ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
Revision: 1.31
Committed: 2003-10-13T20:15:41Z (21 years, 1 month ago) by gbeauche
Branch: MAIN
Changes since 1.30: +5 -4 lines
Log Message:
fix merge with Mach exception filters, we have preconditions to check

File Contents

# Content
1 /*
2 * sigsegv.cpp - SIGSEGV signals support
3 *
4 * Derived from Bruno Haible's work on his SIGSEGV library for clisp
5 * <http://clisp.sourceforge.net/>
6 *
7 * MacOS X support derived from the post by Timothy J. Wood to the
8 * omnigroup macosx-dev list:
9 * Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10 * tjw@omnigroup.com Sun, 4 Jun 2000
11 * www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12 *
13 * Basilisk II (C) 1997-2002 Christian Bauer
14 *
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
19 *
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 * GNU General Public License for more details.
24 *
25 * You should have received a copy of the GNU General Public License
26 * along with this program; if not, write to the Free Software
27 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
28 */
29
30 #ifdef HAVE_UNISTD_H
31 #include <unistd.h>
32 #endif
33
34 #ifdef HAVE_CONFIG_H
35 #include "config.h"
36 #endif
37
38 #include <list>
39 #include <signal.h>
40 #include "sigsegv.h"
41
42 #ifndef NO_STD_NAMESPACE
43 using std::list;
44 #endif
45
46 // Return value type of a signal handler (standard type if not defined)
47 #ifndef RETSIGTYPE
48 #define RETSIGTYPE void
49 #endif
50
51 // Type of the system signal handler
52 typedef RETSIGTYPE (*signal_handler)(int);
53
54 // User's SIGSEGV handler
55 static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
56
57 // Function called to dump state if we can't handle the fault
58 static sigsegv_state_dumper_t sigsegv_state_dumper = 0;
59
60 // Actual SIGSEGV handler installer
61 static bool sigsegv_do_install_handler(int sig);
62
63
64 /*
65 * Instruction decoding aids
66 */
67
68 // Transfer size
69 enum transfer_size_t {
70 SIZE_UNKNOWN,
71 SIZE_BYTE,
72 SIZE_WORD,
73 SIZE_LONG
74 };
75
76 // Transfer type
77 typedef sigsegv_transfer_type_t transfer_type_t;
78
79 #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
80 // Addressing mode
81 enum addressing_mode_t {
82 MODE_UNKNOWN,
83 MODE_NORM,
84 MODE_U,
85 MODE_X,
86 MODE_UX
87 };
88
89 // Decoded instruction
90 struct instruction_t {
91 transfer_type_t transfer_type;
92 transfer_size_t transfer_size;
93 addressing_mode_t addr_mode;
94 unsigned int addr;
95 char ra, rd;
96 };
97
98 static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned int * gpr)
99 {
100 // Get opcode and divide into fields
101 unsigned int opcode = *((unsigned int *)nip);
102 unsigned int primop = opcode >> 26;
103 unsigned int exop = (opcode >> 1) & 0x3ff;
104 unsigned int ra = (opcode >> 16) & 0x1f;
105 unsigned int rb = (opcode >> 11) & 0x1f;
106 unsigned int rd = (opcode >> 21) & 0x1f;
107 signed int imm = (signed short)(opcode & 0xffff);
108
109 // Analyze opcode
110 transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
111 transfer_size_t transfer_size = SIZE_UNKNOWN;
112 addressing_mode_t addr_mode = MODE_UNKNOWN;
113 switch (primop) {
114 case 31:
115 switch (exop) {
116 case 23: // lwzx
117 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
118 case 55: // lwzux
119 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
120 case 87: // lbzx
121 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
122 case 119: // lbzux
123 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
124 case 151: // stwx
125 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
126 case 183: // stwux
127 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
128 case 215: // stbx
129 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
130 case 247: // stbux
131 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
132 case 279: // lhzx
133 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
134 case 311: // lhzux
135 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
136 case 343: // lhax
137 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
138 case 375: // lhaux
139 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
140 case 407: // sthx
141 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
142 case 439: // sthux
143 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
144 }
145 break;
146
147 case 32: // lwz
148 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
149 case 33: // lwzu
150 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
151 case 34: // lbz
152 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
153 case 35: // lbzu
154 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
155 case 36: // stw
156 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
157 case 37: // stwu
158 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
159 case 38: // stb
160 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
161 case 39: // stbu
162 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
163 case 40: // lhz
164 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
165 case 41: // lhzu
166 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
167 case 42: // lha
168 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
169 case 43: // lhau
170 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
171 case 44: // sth
172 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
173 case 45: // sthu
174 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
175 }
176
177 // Calculate effective address
178 unsigned int addr = 0;
179 switch (addr_mode) {
180 case MODE_X:
181 case MODE_UX:
182 if (ra == 0)
183 addr = gpr[rb];
184 else
185 addr = gpr[ra] + gpr[rb];
186 break;
187 case MODE_NORM:
188 case MODE_U:
189 if (ra == 0)
190 addr = (signed int)(signed short)imm;
191 else
192 addr = gpr[ra] + (signed int)(signed short)imm;
193 break;
194 default:
195 break;
196 }
197
198 // Commit decoded instruction
199 instruction->addr = addr;
200 instruction->addr_mode = addr_mode;
201 instruction->transfer_type = transfer_type;
202 instruction->transfer_size = transfer_size;
203 instruction->ra = ra;
204 instruction->rd = rd;
205 }
206 #endif
207
208
209 /*
210 * OS-dependant SIGSEGV signals support section
211 */
212
213 #if HAVE_SIGINFO_T
214 // Generic extended signal handler
215 #if defined(__NetBSD__) || defined(__FreeBSD__)
216 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
217 #else
218 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
219 #endif
220 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, siginfo_t *sip, void *scp
221 #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
222 #define SIGSEGV_FAULT_HANDLER_ARGS sip, scp
223 #define SIGSEGV_FAULT_ADDRESS sip->si_addr
224 #if defined(__NetBSD__) || defined(__FreeBSD__)
225 #if (defined(i386) || defined(__i386__))
226 #define SIGSEGV_FAULT_INSTRUCTION (((struct sigcontext *)scp)->sc_eip)
227 #define SIGSEGV_REGISTER_FILE ((unsigned int *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
228 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
229 #endif
230 #endif
231 #if defined(__linux__)
232 #if (defined(i386) || defined(__i386__))
233 #include <sys/ucontext.h>
234 #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
235 #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
236 #define SIGSEGV_REGISTER_FILE (unsigned int *)SIGSEGV_CONTEXT_REGS
237 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
238 #endif
239 #if (defined(x86_64) || defined(__x86_64__))
240 #include <sys/ucontext.h>
241 #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
242 #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
243 #define SIGSEGV_REGISTER_FILE (unsigned long *)SIGSEGV_CONTEXT_REGS
244 #endif
245 #if (defined(ia64) || defined(__ia64__))
246 #define SIGSEGV_FAULT_INSTRUCTION (((struct sigcontext *)scp)->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
247 #endif
248 #if (defined(powerpc) || defined(__powerpc__))
249 #include <sys/ucontext.h>
250 #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.regs)
251 #define SIGSEGV_FAULT_INSTRUCTION (SIGSEGV_CONTEXT_REGS->nip)
252 #define SIGSEGV_REGISTER_FILE (unsigned int *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned int *)(SIGSEGV_CONTEXT_REGS->gpr)
253 #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
254 #endif
255 #endif
256 #endif
257
258 #if HAVE_SIGCONTEXT_SUBTERFUGE
259 // Linux kernels prior to 2.4 ?
260 #if defined(__linux__)
261 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
262 #if (defined(i386) || defined(__i386__))
263 #include <asm/sigcontext.h>
264 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, struct sigcontext scs
265 #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
266 #define SIGSEGV_FAULT_HANDLER_ARGS &scs
267 #define SIGSEGV_FAULT_ADDRESS scp->cr2
268 #define SIGSEGV_FAULT_INSTRUCTION scp->eip
269 #define SIGSEGV_REGISTER_FILE (unsigned int *)scp
270 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
271 #endif
272 #if (defined(sparc) || defined(__sparc__))
273 #include <asm/sigcontext.h>
274 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp, char *addr
275 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp, addr
276 #define SIGSEGV_FAULT_ADDRESS addr
277 #endif
278 #if (defined(powerpc) || defined(__powerpc__))
279 #include <asm/sigcontext.h>
280 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, struct sigcontext *scp
281 #define SIGSEGV_FAULT_HANDLER_ARGS sig, scp
282 #define SIGSEGV_FAULT_ADDRESS scp->regs->dar
283 #define SIGSEGV_FAULT_INSTRUCTION scp->regs->nip
284 #define SIGSEGV_REGISTER_FILE (unsigned int *)&scp->regs->nip, (unsigned int *)(scp->regs->gpr)
285 #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
286 #endif
287 #if (defined(alpha) || defined(__alpha__))
288 #include <asm/sigcontext.h>
289 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
290 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
291 #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
292 #define SIGSEGV_FAULT_INSTRUCTION scp->sc_pc
293
294 // From Boehm's GC 6.0alpha8
295 static sigsegv_address_t get_fault_address(struct sigcontext *scp)
296 {
297 unsigned int instruction = *((unsigned int *)(scp->sc_pc));
298 unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
299 fault_address += (signed long)(signed short)(instruction & 0xffff);
300 return (sigsegv_address_t)fault_address;
301 }
302 #endif
303 #endif
304
305 // Irix 5 or 6 on MIPS
306 #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
307 #include <ucontext.h>
308 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
309 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
310 #define SIGSEGV_FAULT_ADDRESS scp->sc_badvaddr
311 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
312 #endif
313
314 // HP-UX
315 #if (defined(hpux) || defined(__hpux__))
316 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
317 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
318 #define SIGSEGV_FAULT_ADDRESS scp->sc_sl.sl_ss.ss_narrow.ss_cr21
319 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
320 #endif
321
322 // OSF/1 on Alpha
323 #if defined(__osf__)
324 #include <ucontext.h>
325 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
326 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
327 #define SIGSEGV_FAULT_ADDRESS scp->sc_traparg_a0
328 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
329 #endif
330
331 // AIX
