ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
Revision: 1.32
Committed: 2003-10-21T21:59:41Z (21 years, 1 month ago) by gbeauche
Branch: MAIN
Changes since 1.31: +56 -14 lines
Log Message:
Solaris/SPARC support for SIGSEGV_FAULT_INSTRUCTION

File Contents

# Content
1 /*
2 * sigsegv.cpp - SIGSEGV signals support
3 *
4 * Derived from Bruno Haible's work on his SIGSEGV library for clisp
5 * <http://clisp.sourceforge.net/>
6 *
7 * MacOS X support derived from the post by Timothy J. Wood to the
8 * omnigroup macosx-dev list:
9 * Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10 * tjw@omnigroup.com Sun, 4 Jun 2000
11 * www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12 *
13 * Basilisk II (C) 1997-2002 Christian Bauer
14 *
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
19 *
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 * GNU General Public License for more details.
24 *
25 * You should have received a copy of the GNU General Public License
26 * along with this program; if not, write to the Free Software
27 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
28 */
29
30 #ifdef HAVE_UNISTD_H
31 #include <unistd.h>
32 #endif
33
34 #ifdef HAVE_CONFIG_H
35 #include "config.h"
36 #endif
37
38 #include <list>
39 #include <signal.h>
40 #include "sigsegv.h"
41
42 #ifndef NO_STD_NAMESPACE
43 using std::list;
44 #endif
45
46 // Return value type of a signal handler (standard type if not defined)
47 #ifndef RETSIGTYPE
48 #define RETSIGTYPE void
49 #endif
50
51 // Type of the system signal handler
52 typedef RETSIGTYPE (*signal_handler)(int);
53
54 // User's SIGSEGV handler
55 static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
56
57 // Function called to dump state if we can't handle the fault
58 static sigsegv_state_dumper_t sigsegv_state_dumper = 0;
59
60 // Actual SIGSEGV handler installer
61 static bool sigsegv_do_install_handler(int sig);
62
63
64 /*
65 * Instruction decoding aids
66 */
67
68 // Transfer size
69 enum transfer_size_t {
70 SIZE_UNKNOWN,
71 SIZE_BYTE,
72 SIZE_WORD,
73 SIZE_LONG
74 };
75
76 // Transfer type
77 typedef sigsegv_transfer_type_t transfer_type_t;
78
79 #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
80 // Addressing mode
81 enum addressing_mode_t {
82 MODE_UNKNOWN,
83 MODE_NORM,
84 MODE_U,
85 MODE_X,
86 MODE_UX
87 };
88
89 // Decoded instruction
90 struct instruction_t {
91 transfer_type_t transfer_type;
92 transfer_size_t transfer_size;
93 addressing_mode_t addr_mode;
94 unsigned int addr;
95 char ra, rd;
96 };
97
98 static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned int * gpr)
99 {
100 // Get opcode and divide into fields
101 unsigned int opcode = *((unsigned int *)nip);
102 unsigned int primop = opcode >> 26;
103 unsigned int exop = (opcode >> 1) & 0x3ff;
104 unsigned int ra = (opcode >> 16) & 0x1f;
105 unsigned int rb = (opcode >> 11) & 0x1f;
106 unsigned int rd = (opcode >> 21) & 0x1f;
107 signed int imm = (signed short)(opcode & 0xffff);
108
109 // Analyze opcode
110 transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
111 transfer_size_t transfer_size = SIZE_UNKNOWN;
112 addressing_mode_t addr_mode = MODE_UNKNOWN;
113 switch (primop) {
114 case 31:
115 switch (exop) {
116 case 23: // lwzx
117 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
118 case 55: // lwzux
119 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
120 case 87: // lbzx
121 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
122 case 119: // lbzux
123 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
124 case 151: // stwx
125 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
126 case 183: // stwux
127 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
128 case 215: // stbx
129 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
130 case 247: // stbux
131 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
132 case 279: // lhzx
133 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
134 case 311: // lhzux
135 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
136 case 343: // lhax
137 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
138 case 375: // lhaux
139 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
140 case 407: // sthx
141 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
142 case 439: // sthux
143 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
144 }
145 break;
146
147 case 32: // lwz
148 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
149 case 33: // lwzu
150 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
151 case 34: // lbz
152 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
153 case 35: // lbzu
154 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
155 case 36: // stw
156 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
157 case 37: // stwu
158 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
159 case 38: // stb
160 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
161 case 39: // stbu
162 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
163 case 40: // lhz
164 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
165 case 41: // lhzu
166 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
167 case 42: // lha
168 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
169 case 43: // lhau
170 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
171 case 44: // sth
172 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
173 case 45: // sthu
174 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
175 }
176
177 // Calculate effective address
178 unsigned int addr = 0;
179 switch (addr_mode) {
180 case MODE_X:
181 case MODE_UX:
182 if (ra == 0)
183 addr = gpr[rb];
184 else
185 addr = gpr[ra] + gpr[rb];
186 break;
187 case MODE_NORM:
188 case MODE_U:
189 if (ra == 0)
190 addr = (signed int)(signed short)imm;
191 else
192 addr = gpr[ra] + (signed int)(signed short)imm;
193 break;
194 default:
195 break;
196 }
197
198 // Commit decoded instruction
199 instruction->addr = addr;
200 instruction->addr_mode = addr_mode;
201 instruction->transfer_type = transfer_type;
202 instruction->transfer_size = transfer_size;
203 instruction->ra = ra;
204 instruction->rd = rd;
205 }
206 #endif
207
208
209 /*
210 * OS-dependant SIGSEGV signals support section
211 */
212
213 #if HAVE_SIGINFO_T
214 // Generic extended signal handler
215 #if defined(__NetBSD__) || defined(__FreeBSD__)
216 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
217 #else
218 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
219 #endif
220 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, siginfo_t *sip, void *scp
221 #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
222 #define SIGSEGV_FAULT_HANDLER_ARGS sip, scp
223 #define SIGSEGV_FAULT_ADDRESS sip->si_addr
224 #if defined(__sun__)
225 #if (defined(sparc) || defined(__sparc__))
226 #include <sys/ucontext.h>
