987 * faulting address so these entries correspond exactly to
988 * how the code and sub-code are used on Mach.
989 *
990 * This is a MIG interface. No code in Basilisk II should
991 * call this directley. This has to have external C
992 * linkage because that is what exc_server expects.
993 */
994 kern_return_t
995 catch_exception_raise(mach_port_t exception_port,
996 mach_port_t thread,
997 mach_port_t task,
998 exception_type_t exception,
999 exception_data_t code,
1000 mach_msg_type_number_t codeCount)
1001 {
1002 ppc_thread_state_t state;
1003 kern_return_t krc;
1004
1005 if ((exception == EXC_BAD_ACCESS) && (codeCount >= 2)) {
1006 if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
1007 return KERN_SUCCESS;
1008 }
1009
1010 // In Mach we do not need to remove the exception handler.
1011 // If we forward the exception, eventually some exception handler
1012 // will take care of this exception.
1013 krc = forward_exception(thread, task, exception, code, codeCount, &ports);
1014
1015 return krc;
1016 }
1017 #endif
1018
1019 #ifdef HAVE_SIGSEGV_RECOVERY
1020 // Handle bad memory accesses with signal handler
1021 static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1022 {
1023 // Call handler and reinstall the global handler, if required
1024 if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
1025 #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1026 sigsegv_do_install_handler(sig);
1027 #endif
1028 return;
1029 }
1030
1031 // Failure: reinstall default handler for "safe" crash
1032 #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1033 SIGSEGV_ALL_SIGNALS
1034 #undef FAULT_HANDLER
1035 }
1036 #endif
1037
1038
1039 /*
1040 * SIGSEGV handler initialization
1041 */
1042
1043 #if defined(HAVE_SIGINFO_T)
1044 static bool sigsegv_do_install_handler(int sig)
1045 {
1046 // Setup SIGSEGV handler to process writes to frame buffer
1047 #ifdef HAVE_SIGACTION
1048 struct sigaction sigsegv_sa;
1049 sigemptyset(&sigsegv_sa.sa_mask);
1050 sigsegv_sa.sa_sigaction = sigsegv_handler;
1051 sigsegv_sa.sa_flags = SA_SIGINFO;
1052 return (sigaction(sig, &sigsegv_sa, 0) == 0);
1053 #else
1054 return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1055 #endif
1056 }
1057 #endif
1058
1059 #if defined(HAVE_SIGCONTEXT_SUBTERFUGE)
1060 static bool sigsegv_do_install_handler(int sig)
1061 {
1062 // Setup SIGSEGV handler to process writes to frame buffer
1063 #ifdef HAVE_SIGACTION
1064 struct sigaction sigsegv_sa;
1065 sigemptyset(&sigsegv_sa.sa_mask);
1066 sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
1067 sigsegv_sa.sa_flags = 0;
1068 #if !EMULATED_68K && defined(__NetBSD__)
1069 sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
1070 sigsegv_sa.sa_flags |= SA_ONSTACK;
1071 #endif
1072 return (sigaction(sig, &sigsegv_sa, 0) == 0);
1073 #else
1074 return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1075 #endif
1076 }
1077 #endif
1078
1079 #if defined(HAVE_MACH_EXCEPTIONS)
1080 static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1081 {
1082 /*
1083 * Except for the exception port functions, this should be
1084 * pretty much stock Mach. If later you choose to support
1085 * other Mach's besides Darwin, just check for __MACH__
1086 * here and __APPLE__ where the actual differences are.
