ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
(Generate patch)

Comparing BasiliskII/src/Unix/sigsegv.cpp (file contents):
Revision 1.10 by gbeauche, 2002-05-12T11:10:50Z vs.
Revision 1.42 by gbeauche, 2004-01-19T16:59:13Z

# Line 4 | Line 4
4   *  Derived from Bruno Haible's work on his SIGSEGV library for clisp
5   *  <http://clisp.sourceforge.net/>
6   *
7 < *  Basilisk II (C) 1997-2002 Christian Bauer
7 > *  MacOS X support derived from the post by Timothy J. Wood to the
8 > *  omnigroup macosx-dev list:
9 > *    Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10 > *    tjw@omnigroup.com Sun, 4 Jun 2000
11 > *    www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12 > *
13 > *  Basilisk II (C) 1997-2004 Christian Bauer
14   *
15   *  This program is free software; you can redistribute it and/or modify
16   *  it under the terms of the GNU General Public License as published by
# Line 29 | Line 35
35   #include "config.h"
36   #endif
37  
38 + #include <list>
39 + #include <stdio.h>
40   #include <signal.h>
41   #include "sigsegv.h"
42  
43 + #ifndef NO_STD_NAMESPACE
44 + using std::list;
45 + #endif
46 +
47   // Return value type of a signal handler (standard type if not defined)
48   #ifndef RETSIGTYPE
49   #define RETSIGTYPE void
# Line 40 | Line 52
52   // Type of the system signal handler
53   typedef RETSIGTYPE (*signal_handler)(int);
54  
43 // Is the fault to be ignored?
44 static bool sigsegv_ignore_fault = false;
45
55   // User's SIGSEGV handler
56 < static sigsegv_handler_t sigsegv_user_handler = 0;
56 > static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
57  
58   // Function called to dump state if we can't handle the fault
59 < static sigsegv_handler_t sigsegv_dump_state = 0;
59 > static sigsegv_state_dumper_t sigsegv_state_dumper = 0;
60  
61   // Actual SIGSEGV handler installer
62   static bool sigsegv_do_install_handler(int sig);
63  
64  
65   /*
66 + *  Instruction decoding aids
67 + */
68 +
69 + // Transfer size
70 + enum transfer_size_t {
71 +        SIZE_UNKNOWN,
72 +        SIZE_BYTE,
73 +        SIZE_WORD, // 2 bytes
74 +        SIZE_LONG, // 4 bytes
75 +        SIZE_QUAD, // 8 bytes
76 + };
77 +
78 + // Transfer type
79 + typedef sigsegv_transfer_type_t transfer_type_t;
80 +
81 + #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
82 + // Addressing mode
83 + enum addressing_mode_t {
84 +        MODE_UNKNOWN,
85 +        MODE_NORM,
86 +        MODE_U,
87 +        MODE_X,
88 +        MODE_UX
89 + };
90 +
91 + // Decoded instruction
92 + struct instruction_t {
93 +        transfer_type_t         transfer_type;
94 +        transfer_size_t         transfer_size;
95 +        addressing_mode_t       addr_mode;
96 +        unsigned int            addr;
97 +        char                            ra, rd;
98 + };
99 +
100 + static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned int * gpr)
101 + {
102 +        // Get opcode and divide into fields
103 +        unsigned int opcode = *((unsigned int *)nip);
104 +        unsigned int primop = opcode >> 26;
105 +        unsigned int exop = (opcode >> 1) & 0x3ff;
106 +        unsigned int ra = (opcode >> 16) & 0x1f;
107 +        unsigned int rb = (opcode >> 11) & 0x1f;
108 +        unsigned int rd = (opcode >> 21) & 0x1f;
109 +        signed int imm = (signed short)(opcode & 0xffff);
110 +        
111 +        // Analyze opcode
112 +        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
113 +        transfer_size_t transfer_size = SIZE_UNKNOWN;
114 +        addressing_mode_t addr_mode = MODE_UNKNOWN;
115 +        switch (primop) {
116 +        case 31:
117 +                switch (exop) {
118 +                case 23:        // lwzx
119 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
120 +                case 55:        // lwzux
121 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
122 +                case 87:        // lbzx
123 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
124 +                case 119:       // lbzux
125 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
126 +                case 151:       // stwx
127 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
128 +                case 183:       // stwux
129 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
130 +                case 215:       // stbx
131 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
132 +                case 247:       // stbux
133 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
134 +                case 279:       // lhzx
135 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
136 +                case 311:       // lhzux
137 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
138 +                case 343:       // lhax
139 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
140 +                case 375:       // lhaux
141 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
142 +                case 407:       // sthx
143 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
144 +                case 439:       // sthux
145 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
146 +                }
147 +                break;
148 +        
149 +        case 32:        // lwz
150 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
151 +        case 33:        // lwzu
152 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
153 +        case 34:        // lbz
154 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
155 +        case 35:        // lbzu
156 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
157 +        case 36:        // stw
158 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
159 +        case 37:        // stwu
160 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
161 +        case 38:        // stb
162 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
163 +        case 39:        // stbu
164 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
165 +        case 40:        // lhz
166 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
167 +        case 41:        // lhzu
168 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
169 +        case 42:        // lha
170 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
171 +        case 43:        // lhau
172 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
173 +        case 44:        // sth
174 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
175 +        case 45:        // sthu
176 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
177 +        }
178 +        
179 +        // Calculate effective address
180 +        unsigned int addr = 0;
181 +        switch (addr_mode) {
182 +        case MODE_X:
183 +        case MODE_UX:
184 +                if (ra == 0)
185 +                        addr = gpr[rb];
186 +                else
187 +                        addr = gpr[ra] + gpr[rb];
188 +                break;
189 +        case MODE_NORM:
190 +        case MODE_U:
191 +                if (ra == 0)
192 +                        addr = (signed int)(signed short)imm;
193 +                else
194 +                        addr = gpr[ra] + (signed int)(signed short)imm;
195 +                break;
196 +        default:
197 +                break;
198 +        }
199 +        
200 +        // Commit decoded instruction
201 +        instruction->addr = addr;
202 +        instruction->addr_mode = addr_mode;
203 +        instruction->transfer_type = transfer_type;
204 +        instruction->transfer_size = transfer_size;
205 +        instruction->ra = ra;
206 +        instruction->rd = rd;
207 + }
208 + #endif
209 +
210 +
211 + /*
212   *  OS-dependant SIGSEGV signals support section
213   */
214  