227 #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
228 #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[REG_PC]
229 #endif
230 #endif
231 #if defined(__NetBSD__) || defined(__FreeBSD__)
232 #if (defined(i386) || defined(__i386__))
233 #define SIGSEGV_FAULT_INSTRUCTION (((struct sigcontext *)scp)->sc_eip)
234 #define SIGSEGV_REGISTER_FILE ((unsigned int *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
235 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
236 #endif
237 #endif
238 #if defined(__linux__)
239 #if (defined(i386) || defined(__i386__))
240 #include <sys/ucontext.h>
241 #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
242 #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
243 #define SIGSEGV_REGISTER_FILE (unsigned int *)SIGSEGV_CONTEXT_REGS
244 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
245 #endif
246 #if (defined(x86_64) || defined(__x86_64__))
247 #include <sys/ucontext.h>
248 #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
249 #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
250 #define SIGSEGV_REGISTER_FILE (unsigned long *)SIGSEGV_CONTEXT_REGS
251 #endif
252 #if (defined(ia64) || defined(__ia64__))
253 #define SIGSEGV_FAULT_INSTRUCTION (((struct sigcontext *)scp)->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
254 #endif
255 #if (defined(powerpc) || defined(__powerpc__))
256 #include <sys/ucontext.h>
257 #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.regs)
258 #define SIGSEGV_FAULT_INSTRUCTION (SIGSEGV_CONTEXT_REGS->nip)
259 #define SIGSEGV_REGISTER_FILE (unsigned int *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned int *)(SIGSEGV_CONTEXT_REGS->gpr)
260 #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
261 #endif
262 #endif
263 #endif
264
265 #if HAVE_SIGCONTEXT_SUBTERFUGE
266 // Linux kernels prior to 2.4 ?
267 #if defined(__linux__)
268 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
269 #if (defined(i386) || defined(__i386__))
270 #include <asm/sigcontext.h>
271 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, struct sigcontext scs
272 #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
273 #define SIGSEGV_FAULT_HANDLER_ARGS &scs
274 #define SIGSEGV_FAULT_ADDRESS scp->cr2
275 #define SIGSEGV_FAULT_INSTRUCTION scp->eip
276 #define SIGSEGV_REGISTER_FILE (unsigned int *)scp
277 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
278 #endif
279 #if (defined(sparc) || defined(__sparc__))
280 #include <asm/sigcontext.h>
281 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp, char *addr
282 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp, addr
283 #define SIGSEGV_FAULT_ADDRESS addr
284 #endif
285 #if (defined(powerpc) || defined(__powerpc__))
286 #include <asm/sigcontext.h>
287 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, struct sigcontext *scp
288 #define SIGSEGV_FAULT_HANDLER_ARGS sig, scp
289 #define SIGSEGV_FAULT_ADDRESS scp->regs->dar
290 #define SIGSEGV_FAULT_INSTRUCTION scp->regs->nip
291 #define SIGSEGV_REGISTER_FILE (unsigned int *)&scp->regs->nip, (unsigned int *)(scp->regs->gpr)
292 #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
293 #endif
294 #if (defined(alpha) || defined(__alpha__))
295 #include <asm/sigcontext.h>
296 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
297 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
298 #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
299 #define SIGSEGV_FAULT_INSTRUCTION scp->sc_pc
300
301 // From Boehm's GC 6.0alpha8
302 static sigsegv_address_t get_fault_address(struct sigcontext *scp)
303 {
304 unsigned int instruction = *((unsigned int *)(scp->sc_pc));
305 unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
306 fault_address += (signed long)(signed short)(instruction & 0xffff);
307 return (sigsegv_address_t)fault_address;
308 }
309 #endif
310 #endif
311
312 // Irix 5 or 6 on MIPS
313 #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
314 #include <ucontext.h>
315 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
316 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
317 #define SIGSEGV_FAULT_ADDRESS scp->sc_badvaddr
318 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
319 #endif
320
321 // HP-UX
322 #if (defined(hpux) || defined(__hpux__))
323 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
324 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
325 #define SIGSEGV_FAULT_ADDRESS scp->sc_sl.sl_ss.ss_narrow.ss_cr21
326 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
327 #endif
328
329 // OSF/1 on Alpha
330 #if defined(__osf__)
331 #include <ucontext.h>
332 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
333 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
334 #define SIGSEGV_FAULT_ADDRESS scp->sc_traparg_a0
335 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
336 #endif
337
338 // AIX
339 #if defined(_AIX)
340 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
341 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
342 #define SIGSEGV_FAULT_ADDRESS scp->sc_jmpbuf.jmp_context.o_vaddr
343 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
344 #endif
345
346 // NetBSD or FreeBSD
347 #if defined(__NetBSD__) || defined(__FreeBSD__)
348 #if (defined(m68k) || defined(__m68k__))
349 #include <m68k/frame.h>
350 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
351 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
352 #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
353 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
354
355 // Use decoding scheme from BasiliskII/m68k native
356 static sigsegv_address_t get_fault_address(struct sigcontext *scp)
357 {
358 struct sigstate {
359 int ss_flags;
360 struct frame ss_frame;
361 };
362 struct sigstate *state = (struct sigstate *)scp->sc_ap;
363 char *fault_addr;
364 switch (state->ss_frame.f_format) {
365 case 7: /* 68040 access error */
366 /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */
367 fault_addr = state->ss_frame.f_fmt7.f_fa;
368 break;
369 default:
370 fault_addr = (char *)code;
371 break;
372 }
373 return (sigsegv_address_t)fault_addr;
374 }
375 #else
376 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, void *scp, char *addr
377 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp, addr
378 #define SIGSEGV_FAULT_ADDRESS addr
379 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
380 #endif
381 #endif
382
383 // MacOS X, not sure which version this works in. Under 10.1
384 // vm_protect does not appear to work from a signal handler. Under
385 // 10.2 signal handlers get siginfo type arguments but the si_addr
386 // field is the address of the faulting instruction and not the
387 // address that caused the SIGBUS. Maybe this works in 10.0? In any
388 // case with Mach exception handlers there is a way to do what this
389 // was meant to do.