1087 */
1088 #if defined(__APPLE__) && defined(__MACH__)
1089 if (sigsegv_fault_handler != NULL) {
1090 sigsegv_fault_handler = handler;
1091 return true;
1092 }
1093
1094 kern_return_t krc;
1095
1096 // create the the exception port
1097 krc = mach_port_allocate(mach_task_self(),
1098 MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
1099 if (krc != KERN_SUCCESS) {
1100 mach_error("mach_port_allocate", krc);
1101 return false;
1102 }
1103
1104 // add a port send right
1105 krc = mach_port_insert_right(mach_task_self(),
1106 _exceptionPort, _exceptionPort,
1107 MACH_MSG_TYPE_MAKE_SEND);
1108 if (krc != KERN_SUCCESS) {
1109 mach_error("mach_port_insert_right", krc);
1110 return false;
1111 }
1112
1113 // get the old exception ports
1114 ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
1115 krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
1116 &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
1117 if (krc != KERN_SUCCESS) {
1118 mach_error("thread_get_exception_ports", krc);
1119 return false;
1120 }
1121
1122 // set the new exception port
1123 //
1124 // We could have used EXCEPTION_STATE_IDENTITY instead of
1125 // EXCEPTION_DEFAULT to get the thread state in the initial
1126 // message, but it turns out that in the common case this is not
1127 // neccessary. If we need it we can later ask for it from the
1128 // suspended thread.
1129 //
1130 // Even with THREAD_STATE_NONE, Darwin provides the program
1131 // counter in the thread state. The comments in the header file
1132 // seem to imply that you can count on the GPR's on an exception
1133 // as well but just to be safe I use MACHINE_THREAD_STATE because
1134 // you have to ask for all of the GPR's anyway just to get the
1135 // program counter. In any case because of update effective
1136 // address from immediate and update address from effective
1137 // addresses of ra and rb modes (as good an name as any for these
1138 // addressing modes) used in PPC instructions, you will need the
1139 // GPR state anyway.
1140 krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
1141 EXCEPTION_DEFAULT, MACHINE_THREAD_STATE);
1142 if (krc != KERN_SUCCESS) {
1143 mach_error("thread_set_exception_ports", krc);
1144 return false;
1145 }
1146
1147 // create the exception handler thread
1148 if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
1149 (void)fprintf(stderr, "creation of exception thread failed\n");
1150 return false;
1151 }
1152
1153 // do not care about the exception thread any longer, let is run standalone
1154 (void)pthread_detach(exc_thread);
1155
1156 sigsegv_fault_handler = handler;
1157 return true;
1158 #else
1159 return false;
1160 #endif
1161 }
1162 #endif
1163
1164 bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1165 {
1166 #if defined(HAVE_SIGSEGV_RECOVERY)
1167 bool success = true;
1168 #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
1169 SIGSEGV_ALL_SIGNALS
1170 #undef FAULT_HANDLER
1171 if (success)
1172 sigsegv_fault_handler = handler;
1173 return success;
1174 #elif defined(HAVE_MACH_EXCEPTIONS)
1175 return sigsegv_do_install_handler(handler);
1176 #else
1177 // FAIL: no siginfo_t nor sigcontext subterfuge is available
1178 return false;
1179 #endif
1180 }
1181
1182
1183 /*
1184 * SIGSEGV handler deinitialization
1185 */
1186
1187 void sigsegv_deinstall_handler(void)
1188 {
1189 // We do nothing for Mach exceptions, the thread would need to be
1190 // suspended if not already so, and we might mess with other
1191 // exception handlers that came after we registered ours. There is
1192 // no need to remove the exception handler, in fact this function is
1193 // not called anywhere in Basilisk II.