# Line 65 | Line 220 | static bool sigsegv_do_install_handler(i
220   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
221   #endif
222   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, siginfo_t *sip, void *scp
223 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
224 + #define SIGSEGV_FAULT_HANDLER_ARGS              sip, scp
225   #define SIGSEGV_FAULT_ADDRESS                   sip->si_addr
226 + #if (defined(sgi) || defined(__sgi))
227 + #include <ucontext.h>
228 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
229 + #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)SIGSEGV_CONTEXT_REGS[CTX_EPC]
230 + #if (defined(mips) || defined(__mips))
231 + #define SIGSEGV_REGISTER_FILE                   SIGSEGV_CONTEXT_REGS
232 + #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
233 + #endif
234 + #endif
235 + #if defined(__sun__)
236 + #if (defined(sparc) || defined(__sparc__))
237 + #include <sys/stack.h>
238 + #include <sys/regset.h>
239 + #include <sys/ucontext.h>
240 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
241 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[REG_PC]
242 + #define SIGSEGV_SPARC_GWINDOWS                  (((ucontext_t *)scp)->uc_mcontext.gwins)
243 + #define SIGSEGV_SPARC_RWINDOW                   (struct rwindow *)((char *)SIGSEGV_CONTEXT_REGS[REG_SP] + STACK_BIAS)
244 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)SIGSEGV_CONTEXT_REGS), SIGSEGV_SPARC_GWINDOWS, SIGSEGV_SPARC_RWINDOW
245 + #define SIGSEGV_SKIP_INSTRUCTION                sparc_skip_instruction
246 + #endif
247 + #endif
248 + #if defined(__FreeBSD__)
249 + #if (defined(i386) || defined(__i386__))
250 + #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_eip)
251 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
252 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
253 + #endif
254 + #endif
255   #if defined(__linux__)
256   #if (defined(i386) || defined(__i386__))
257   #include <sys/ucontext.h>
258 < #define SIGSEGV_FAULT_INSTRUCTION               (((ucontext_t *)scp)->uc_mcontext.gregs[14]) /* should use REG_EIP instead */
259 < #define SIGSEGV_REGISTER_FILE                   (unsigned long *)(((ucontext_t *)scp)->uc_mcontext.gregs)
258 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
259 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
260 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
261 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
262 > #endif
263 > #if (defined(x86_64) || defined(__x86_64__))
264 > #include <sys/ucontext.h>
265 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
266 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
267 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
268   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
269   #endif
270   #if (defined(ia64) || defined(__ia64__))
# Line 78 | Line 272 | static bool sigsegv_do_install_handler(i
272   #endif
273   #if (defined(powerpc) || defined(__powerpc__))
274   #include <sys/ucontext.h>
275 < #define SIGSEGV_FAULT_INSTRUCTION               (((ucontext_t *)scp)->uc_mcontext.regs->nip)
275 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.regs)
276 > #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS->nip)
277 > #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned int *)(SIGSEGV_CONTEXT_REGS->gpr)
278 > #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
279 > #endif
280 > #if (defined(hppa) || defined(__hppa__))
281 > #undef  SIGSEGV_FAULT_ADDRESS
282 > #define SIGSEGV_FAULT_ADDRESS                   sip->si_ptr
283 > #endif
284 > #if (defined(arm) || defined(__arm__))
285 > #include <asm/ucontext.h> /* use kernel structure, glibc may not be in sync */
286 > #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
287 > #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.arm_pc)
288   #endif
289   #endif
290   #endif
# Line 90 | Line 296 | static bool sigsegv_do_install_handler(i
296   #if (defined(i386) || defined(__i386__))
297   #include <asm/sigcontext.h>
298   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext scs
299 < #define SIGSEGV_FAULT_ADDRESS                   scs.cr2
300 < #define SIGSEGV_FAULT_INSTRUCTION               scs.eip
301 < #define SIGSEGV_REGISTER_FILE                   (unsigned long *)(&scs)
299 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
300 > #define SIGSEGV_FAULT_HANDLER_ARGS              &scs
301 > #define SIGSEGV_FAULT_ADDRESS                   scp->cr2
302 > #define SIGSEGV_FAULT_INSTRUCTION               scp->eip
303 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)scp
304   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
305   #endif
306   #if (defined(sparc) || defined(__sparc__))
307   #include <asm/sigcontext.h>
308   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
309 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
310   #define SIGSEGV_FAULT_ADDRESS                   addr
311   #endif
312   #if (defined(powerpc) || defined(__powerpc__))
313   #include <asm/sigcontext.h>
314   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext *scp
315 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, scp
316   #define SIGSEGV_FAULT_ADDRESS                   scp->regs->dar
317   #define SIGSEGV_FAULT_INSTRUCTION               scp->regs->nip
318 + #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&scp->regs->nip, (unsigned int *)(scp->regs->gpr)
319 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
320   #endif
321   #if (defined(alpha) || defined(__alpha__))
322   #include <asm/sigcontext.h>
323   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
324 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
325   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
326   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
327 <
328 < // From Boehm's GC 6.0alpha8
329 < static sigsegv_address_t get_fault_address(struct sigcontext *scp)
330 < {
331 <        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
332 <        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
333 <        fault_address += (signed long)(signed short)(instruction & 0xffff);
121 <        return (sigsegv_address_t)fault_address;
122 < }
327 > #endif
328 > #if (defined(arm) || defined(__arm__))
329 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int r1, int r2, int r3, struct sigcontext sc
330 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
331 > #define SIGSEGV_FAULT_HANDLER_ARGS              &sc
332 > #define SIGSEGV_FAULT_ADDRESS                   scp->fault_address
333 > #define SIGSEGV_FAULT_INSTRUCTION               scp->arm_pc
334   #endif
335   #endif
336  
337   // Irix 5 or 6 on MIPS
338 < #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
338 > #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(_SYSTYPE_SVR4))
339 > #include <ucontext.h>
340   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
341 < #define SIGSEGV_FAULT_ADDRESS                   scp->sc_badvaddr
341 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
342 > #define SIGSEGV_FAULT_ADDRESS                   (unsigned long)scp->sc_badvaddr
343 > #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)scp->sc_pc
344   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
345   #endif
346  
347 + // HP-UX
348 + #if (defined(hpux) || defined(__hpux__))
349 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
350 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
351 + #define SIGSEGV_FAULT_ADDRESS                   scp->sc_sl.sl_ss.ss_narrow.ss_cr21
352 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
353 + #endif
354 +
355   // OSF/1 on Alpha
356   #if defined(__osf__)
357 + #include <ucontext.h>
358   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
359 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