390 #ifndef HAVE_MACH_EXCEPTIONS
391 #if defined(__APPLE__) && defined(__MACH__)
392 #if (defined(ppc) || defined(__ppc__))
393 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
394 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
395 #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
396 #define SIGSEGV_FAULT_INSTRUCTION scp->sc_ir
397 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
398 #define SIGSEGV_REGISTER_FILE (unsigned int *)&scp->sc_ir, &((unsigned int *) scp->sc_regs)[2]
399 #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
400
401 // Use decoding scheme from SheepShaver
402 static sigsegv_address_t get_fault_address(struct sigcontext *scp)
403 {
404 unsigned int nip = (unsigned int) scp->sc_ir;
405 unsigned int * gpr = &((unsigned int *) scp->sc_regs)[2];
406 instruction_t instr;
407
408 powerpc_decode_instruction(&instr, nip, gpr);
409 return (sigsegv_address_t)instr.addr;
410 }
411 #endif
412 #endif
413 #endif
414 #endif
415
416 #if HAVE_MACH_EXCEPTIONS
417
418 // This can easily be extended to other Mach systems, but really who
419 // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
420 // Mach 2.5/3.0?
421 #if defined(__APPLE__) && defined(__MACH__)
422
423 #include <sys/types.h>
424 #include <stdlib.h>
425 #include <stdio.h>
426 #include <pthread.h>
427
428 /*
429 * If you are familiar with MIG then you will understand the frustration
430 * that was necessary to get these embedded into C++ code by hand.
431 */
432 extern "C" {
433 #include <mach/mach.h>
434 #include <mach/mach_error.h>
435
436 extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
437 extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
438 mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
439 extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
440 exception_type_t, exception_data_t, mach_msg_type_number_t);
441 extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
442 exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
443 thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
444 extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
445 exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
446 thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
447 }
448
449 // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
450 #define HANDLER_COUNT 64
451
452 // structure to tuck away existing exception handlers
453 typedef struct _ExceptionPorts {
454 mach_msg_type_number_t maskCount;
455 exception_mask_t masks[HANDLER_COUNT];
456 exception_handler_t handlers[HANDLER_COUNT];
457 exception_behavior_t behaviors[HANDLER_COUNT];
458 thread_state_flavor_t flavors[HANDLER_COUNT];
459 } ExceptionPorts;
460
461 // exception handler thread
462 static pthread_t exc_thread;
463
464 // place where old exception handler info is stored
465 static ExceptionPorts ports;
466
467 // our exception port
468 static mach_port_t _exceptionPort = MACH_PORT_NULL;
469
470 #define MACH_CHECK_ERROR(name,ret) \
471 if (ret != KERN_SUCCESS) { \
472 mach_error(#name, ret); \
473 exit (1); \
474 }
475
476 #define SIGSEGV_FAULT_ADDRESS code[1]
477 #define SIGSEGV_FAULT_INSTRUCTION get_fault_instruction(thread, state)
478 #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP) ((code[0] == KERN_PROTECTION_FAILURE) ? sigsegv_fault_handler(ADDR, IP) : SIGSEGV_RETURN_FAILURE)
479 #define SIGSEGV_FAULT_HANDLER_ARGLIST mach_port_t thread, exception_data_t code, ppc_thread_state_t *state
480 #define SIGSEGV_FAULT_HANDLER_ARGS thread, code, &state
481 #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
482 #define SIGSEGV_REGISTER_FILE &state->srr0, &state->r0
483
484 // Given a suspended thread, stuff the current instruction and
485 // registers into state.
486 //
487 // It would have been nice to have this be ppc/x86 independant which
488 // could have been done easily with a thread_state_t instead of
489 // ppc_thread_state_t, but because of the way this is called it is
490 // easier to do it this way.
