ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
Revision: 1.30
Committed: 2003-10-13T19:56:17Z (21 years, 1 month ago) by gbeauche
Branch: MAIN
Changes since 1.29: +20 -15 lines
Log Message:
indentation fixes, optimize handle_badaccess() to receive only necessary
data and don't copy a struct sigcontext again on x86.

File Contents

# Content
1 /*
2 * sigsegv.cpp - SIGSEGV signals support
3 *
4 * Derived from Bruno Haible's work on his SIGSEGV library for clisp
5 * <http://clisp.sourceforge.net/>
6 *
7 * MacOS X support derived from the post by Timothy J. Wood to the
8 * omnigroup macosx-dev list:
9 * Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10 * tjw@omnigroup.com Sun, 4 Jun 2000
11 * www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12 *
13 * Basilisk II (C) 1997-2002 Christian Bauer
14 *
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
19 *
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 * GNU General Public License for more details.
24 *
25 * You should have received a copy of the GNU General Public License
26 * along with this program; if not, write to the Free Software
27 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
28 */
29
30 #ifdef HAVE_UNISTD_H
31 #include <unistd.h>
32 #endif
33
34 #ifdef HAVE_CONFIG_H
35 #include "config.h"
36 #endif
37
38 #include <list>
39 #include <signal.h>
40 #include "sigsegv.h"
41
42 #ifndef NO_STD_NAMESPACE
43 using std::list;
44 #endif
45
46 // Return value type of a signal handler (standard type if not defined)
47 #ifndef RETSIGTYPE
48 #define RETSIGTYPE void
49 #endif
50
51 // Type of the system signal handler
52 typedef RETSIGTYPE (*signal_handler)(int);
53
54 // User's SIGSEGV handler
55 static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
56
57 // Function called to dump state if we can't handle the fault
58 static sigsegv_state_dumper_t sigsegv_state_dumper = 0;
59
60 // Actual SIGSEGV handler installer
61 static bool sigsegv_do_install_handler(int sig);
62
63
64 /*
65 * Instruction decoding aids
66 */
67
68 // Transfer size
69 enum transfer_size_t {
70 SIZE_UNKNOWN,
71 SIZE_BYTE,
72 SIZE_WORD,
73 SIZE_LONG
74 };
75
76 // Transfer type
77 typedef sigsegv_transfer_type_t transfer_type_t;
78
79 #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
80 // Addressing mode
81 enum addressing_mode_t {
82 MODE_UNKNOWN,
83 MODE_NORM,
84 MODE_U,
85 MODE_X,
86 MODE_UX
87 };
88
89 // Decoded instruction
90 struct instruction_t {
91 transfer_type_t transfer_type;
92 transfer_size_t transfer_size;
93 addressing_mode_t addr_mode;
94 unsigned int addr;
95 char ra, rd;
96 };
97
98 static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned int * gpr)
99 {
100 // Get opcode and divide into fields
101 unsigned int opcode = *((unsigned int *)nip);
102 unsigned int primop = opcode >> 26;
103 unsigned int exop = (opcode >> 1) & 0x3ff;
104 unsigned int ra = (opcode >> 16) & 0x1f;
105 unsigned int rb = (opcode >> 11) & 0x1f;
106 unsigned int rd = (opcode >> 21) & 0x1f;
107 signed int imm = (signed short)(opcode & 0xffff);
108
109 // Analyze opcode
110 transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
111 transfer_size_t transfer_size = SIZE_UNKNOWN;
112 addressing_mode_t addr_mode = MODE_UNKNOWN;
113 switch (primop) {
114 case 31:
115 switch (exop) {
116 case 23: // lwzx
117 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
118 case 55: // lwzux
119 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
120 case 87: // lbzx
121 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
122 case 119: // lbzux
123 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
124 case 151: // stwx
125 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
126 case 183: // stwux
127 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
128 case 215: // stbx
129 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
130 case 247: // stbux
131 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
132 case 279: // lhzx
133 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
134 case 311: // lhzux
135 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
136 case 343: // lhax
137 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
138 case 375: // lhaux
139 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
140 case 407: // sthx
141 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
142 case 439: // sthux
143 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
144 }
145 break;
146
147 case 32: // lwz
148 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
149 case 33: // lwzu
150 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
151 case 34: // lbz
152 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
153 case 35: // lbzu
154 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
155 case 36: // stw
156 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
157 case 37: // stwu
158 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
159 case 38: // stb
160 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
161 case 39: // stbu
162 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
163 case 40: // lhz
164 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
165 case 41: // lhzu
166 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
167 case 42: // lha
168 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
169 case 43: // lhau
170 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
171 case 44: // sth
172 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
173 case 45: // sthu
174 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
175 }
176
177 // Calculate effective address
178 unsigned int addr = 0;
179 switch (addr_mode) {
180 case MODE_X:
181 case MODE_UX:
182 if (ra == 0)
183 addr = gpr[rb];
184 else
185 addr = gpr[ra] + gpr[rb];