360   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_traparg_a0
361   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
362   #endif
# Line 140 | Line 364 | static sigsegv_address_t get_fault_addre
364   // AIX
365   #if defined(_AIX)
366   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
367 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
368   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_jmpbuf.jmp_context.o_vaddr
369   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
370   #endif
371  
372 < // NetBSD or FreeBSD
373 < #if defined(__NetBSD__) || defined(__FreeBSD__)
372 > // NetBSD
373 > #if defined(__NetBSD__)
374   #if (defined(m68k) || defined(__m68k__))
375   #include <m68k/frame.h>
376   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
377 < #define SIGSEGV_FAULT_ADDRESS                   ({                                                                                                                              \
378 <        struct sigstate {                                                                                                                                                                       \
154 <                int ss_flags;                                                                                                                                                                   \
155 <                struct frame ss_frame;                                                                                                                                                  \
156 <        };                                                                                                                                                                                                      \
157 <        struct sigstate *state = (struct sigstate *)scp->sc_ap;                                                                                         \
158 <        char *fault_addr;                                                                                                                                                                       \
159 <        switch (state->ss_frame.f_format) {                                                                                                                                     \
160 <        case 7:         /* 68040 access error */                                                                                                                                \
161 <                /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */    \
162 <                fault_addr = state->ss_frame.f_fmt7.f_fa;                                                                                                               \
163 <                break;                                                                                                                                                                                  \
164 <        default:                                                                                                                                                                                        \
165 <                fault_addr = (char *)code;                                                                                                                                              \
166 <                break;                                                                                                                                                                                  \
167 <        }                                                                                                                                                                                                       \
168 <        fault_addr;                                                                                                                                                                                     \
169 < })
377 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
378 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
379   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
380 < #else
381 < #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, void *scp, char *addr
382 < #define SIGSEGV_FAULT_ADDRESS                   addr
380 >
381 > // Use decoding scheme from BasiliskII/m68k native
382 > static sigsegv_address_t get_fault_address(struct sigcontext *scp)
383 > {
384 >        struct sigstate {
385 >                int ss_flags;
386 >                struct frame ss_frame;
387 >        };
388 >        struct sigstate *state = (struct sigstate *)scp->sc_ap;
389 >        char *fault_addr;
390 >        switch (state->ss_frame.f_format) {
391 >        case 7:         /* 68040 access error */
392 >                /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */
393 >                fault_addr = state->ss_frame.f_fmt7.f_fa;
394 >                break;
395 >        default:
396 >                fault_addr = (char *)code;
397 >                break;
398 >        }
399 >        return (sigsegv_address_t)fault_addr;
400 > }
401 > #endif
402 > #if (defined(alpha) || defined(__alpha__))
403 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
404 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
405 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
406   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
407   #endif
408 + #if (defined(i386) || defined(__i386__))
409 + #error "FIXME: need to decode instruction and compute EA"
410 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
411 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
412 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
413 + #endif
414 + #endif
415 + #if defined(__FreeBSD__)
416 + #if (defined(i386) || defined(__i386__))
417 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
418 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
419 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
420 + #define SIGSEGV_FAULT_ADDRESS                   addr
421 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_eip
422 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&scp->sc_edi)
423 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
424 + #endif
425 + #if (defined(alpha) || defined(__alpha__))
426 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
427 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, char *addr, struct sigcontext *scp
428 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, addr, scp
429 + #define SIGSEGV_FAULT_ADDRESS                   addr
430 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
431 + #endif
432   #endif
433  
434 < // MacOS X
434 > // Extract fault address out of a sigcontext
435 > #if (defined(alpha) || defined(__alpha__))
436 > // From Boehm's GC 6.0alpha8
437 > static sigsegv_address_t get_fault_address(struct sigcontext *scp)
438 > {
439 >        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
440 >        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
441 >        fault_address += (signed long)(signed short)(instruction & 0xffff);
442 >        return (sigsegv_address_t)fault_address;
443 > }
444 > #endif
445 >
446 >
447 > // MacOS X, not sure which version this works in. Under 10.1
448 > // vm_protect does not appear to work from a signal handler. Under
449 > // 10.2 signal handlers get siginfo type arguments but the si_addr
450 > // field is the address of the faulting instruction and not the
451 > // address that caused the SIGBUS. Maybe this works in 10.0? In any
452 > // case with Mach exception handlers there is a way to do what this
453 > // was meant to do.