491 #if (defined(ppc) || defined(__ppc__))
492 static inline sigsegv_address_t get_fault_instruction(mach_port_t thread, ppc_thread_state_t *state)
493 {
494 kern_return_t krc;
495 mach_msg_type_number_t count;
496
497 count = MACHINE_THREAD_STATE_COUNT;
498 krc = thread_get_state(thread, MACHINE_THREAD_STATE, (thread_state_t)state, &count);
499 MACH_CHECK_ERROR (thread_get_state, krc);
500
501 return (sigsegv_address_t)state->srr0;
502 }
503 #endif
504
505 // Since there can only be one exception thread running at any time
506 // this is not a problem.
507 #define MSG_SIZE 512
508 static char msgbuf[MSG_SIZE];
509 static char replybuf[MSG_SIZE];
510
511 /*
512 * This is the entry point for the exception handler thread. The job
513 * of this thread is to wait for exception messages on the exception
514 * port that was setup beforehand and to pass them on to exc_server.
515 * exc_server is a MIG generated function that is a part of Mach.
516 * Its job is to decide what to do with the exception message. In our
517 * case exc_server calls catch_exception_raise on our behalf. After
518 * exc_server returns, it is our responsibility to send the reply.
519 */
520 static void *
521 handleExceptions(void *priv)
522 {
523 mach_msg_header_t *msg, *reply;
524 kern_return_t krc;
525
526 msg = (mach_msg_header_t *)msgbuf;
527 reply = (mach_msg_header_t *)replybuf;
528
529 for (;;) {
530 krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
531 _exceptionPort, 0, MACH_PORT_NULL);
532 MACH_CHECK_ERROR(mach_msg, krc);
533
534 if (!exc_server(msg, reply)) {
535 fprintf(stderr, "exc_server hated the message\n");
536 exit(1);
537 }
538
539 krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
540 msg->msgh_local_port, 0, MACH_PORT_NULL);
541 if (krc != KERN_SUCCESS) {
542 fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
543 krc, mach_error_string(krc));
544 exit(1);
545 }
546 }
547 }
548 #endif
549 #endif
550
551
552 /*
553 * Instruction skipping
554 */
555
556 #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
557 // Decode and skip X86 instruction
558 #if (defined(i386) || defined(__i386__))
559 #if defined(__linux__)
560 enum {
561 X86_REG_EIP = 14,
562 X86_REG_EAX = 11,
563 X86_REG_ECX = 10,
564 X86_REG_EDX = 9,
565 X86_REG_EBX = 8,
566 X86_REG_ESP = 7,
567 X86_REG_EBP = 6,
568 X86_REG_ESI = 5,
569 X86_REG_EDI = 4
570 };
571 #endif
572 #if defined(__NetBSD__) || defined(__FreeBSD__)
573 enum {
574 X86_REG_EIP = 10,
575 X86_REG_EAX = 7,
576 X86_REG_ECX = 6,
577 X86_REG_EDX = 5,
578 X86_REG_EBX = 4,
579 X86_REG_ESP = 13,
580 X86_REG_EBP = 2,
581 X86_REG_ESI = 1,
582 X86_REG_EDI = 0
583 };
584 #endif
585 // FIXME: this is partly redundant with the instruction decoding phase
586 // to discover transfer type and register number
587 static inline int ix86_step_over_modrm(unsigned char * p)
588 {
589 int mod = (p[0] >> 6) & 3;
590 int rm = p[0] & 7;
591 int offset = 0;
592
593 // ModR/M Byte
594 switch (mod) {
595 case 0: // [reg]
596 if (rm == 5) return 4; // disp32
597 break;
598 case 1: // disp8[reg]
599 offset = 1;
600 break;
601 case 2: // disp32[reg]
602 offset = 4;
603 break;
604 case 3: // register
605 return 0;
606 }
607
608 // SIB Byte
609 if (rm == 4) {
610 if (mod == 0 && (p[1] & 7) == 5)
611 offset = 5; // disp32[index]
612 else
613 offset++;
614 }
615
616 return offset;
617 }
618
619 static bool ix86_skip_instruction(unsigned int * regs)
620 {
621 unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
622
623 if (eip == 0)
624 return false;
625
626 transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
627 transfer_size_t transfer_size = SIZE_LONG;
628
629 int reg = -1;
630 int len = 0;
631
632 // Operand size prefix
633 if (*eip == 0x66) {
634 eip++;
635 len++;
636 transfer_size = SIZE_WORD;
637 }
638
639 // Decode instruction
640 switch (eip[0]) {
641 case 0x0f:
642 switch (eip[1]) {
643 case 0xb6: // MOVZX r32, r/m8
644 case 0xb7: // MOVZX r32, r/m16
645 switch (eip[2] & 0xc0) {
646 case 0x80:
647 reg = (eip[2] >> 3) & 7;
648 transfer_type = SIGSEGV_TRANSFER_LOAD;
649 break;
650 case 0x40:
651 reg = (eip[2] >> 3) & 7;
652 transfer_type = SIGSEGV_TRANSFER_LOAD;
653 break;
654 case 0x00:
655 reg = (eip[2] >> 3) & 7;
656 transfer_type = SIGSEGV_TRANSFER_LOAD;
657 break;
658 }
659 len += 3 + ix86_step_over_modrm(eip + 2);
660 break;
661 }
662 break;
663 case 0x8a: // MOV r8, r/m8
664 transfer_size = SIZE_BYTE;
665 case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
666 switch (eip[1] & 0xc0) {
667 case 0x80:
668 reg = (eip[1] >> 3) & 7;
669 transfer_type = SIGSEGV_TRANSFER_LOAD;
670 break;
671 case 0x40:
672 reg = (eip[1] >> 3) & 7;
673 transfer_type = SIGSEGV_TRANSFER_LOAD;
674 break;
675 case 0x00:
676 reg = (eip[1] >> 3) & 7;
677 transfer_type = SIGSEGV_TRANSFER_LOAD;
678 break;
679 }
680 len += 2 + ix86_step_over_modrm(eip + 1);
681 break;
682 case 0x88: // MOV r/m8, r8