186 break;
187 case MODE_NORM:
188 case MODE_U:
189 if (ra == 0)
190 addr = (signed int)(signed short)imm;
191 else
192 addr = gpr[ra] + (signed int)(signed short)imm;
193 break;
194 default:
195 break;
196 }
197
198 // Commit decoded instruction
199 instruction->addr = addr;
200 instruction->addr_mode = addr_mode;
201 instruction->transfer_type = transfer_type;
202 instruction->transfer_size = transfer_size;
203 instruction->ra = ra;
204 instruction->rd = rd;
205 }
206 #endif
207
208
209 /*
210 * OS-dependant SIGSEGV signals support section
211 */
212
213 #if HAVE_SIGINFO_T
214 // Generic extended signal handler
215 #define SIGSEGV_FAULT_HANDLER sigsegv_fault_handler
216 #if defined(__NetBSD__) || defined(__FreeBSD__)
217 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
218 #else
219 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
220 #endif
221 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, siginfo_t *sip, void *scp
222 #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
223 #define SIGSEGV_FAULT_HANDLER_ARGS sip, scp
224 #define SIGSEGV_FAULT_ADDRESS sip->si_addr
225 #if defined(__NetBSD__) || defined(__FreeBSD__)
226 #if (defined(i386) || defined(__i386__))
227 #define SIGSEGV_FAULT_INSTRUCTION (((struct sigcontext *)scp)->sc_eip)
228 #define SIGSEGV_REGISTER_FILE ((unsigned int *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
229 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
230 #endif
231 #endif
232 #if defined(__linux__)
233 #if (defined(i386) || defined(__i386__))
234 #include <sys/ucontext.h>
235 #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
236 #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
237 #define SIGSEGV_REGISTER_FILE (unsigned int *)SIGSEGV_CONTEXT_REGS
238 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
239 #endif
240 #if (defined(x86_64) || defined(__x86_64__))
241 #include <sys/ucontext.h>
242 #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
243 #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
244 #define SIGSEGV_REGISTER_FILE (unsigned long *)SIGSEGV_CONTEXT_REGS
245 #endif
246 #if (defined(ia64) || defined(__ia64__))
247 #define SIGSEGV_FAULT_INSTRUCTION (((struct sigcontext *)scp)->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
248 #endif
249 #if (defined(powerpc) || defined(__powerpc__))
250 #include <sys/ucontext.h>
251 #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.regs)
252 #define SIGSEGV_FAULT_INSTRUCTION (SIGSEGV_CONTEXT_REGS->nip)
253 #define SIGSEGV_REGISTER_FILE (unsigned int *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned int *)(SIGSEGV_CONTEXT_REGS->gpr)
254 #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
255 #endif
256 #endif
257 #endif
258
259 #if HAVE_SIGCONTEXT_SUBTERFUGE
260 #define SIGSEGV_FAULT_HANDLER sigsegv_fault_handler
261 // Linux kernels prior to 2.4 ?
262 #if defined(__linux__)
263 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
264 #if (defined(i386) || defined(__i386__))
265 #include <asm/sigcontext.h>
266 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, struct sigcontext scs
267 #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
268 #define SIGSEGV_FAULT_HANDLER_ARGS &scs
269 #define SIGSEGV_FAULT_ADDRESS scp->cr2
270 #define SIGSEGV_FAULT_INSTRUCTION scp->eip
271 #define SIGSEGV_REGISTER_FILE (unsigned int *)scp
272 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
273 #endif
274 #if (defined(sparc) || defined(__sparc__))
275 #include <asm/sigcontext.h>
276 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp, char *addr
277 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp, addr
278 #define SIGSEGV_FAULT_ADDRESS addr
279 #endif
280 #if (defined(powerpc) || defined(__powerpc__))
281 #include <asm/sigcontext.h>
282 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, struct sigcontext *scp
283 #define SIGSEGV_FAULT_HANDLER_ARGS sig, scp
284 #define SIGSEGV_FAULT_ADDRESS scp->regs->dar
285 #define SIGSEGV_FAULT_INSTRUCTION scp->regs->nip
286 #define SIGSEGV_REGISTER_FILE (unsigned int *)&scp->regs->nip, (unsigned int *)(scp->regs->gpr)
287 #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
288 #endif
289 #if (defined(alpha) || defined(__alpha__))
290 #include <asm/sigcontext.h>
291 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
292 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
293 #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
294 #define SIGSEGV_FAULT_INSTRUCTION scp->sc_pc
295
296 // From Boehm's GC 6.0alpha8
297 static sigsegv_address_t get_fault_address(struct sigcontext *scp)
298 {
299 unsigned int instruction = *((unsigned int *)(scp->sc_pc));
300 unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
301 fault_address += (signed long)(signed short)(instruction & 0xffff);
302 return (sigsegv_address_t)fault_address;
303 }
304 #endif
305 #endif
306
307 // Irix 5 or 6 on MIPS
308 #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
309 #include <ucontext.h>
310 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
311 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
312 #define SIGSEGV_FAULT_ADDRESS scp->sc_badvaddr
313 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
314 #endif
315
316 // HP-UX
317 #if (defined(hpux) || defined(__hpux__))
318 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
319 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
320 #define SIGSEGV_FAULT_ADDRESS scp->sc_sl.sl_ss.ss_narrow.ss_cr21
321 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
322 #endif
323
324 // OSF/1 on Alpha
325 #if defined(__osf__)
326 #include <ucontext.h>
327 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
328 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
329 #define SIGSEGV_FAULT_ADDRESS scp->sc_traparg_a0