454 > #ifndef HAVE_MACH_EXCEPTIONS
455   #if defined(__APPLE__) && defined(__MACH__)
456   #if (defined(ppc) || defined(__ppc__))
457   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
458 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
459   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
460   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_ir
461   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
462 + #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&scp->sc_ir, &((unsigned int *) scp->sc_regs)[2]
463 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
464  
465 < // From Boehm's GC 6.0alpha8
187 < #define EXTRACT_OP1(iw)     (((iw) & 0xFC000000) >> 26)
188 < #define EXTRACT_OP2(iw)     (((iw) & 0x000007FE) >> 1)
189 < #define EXTRACT_REGA(iw)    (((iw) & 0x001F0000) >> 16)
190 < #define EXTRACT_REGB(iw)    (((iw) & 0x03E00000) >> 21)
191 < #define EXTRACT_REGC(iw)    (((iw) & 0x0000F800) >> 11)
192 < #define EXTRACT_DISP(iw)    ((short *) &(iw))[1]
193 <
465 > // Use decoding scheme from SheepShaver
466   static sigsegv_address_t get_fault_address(struct sigcontext *scp)
467   {
468 <        unsigned int   instr = *((unsigned int *) scp->sc_ir);
469 <        unsigned int * regs = &((unsigned int *) scp->sc_regs)[2];
470 <        int            disp = 0, tmp;
471 <        unsigned int   baseA = 0, baseB = 0;
472 <        unsigned int   addr, alignmask = 0xFFFFFFFF;
473 <
474 <        switch(EXTRACT_OP1(instr)) {
475 <        case 38:   /* stb */
476 <        case 39:   /* stbu */
477 <        case 54:   /* stfd */
478 <        case 55:   /* stfdu */
479 <        case 52:   /* stfs */
480 <        case 53:   /* stfsu */
481 <        case 44:   /* sth */
482 <        case 45:   /* sthu */
483 <        case 47:   /* stmw */
484 <        case 36:   /* stw */
485 <        case 37:   /* stwu */
486 <                tmp = EXTRACT_REGA(instr);
487 <                if(tmp > 0)
488 <                        baseA = regs[tmp];
489 <                disp = EXTRACT_DISP(instr);
490 <                break;
491 <        case 31:
492 <                switch(EXTRACT_OP2(instr)) {
493 <                case 86:    /* dcbf */
494 <                case 54:    /* dcbst */
495 <                case 1014:  /* dcbz */
496 <                case 247:   /* stbux */
497 <                case 215:   /* stbx */
498 <                case 759:   /* stfdux */
499 <                case 727:   /* stfdx */
500 <                case 983:   /* stfiwx */
501 <                case 695:   /* stfsux */
502 <                case 663:   /* stfsx */
503 <                case 918:   /* sthbrx */
504 <                case 439:   /* sthux */
505 <                case 407:   /* sthx */
506 <                case 661:   /* stswx */
507 <                case 662:   /* stwbrx */
508 <                case 150:   /* stwcx. */
509 <                case 183:   /* stwux */
510 <                case 151:   /* stwx */
511 <                case 135:   /* stvebx */
512 <                case 167:   /* stvehx */
513 <                case 199:   /* stvewx */
514 <                case 231:   /* stvx */
515 <                case 487:   /* stvxl */
516 <                        tmp = EXTRACT_REGA(instr);
517 <                        if(tmp > 0)
518 <                                baseA = regs[tmp];
519 <                        baseB = regs[EXTRACT_REGC(instr)];
520 <                        /* determine Altivec alignment mask */
521 <                        switch(EXTRACT_OP2(instr)) {
522 <                        case 167:   /* stvehx */
523 <                                alignmask = 0xFFFFFFFE;
524 <                                break;
525 <                        case 199:   /* stvewx */
526 <                                alignmask = 0xFFFFFFFC;
527 <                                break;
528 <                        case 231:   /* stvx */
529 <                                alignmask = 0xFFFFFFF0;
530 <                                break;
531 <                        case 487:  /* stvxl */
532 <                                alignmask = 0xFFFFFFF0;
533 <                                break;
534 <                        }
535 <                        break;
536 <                case 725:   /* stswi */
537 <                        tmp = EXTRACT_REGA(instr);
538 <                        if(tmp > 0)
539 <                                baseA = regs[tmp];
540 <                        break;
541 <                default:   /* ignore instruction */
542 <                        return 0;
543 <                        break;
468 >        unsigned int   nip = (unsigned int) scp->sc_ir;
469 >        unsigned int * gpr = &((unsigned int *) scp->sc_regs)[2];
470 >        instruction_t  instr;
471 >
472 >        powerpc_decode_instruction(&instr, nip, gpr);
473 >        return (sigsegv_address_t)instr.addr;
474 > }
475 > #endif
476 > #endif
477 > #endif
478 > #endif
479 >
480 > #if HAVE_MACH_EXCEPTIONS
481 >
482 > // This can easily be extended to other Mach systems, but really who
483 > // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
484 > // Mach 2.5/3.0?
485 > #if defined(__APPLE__) && defined(__MACH__)
486 >
487 > #include <sys/types.h>
488 > #include <stdlib.h>
489 > #include <stdio.h>
490 > #include <pthread.h>
491 >
492 > /*
493 > * If you are familiar with MIG then you will understand the frustration
494 > * that was necessary to get these embedded into C++ code by hand.
495 > */
496 > extern "C" {
497 > #include <mach/mach.h>
498 > #include <mach/mach_error.h>
499 >
500 > extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
501 > extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
502 >        mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
503 > extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
504 >        exception_type_t, exception_data_t, mach_msg_type_number_t);
505 > extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
506 >        exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
507 >        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
508 > extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
509 >        exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
510 >        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
511 > }
512 >
513 > // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
514 > #define HANDLER_COUNT 64
515 >
516 > // structure to tuck away existing exception handlers
517 > typedef struct _ExceptionPorts {
518 >        mach_msg_type_number_t maskCount;
519 >        exception_mask_t masks[HANDLER_COUNT];
520 >        exception_handler_t handlers[HANDLER_COUNT];
521 >        exception_behavior_t behaviors[HANDLER_COUNT];
522 >        thread_state_flavor_t flavors[HANDLER_COUNT];
523 > } ExceptionPorts;
524 >
525 > // exception handler thread
526 > static pthread_t exc_thread;
527 >
528 > // place where old exception handler info is stored
529 > static ExceptionPorts ports;
530 >
531 > // our exception port
532 > static mach_port_t _exceptionPort = MACH_PORT_NULL;
533 >
534 > #define MACH_CHECK_ERROR(name,ret) \
535 > if (ret != KERN_SUCCESS) { \
536 >        mach_error(#name, ret); \
537 >        exit (1); \
538 > }
539 >
540 > #define SIGSEGV_FAULT_ADDRESS                   code[1]
541 > #define SIGSEGV_FAULT_INSTRUCTION               get_fault_instruction(thread, state)
542 > #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  ((code[0] == KERN_PROTECTION_FAILURE) ? sigsegv_fault_handler(ADDR, IP) : SIGSEGV_RETURN_FAILURE)
543 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   mach_port_t thread, exception_data_t code, ppc_thread_state_t *state
544 > #define SIGSEGV_FAULT_HANDLER_ARGS              thread, code, &state
545 > #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
546 > #define SIGSEGV_REGISTER_FILE                   &state->srr0, &state->r0
547 >
548 > // Given a suspended thread, stuff the current instruction and
549 > // registers into state.