332 #if defined(_AIX)
333 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
334 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
335 #define SIGSEGV_FAULT_ADDRESS scp->sc_jmpbuf.jmp_context.o_vaddr
336 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
337 #endif
338
339 // NetBSD or FreeBSD
340 #if defined(__NetBSD__) || defined(__FreeBSD__)
341 #if (defined(m68k) || defined(__m68k__))
342 #include <m68k/frame.h>
343 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
344 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
345 #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
346 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
347
348 // Use decoding scheme from BasiliskII/m68k native
349 static sigsegv_address_t get_fault_address(struct sigcontext *scp)
350 {
351 struct sigstate {
352 int ss_flags;
353 struct frame ss_frame;
354 };
355 struct sigstate *state = (struct sigstate *)scp->sc_ap;
356 char *fault_addr;
357 switch (state->ss_frame.f_format) {
358 case 7: /* 68040 access error */
359 /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */
360 fault_addr = state->ss_frame.f_fmt7.f_fa;
361 break;
362 default:
363 fault_addr = (char *)code;
364 break;
365 }
366 return (sigsegv_address_t)fault_addr;
367 }
368 #else
369 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, void *scp, char *addr
370 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp, addr
371 #define SIGSEGV_FAULT_ADDRESS addr
372 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
373 #endif
374 #endif
375
376 // MacOS X, not sure which version this works in. Under 10.1
377 // vm_protect does not appear to work from a signal handler. Under
378 // 10.2 signal handlers get siginfo type arguments but the si_addr
379 // field is the address of the faulting instruction and not the
380 // address that caused the SIGBUS. Maybe this works in 10.0? In any
381 // case with Mach exception handlers there is a way to do what this
382 // was meant to do.
383 #ifndef HAVE_MACH_EXCEPTIONS
384 #if defined(__APPLE__) && defined(__MACH__)
385 #if (defined(ppc) || defined(__ppc__))
386 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
387 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
388 #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
389 #define SIGSEGV_FAULT_INSTRUCTION scp->sc_ir
390 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
391 #define SIGSEGV_REGISTER_FILE (unsigned int *)&scp->sc_ir, &((unsigned int *) scp->sc_regs)[2]
392 #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
393
394 // Use decoding scheme from SheepShaver
395 static sigsegv_address_t get_fault_address(struct sigcontext *scp)
396 {
397 unsigned int nip = (unsigned int) scp->sc_ir;
398 unsigned int * gpr = &((unsigned int *) scp->sc_regs)[2];
399 instruction_t instr;
400
401 powerpc_decode_instruction(&instr, nip, gpr);
402 return (sigsegv_address_t)instr.addr;
403 }
404 #endif
405 #endif
406 #endif
407 #endif
408
409 #if HAVE_MACH_EXCEPTIONS
410
411 // This can easily be extended to other Mach systems, but really who
412 // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
413 // Mach 2.5/3.0?
414 #if defined(__APPLE__) && defined(__MACH__)
415
416 #include <sys/types.h>
417 #include <stdlib.h>
418 #include <stdio.h>
419 #include <pthread.h>
420
421 /*
422 * If you are familiar with MIG then you will understand the frustration
423 * that was necessary to get these embedded into C++ code by hand.
424 */
425 extern "C" {
426 #include <mach/mach.h>
427 #include <mach/mach_error.h>
428
429 extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
430 extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
431 mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
432 extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
433 exception_type_t, exception_data_t, mach_msg_type_number_t);
434 extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
435 exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
436 thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
437 extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
438 exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
439 thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
440 }
441
442 // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
443 #define HANDLER_COUNT 64
444
445 // structure to tuck away existing exception handlers
446 typedef struct _ExceptionPorts {
447 mach_msg_type_number_t maskCount;
448 exception_mask_t masks[HANDLER_COUNT];
449 exception_handler_t handlers[HANDLER_COUNT];
450 exception_behavior_t behaviors[HANDLER_COUNT];
451 thread_state_flavor_t flavors[HANDLER_COUNT];
452 } ExceptionPorts;
453
454 // exception handler thread
455 static pthread_t exc_thread;
456
457 // place where old exception handler info is stored
458 static ExceptionPorts ports;
459
460 // our exception port
461 static mach_port_t _exceptionPort = MACH_PORT_NULL;
462
463 #define MACH_CHECK_ERROR(name,ret) \
464 if (ret != KERN_SUCCESS) { \
465 mach_error(#name, ret); \
466 exit (1); \
467 }
468
469 #define SIGSEGV_FAULT_ADDRESS code[1]
470 #define SIGSEGV_FAULT_INSTRUCTION get_fault_instruction(thread, state)
471 #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP) ((code[0] == KERN_PROTECTION_FAILURE) ? sigsegv_fault_handler(ADDR, IP) : SIGSEGV_RETURN_FAILURE)
472 #define SIGSEGV_FAULT_HANDLER_ARGLIST mach_port_t thread, exception_data_t code, ppc_thread_state_t *state
473 #define SIGSEGV_FAULT_HANDLER_ARGS thread, code, &state
474 #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
475 #define SIGSEGV_REGISTER_FILE &state->srr0, &state->r0
476
477 // Given a suspended thread, stuff the current instruction and
478 // registers into state.