330 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
331 #endif
332
333 // AIX
334 #if defined(_AIX)
335 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
336 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
337 #define SIGSEGV_FAULT_ADDRESS scp->sc_jmpbuf.jmp_context.o_vaddr
338 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
339 #endif
340
341 // NetBSD or FreeBSD
342 #if defined(__NetBSD__) || defined(__FreeBSD__)
343 #if (defined(m68k) || defined(__m68k__))
344 #include <m68k/frame.h>
345 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
346 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
347 #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
348 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
349
350 // Use decoding scheme from BasiliskII/m68k native
351 static sigsegv_address_t get_fault_address(struct sigcontext *scp)
352 {
353 struct sigstate {
354 int ss_flags;
355 struct frame ss_frame;
356 };
357 struct sigstate *state = (struct sigstate *)scp->sc_ap;
358 char *fault_addr;
359 switch (state->ss_frame.f_format) {
360 case 7: /* 68040 access error */
361 /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */
362 fault_addr = state->ss_frame.f_fmt7.f_fa;
363 break;
364 default:
365 fault_addr = (char *)code;
366 break;
367 }
368 return (sigsegv_address_t)fault_addr;
369 }
370 #else
371 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, void *scp, char *addr
372 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp, addr
373 #define SIGSEGV_FAULT_ADDRESS addr
374 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
375 #endif
376 #endif
377
378 // MacOS X, not sure which version this works in. Under 10.1
379 // vm_protect does not appear to work from a signal handler. Under
380 // 10.2 signal handlers get siginfo type arguments but the si_addr
381 // field is the address of the faulting instruction and not the
382 // address that caused the SIGBUS. Maybe this works in 10.0? In any
383 // case with Mach exception handlers there is a way to do what this
384 // was meant to do.
385 #ifndef HAVE_MACH_EXCEPTIONS
386 #if defined(__APPLE__) && defined(__MACH__)
387 #if (defined(ppc) || defined(__ppc__))
388 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
389 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
390 #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
391 #define SIGSEGV_FAULT_INSTRUCTION scp->sc_ir
392 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
393 #define SIGSEGV_REGISTER_FILE (unsigned int *)&scp->sc_ir, &((unsigned int *) scp->sc_regs)[2]
394 #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
395
396 // Use decoding scheme from SheepShaver
397 static sigsegv_address_t get_fault_address(struct sigcontext *scp)
398 {
399 unsigned int nip = (unsigned int) scp->sc_ir;
400 unsigned int * gpr = &((unsigned int *) scp->sc_regs)[2];
401 instruction_t instr;
402
403 powerpc_decode_instruction(&instr, nip, gpr);
404 return (sigsegv_address_t)instr.addr;
405 }
406 #endif
407 #endif
408 #endif
409 #endif
410
411 #if HAVE_MACH_EXCEPTIONS
412
413 // This can easily be extended to other Mach systems, but really who
414 // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
415 // Mach 2.5/3.0?
416 #if defined(__APPLE__) && defined(__MACH__)
417
418 #include <sys/types.h>
419 #include <stdlib.h>
420 #include <stdio.h>
421 #include <pthread.h>
422
423 /*
424 * If you are familiar with MIG then you will understand the frustration
425 * that was necessary to get these embedded into C++ code by hand.
426 */
427 extern "C" {
428 #include <mach/mach.h>
429 #include <mach/mach_error.h>
430
431 extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
432 extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
433 mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
434 extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
435 exception_type_t, exception_data_t, mach_msg_type_number_t);
436 extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
437 exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
438 thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
439 extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
440 exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
441 thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
442 }
443
444 // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
445 #define HANDLER_COUNT 64
446
447 // structure to tuck away existing exception handlers
448 typedef struct _ExceptionPorts {
449 mach_msg_type_number_t maskCount;
450 exception_mask_t masks[HANDLER_COUNT];
451 exception_handler_t handlers[HANDLER_COUNT];
452 exception_behavior_t behaviors[HANDLER_COUNT];
453 thread_state_flavor_t flavors[HANDLER_COUNT];
454 } ExceptionPorts;
455
456 // exception handler thread
457 static pthread_t exc_thread;
458
459 // place where old exception handler info is stored
460 static ExceptionPorts ports;
461
462 // our exception port
463 static mach_port_t _exceptionPort = MACH_PORT_NULL;
464
465 #define MACH_CHECK_ERROR(name,ret) \
466 if (ret != KERN_SUCCESS) { \
467 mach_error(#name, ret); \
468 exit (1); \
469 }
470
471 #define SIGSEGV_FAULT_ADDRESS code[1]
472 #define SIGSEGV_FAULT_INSTRUCTION get_fault_instruction(thread, state)
473 #define SIGSEGV_FAULT_HANDLER (code[0] == KERN_PROTECTION_FAILURE) && sigsegv_fault_handler
474 #define SIGSEGV_FAULT_HANDLER_ARGLIST mach_port_t thread, exception_data_t code, ppc_thread_state_t *state
475 #define SIGSEGV_FAULT_HANDLER_ARGS thread, code, &state
476 #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
477 #define SIGSEGV_REGISTER_FILE &state->srr0, &state->r0
478
479 // Given a suspended thread, stuff the current instruction and
480 // registers into state.