683 transfer_size = SIZE_BYTE;
684 case 0x89: // MOV r/m32, r32 (or 16-bit operation)
685 switch (eip[1] & 0xc0) {
686 case 0x80:
687 reg = (eip[1] >> 3) & 7;
688 transfer_type = SIGSEGV_TRANSFER_STORE;
689 break;
690 case 0x40:
691 reg = (eip[1] >> 3) & 7;
692 transfer_type = SIGSEGV_TRANSFER_STORE;
693 break;
694 case 0x00:
695 reg = (eip[1] >> 3) & 7;
696 transfer_type = SIGSEGV_TRANSFER_STORE;
697 break;
698 }
699 len += 2 + ix86_step_over_modrm(eip + 1);
700 break;
701 }
702
703 if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
704 // Unknown machine code, let it crash. Then patch the decoder
705 return false;
706 }
707
708 if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
709 static const int x86_reg_map[8] = {
710 X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
711 X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI
712 };
713
714 if (reg < 0 || reg >= 8)
715 return false;
716
717 int rloc = x86_reg_map[reg];
718 switch (transfer_size) {
719 case SIZE_BYTE:
720 regs[rloc] = (regs[rloc] & ~0xff);
721 break;
722 case SIZE_WORD:
723 regs[rloc] = (regs[rloc] & ~0xffff);
724 break;
725 case SIZE_LONG:
726 regs[rloc] = 0;
727 break;
728 }
729 }
730
731 #if DEBUG
732 printf("%08x: %s %s access", regs[X86_REG_EIP],
733 transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : "long",
734 transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
735
736 if (reg != -1) {
737 static const char * x86_reg_str_map[8] = {
738 "eax", "ecx", "edx", "ebx",
739 "esp", "ebp", "esi", "edi"
740 };
741 printf(" %s register %%%s", transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from", x86_reg_str_map[reg]);
742 }
743 printf(", %d bytes instruction\n", len);
744 #endif
745
746 regs[X86_REG_EIP] += len;
747 return true;
748 }
749 #endif
750
751 // Decode and skip PPC instruction
752 #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
753 static bool powerpc_skip_instruction(unsigned int * nip_p, unsigned int * regs)
754 {
755 instruction_t instr;
756 powerpc_decode_instruction(&instr, *nip_p, regs);
757
758 if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
759 // Unknown machine code, let it crash. Then patch the decoder
760 return false;
761 }
762
763 #if DEBUG
764 printf("%08x: %s %s access", *nip_p,
765 instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : "long",
766 instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
767
768 if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
769 printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
770 if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
771 printf(" r%d (rd = 0)\n", instr.rd);
772 #endif
773
774 if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
775 regs[instr.ra] = instr.addr;
776 if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
777 regs[instr.rd] = 0;
778
779 *nip_p += 4;
780 return true;
781 }
782 #endif
783 #endif
784
785 // Fallbacks
786 #ifndef SIGSEGV_FAULT_INSTRUCTION
787 #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_INVALID_PC
788 #endif
789 #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
790 #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
791 #endif
792 #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
793 #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP) sigsegv_fault_handler(ADDR, IP)
794 #endif
795
796 // SIGSEGV recovery supported ?
797 #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
798 #define HAVE_SIGSEGV_RECOVERY
799 #endif
800
801
802 /*
803 * SIGSEGV global handler
804 */
805
806 #if defined(HAVE_SIGSEGV_RECOVERY) || defined(HAVE_MACH_EXCEPTIONS)
807 // This function handles the badaccess to memory.
808 // It is called from the signal handler or the exception handler.
809 static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
810 {
811 sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
812 sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
813
814 // Call user's handler and reinstall the global handler, if required
815 switch (SIGSEGV_FAULT_HANDLER_INVOKE(fault_address, fault_instruction)) {
816 case SIGSEGV_RETURN_SUCCESS:
817 return true;
818
819 #if HAVE_SIGSEGV_SKIP_INSTRUCTION
820 case SIGSEGV_RETURN_SKIP_INSTRUCTION:
821 // Call the instruction skipper with the register file
822 // available
823 if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
824 #ifdef HAVE_MACH_EXCEPTIONS
825 // Unlike UNIX signals where the thread state
826 // is modified off of the stack, in Mach we
827 // need to actually call thread_set_state to
828 // have the register values updated.
829 kern_return_t krc;
830
831 krc = thread_set_state(thread,
832 MACHINE_THREAD_STATE, (thread_state_t)state,
833 MACHINE_THREAD_STATE_COUNT);
834 MACH_CHECK_ERROR (thread_get_state, krc);
835 #endif
836 return true;
837 }
838 break;
839 #endif
840 }
841
842 // We can't do anything with the fault_address, dump state?