479 //
480 // It would have been nice to have this be ppc/x86 independant which
481 // could have been done easily with a thread_state_t instead of
482 // ppc_thread_state_t, but because of the way this is called it is
483 // easier to do it this way.
484 #if (defined(ppc) || defined(__ppc__))
485 static inline sigsegv_address_t get_fault_instruction(mach_port_t thread, ppc_thread_state_t *state)
486 {
487 kern_return_t krc;
488 mach_msg_type_number_t count;
489
490 count = MACHINE_THREAD_STATE_COUNT;
491 krc = thread_get_state(thread, MACHINE_THREAD_STATE, (thread_state_t)state, &count);
492 MACH_CHECK_ERROR (thread_get_state, krc);
493
494 return (sigsegv_address_t)state->srr0;
495 }
496 #endif
497
498 // Since there can only be one exception thread running at any time
499 // this is not a problem.
500 #define MSG_SIZE 512
501 static char msgbuf[MSG_SIZE];
502 static char replybuf[MSG_SIZE];
503
504 /*
505 * This is the entry point for the exception handler thread. The job
506 * of this thread is to wait for exception messages on the exception
507 * port that was setup beforehand and to pass them on to exc_server.
508 * exc_server is a MIG generated function that is a part of Mach.
509 * Its job is to decide what to do with the exception message. In our
510 * case exc_server calls catch_exception_raise on our behalf. After
511 * exc_server returns, it is our responsibility to send the reply.
512 */
513 static void *
514 handleExceptions(void *priv)
515 {
516 mach_msg_header_t *msg, *reply;
517 kern_return_t krc;
518
519 msg = (mach_msg_header_t *)msgbuf;
520 reply = (mach_msg_header_t *)replybuf;
521
522 for (;;) {
523 krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
524 _exceptionPort, 0, MACH_PORT_NULL);
525 MACH_CHECK_ERROR(mach_msg, krc);
526
527 if (!exc_server(msg, reply)) {
528 fprintf(stderr, "exc_server hated the message\n");
529 exit(1);
530 }
531
532 krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
533 msg->msgh_local_port, 0, MACH_PORT_NULL);
534 if (krc != KERN_SUCCESS) {
535 fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
536 krc, mach_error_string(krc));
537 exit(1);
538 }
539 }
540 }
541 #endif
542 #endif
543
544
545 /*
546 * Instruction skipping
547 */
548
549 #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
550 // Decode and skip X86 instruction
551 #if (defined(i386) || defined(__i386__))
552 #if defined(__linux__)
553 enum {
554 X86_REG_EIP = 14,
555 X86_REG_EAX = 11,
556 X86_REG_ECX = 10,
557 X86_REG_EDX = 9,
558 X86_REG_EBX = 8,
559 X86_REG_ESP = 7,
560 X86_REG_EBP = 6,
561 X86_REG_ESI = 5,
562 X86_REG_EDI = 4
563 };
564 #endif
565 #if defined(__NetBSD__) || defined(__FreeBSD__)
566 enum {
567 X86_REG_EIP = 10,
568 X86_REG_EAX = 7,
569 X86_REG_ECX = 6,
570 X86_REG_EDX = 5,
571 X86_REG_EBX = 4,
572 X86_REG_ESP = 13,
573 X86_REG_EBP = 2,
574 X86_REG_ESI = 1,
575 X86_REG_EDI = 0
576 };
577 #endif
578 // FIXME: this is partly redundant with the instruction decoding phase
579 // to discover transfer type and register number
580 static inline int ix86_step_over_modrm(unsigned char * p)
581 {
582 int mod = (p[0] >> 6) & 3;
583 int rm = p[0] & 7;
584 int offset = 0;
585
586 // ModR/M Byte
587 switch (mod) {
588 case 0: // [reg]
589 if (rm == 5) return 4; // disp32
590 break;
591 case 1: // disp8[reg]
592 offset = 1;
593 break;
594 case 2: // disp32[reg]
595 offset = 4;
596 break;
597 case 3: // register
598 return 0;
599 }
600
601 // SIB Byte
602 if (rm == 4) {
603 if (mod == 0 && (p[1] & 7) == 5)
604 offset = 5; // disp32[index]
605 else
606 offset++;
607 }
608
609 return offset;
610 }
611
612 static bool ix86_skip_instruction(unsigned int * regs)
613 {
614 unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
615
616 if (eip == 0)
617 return false;
618
619 transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
620 transfer_size_t transfer_size = SIZE_LONG;
621
622 int reg = -1;
623 int len = 0;
624
625 // Operand size prefix
626 if (*eip == 0x66) {
627 eip++;
628 len++;
629 transfer_size = SIZE_WORD;
630 }
631
632 // Decode instruction
633 switch (eip[0]) {
634 case 0x0f:
635 switch (eip[1]) {
636 case 0xb6: // MOVZX r32, r/m8
637 case 0xb7: // MOVZX r32, r/m16
638 switch (eip[2] & 0xc0) {
639 case 0x80:
640 reg = (eip[2] >> 3) & 7;
641 transfer_type = SIGSEGV_TRANSFER_LOAD;
642 break;
643 case 0x40:
644 reg = (eip[2] >> 3) & 7;
645 transfer_type = SIGSEGV_TRANSFER_LOAD;
646 break;
647 case 0x00:
648 reg = (eip[2] >> 3) & 7;
649 transfer_type = SIGSEGV_TRANSFER_LOAD;
650 break;
651 }
652 len += 3 + ix86_step_over_modrm(eip + 2);
653 break;
654 }
655 break;
656 case 0x8a: // MOV r8, r/m8
657 transfer_size = SIZE_BYTE;
658 case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
659 switch (eip[1] & 0xc0) {
660 case 0x80:
661 reg = (eip[1] >> 3) & 7;
662 transfer_type = SIGSEGV_TRANSFER_LOAD;
663 break;