550 > //
551 > // It would have been nice to have this be ppc/x86 independant which
552 > // could have been done easily with a thread_state_t instead of
553 > // ppc_thread_state_t, but because of the way this is called it is
554 > // easier to do it this way.
555 > #if (defined(ppc) || defined(__ppc__))
556 > static inline sigsegv_address_t get_fault_instruction(mach_port_t thread, ppc_thread_state_t *state)
557 > {
558 >        kern_return_t krc;
559 >        mach_msg_type_number_t count;
560 >
561 >        count = MACHINE_THREAD_STATE_COUNT;
562 >        krc = thread_get_state(thread, MACHINE_THREAD_STATE, (thread_state_t)state, &count);
563 >        MACH_CHECK_ERROR (thread_get_state, krc);
564 >
565 >        return (sigsegv_address_t)state->srr0;
566 > }
567 > #endif
568 >
569 > // Since there can only be one exception thread running at any time
570 > // this is not a problem.
571 > #define MSG_SIZE 512
572 > static char msgbuf[MSG_SIZE];
573 > static char replybuf[MSG_SIZE];
574 >
575 > /*
576 > * This is the entry point for the exception handler thread. The job
577 > * of this thread is to wait for exception messages on the exception
578 > * port that was setup beforehand and to pass them on to exc_server.
579 > * exc_server is a MIG generated function that is a part of Mach.
580 > * Its job is to decide what to do with the exception message. In our
581 > * case exc_server calls catch_exception_raise on our behalf. After
582 > * exc_server returns, it is our responsibility to send the reply.
583 > */
584 > static void *
585 > handleExceptions(void *priv)
586 > {
587 >        mach_msg_header_t *msg, *reply;
588 >        kern_return_t krc;
589 >
590 >        msg = (mach_msg_header_t *)msgbuf;
591 >        reply = (mach_msg_header_t *)replybuf;
592 >
593 >        for (;;) {
594 >                krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
595 >                                _exceptionPort, 0, MACH_PORT_NULL);
596 >                MACH_CHECK_ERROR(mach_msg, krc);
597 >
598 >                if (!exc_server(msg, reply)) {
599 >                        fprintf(stderr, "exc_server hated the message\n");
600 >                        exit(1);
601 >                }
602 >
603 >                krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
604 >                                 msg->msgh_local_port, 0, MACH_PORT_NULL);
605 >                if (krc != KERN_SUCCESS) {
606 >                        fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
607 >                                krc, mach_error_string(krc));
608 >                        exit(1);
609                  }
273                break;
274        default:   /* ignore instruction */
275                return 0;
276                break;
610          }
278        
279        addr = (baseA + baseB) + disp;
280        addr &= alignmask;
281        return (sigsegv_address_t)addr;
611   }
612   #endif
613   #endif
614 < #endif
614 >
615 >
616 > /*
617 > *  Instruction skipping
618 > */
619  
620   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
621   // Decode and skip X86 instruction
622 < #if (defined(i386) || defined(__i386__))
622 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
623   #if defined(__linux__)
624   enum {
625 + #if (defined(i386) || defined(__i386__))
626          X86_REG_EIP = 14,
627          X86_REG_EAX = 11,
628          X86_REG_ECX = 10,
# Line 298 | Line 632 | enum {
632          X86_REG_EBP = 6,
633          X86_REG_ESI = 5,
634          X86_REG_EDI = 4
635 + #endif
636 + #if defined(__x86_64__)
637 +        X86_REG_R8  = 0,
638 +        X86_REG_R9  = 1,
639 +        X86_REG_R10 = 2,
640 +        X86_REG_R11 = 3,
641 +        X86_REG_R12 = 4,
642 +        X86_REG_R13 = 5,
643 +        X86_REG_R14 = 6,
644 +        X86_REG_R15 = 7,
645 +        X86_REG_EDI = 8,
646 +        X86_REG_ESI = 9,
647 +        X86_REG_EBP = 10,
648 +        X86_REG_EBX = 11,
649 +        X86_REG_EDX = 12,
650 +        X86_REG_EAX = 13,
651 +        X86_REG_ECX = 14,
652 +        X86_REG_ESP = 15,
653 +        X86_REG_EIP = 16
654 + #endif
655 + };
656 + #endif
657 + #if defined(__NetBSD__) || defined(__FreeBSD__)
658 + enum {
659 + #if (defined(i386) || defined(__i386__))
660 +        X86_REG_EIP = 10,
661 +        X86_REG_EAX = 7,
662 +        X86_REG_ECX = 6,
663 +        X86_REG_EDX = 5,
664 +        X86_REG_EBX = 4,
665 +        X86_REG_ESP = 13,
666 +        X86_REG_EBP = 2,
667 +        X86_REG_ESI = 1,
668 +        X86_REG_EDI = 0
669 + #endif
670   };
671   #endif
672   // FIXME: this is partly redundant with the instruction decoding phase
# Line 334 | Line 703 | static inline int ix86_step_over_modrm(u
703          return offset;
704   }
705  
706 < static bool ix86_skip_instruction(sigsegv_address_t fault_instruction, unsigned long * regs)
706 > static bool ix86_skip_instruction(unsigned long * regs)
707   {
708 <        unsigned char * eip = (unsigned char *)fault_instruction;
708 >        unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
709  
710          if (eip == 0)
711                  return false;
712          
713 <        // Transfer type
714 <        enum {
346 <                TYPE_UNKNOWN,
347 <                TYPE_LOAD,
348 <                TYPE_STORE
349 <        } transfer_type = TYPE_UNKNOWN;
350 <        
351 <        // Transfer size
352 <        enum {
353 <                SIZE_BYTE,
354 <                SIZE_WORD,
355 <                SIZE_LONG
356 <        } transfer_size = SIZE_LONG;
713 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
714 >        transfer_size_t transfer_size = SIZE_LONG;
715          
716          int reg = -1;
717          int len = 0;
718 <        
718 >
719 > #if DEBUG
720 >        printf("IP: %p [%02x %02x %02x %02x...]\n",
721 >                   eip, eip[0], eip[1], eip[2], eip[3]);
722 > #endif
723 >
724          // Operand size prefix
725          if (*eip == 0x66) {
726                  eip++;
# Line 365 | Line 728 | static bool ix86_skip_instruction(sigseg
728                  transfer_size = SIZE_WORD;
729          }
730  
731 +        // REX prefix
732 + #if defined(__x86_64__)
733 +        struct rex_t {
734 +                unsigned char W;
735 +                unsigned char R;
736 +                unsigned char X;
737 +                unsigned char B;
738 +        };
739 +        rex_t rex = { 0, 0, 0, 0 };
740 +        bool has_rex = false;
741 +        if ((*eip & 0xf0) == 0x40) {
742 +                has_rex = true;
743 +                const unsigned char b = *eip;
744 +                rex.W = b & (1 << 3);
745 +                rex.R = b & (1 << 2);
746 +                rex.X = b & (1 << 1);
747 +                rex.B = b & (1 << 0);
748 + #if DEBUG
749 +                printf("REX: %c,%c,%c,%c\n",