481 //
482 // It would have been nice to have this be ppc/x86 independant which
483 // could have been done easily with a thread_state_t instead of
484 // ppc_thread_state_t, but because of the way this is called it is
485 // easier to do it this way.
486 #if (defined(ppc) || defined(__ppc__))
487 static inline sigsegv_address_t get_fault_instruction(mach_port_t thread, ppc_thread_state_t *state)
488 {
489 kern_return_t krc;
490 mach_msg_type_number_t count;
491
492 count = MACHINE_THREAD_STATE_COUNT;
493 krc = thread_get_state(thread, MACHINE_THREAD_STATE, (thread_state_t)state, &count);
494 MACH_CHECK_ERROR (thread_get_state, krc);
495
496 return (sigsegv_address_t)state->srr0;
497 }
498 #endif
499
500 // Since there can only be one exception thread running at any time
501 // this is not a problem.
502 #define MSG_SIZE 512
503 static char msgbuf[MSG_SIZE];
504 static char replybuf[MSG_SIZE];
505
506 /*
507 * This is the entry point for the exception handler thread. The job
508 * of this thread is to wait for exception messages on the exception
509 * port that was setup beforehand and to pass them on to exc_server.
510 * exc_server is a MIG generated function that is a part of Mach.
511 * Its job is to decide what to do with the exception message. In our
512 * case exc_server calls catch_exception_raise on our behalf. After
513 * exc_server returns, it is our responsibility to send the reply.
514 */
515 static void *
516 handleExceptions(void *priv)
517 {
518 mach_msg_header_t *msg, *reply;
519 kern_return_t krc;
520
521 msg = (mach_msg_header_t *)msgbuf;
522 reply = (mach_msg_header_t *)replybuf;
523
524 for (;;) {
525 krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
526 _exceptionPort, 0, MACH_PORT_NULL);
527 MACH_CHECK_ERROR(mach_msg, krc);
528
529 if (!exc_server(msg, reply)) {
530 fprintf(stderr, "exc_server hated the message\n");
531 exit(1);
532 }
533
534 krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
535 msg->msgh_local_port, 0, MACH_PORT_NULL);
536 if (krc != KERN_SUCCESS) {
537 fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
538 krc, mach_error_string(krc));
539 exit(1);
540 }
541 }
542 }
543 #endif
544 #endif
545
546
547 /*
548 * Instruction skipping
549 */
550
551 #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
552 // Decode and skip X86 instruction
553 #if (defined(i386) || defined(__i386__))
554 #if defined(__linux__)
555 enum {
556 X86_REG_EIP = 14,
557 X86_REG_EAX = 11,
558 X86_REG_ECX = 10,
559 X86_REG_EDX = 9,
560 X86_REG_EBX = 8,
561 X86_REG_ESP = 7,
562 X86_REG_EBP = 6,
563 X86_REG_ESI = 5,
564 X86_REG_EDI = 4
565 };
566 #endif
567 #if defined(__NetBSD__) || defined(__FreeBSD__)
568 enum {
569 X86_REG_EIP = 10,
570 X86_REG_EAX = 7,
571 X86_REG_ECX = 6,
572 X86_REG_EDX = 5,
573 X86_REG_EBX = 4,
574 X86_REG_ESP = 13,
575 X86_REG_EBP = 2,
576 X86_REG_ESI = 1,
577 X86_REG_EDI = 0
578 };
579 #endif
580 // FIXME: this is partly redundant with the instruction decoding phase
581 // to discover transfer type and register number
582 static inline int ix86_step_over_modrm(unsigned char * p)
583 {
584 int mod = (p[0] >> 6) & 3;
585 int rm = p[0] & 7;
586 int offset = 0;
587
588 // ModR/M Byte
589 switch (mod) {
590 case 0: // [reg]
591 if (rm == 5) return 4; // disp32
592 break;
593 case 1: // disp8[reg]
594 offset = 1;
595 break;
596 case 2: // disp32[reg]
597 offset = 4;
598 break;
599 case 3: // register
600 return 0;
601 }
602
603 // SIB Byte
604 if (rm == 4) {
605 if (mod == 0 && (p[1] & 7) == 5)
606 offset = 5; // disp32[index]
607 else
608 offset++;
609 }
610
611 return offset;
612 }
613
614 static bool ix86_skip_instruction(unsigned int * regs)
615 {
616 unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
617
618 if (eip == 0)
619 return false;
620
621 transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
622 transfer_size_t transfer_size = SIZE_LONG;
623
624 int reg = -1;
625 int len = 0;
626
627 // Operand size prefix
628 if (*eip == 0x66) {
629 eip++;
630 len++;
631 transfer_size = SIZE_WORD;
632 }
633
634 // Decode instruction
635 switch (eip[0]) {
636 case 0x0f:
637 switch (eip[1]) {
638 case 0xb6: // MOVZX r32, r/m8
639 case 0xb7: // MOVZX r32, r/m16
640 switch (eip[2] & 0xc0) {
641 case 0x80:
642 reg = (eip[2] >> 3) & 7;
643 transfer_type = SIGSEGV_TRANSFER_LOAD;
644 break;
645 case 0x40:
646 reg = (eip[2] >> 3) & 7;
647 transfer_type = SIGSEGV_TRANSFER_LOAD;
648 break;
649 case 0x00:
650 reg = (eip[2] >> 3) & 7;
651 transfer_type = SIGSEGV_TRANSFER_LOAD;
652 break;
653 }
654 len += 3 + ix86_step_over_modrm(eip + 2);
655 break;
656 }
657 break;
658 case 0x8a: // MOV r8, r/m8
659 transfer_size = SIZE_BYTE;
660 case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
661 switch (eip[1] & 0xc0) {
662 case 0x80:
663 reg = (eip[1] >> 3) & 7;
664 transfer_type = SIGSEGV_TRANSFER_LOAD;
665 break;
666 case 0x40:
667 reg = (eip[1] >> 3) & 7;
668 transfer_type = SIGSEGV_TRANSFER_LOAD;
669 break;
670 case 0x00:
671 reg = (eip[1] >> 3) & 7;
672 transfer_type = SIGSEGV_TRANSFER_LOAD;
673 break;
674 }
675 len += 2 + ix86_step_over_modrm(eip + 1);
676 break;
677 case 0x88: // MOV r/m8, r8
678 transfer_size = SIZE_BYTE;
679 case 0x89: // MOV r/m32, r32 (or 16-bit operation)
680 switch (eip[1] & 0xc0) {
681 case 0x80:
682 reg = (eip[1] >> 3) & 7;
683 transfer_type = SIGSEGV_TRANSFER_STORE;
684 break;
685 case 0x40:
686 reg = (eip[1] >> 3) & 7;
687 transfer_type = SIGSEGV_TRANSFER_STORE;
688 break;
689 case 0x00:
690 reg = (eip[1] >> 3) & 7;
691 transfer_type = SIGSEGV_TRANSFER_STORE;
692 break;
693 }
694 len += 2 + ix86_step_over_modrm(eip + 1);
695 break;
696 }
697
698 if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
699 // Unknown machine code, let it crash. Then patch the decoder
700 return false;
701 }
702
703 if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
704 static const int x86_reg_map[8] = {
705 X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
706 X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI
707 };
708
709 if (reg < 0 || reg >= 8)
710 return false;
711
712 int rloc = x86_reg_map[reg];
713 switch (transfer_size) {
714 case SIZE_BYTE:
715 regs[rloc] = (regs[rloc] & ~0xff);
716 break;
717 case SIZE_WORD:
718 regs[rloc] = (regs[rloc] & ~0xffff);
719 break;
720 case SIZE_LONG:
721 regs[rloc] = 0;
722 break;
723 }
724 }
725
726 #if DEBUG
727 printf("%08x: %s %s access", regs[X86_REG_EIP],
728 transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : "long",
729 transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
730
731 if (reg != -1) {
732 static const char * x86_reg_str_map[8] = {
733 "eax", "ecx", "edx", "ebx",
734 "esp", "ebp", "esi", "edi"
735 };
736 printf(" %s register %%%s", transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from", x86_reg_str_map[reg]);
737 }
738 printf(", %d bytes instruction\n", len);
739 #endif
740
741 regs[X86_REG_EIP] += len;
742 return true;
743 }
744 #endif
745
746 // Decode and skip PPC instruction
747 #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
748 static bool powerpc_skip_instruction(unsigned int * nip_p, unsigned int * regs)
749 {
750 instruction_t instr;
751 powerpc_decode_instruction(&instr, *nip_p, regs);
752
753 if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
754 // Unknown machine code, let it crash. Then patch the decoder
755 return false;
756 }
757
758 #if DEBUG
759 printf("%08x: %s %s access", *nip_p,
760 instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : "long",
761 instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
762
763 if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
764 printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
765 if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
766 printf(" r%d (rd = 0)\n", instr.rd);
767 #endif
768
769 if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
770 regs[instr.ra] = instr.addr;
771 if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
772 regs[instr.rd] = 0;
773
774 *nip_p += 4;
775 return true;
776 }
777 #endif
778 #endif
779
780 // Fallbacks
781 #ifndef SIGSEGV_FAULT_INSTRUCTION
782 #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_INVALID_PC
783 #endif
784 #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
785 #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
786 #endif
787
788 // SIGSEGV recovery supported ?
789 #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
790 #define HAVE_SIGSEGV_RECOVERY
791 #endif
792
793
794 /*
795 * SIGSEGV global handler
796 */
797
798 #if defined(HAVE_SIGSEGV_RECOVERY) || defined(HAVE_MACH_EXCEPTIONS)
799 // This function handles the badaccess to memory.
800 // It is called from the signal handler or the exception handler.
801 static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
802 {
803 sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
804 sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
805
806 // Call user's handler and reinstall the global handler, if required
807 switch (sigsegv_fault_handler(fault_address, fault_instruction)) {
808 case SIGSEGV_RETURN_SUCCESS:
809 return true;
810
811 #if HAVE_SIGSEGV_SKIP_INSTRUCTION
812 case SIGSEGV_RETURN_SKIP_INSTRUCTION:
813 // Call the instruction skipper with the register file
814 // available
815 if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
816 #ifdef HAVE_MACH_EXCEPTIONS
817 // Unlike UNIX signals where the thread state
818 // is modified off of the stack, in Mach we
819 // need to actually call thread_set_state to
820 // have the register values updated.