664 case 0x40:
665 reg = (eip[1] >> 3) & 7;
666 transfer_type = SIGSEGV_TRANSFER_LOAD;
667 break;
668 case 0x00:
669 reg = (eip[1] >> 3) & 7;
670 transfer_type = SIGSEGV_TRANSFER_LOAD;
671 break;
672 }
673 len += 2 + ix86_step_over_modrm(eip + 1);
674 break;
675 case 0x88: // MOV r/m8, r8
676 transfer_size = SIZE_BYTE;
677 case 0x89: // MOV r/m32, r32 (or 16-bit operation)
678 switch (eip[1] & 0xc0) {
679 case 0x80:
680 reg = (eip[1] >> 3) & 7;
681 transfer_type = SIGSEGV_TRANSFER_STORE;
682 break;
683 case 0x40:
684 reg = (eip[1] >> 3) & 7;
685 transfer_type = SIGSEGV_TRANSFER_STORE;
686 break;
687 case 0x00:
688 reg = (eip[1] >> 3) & 7;
689 transfer_type = SIGSEGV_TRANSFER_STORE;
690 break;
691 }
692 len += 2 + ix86_step_over_modrm(eip + 1);
693 break;
694 }
695
696 if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
697 // Unknown machine code, let it crash. Then patch the decoder
698 return false;
699 }
700
701 if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
702 static const int x86_reg_map[8] = {
703 X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
704 X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI
705 };
706
707 if (reg < 0 || reg >= 8)
708 return false;
709
710 int rloc = x86_reg_map[reg];
711 switch (transfer_size) {
712 case SIZE_BYTE:
713 regs[rloc] = (regs[rloc] & ~0xff);
714 break;
715 case SIZE_WORD:
716 regs[rloc] = (regs[rloc] & ~0xffff);
717 break;
718 case SIZE_LONG:
719 regs[rloc] = 0;
720 break;
721 }
722 }
723
724 #if DEBUG
725 printf("%08x: %s %s access", regs[X86_REG_EIP],
726 transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : "long",
727 transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
728
729 if (reg != -1) {
730 static const char * x86_reg_str_map[8] = {
731 "eax", "ecx", "edx", "ebx",
732 "esp", "ebp", "esi", "edi"
733 };
734 printf(" %s register %%%s", transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from", x86_reg_str_map[reg]);
735 }
736 printf(", %d bytes instruction\n", len);
737 #endif
738
739 regs[X86_REG_EIP] += len;
740 return true;
741 }
742 #endif
743
744 // Decode and skip PPC instruction
745 #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
746 static bool powerpc_skip_instruction(unsigned int * nip_p, unsigned int * regs)
747 {
748 instruction_t instr;
749 powerpc_decode_instruction(&instr, *nip_p, regs);
750
751 if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
752 // Unknown machine code, let it crash. Then patch the decoder
753 return false;
754 }
755
756 #if DEBUG
757 printf("%08x: %s %s access", *nip_p,
758 instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : "long",
759 instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
760
761 if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
762 printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
763 if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
764 printf(" r%d (rd = 0)\n", instr.rd);
765 #endif
766
767 if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
768 regs[instr.ra] = instr.addr;
769 if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
770 regs[instr.rd] = 0;
771
772 *nip_p += 4;
773 return true;
774 }
775 #endif
776 #endif
777
778 // Fallbacks
779 #ifndef SIGSEGV_FAULT_INSTRUCTION
780 #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_INVALID_PC
781 #endif
782 #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
783 #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
784 #endif
785 #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
786 #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP) sigsegv_fault_handler(ADDR, IP)
787 #endif
788
789 // SIGSEGV recovery supported ?
790 #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
791 #define HAVE_SIGSEGV_RECOVERY
792 #endif
793
794
795 /*
796 * SIGSEGV global handler
797 */
798
799 #if defined(HAVE_SIGSEGV_RECOVERY) || defined(HAVE_MACH_EXCEPTIONS)
800 // This function handles the badaccess to memory.
801 // It is called from the signal handler or the exception handler.
802 static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
803 {
804 sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
805 sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
806
807 // Call user's handler and reinstall the global handler, if required
808 switch (SIGSEGV_FAULT_HANDLER_INVOKE(fault_address, fault_instruction)) {
809 case SIGSEGV_RETURN_SUCCESS:
810 return true;
811
812 #if HAVE_SIGSEGV_SKIP_INSTRUCTION
813 case SIGSEGV_RETURN_SKIP_INSTRUCTION:
814 // Call the instruction skipper with the register file
815 // available
816 if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
817 #ifdef HAVE_MACH_EXCEPTIONS
818 // Unlike UNIX signals where the thread state
819 // is modified off of the stack, in Mach we
820 // need to actually call thread_set_state to
821 // have the register values updated.