843 if (sigsegv_state_dumper != 0)
844 sigsegv_state_dumper(fault_address, fault_instruction);
845
846 return false;
847 }
848 #endif
849
850
851 /*
852 * There are two mechanisms for handling a bad memory access,
853 * Mach exceptions and UNIX signals. The implementation specific
854 * code appears below. Its reponsibility is to call handle_badaccess
855 * which is the routine that handles the fault in an implementation
856 * agnostic manner. The implementation specific code below is then
857 * reponsible for checking whether handle_badaccess was able
858 * to handle the memory access error and perform any implementation
859 * specific tasks necessary afterwards.
860 */
861
862 #ifdef HAVE_MACH_EXCEPTIONS
863 /*
864 * We need to forward all exceptions that we do not handle.
865 * This is important, there are many exceptions that may be
866 * handled by other exception handlers. For example debuggers
867 * use exceptions and the exception hander is in another
868 * process in such a case. (Timothy J. Wood states in his
869 * message to the list that he based this code on that from
870 * gdb for Darwin.)
871 */
872 static inline kern_return_t
873 forward_exception(mach_port_t thread_port,
874 mach_port_t task_port,
875 exception_type_t exception_type,
876 exception_data_t exception_data,
877 mach_msg_type_number_t data_count,
878 ExceptionPorts *oldExceptionPorts)
879 {
880 kern_return_t kret;
881 unsigned int portIndex;
882 mach_port_t port;
883 exception_behavior_t behavior;
884 thread_state_flavor_t flavor;
885 thread_state_t thread_state;
886 mach_msg_type_number_t thread_state_count;
887
888 for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
889 if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
890 // This handler wants the exception
891 break;
892 }
893 }
894
895 if (portIndex >= oldExceptionPorts->maskCount) {
896 fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
897 return KERN_FAILURE;
898 }
899
900 port = oldExceptionPorts->handlers[portIndex];
901 behavior = oldExceptionPorts->behaviors[portIndex];
902 flavor = oldExceptionPorts->flavors[portIndex];
903
904 /*
905 fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
906 */
907
908 if (behavior != EXCEPTION_DEFAULT) {
909 thread_state_count = THREAD_STATE_MAX;
910 kret = thread_get_state (thread_port, flavor, thread_state,
911 &thread_state_count);
912 MACH_CHECK_ERROR (thread_get_state, kret);
913 }
914
915 switch (behavior) {
916 case EXCEPTION_DEFAULT:
917 // fprintf(stderr, "forwarding to exception_raise\n");
918 kret = exception_raise(port, thread_port, task_port, exception_type,
919 exception_data, data_count);
920 MACH_CHECK_ERROR (exception_raise, kret);
921 break;
922 case EXCEPTION_STATE:
923 // fprintf(stderr, "forwarding to exception_raise_state\n");
924 kret = exception_raise_state(port, exception_type, exception_data,
925 data_count, &flavor,
926 thread_state, thread_state_count,
927 thread_state, &thread_state_count);
928 MACH_CHECK_ERROR (exception_raise_state, kret);
929 break;
930 case EXCEPTION_STATE_IDENTITY:
931 // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
932 kret = exception_raise_state_identity(port, thread_port, task_port,
933 exception_type, exception_data,
934 data_count, &flavor,
935 thread_state, thread_state_count,
936 thread_state, &thread_state_count);
937 MACH_CHECK_ERROR (exception_raise_state_identity, kret);
938 break;
939 default:
940 fprintf(stderr, "forward_exception got unknown behavior\n");
941 break;
942 }
943
944 if (behavior != EXCEPTION_DEFAULT) {
945 kret = thread_set_state (thread_port, flavor, thread_state,
946 thread_state_count);
947 MACH_CHECK_ERROR (thread_set_state, kret);
948 }
949
950 return KERN_SUCCESS;
951 }
952
953 /*
954 * This is the code that actually handles the exception.
955 * It is called by exc_server. For Darwin 5 Apple changed
956 * this a bit from how this family of functions worked in
957 * Mach. If you are familiar with that it is a little
958 * different. The main variation that concerns us here is
959 * that code is an array of exception specific codes and
960 * codeCount is a count of the number of codes in the code
961 * array. In typical Mach all exceptions have a code
962 * and sub-code. It happens to be the case that for a
963 * EXC_BAD_ACCESS exception the first entry is the type of
964 * bad access that occurred and the second entry is the
965 * faulting address so these entries correspond exactly to
966 * how the code and sub-code are used on Mach.
967 *
968 * This is a MIG interface. No code in Basilisk II should
969 * call this directley. This has to have external C
970 * linkage because that is what exc_server expects.
971 */
972 kern_return_t
973 catch_exception_raise(mach_port_t exception_port,
974 mach_port_t thread,
975 mach_port_t task,
976 exception_type_t exception,
977 exception_data_t code,
978 mach_msg_type_number_t codeCount)
979 {
980 ppc_thread_state_t state;
981 kern_return_t krc;
982
983 if ((exception == EXC_BAD_ACCESS) && (codeCount >= 2)) {
984 if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
985 return KERN_SUCCESS;
986 }
987
988 // In Mach we do not need to remove the exception handler.