821 kern_return_t krc;
822
823 krc = thread_set_state(thread,
824 MACHINE_THREAD_STATE, (thread_state_t)state,
825 MACHINE_THREAD_STATE_COUNT);
826 MACH_CHECK_ERROR (thread_get_state, krc);
827 #endif
828 return true;
829 }
830 break;
831 #endif
832 }
833
834 // We can't do anything with the fault_address, dump state?
835 if (sigsegv_state_dumper != 0)
836 sigsegv_state_dumper(fault_address, fault_instruction);
837
838 return false;
839 }
840 #endif
841
842
843 /*
844 * There are two mechanisms for handling a bad memory access,
845 * Mach exceptions and UNIX signals. The implementation specific
846 * code appears below. Its reponsibility is to call handle_badaccess
847 * which is the routine that handles the fault in an implementation
848 * agnostic manner. The implementation specific code below is then
849 * reponsible for checking whether handle_badaccess was able
850 * to handle the memory access error and perform any implementation
851 * specific tasks necessary afterwards.
852 */
853
854 #ifdef HAVE_MACH_EXCEPTIONS
855 /*
856 * We need to forward all exceptions that we do not handle.
857 * This is important, there are many exceptions that may be
858 * handled by other exception handlers. For example debuggers
859 * use exceptions and the exception hander is in another
860 * process in such a case. (Timothy J. Wood states in his
861 * message to the list that he based this code on that from
862 * gdb for Darwin.)
863 */
864 static inline kern_return_t
865 forward_exception(mach_port_t thread_port,
866 mach_port_t task_port,
867 exception_type_t exception_type,
868 exception_data_t exception_data,
869 mach_msg_type_number_t data_count,
870 ExceptionPorts *oldExceptionPorts)
871 {
872 kern_return_t kret;
873 unsigned int portIndex;
874 mach_port_t port;
875 exception_behavior_t behavior;
876 thread_state_flavor_t flavor;
877 thread_state_t thread_state;
878 mach_msg_type_number_t thread_state_count;
879
880 for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
881 if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
882 // This handler wants the exception
883 break;
884 }
885 }
886
887 if (portIndex >= oldExceptionPorts->maskCount) {
888 fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
889 return KERN_FAILURE;
890 }
891
892 port = oldExceptionPorts->handlers[portIndex];
893 behavior = oldExceptionPorts->behaviors[portIndex];
894 flavor = oldExceptionPorts->flavors[portIndex];
895
896 /*
897 fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
898 */
899
900 if (behavior != EXCEPTION_DEFAULT) {
901 thread_state_count = THREAD_STATE_MAX;
902 kret = thread_get_state (thread_port, flavor, thread_state,
903 &thread_state_count);
904 MACH_CHECK_ERROR (thread_get_state, kret);
905 }
906
907 switch (behavior) {
908 case EXCEPTION_DEFAULT:
909 // fprintf(stderr, "forwarding to exception_raise\n");
910 kret = exception_raise(port, thread_port, task_port, exception_type,
911 exception_data, data_count);
912 MACH_CHECK_ERROR (exception_raise, kret);
913 break;
914 case EXCEPTION_STATE:
915 // fprintf(stderr, "forwarding to exception_raise_state\n");
916 kret = exception_raise_state(port, exception_type, exception_data,
917 data_count, &flavor,
918 thread_state, thread_state_count,
919 thread_state, &thread_state_count);
920 MACH_CHECK_ERROR (exception_raise_state, kret);
921 break;
922 case EXCEPTION_STATE_IDENTITY:
923 // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
924 kret = exception_raise_state_identity(port, thread_port, task_port,
925 exception_type, exception_data,
926 data_count, &flavor,
927 thread_state, thread_state_count,
928 thread_state, &thread_state_count);
929 MACH_CHECK_ERROR (exception_raise_state_identity, kret);
930 break;
931 default:
932 fprintf(stderr, "forward_exception got unknown behavior\n");
933 break;
934 }
935
936 if (behavior != EXCEPTION_DEFAULT) {
937 kret = thread_set_state (thread_port, flavor, thread_state,
938 thread_state_count);
939 MACH_CHECK_ERROR (thread_set_state, kret);
940 }
941
942 return KERN_SUCCESS;
943 }
944
945 /*
946 * This is the code that actually handles the exception.
947 * It is called by exc_server. For Darwin 5 Apple changed
948 * this a bit from how this family of functions worked in
949 * Mach. If you are familiar with that it is a little
950 * different. The main variation that concerns us here is
951 * that code is an array of exception specific codes and
952 * codeCount is a count of the number of codes in the code
953 * array. In typical Mach all exceptions have a code
954 * and sub-code. It happens to be the case that for a
955 * EXC_BAD_ACCESS exception the first entry is the type of
956 * bad access that occurred and the second entry is the
957 * faulting address so these entries correspond exactly to
958 * how the code and sub-code are used on Mach.
959 *
960 * This is a MIG interface. No code in Basilisk II should
961 * call this directley. This has to have external C
962 * linkage because that is what exc_server expects.