822 kern_return_t krc;
823
824 krc = thread_set_state(thread,
825 MACHINE_THREAD_STATE, (thread_state_t)state,
826 MACHINE_THREAD_STATE_COUNT);
827 MACH_CHECK_ERROR (thread_get_state, krc);
828 #endif
829 return true;
830 }
831 break;
832 #endif
833 }
834
835 // We can't do anything with the fault_address, dump state?
836 if (sigsegv_state_dumper != 0)
837 sigsegv_state_dumper(fault_address, fault_instruction);
838
839 return false;
840 }
841 #endif
842
843
844 /*
845 * There are two mechanisms for handling a bad memory access,
846 * Mach exceptions and UNIX signals. The implementation specific
847 * code appears below. Its reponsibility is to call handle_badaccess
848 * which is the routine that handles the fault in an implementation
849 * agnostic manner. The implementation specific code below is then
850 * reponsible for checking whether handle_badaccess was able
851 * to handle the memory access error and perform any implementation
852 * specific tasks necessary afterwards.
853 */
854
855 #ifdef HAVE_MACH_EXCEPTIONS
856 /*
857 * We need to forward all exceptions that we do not handle.
858 * This is important, there are many exceptions that may be
859 * handled by other exception handlers. For example debuggers
860 * use exceptions and the exception hander is in another
861 * process in such a case. (Timothy J. Wood states in his
862 * message to the list that he based this code on that from
863 * gdb for Darwin.)
864 */
865 static inline kern_return_t
866 forward_exception(mach_port_t thread_port,
867 mach_port_t task_port,
868 exception_type_t exception_type,
869 exception_data_t exception_data,
870 mach_msg_type_number_t data_count,
871 ExceptionPorts *oldExceptionPorts)
872 {
873 kern_return_t kret;
874 unsigned int portIndex;
875 mach_port_t port;
876 exception_behavior_t behavior;
877 thread_state_flavor_t flavor;
878 thread_state_t thread_state;
879 mach_msg_type_number_t thread_state_count;
880
881 for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
882 if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
883 // This handler wants the exception
884 break;
885 }
886 }
887
888 if (portIndex >= oldExceptionPorts->maskCount) {
889 fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
890 return KERN_FAILURE;
891 }
892
893 port = oldExceptionPorts->handlers[portIndex];
894 behavior = oldExceptionPorts->behaviors[portIndex];
895 flavor = oldExceptionPorts->flavors[portIndex];
896
897 /*
898 fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
899 */
900
901 if (behavior != EXCEPTION_DEFAULT) {
902 thread_state_count = THREAD_STATE_MAX;
903 kret = thread_get_state (thread_port, flavor, thread_state,
904 &thread_state_count);
905 MACH_CHECK_ERROR (thread_get_state, kret);
906 }
907
908 switch (behavior) {
909 case EXCEPTION_DEFAULT:
910 // fprintf(stderr, "forwarding to exception_raise\n");
911 kret = exception_raise(port, thread_port, task_port, exception_type,
912 exception_data, data_count);
913 MACH_CHECK_ERROR (exception_raise, kret);
914 break;
915 case EXCEPTION_STATE:
916 // fprintf(stderr, "forwarding to exception_raise_state\n");
917 kret = exception_raise_state(port, exception_type, exception_data,
918 data_count, &flavor,
919 thread_state, thread_state_count,
920 thread_state, &thread_state_count);
921 MACH_CHECK_ERROR (exception_raise_state, kret);
922 break;
923 case EXCEPTION_STATE_IDENTITY:
924 // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
925 kret = exception_raise_state_identity(port, thread_port, task_port,
926 exception_type, exception_data,
927 data_count, &flavor,
928 thread_state, thread_state_count,
929 thread_state, &thread_state_count);
930 MACH_CHECK_ERROR (exception_raise_state_identity, kret);
931 break;
932 default:
933 fprintf(stderr, "forward_exception got unknown behavior\n");
934 break;
935 }
936
937 if (behavior != EXCEPTION_DEFAULT) {
938 kret = thread_set_state (thread_port, flavor, thread_state,
939 thread_state_count);
940 MACH_CHECK_ERROR (thread_set_state, kret);
941 }
942
943 return KERN_SUCCESS;
944 }
945
946 /*
947 * This is the code that actually handles the exception.
948 * It is called by exc_server. For Darwin 5 Apple changed
949 * this a bit from how this family of functions worked in
950 * Mach. If you are familiar with that it is a little
951 * different. The main variation that concerns us here is
952 * that code is an array of exception specific codes and
953 * codeCount is a count of the number of codes in the code
954 * array. In typical Mach all exceptions have a code
955 * and sub-code. It happens to be the case that for a
956 * EXC_BAD_ACCESS exception the first entry is the type of
957 * bad access that occurred and the second entry is the
958 * faulting address so these entries correspond exactly to
959 * how the code and sub-code are used on Mach.
960 *
961 * This is a MIG interface. No code in Basilisk II should
962 * call this directley. This has to have external C
963 * linkage because that is what exc_server expects.