989 // If we forward the exception, eventually some exception handler
990 // will take care of this exception.
991 krc = forward_exception(thread, task, exception, code, codeCount, &ports);
992
993 return krc;
994 }
995 #endif
996
997 #ifdef HAVE_SIGSEGV_RECOVERY
998 // Handle bad memory accesses with signal handler
999 static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1000 {
1001 // Call handler and reinstall the global handler, if required
1002 if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
1003 #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1004 sigsegv_do_install_handler(sig);
1005 #endif
1006 return;
1007 }
1008
1009 // Failure: reinstall default handler for "safe" crash
1010 #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1011 SIGSEGV_ALL_SIGNALS
1012 #undef FAULT_HANDLER
1013 }
1014 #endif
1015
1016
1017 /*
1018 * SIGSEGV handler initialization
1019 */
1020
1021 #if defined(HAVE_SIGINFO_T)
1022 static bool sigsegv_do_install_handler(int sig)
1023 {
1024 // Setup SIGSEGV handler to process writes to frame buffer
1025 #ifdef HAVE_SIGACTION
1026 struct sigaction sigsegv_sa;
1027 sigemptyset(&sigsegv_sa.sa_mask);
1028 sigsegv_sa.sa_sigaction = sigsegv_handler;
1029 sigsegv_sa.sa_flags = SA_SIGINFO;
1030 return (sigaction(sig, &sigsegv_sa, 0) == 0);
1031 #else
1032 return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1033 #endif
1034 }
1035 #endif
1036
1037 #if defined(HAVE_SIGCONTEXT_SUBTERFUGE)
1038 static bool sigsegv_do_install_handler(int sig)
1039 {
1040 // Setup SIGSEGV handler to process writes to frame buffer
1041 #ifdef HAVE_SIGACTION
1042 struct sigaction sigsegv_sa;
1043 sigemptyset(&sigsegv_sa.sa_mask);
1044 sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
1045 sigsegv_sa.sa_flags = 0;
1046 #if !EMULATED_68K && defined(__NetBSD__)
1047 sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
1048 sigsegv_sa.sa_flags |= SA_ONSTACK;
1049 #endif
1050 return (sigaction(sig, &sigsegv_sa, 0) == 0);
1051 #else
1052 return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1053 #endif
1054 }
1055 #endif
1056
1057 #if defined(HAVE_MACH_EXCEPTIONS)
1058 static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1059 {
1060 /*
1061 * Except for the exception port functions, this should be
1062 * pretty much stock Mach. If later you choose to support
1063 * other Mach's besides Darwin, just check for __MACH__
1064 * here and __APPLE__ where the actual differences are.
1065 */
1066 #if defined(__APPLE__) && defined(__MACH__)
1067 if (sigsegv_fault_handler != NULL) {
1068 sigsegv_fault_handler = handler;
1069 return true;
1070 }
1071
1072 kern_return_t krc;
1073
1074 // create the the exception port
1075 krc = mach_port_allocate(mach_task_self(),
1076 MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
1077 if (krc != KERN_SUCCESS) {
1078 mach_error("mach_port_allocate", krc);
1079 return false;
1080 }
1081
1082 // add a port send right
1083 krc = mach_port_insert_right(mach_task_self(),
1084 _exceptionPort, _exceptionPort,
1085 MACH_MSG_TYPE_MAKE_SEND);
1086 if (krc != KERN_SUCCESS) {
1087 mach_error("mach_port_insert_right", krc);
1088 return false;
1089 }
1090
1091 // get the old exception ports
1092 ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
1093 krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
1094 &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
1095 if (krc != KERN_SUCCESS) {
1096 mach_error("thread_get_exception_ports", krc);
1097 return false;
1098 }
1099
1100 // set the new exception port
1101 //
1102 // We could have used EXCEPTION_STATE_IDENTITY instead of
1103 // EXCEPTION_DEFAULT to get the thread state in the initial
1104 // message, but it turns out that in the common case this is not
1105 // neccessary. If we need it we can later ask for it from the
1106 // suspended thread.
1107 //
1108 // Even with THREAD_STATE_NONE, Darwin provides the program
1109 // counter in the thread state. The comments in the header file
1110 // seem to imply that you can count on the GPR's on an exception
1111 // as well but just to be safe I use MACHINE_THREAD_STATE because
1112 // you have to ask for all of the GPR's anyway just to get the
1113 // program counter. In any case because of update effective
1114 // address from immediate and update address from effective
1115 // addresses of ra and rb modes (as good an name as any for these
1116 // addressing modes) used in PPC instructions, you will need the
1117 // GPR state anyway.