963 */
964 kern_return_t
965 catch_exception_raise(mach_port_t exception_port,
966 mach_port_t thread,
967 mach_port_t task,
968 exception_type_t exception,
969 exception_data_t code,
970 mach_msg_type_number_t codeCount)
971 {
972 ppc_thread_state_t state;
973 kern_return_t krc;
974
975 if ((exception == EXC_BAD_ACCESS) && (codeCount >= 2)) {
976 if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
977 return KERN_SUCCESS;
978 }
979
980 // In Mach we do not need to remove the exception handler.
981 // If we forward the exception, eventually some exception handler
982 // will take care of this exception.
983 krc = forward_exception(thread, task, exception, code, codeCount, &ports);
984
985 return krc;
986 }
987 #endif
988
989 #ifdef HAVE_SIGSEGV_RECOVERY
990 // Handle bad memory accesses with signal handler
991 static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
992 {
993 // Call handler and reinstall the global handler, if required
994 if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
995 #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
996 sigsegv_do_install_handler(sig);
997 #endif
998 return;
999 }
1000
1001 // Failure: reinstall default handler for "safe" crash
1002 #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1003 SIGSEGV_ALL_SIGNALS
1004 #undef FAULT_HANDLER
1005 }
1006 #endif
1007
1008
1009 /*
1010 * SIGSEGV handler initialization
1011 */
1012
1013 #if defined(HAVE_SIGINFO_T)
1014 static bool sigsegv_do_install_handler(int sig)
1015 {
1016 // Setup SIGSEGV handler to process writes to frame buffer
1017 #ifdef HAVE_SIGACTION
1018 struct sigaction sigsegv_sa;
1019 sigemptyset(&sigsegv_sa.sa_mask);
1020 sigsegv_sa.sa_sigaction = sigsegv_handler;
1021 sigsegv_sa.sa_flags = SA_SIGINFO;
1022 return (sigaction(sig, &sigsegv_sa, 0) == 0);
1023 #else
1024 return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1025 #endif
1026 }
1027 #endif
1028
1029 #if defined(HAVE_SIGCONTEXT_SUBTERFUGE)
1030 static bool sigsegv_do_install_handler(int sig)
1031 {
1032 // Setup SIGSEGV handler to process writes to frame buffer
1033 #ifdef HAVE_SIGACTION
1034 struct sigaction sigsegv_sa;
1035 sigemptyset(&sigsegv_sa.sa_mask);
1036 sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
1037 sigsegv_sa.sa_flags = 0;
1038 #if !EMULATED_68K && defined(__NetBSD__)
1039 sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
1040 sigsegv_sa.sa_flags |= SA_ONSTACK;
1041 #endif
1042 return (sigaction(sig, &sigsegv_sa, 0) == 0);
1043 #else
1044 return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1045 #endif
1046 }
1047 #endif
1048
1049 #if defined(HAVE_MACH_EXCEPTIONS)
1050 static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1051 {
1052 /*
1053 * Except for the exception port functions, this should be
1054 * pretty much stock Mach. If later you choose to support
1055 * other Mach's besides Darwin, just check for __MACH__
1056 * here and __APPLE__ where the actual differences are.
1057 */
1058 #if defined(__APPLE__) && defined(__MACH__)
1059 if (sigsegv_fault_handler != NULL) {
1060 sigsegv_fault_handler = handler;
1061 return true;
1062 }
1063
1064 kern_return_t krc;
1065
1066 // create the the exception port
1067 krc = mach_port_allocate(mach_task_self(),
1068 MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
1069 if (krc != KERN_SUCCESS) {
1070 mach_error("mach_port_allocate", krc);
1071 return false;
1072 }
1073
1074 // add a port send right
1075 krc = mach_port_insert_right(mach_task_self(),
1076 _exceptionPort, _exceptionPort,
1077 MACH_MSG_TYPE_MAKE_SEND);
1078 if (krc != KERN_SUCCESS) {
1079 mach_error("mach_port_insert_right", krc);
1080 return false;
1081 }
1082
1083 // get the old exception ports
1084 ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
1085 krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
1086 &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
1087 if (krc != KERN_SUCCESS) {
1088 mach_error("thread_get_exception_ports", krc);
1089 return false;
1090 }
1091
1092 // set the new exception port
1093 //
1094 // We could have used EXCEPTION_STATE_IDENTITY instead of
1095 // EXCEPTION_DEFAULT to get the thread state in the initial
1096 // message, but it turns out that in the common case this is not
1097 // neccessary. If we need it we can later ask for it from the
1098 // suspended thread.
1099 //
1100 // Even with THREAD_STATE_NONE, Darwin provides the program
1101 // counter in the thread state. The comments in the header file
1102 // seem to imply that you can count on the GPR's on an exception
1103 // as well but just to be safe I use MACHINE_THREAD_STATE because
1104 // you have to ask for all of the GPR's anyway just to get the
1105 // program counter. In any case because of update effective
1106 // address from immediate and update address from effective
1107 // addresses of ra and rb modes (as good an name as any for these
1108 // addressing modes) used in PPC instructions, you will need the
1109 // GPR state anyway.