750 +                           rex.W ? 'W' : '_',
751 +                           rex.R ? 'R' : '_',
752 +                           rex.X ? 'X' : '_',
753 +                           rex.B ? 'B' : '_');
754 + #endif
755 +                eip++;
756 +                len++;
757 +                if (rex.W)
758 +                        transfer_size = SIZE_QUAD;
759 +        }
760 + #else
761 +        const bool has_rex = false;
762 + #endif
763 +
764          // Decode instruction
765          switch (eip[0]) {
766 +        case 0x0f:
767 +            switch (eip[1]) {
768 +            case 0xb6: // MOVZX r32, r/m8
769 +            case 0xb7: // MOVZX r32, r/m16
770 +                switch (eip[2] & 0xc0) {
771 +                case 0x80:
772 +                    reg = (eip[2] >> 3) & 7;
773 +                    transfer_type = SIGSEGV_TRANSFER_LOAD;
774 +                    break;
775 +                case 0x40:
776 +                    reg = (eip[2] >> 3) & 7;
777 +                    transfer_type = SIGSEGV_TRANSFER_LOAD;
778 +                    break;
779 +                case 0x00:
780 +                    reg = (eip[2] >> 3) & 7;
781 +                    transfer_type = SIGSEGV_TRANSFER_LOAD;
782 +                    break;
783 +                }
784 +                len += 3 + ix86_step_over_modrm(eip + 2);
785 +                break;
786 +            }
787 +          break;
788          case 0x8a: // MOV r8, r/m8
789                  transfer_size = SIZE_BYTE;
790          case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
791                  switch (eip[1] & 0xc0) {
792                  case 0x80:
793                          reg = (eip[1] >> 3) & 7;
794 <                        transfer_type = TYPE_LOAD;
794 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
795                          break;
796                  case 0x40:
797                          reg = (eip[1] >> 3) & 7;
798 <                        transfer_type = TYPE_LOAD;
798 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
799                          break;
800                  case 0x00:
801                          reg = (eip[1] >> 3) & 7;
802 <                        transfer_type = TYPE_LOAD;
802 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
803                          break;
804                  }
805                  len += 2 + ix86_step_over_modrm(eip + 1);
# Line 392 | Line 810 | static bool ix86_skip_instruction(sigseg
810                  switch (eip[1] & 0xc0) {
811                  case 0x80:
812                          reg = (eip[1] >> 3) & 7;
813 <                        transfer_type = TYPE_STORE;
813 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
814                          break;
815                  case 0x40:
816                          reg = (eip[1] >> 3) & 7;
817 <                        transfer_type = TYPE_STORE;
817 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
818                          break;
819                  case 0x00:
820                          reg = (eip[1] >> 3) & 7;
821 <                        transfer_type = TYPE_STORE;
821 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
822                          break;
823                  }
824                  len += 2 + ix86_step_over_modrm(eip + 1);
825                  break;
826          }
827  
828 <        if (transfer_type == TYPE_UNKNOWN) {
828 >        if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
829                  // Unknown machine code, let it crash. Then patch the decoder
830                  return false;
831          }
832  
833 <        if (transfer_type == TYPE_LOAD && reg != -1) {
834 <                static const int x86_reg_map[8] = {
833 > #if defined(__x86_64__)
834 >        if (rex.R)
835 >                reg += 8;
836 > #endif
837 >
838 >        if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
839 >                static const int x86_reg_map[] = {
840                          X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
841 <                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI
841 >                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI,
842 > #if defined(__x86_64__)
843 >                        X86_REG_R8,  X86_REG_R9,  X86_REG_R10, X86_REG_R11,
844 >                        X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15,
845 > #endif
846                  };
847                  
848 <                if (reg < 0 || reg >= 8)
848 >                if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1))
849                          return false;
850  
851 +                // Set 0 to the relevant register part
852 +                // NOTE: this is only valid for MOV alike instructions
853                  int rloc = x86_reg_map[reg];
854                  switch (transfer_size) {
855                  case SIZE_BYTE:
856 <                        regs[rloc] = (regs[rloc] & ~0xff);
856 >                        if (has_rex || reg < 4)
857 >                                regs[rloc] = (regs[rloc] & ~0x00ffL);
858 >                        else {
859 >                                rloc = x86_reg_map[reg - 4];
860 >                                regs[rloc] = (regs[rloc] & ~0xff00L);
861 >                        }
862                          break;
863                  case SIZE_WORD:
864 <                        regs[rloc] = (regs[rloc] & ~0xffff);
864 >                        regs[rloc] = (regs[rloc] & ~0xffffL);
865                          break;
866                  case SIZE_LONG:
867 +                case SIZE_QUAD: // zero-extension
868                          regs[rloc] = 0;
869                          break;
870                  }
# Line 437 | Line 872 | static bool ix86_skip_instruction(sigseg
872  
873   #if DEBUG
874          printf("%08x: %s %s access", regs[X86_REG_EIP],
875 <                   transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : "long",
876 <                   transfer_type == TYPE_LOAD ? "read" : "write");
875 >                   transfer_size == SIZE_BYTE ? "byte" :
876 >                   transfer_size == SIZE_WORD ? "word" :
877 >                   transfer_size == SIZE_LONG ? "long" :
878 >                   transfer_size == SIZE_QUAD ? "quad" : "unknown",
879 >                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
880          
881          if (reg != -1) {
882 <                static const char * x86_reg_str_map[8] = {
883 <                        "eax", "ecx", "edx", "ebx",
884 <                        "esp", "ebp", "esi", "edi"
882 >                static const char * x86_byte_reg_str_map[] = {
883 >                        "al",   "cl",   "dl",   "bl",