964 */
965 kern_return_t
966 catch_exception_raise(mach_port_t exception_port,
967 mach_port_t thread,
968 mach_port_t task,
969 exception_type_t exception,
970 exception_data_t code,
971 mach_msg_type_number_t codeCount)
972 {
973 ppc_thread_state_t state;
974 kern_return_t krc;
975
976 if ((exception == EXC_BAD_ACCESS) && (codeCount >= 2)) {
977 if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
978 return KERN_SUCCESS;
979 }
980
981 // In Mach we do not need to remove the exception handler.
982 // If we forward the exception, eventually some exception handler
983 // will take care of this exception.
984 krc = forward_exception(thread, task, exception, code, codeCount, &ports);
985
986 return krc;
987 }
988 #endif
989
990 #ifdef HAVE_SIGSEGV_RECOVERY
991 // Handle bad memory accesses with signal handler
992 static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
993 {
994 // Call handler and reinstall the global handler, if required
995 if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
996 #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
997 sigsegv_do_install_handler(sig);
998 #endif
999 return;
1000 }
1001
1002 // Failure: reinstall default handler for "safe" crash
1003 #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1004 SIGSEGV_ALL_SIGNALS
1005 #undef FAULT_HANDLER
1006 }
1007 #endif
1008
1009
1010 /*
1011 * SIGSEGV handler initialization
1012 */
1013
1014 #if defined(HAVE_SIGINFO_T)
1015 static bool sigsegv_do_install_handler(int sig)
1016 {
1017 // Setup SIGSEGV handler to process writes to frame buffer
1018 #ifdef HAVE_SIGACTION
1019 struct sigaction sigsegv_sa;
1020 sigemptyset(&sigsegv_sa.sa_mask);
1021 sigsegv_sa.sa_sigaction = sigsegv_handler;
1022 sigsegv_sa.sa_flags = SA_SIGINFO;
1023 return (sigaction(sig, &sigsegv_sa, 0) == 0);
1024 #else
1025 return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1026 #endif
1027 }
1028 #endif
1029
1030 #if defined(HAVE_SIGCONTEXT_SUBTERFUGE)
1031 static bool sigsegv_do_install_handler(int sig)
1032 {
1033 // Setup SIGSEGV handler to process writes to frame buffer
1034 #ifdef HAVE_SIGACTION
1035 struct sigaction sigsegv_sa;
1036 sigemptyset(&sigsegv_sa.sa_mask);
1037 sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
1038 sigsegv_sa.sa_flags = 0;
1039 #if !EMULATED_68K && defined(__NetBSD__)
1040 sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
1041 sigsegv_sa.sa_flags |= SA_ONSTACK;
1042 #endif
1043 return (sigaction(sig, &sigsegv_sa, 0) == 0);
1044 #else
1045 return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1046 #endif
1047 }
1048 #endif
1049
1050 #if defined(HAVE_MACH_EXCEPTIONS)
1051 static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1052 {
1053 /*
1054 * Except for the exception port functions, this should be
1055 * pretty much stock Mach. If later you choose to support
1056 * other Mach's besides Darwin, just check for __MACH__
1057 * here and __APPLE__ where the actual differences are.
1058 */
1059 #if defined(__APPLE__) && defined(__MACH__)
1060 if (sigsegv_fault_handler != NULL) {
1061 sigsegv_fault_handler = handler;
1062 return true;
1063 }
1064
1065 kern_return_t krc;
1066
1067 // create the the exception port
1068 krc = mach_port_allocate(mach_task_self(),
1069 MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
1070 if (krc != KERN_SUCCESS) {
1071 mach_error("mach_port_allocate", krc);
1072 return false;
1073 }
1074
1075 // add a port send right
1076 krc = mach_port_insert_right(mach_task_self(),
1077 _exceptionPort, _exceptionPort,
1078 MACH_MSG_TYPE_MAKE_SEND);
1079 if (krc != KERN_SUCCESS) {
1080 mach_error("mach_port_insert_right", krc);
1081 return false;
1082 }
1083
1084 // get the old exception ports
1085 ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
1086 krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
1087 &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
1088 if (krc != KERN_SUCCESS) {
1089 mach_error("thread_get_exception_ports", krc);
1090 return false;
1091 }
1092
1093 // set the new exception port
1094 //
1095 // We could have used EXCEPTION_STATE_IDENTITY instead of
1096 // EXCEPTION_DEFAULT to get the thread state in the initial
1097 // message, but it turns out that in the common case this is not
1098 // neccessary. If we need it we can later ask for it from the
1099 // suspended thread.
1100 //
1101 // Even with THREAD_STATE_NONE, Darwin provides the program
1102 // counter in the thread state. The comments in the header file
1103 // seem to imply that you can count on the GPR's on an exception
1104 // as well but just to be safe I use MACHINE_THREAD_STATE because
1105 // you have to ask for all of the GPR's anyway just to get the
1106 // program counter. In any case because of update effective
1107 // address from immediate and update address from effective
1108 // addresses of ra and rb modes (as good an name as any for these
1109 // addressing modes) used in PPC instructions, you will need the
1110 // GPR state anyway.