1194 #ifdef HAVE_SIGSEGV_RECOVERY
1195 sigsegv_fault_handler = 0;
1196 #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1197 SIGSEGV_ALL_SIGNALS
1198 #undef FAULT_HANDLER
1199 #endif
1200 }
1201
1202
1203 /*
1204 * Set callback function when we cannot handle the fault
1205 */
1206
1207 void sigsegv_set_dump_state(sigsegv_state_dumper_t handler)
1208 {
1209 sigsegv_state_dumper = handler;
1210 }
1211
1212
1213 /*
1214 * Test program used for configure/test
1215 */
1216
1217 #ifdef CONFIGURE_TEST_SIGSEGV_RECOVERY
1218 #include <stdio.h>
1219 #include <stdlib.h>
1220 #include <fcntl.h>
1221 #include <sys/mman.h>
1222 #include "vm_alloc.h"
1223
1224 const int REF_INDEX = 123;
1225 const int REF_VALUE = 45;
1226
1227 static int page_size;
1228 static volatile char * page = 0;
1229 static volatile int handler_called = 0;
1230
1231 #ifdef __GNUC__
1232 // Code range where we expect the fault to come from
1233 static void *b_region, *e_region;
1234 #endif
1235
1236 static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1237 {
1238 handler_called++;
1239 if ((fault_address - REF_INDEX) != page)
1240 exit(10);
1241 #ifdef __GNUC__
1242 // Make sure reported fault instruction address falls into
1243 // expected code range
1244 if (instruction_address != SIGSEGV_INVALID_PC
1245 && ((instruction_address < (sigsegv_address_t)b_region) ||
1246 (instruction_address >= (sigsegv_address_t)e_region)))
1247 exit(11);
1248 #endif
1249 if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
1250 exit(12);
1251 return SIGSEGV_RETURN_SUCCESS;
1252 }
1253
1254 #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1255 static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1256 {
1257 if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
1258 #ifdef __GNUC__
1259 // Make sure reported fault instruction address falls into
1260 // expected code range
1261 if (instruction_address != SIGSEGV_INVALID_PC
1262 && ((instruction_address < (sigsegv_address_t)b_region) ||
1263 (instruction_address >= (sigsegv_address_t)e_region)))
1264 return SIGSEGV_RETURN_FAILURE;
1265 #endif
1266 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
1267 }
1268
1269 return SIGSEGV_RETURN_FAILURE;
1270 }
1271 #endif
1272
1273 int main(void)
1274 {
1275 if (vm_init() < 0)
1276 return 1;
1277
1278 page_size = getpagesize();
1279 if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
1280 return 2;
1281
1282 memset((void *)page, 0, page_size);
1283 if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
1284 return 3;
1285
1286 if (!sigsegv_install_handler(sigsegv_test_handler))
1287 return 4;
1288
1289 #ifdef __GNUC__
1290 b_region = &&L_b_region1;
1291 e_region = &&L_e_region1;
1292 #endif
1293 L_b_region1:
1294 page[REF_INDEX] = REF_VALUE;
1295 if (page[REF_INDEX] != REF_VALUE)
1296 exit(20);
1297 page[REF_INDEX] = REF_VALUE;
1298 L_e_region1:
1299
1300 if (handler_called != 1)
1301 return 5;
1302
1303 #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1304 if (!sigsegv_install_handler(sigsegv_insn_handler))
1305 return 6;
1306
1307 if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
1308 return 7;
1309
1310 for (int i = 0; i < page_size; i++)
1311 page[i] = (i + 1) % page_size;
1312
1313 if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
1314 return 8;
1315
1316 #define TEST_SKIP_INSTRUCTION(TYPE) do { \
1317 const unsigned int TAG = 0x12345678; \
1318 TYPE data = *((TYPE *)(page + sizeof(TYPE))); \
1319 volatile unsigned int effect = data + TAG; \
1320 if (effect != TAG) \
1321 return 9; \
1322 } while (0)
1323
1324 #ifdef __GNUC__
1325 b_region = &&L_b_region2;
1326 e_region = &&L_e_region2;
1327 #endif
1328 L_b_region2:
1329 TEST_SKIP_INSTRUCTION(unsigned char);
1330 TEST_SKIP_INSTRUCTION(unsigned short);
1331 TEST_SKIP_INSTRUCTION(unsigned int);
1332 L_e_region2:
1333 #endif
1334
1335 vm_exit();
1336 return 0;
1337 }
1338 #endif
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353