884 >                        "spl",  "bpl",  "sil",  "dil",
885 >                        "r8b",  "r9b",  "r10b", "r11b",
886 >                        "r12b", "r13b", "r14b", "r15b",
887 >                        "ah",   "ch",   "dh",   "bh",
888 >                };
889 >                static const char * x86_word_reg_str_map[] = {
890 >                        "ax",   "cx",   "dx",   "bx",
891 >                        "sp",   "bp",   "si",   "di",
892 >                        "r8w",  "r9w",  "r10w", "r11w",
893 >                        "r12w", "r13w", "r14w", "r15w",
894 >                };
895 >                static const char *x86_long_reg_str_map[] = {
896 >                        "eax",  "ecx",  "edx",  "ebx",
897 >                        "esp",  "ebp",  "esi",  "edi",
898 >                        "r8d",  "r9d",  "r10d", "r11d",
899 >                        "r12d", "r13d", "r14d", "r15d",
900 >                };
901 >                static const char *x86_quad_reg_str_map[] = {
902 >                        "rax", "rcx", "rdx", "rbx",
903 >                        "rsp", "rbp", "rsi", "rdi",
904 >                        "r8",  "r9",  "r10", "r11",
905 >                        "r12", "r13", "r14", "r15",
906                  };
907 <                printf(" %s register %%%s", transfer_type == TYPE_LOAD ? "to" : "from", x86_reg_str_map[reg]);
907 >                const char * reg_str = NULL;
908 >                switch (transfer_size) {
909 >                case SIZE_BYTE:
910 >                        reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg];
911 >                        break;
912 >                case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break;
913 >                case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break;
914 >                case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break;
915 >                }
916 >                if (reg_str)
917 >                        printf(" %s register %%%s",
918 >                                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from",
919 >                                   reg_str);
920          }
921          printf(", %d bytes instruction\n", len);
922   #endif
# Line 454 | Line 925 | static bool ix86_skip_instruction(sigseg
925          return true;
926   }
927   #endif
928 +
929 + // Decode and skip PPC instruction
930 + #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
931 + static bool powerpc_skip_instruction(unsigned int * nip_p, unsigned int * regs)
932 + {
933 +        instruction_t instr;
934 +        powerpc_decode_instruction(&instr, *nip_p, regs);
935 +        
936 +        if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
937 +                // Unknown machine code, let it crash. Then patch the decoder
938 +                return false;
939 +        }
940 +
941 + #if DEBUG
942 +        printf("%08x: %s %s access", *nip_p,
943 +                   instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : "long",
944 +                   instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
945 +        
946 +        if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
947 +                printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
948 +        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
949 +                printf(" r%d (rd = 0)\n", instr.rd);
950 + #endif
951 +        
952 +        if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
953 +                regs[instr.ra] = instr.addr;
954 +        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
955 +                regs[instr.rd] = 0;
956 +        
957 +        *nip_p += 4;
958 +        return true;
959 + }
960 + #endif
961 +
962 + // Decode and skip MIPS instruction
963 + #if (defined(mips) || defined(__mips))
964 + enum {
965 + #if (defined(sgi) || defined(__sgi))
966 +  MIPS_REG_EPC = 35,
967 + #endif
968 + };
969 + static bool mips_skip_instruction(greg_t * regs)
970 + {
971 +  unsigned int * epc = (unsigned int *)(unsigned long)regs[MIPS_REG_EPC];
972 +
973 +  if (epc == 0)
974 +        return false;
975 +
976 + #if DEBUG
977 +  printf("IP: %p [%08x]\n", epc, epc[0]);
978 + #endif
979 +
980 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
981 +  transfer_size_t transfer_size = SIZE_LONG;
982 +  int direction = 0;
983 +
984 +  const unsigned int opcode = epc[0];
985 +  switch (opcode >> 26) {
986 +  case 32: // Load Byte
987 +  case 36: // Load Byte Unsigned
988 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
989 +        transfer_size = SIZE_BYTE;
990 +        break;
991 +  case 33: // Load Halfword
992 +  case 37: // Load Halfword Unsigned
993 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
994 +        transfer_size = SIZE_WORD;
995 +        break;
996 +  case 35: // Load Word
997 +  case 39: // Load Word Unsigned
998 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
999 +        transfer_size = SIZE_LONG;
1000 +        break;
1001 +  case 34: // Load Word Left
1002 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1003 +        transfer_size = SIZE_LONG;
1004 +        direction = -1;
1005 +        break;
1006 +  case 38: // Load Word Right
1007 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1008 +        transfer_size = SIZE_LONG;
1009 +        direction = 1;
1010 +        break;
1011 +  case 55: // Load Doubleword
1012 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1013 +        transfer_size = SIZE_QUAD;
1014 +        break;
1015 +  case 26: // Load Doubleword Left
1016 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1017 +        transfer_size = SIZE_QUAD;
1018 +        direction = -1;
1019 +        break;
1020 +  case 27: // Load Doubleword Right
1021 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1022 +        transfer_size = SIZE_QUAD;
1023 +        direction = 1;
1024 +        break;
1025 +  case 40: // Store Byte
1026 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1027 +        transfer_size = SIZE_BYTE;
1028 +        break;
1029 +  case 41: // Store Halfword
1030 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1031 +        transfer_size = SIZE_WORD;
1032 +        break;
1033 +  case 43: // Store Word
1034 +  case 42: // Store Word Left
1035 +  case 46: // Store Word Right
1036 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1037 +        transfer_size = SIZE_LONG;
1038 +        break;
1039 +  case 63: // Store Doubleword
1040 +  case 44: // Store Doubleword Left
1041 +  case 45: // Store Doubleword Right
1042 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1043 +        transfer_size = SIZE_QUAD;
1044 +        break;
1045 +  /* Misc instructions unlikely to be used within CPU emulators */
1046 +  case 48: // Load Linked Word