1111 krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
1112 EXCEPTION_DEFAULT, MACHINE_THREAD_STATE);
1113 if (krc != KERN_SUCCESS) {
1114 mach_error("thread_set_exception_ports", krc);
1115 return false;
1116 }
1117
1118 // create the exception handler thread
1119 if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
1120 (void)fprintf(stderr, "creation of exception thread failed\n");
1121 return false;
1122 }
1123
1124 // do not care about the exception thread any longer, let is run standalone
1125 (void)pthread_detach(exc_thread);
1126
1127 sigsegv_fault_handler = handler;
1128 return true;
1129 #else
1130 return false;
1131 #endif
1132 }
1133 #endif
1134
1135 bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1136 {
1137 #if defined(HAVE_SIGSEGV_RECOVERY)
1138 bool success = true;
1139 #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
1140 SIGSEGV_ALL_SIGNALS
1141 #undef FAULT_HANDLER
1142 if (success)
1143 sigsegv_fault_handler = handler;
1144 return success;
1145 #elif defined(HAVE_MACH_EXCEPTIONS)
1146 return sigsegv_do_install_handler(handler);
1147 #else
1148 // FAIL: no siginfo_t nor sigcontext subterfuge is available
1149 return false;
1150 #endif
1151 }
1152
1153
1154 /*
1155 * SIGSEGV handler deinitialization
1156 */
1157
1158 void sigsegv_deinstall_handler(void)
1159 {
1160 // We do nothing for Mach exceptions, the thread would need to be
1161 // suspended if not already so, and we might mess with other
1162 // exception handlers that came after we registered ours. There is
1163 // no need to remove the exception handler, in fact this function is
1164 // not called anywhere in Basilisk II.
1165 #ifdef HAVE_SIGSEGV_RECOVERY
1166 sigsegv_fault_handler = 0;
1167 #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1168 SIGSEGV_ALL_SIGNALS
1169 #undef FAULT_HANDLER
1170 #endif
1171 }
1172
1173
1174 /*
1175 * Set callback function when we cannot handle the fault
1176 */
1177
1178 void sigsegv_set_dump_state(sigsegv_state_dumper_t handler)
1179 {
1180 sigsegv_state_dumper = handler;
1181 }
1182
1183
1184 /*
1185 * Test program used for configure/test
1186 */
1187
1188 #ifdef CONFIGURE_TEST_SIGSEGV_RECOVERY
1189 #include <stdio.h>
1190 #include <stdlib.h>
1191 #include <fcntl.h>
1192 #include <sys/mman.h>
1193 #include "vm_alloc.h"
1194
1195 static int page_size;
1196 static volatile char * page = 0;
1197 static volatile int handler_called = 0;
1198
1199 static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1200 {
1201 handler_called++;
1202 if ((fault_address - 123) != page)
1203 exit(10);
1204 if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
1205 exit(11);
1206 return SIGSEGV_RETURN_SUCCESS;
1207 }
1208
1209 #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1210 #ifdef __GNUC__
1211 // Code range where we expect the fault to come from
1212 static void *b_region, *e_region;
1213 #endif
1214
1215 static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1216 {
1217 if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
1218 #ifdef __GNUC__
1219 // Make sure reported fault instruction address falls into
1220 // expected code range
1221 if (instruction_address != SIGSEGV_INVALID_PC
1222 && ((instruction_address < (sigsegv_address_t)b_region) ||
1223 (instruction_address >= (sigsegv_address_t)e_region)))
1224 return SIGSEGV_RETURN_FAILURE;
1225 #endif
1226 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
1227 }
1228
1229 return SIGSEGV_RETURN_FAILURE;
1230 }
1231 #endif
1232
1233 int main(void)
1234 {
1235 if (vm_init() < 0)
1236 return 1;
1237
1238 page_size = getpagesize();
1239 if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
1240 return 2;
1241
1242 if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
1243 return 3;
1244
1245 if (!sigsegv_install_handler(sigsegv_test_handler))
1246 return 4;
1247
1248 page[123] = 45;
1249 page[123] = 45;
1250
1251 if (handler_called != 1)
1252 return 5;
1253
1254 #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1255 if (!sigsegv_install_handler(sigsegv_insn_handler))
1256 return 6;
1257
1258 if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
1259 return 7;
1260
1261 for (int i = 0; i < page_size; i++)
1262 page[i] = (i + 1) % page_size;
1263
1264 if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
1265 return 8;
1266
1267 #define TEST_SKIP_INSTRUCTION(TYPE) do { \
1268 const unsigned int TAG = 0x12345678; \
1269 TYPE data = *((TYPE *)(page + sizeof(TYPE))); \
1270 volatile unsigned int effect = data + TAG; \
1271 if (effect != TAG) \
1272 return 9; \
1273 } while (0)
1274
1275 #ifdef __GNUC__
1276 b_region = &&L_b_region;
1277 e_region = &&L_e_region;
1278 #endif
1279 L_b_region:
1280 TEST_SKIP_INSTRUCTION(unsigned char);
1281 TEST_SKIP_INSTRUCTION(unsigned short);
1282 TEST_SKIP_INSTRUCTION(unsigned int);
1283 L_e_region:
1284 #endif
1285
1286 vm_exit();
1287 return 0;
1288 }
1289 #endif