1118 krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
1119 EXCEPTION_DEFAULT, MACHINE_THREAD_STATE);
1120 if (krc != KERN_SUCCESS) {
1121 mach_error("thread_set_exception_ports", krc);
1122 return false;
1123 }
1124
1125 // create the exception handler thread
1126 if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
1127 (void)fprintf(stderr, "creation of exception thread failed\n");
1128 return false;
1129 }
1130
1131 // do not care about the exception thread any longer, let is run standalone
1132 (void)pthread_detach(exc_thread);
1133
1134 sigsegv_fault_handler = handler;
1135 return true;
1136 #else
1137 return false;
1138 #endif
1139 }
1140 #endif
1141
1142 bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1143 {
1144 #if defined(HAVE_SIGSEGV_RECOVERY)
1145 bool success = true;
1146 #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
1147 SIGSEGV_ALL_SIGNALS
1148 #undef FAULT_HANDLER
1149 if (success)
1150 sigsegv_fault_handler = handler;
1151 return success;
1152 #elif defined(HAVE_MACH_EXCEPTIONS)
1153 return sigsegv_do_install_handler(handler);
1154 #else
1155 // FAIL: no siginfo_t nor sigcontext subterfuge is available
1156 return false;
1157 #endif
1158 }
1159
1160
1161 /*
1162 * SIGSEGV handler deinitialization
1163 */
1164
1165 void sigsegv_deinstall_handler(void)
1166 {
1167 // We do nothing for Mach exceptions, the thread would need to be
1168 // suspended if not already so, and we might mess with other
1169 // exception handlers that came after we registered ours. There is
1170 // no need to remove the exception handler, in fact this function is
1171 // not called anywhere in Basilisk II.
1172 #ifdef HAVE_SIGSEGV_RECOVERY
1173 sigsegv_fault_handler = 0;
1174 #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1175 SIGSEGV_ALL_SIGNALS
1176 #undef FAULT_HANDLER
1177 #endif
1178 }
1179
1180
1181 /*
1182 * Set callback function when we cannot handle the fault
1183 */
1184
1185 void sigsegv_set_dump_state(sigsegv_state_dumper_t handler)
1186 {
1187 sigsegv_state_dumper = handler;
1188 }
1189
1190
1191 /*
1192 * Test program used for configure/test
1193 */
1194
1195 #ifdef CONFIGURE_TEST_SIGSEGV_RECOVERY
1196 #include <stdio.h>
1197 #include <stdlib.h>
1198 #include <fcntl.h>
1199 #include <sys/mman.h>
1200 #include "vm_alloc.h"
1201
1202 const int REF_INDEX = 123;
1203 const int REF_VALUE = 45;
1204
1205 static int page_size;
1206 static volatile char * page = 0;
1207 static volatile int handler_called = 0;
1208
1209 #ifdef __GNUC__
1210 // Code range where we expect the fault to come from
1211 static void *b_region, *e_region;
1212 #endif
1213
1214 static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1215 {
1216 handler_called++;
1217 if ((fault_address - REF_INDEX) != page)
1218 exit(10);
1219 #ifdef __GNUC__
1220 // Make sure reported fault instruction address falls into
1221 // expected code range
1222 if (instruction_address != SIGSEGV_INVALID_PC
1223 && ((instruction_address < (sigsegv_address_t)b_region) ||
1224 (instruction_address >= (sigsegv_address_t)e_region)))
1225 exit(11);
1226 #endif
1227 if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
1228 exit(12);
1229 return SIGSEGV_RETURN_SUCCESS;
1230 }
1231
1232 #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1233 static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1234 {
1235 if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
1236 #ifdef __GNUC__
1237 // Make sure reported fault instruction address falls into
1238 // expected code range
1239 if (instruction_address != SIGSEGV_INVALID_PC
1240 && ((instruction_address < (sigsegv_address_t)b_region) ||
1241 (instruction_address >= (sigsegv_address_t)e_region)))
1242 return SIGSEGV_RETURN_FAILURE;
1243 #endif
1244 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
1245 }
1246
1247 return SIGSEGV_RETURN_FAILURE;
1248 }
1249 #endif
1250
1251 int main(void)
1252 {
1253 if (vm_init() < 0)
1254 return 1;
1255
1256 page_size = getpagesize();
1257 if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
1258 return 2;
1259
1260 memset((void *)page, 0, page_size);
1261 if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
1262 return 3;
1263
1264 if (!sigsegv_install_handler(sigsegv_test_handler))
1265 return 4;
1266
1267 #ifdef __GNUC__
1268 b_region = &&L_b_region1;
1269 e_region = &&L_e_region1;
1270 #endif
1271 L_b_region1:
1272 page[REF_INDEX] = REF_VALUE;
1273 if (page[REF_INDEX] != REF_VALUE)
1274 exit(20);
1275 page[REF_INDEX] = REF_VALUE;
1276 L_e_region1:
1277
1278 if (handler_called != 1)
1279 return 5;
1280
1281 #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1282 if (!sigsegv_install_handler(sigsegv_insn_handler))
1283 return 6;
1284
1285 if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
1286 return 7;
1287
1288 for (int i = 0; i < page_size; i++)
1289 page[i] = (i + 1) % page_size;
1290
1291 if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
1292 return 8;
1293
1294 #define TEST_SKIP_INSTRUCTION(TYPE) do { \
1295 const unsigned int TAG = 0x12345678; \
1296 TYPE data = *((TYPE *)(page + sizeof(TYPE))); \
1297 volatile unsigned int effect = data + TAG; \
1298 if (effect != TAG) \
1299 return 9; \
1300 } while (0)
1301
1302 #ifdef __GNUC__
1303 b_region = &&L_b_region2;
1304 e_region = &&L_e_region2;
1305 #endif
1306 L_b_region2:
1307 TEST_SKIP_INSTRUCTION(unsigned char);
1308 TEST_SKIP_INSTRUCTION(unsigned short);
1309 TEST_SKIP_INSTRUCTION(unsigned int);
1310 L_e_region2:
1311 #endif
1312
1313 vm_exit();
1314 return 0;
1315 }
1316 #endif
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331