1110 krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
1111 EXCEPTION_DEFAULT, MACHINE_THREAD_STATE);
1112 if (krc != KERN_SUCCESS) {
1113 mach_error("thread_set_exception_ports", krc);
1114 return false;
1115 }
1116
1117 // create the exception handler thread
1118 if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
1119 (void)fprintf(stderr, "creation of exception thread failed\n");
1120 return false;
1121 }
1122
1123 // do not care about the exception thread any longer, let is run standalone
1124 (void)pthread_detach(exc_thread);
1125
1126 sigsegv_fault_handler = handler;
1127 return true;
1128 #else
1129 return false;
1130 #endif
1131 }
1132 #endif
1133
1134 bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1135 {
1136 #if defined(HAVE_SIGSEGV_RECOVERY)
1137 bool success = true;
1138 #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
1139 SIGSEGV_ALL_SIGNALS
1140 #undef FAULT_HANDLER
1141 if (success)
1142 sigsegv_fault_handler = handler;
1143 return success;
1144 #elif defined(HAVE_MACH_EXCEPTIONS)
1145 return sigsegv_do_install_handler(handler);
1146 #else
1147 // FAIL: no siginfo_t nor sigcontext subterfuge is available
1148 return false;
1149 #endif
1150 }
1151
1152
1153 /*
1154 * SIGSEGV handler deinitialization
1155 */
1156
1157 void sigsegv_deinstall_handler(void)
1158 {
1159 // We do nothing for Mach exceptions, the thread would need to be
1160 // suspended if not already so, and we might mess with other
1161 // exception handlers that came after we registered ours. There is
1162 // no need to remove the exception handler, in fact this function is
1163 // not called anywhere in Basilisk II.
1164 #ifdef HAVE_SIGSEGV_RECOVERY
1165 sigsegv_fault_handler = 0;
1166 #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1167 SIGSEGV_ALL_SIGNALS
1168 #undef FAULT_HANDLER
1169 #endif
1170 }
1171
1172
1173 /*
1174 * Set callback function when we cannot handle the fault
1175 */
1176
1177 void sigsegv_set_dump_state(sigsegv_state_dumper_t handler)
1178 {
1179 sigsegv_state_dumper = handler;
1180 }
1181
1182
1183 /*
1184 * Test program used for configure/test
1185 */
1186
1187 #ifdef CONFIGURE_TEST_SIGSEGV_RECOVERY
1188 #include <stdio.h>
1189 #include <stdlib.h>
1190 #include <fcntl.h>
1191 #include <sys/mman.h>
1192 #include "vm_alloc.h"
1193
1194 static int page_size;
1195 static volatile char * page = 0;
1196 static volatile int handler_called = 0;
1197
1198 static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1199 {
1200 handler_called++;
1201 if ((fault_address - 123) != page)
1202 exit(10);
1203 if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
1204 exit(11);
1205 return SIGSEGV_RETURN_SUCCESS;
1206 }
1207
1208 #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1209 #ifdef __GNUC__
1210 // Code range where we expect the fault to come from
1211 static void *b_region, *e_region;
1212 #endif
1213
1214 static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1215 {
1216 if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
1217 #ifdef __GNUC__
1218 // Make sure reported fault instruction address falls into
1219 // expected code range
1220 if (instruction_address != SIGSEGV_INVALID_PC
1221 && ((instruction_address < (sigsegv_address_t)b_region) ||
1222 (instruction_address >= (sigsegv_address_t)e_region)))
1223 return SIGSEGV_RETURN_FAILURE;
1224 #endif
1225 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
1226 }
1227
1228 return SIGSEGV_RETURN_FAILURE;
1229 }
1230 #endif
1231
1232 int main(void)
1233 {
1234 if (vm_init() < 0)
1235 return 1;
1236
1237 page_size = getpagesize();
1238 if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
1239 return 2;
1240
1241 if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
1242 return 3;
1243
1244 if (!sigsegv_install_handler(sigsegv_test_handler))
1245 return 4;
1246
1247 page[123] = 45;
1248 page[123] = 45;
1249
1250 if (handler_called != 1)
1251 return 5;
1252
1253 #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1254 if (!sigsegv_install_handler(sigsegv_insn_handler))
1255 return 6;
1256
1257 if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
1258 return 7;
1259
1260 for (int i = 0; i < page_size; i++)
1261 page[i] = (i + 1) % page_size;
1262
1263 if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
1264 return 8;
1265
1266 #define TEST_SKIP_INSTRUCTION(TYPE) do { \
1267 const unsigned int TAG = 0x12345678; \
1268 TYPE data = *((TYPE *)(page + sizeof(TYPE))); \
1269 volatile unsigned int effect = data + TAG; \
1270 if (effect != TAG) \
1271 return 9; \
1272 } while (0)
1273
1274 #ifdef __GNUC__
1275 b_region = &&L_b_region;
1276 e_region = &&L_e_region;
1277 #endif
1278 L_b_region:
1279 TEST_SKIP_INSTRUCTION(unsigned char);
1280 TEST_SKIP_INSTRUCTION(unsigned short);
1281 TEST_SKIP_INSTRUCTION(unsigned int);
1282 L_e_region:
1283 #endif
1284
1285 vm_exit();
1286 return 0;
1287 }
1288 #endif