1047 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1048 +        transfer_size = SIZE_LONG;
1049 +        break;
1050 +  case 52: // Load Linked Doubleword
1051 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1052 +        transfer_size = SIZE_QUAD;
1053 +        break;
1054 +  case 56: // Store Conditional Word
1055 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1056 +        transfer_size = SIZE_LONG;
1057 +        break;
1058 +  case 60: // Store Conditional Doubleword
1059 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1060 +        transfer_size = SIZE_QUAD;
1061 +        break;
1062 +  }
1063 +
1064 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1065 +        // Unknown machine code, let it crash. Then patch the decoder
1066 +        return false;
1067 +  }
1068 +
1069 +  // Zero target register in case of a load operation
1070 +  const int reg = (opcode >> 16) & 0x1f;
1071 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD) {
1072 +        if (direction == 0)
1073 +          regs[reg] = 0;
1074 +        else {
1075 +          // FIXME: untested code
1076 +          unsigned long ea = regs[(opcode >> 21) & 0x1f];
1077 +          ea += (signed long)(signed int)(signed short)(opcode & 0xffff);
1078 +          const int offset = ea & (transfer_size == SIZE_LONG ? 3 : 7);
1079 +          unsigned long value;
1080 +          if (direction > 0) {
1081 +                const unsigned long rmask = ~((1L << ((offset + 1) * 8)) - 1);
1082 +                value = regs[reg] & rmask;
1083 +          }
1084 +          else {
1085 +                const unsigned long lmask = (1L << (offset * 8)) - 1;
1086 +                value = regs[reg] & lmask;
1087 +          }
1088 +          // restore most significant bits
1089 +          if (transfer_size == SIZE_LONG)
1090 +                value = (signed long)(signed int)value;
1091 +          regs[reg] = value;
1092 +        }
1093 +  }
1094 +
1095 + #if DEBUG
1096 + #if (defined(_ABIN32) || defined(_ABI64))
1097 +  static const char * mips_gpr_names[32] = {
1098 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1099 +        "t0",   "t1",   "t2",   "t3",   "t4",   "t5",   "t6",   "t7",
1100 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1101 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1102 +  };
1103 + #else
1104 +  static const char * mips_gpr_names[32] = {
1105 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1106 +        "a4",   "a5",   "a6",   "a7",   "t0",   "t1",   "t2",   "t3",
1107 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1108 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1109 +  };
1110 + #endif
1111 +  printf("%s %s register %s\n",
1112 +                 transfer_size == SIZE_BYTE ? "byte" :
1113 +                 transfer_size == SIZE_WORD ? "word" :
1114 +                 transfer_size == SIZE_LONG ? "long" :
1115 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1116 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1117 +                 mips_gpr_names[reg]);
1118 + #endif
1119 +
1120 +  regs[MIPS_REG_EPC] += 4;
1121 +  return true;
1122 + }
1123 + #endif
1124 +
1125 + // Decode and skip SPARC instruction
1126 + #if (defined(sparc) || defined(__sparc__))
1127 + enum {
1128 + #if (defined(__sun__))
1129 +  SPARC_REG_G1 = REG_G1,
1130 +  SPARC_REG_O0 = REG_O0,
1131 +  SPARC_REG_PC = REG_PC,
1132 + #endif
1133 + };
1134 + static bool sparc_skip_instruction(unsigned long * regs, gwindows_t * gwins, struct rwindow * rwin)
1135 + {
1136 +  unsigned int * pc = (unsigned int *)regs[SPARC_REG_PC];
1137 +
1138 +  if (pc == 0)
1139 +        return false;
1140 +
1141 + #if DEBUG
1142 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1143 + #endif
1144 +
1145 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1146 +  transfer_size_t transfer_size = SIZE_LONG;
1147 +  bool register_pair = false;
1148 +
1149 +  const unsigned int opcode = pc[0];
1150 +  if ((opcode >> 30) != 3)
1151 +        return false;
1152 +  switch ((opcode >> 19) & 0x3f) {
1153 +  case 9: // Load Signed Byte
1154 +  case 1: // Load Unsigned Byte
1155 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1156 +        transfer_size = SIZE_BYTE;
1157 +        break;
1158 +  case 10:// Load Signed Halfword
1159 +  case 2: // Load Unsigned Word
1160 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1161 +        transfer_size = SIZE_WORD;
1162 +        break;
1163 +  case 8: // Load Word
1164 +  case 0: // Load Unsigned Word
1165 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1166 +        transfer_size = SIZE_LONG;
1167 +        break;
1168 +  case 11:// Load Extended Word
1169 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1170 +        transfer_size = SIZE_QUAD;
1171 +        break;
1172 +  case 3: // Load Doubleword
1173 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1174 +        transfer_size = SIZE_LONG;
1175 +        register_pair = true;
1176 +        break;
1177 +  case 5: // Store Byte
1178 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1179 +        transfer_size = SIZE_BYTE;
1180 +        break;
1181 +  case 6: // Store Halfword
1182 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1183 +        transfer_size = SIZE_WORD;
1184 +        break;
1185 +  case 4: // Store Word
1186 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1187 +        transfer_size = SIZE_LONG;
1188 +        break;
1189 +  case 14:// Store Extended Word
1190 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1191 +        transfer_size = SIZE_QUAD;
1192 +        break;
1193 +  case 7: // Store Doubleword
1194 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1195 +        transfer_size = SIZE_WORD;
1196 +        register_pair = true;
1197 +        break;
1198 +  }
1199 +
1200 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1201 +        // Unknown machine code, let it crash. Then patch the decoder
1202 +        return false;
1203 +  }
1204 +
1205 +  // Zero target register in case of a load operation
1206 +  const int reg = (opcode >> 25) & 0x1f;
1207 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != 0) {
1208 +        // FIXME: code to handle local & input registers is not tested
1209 +        if (reg >= 1 && reg <= 7) {
1210 +          // global registers
1211 +          regs[reg - 1 + SPARC_REG_G1] = 0;
1212 +        }
1213 +        else if (reg >= 8 && reg <= 15) {
1214 +          // output registers
1215 +          regs[reg - 8 + SPARC_REG_O0] = 0;
1216 +        }
1217 +        else if (reg >= 16 && reg <= 23) {
1218 +          // local registers (in register windows)
1219 +          if (gwins)
1220 +                gwins->wbuf->rw_local[reg - 16] = 0;
1221 +          else
1222 +                rwin->rw_local[reg - 16] = 0;
1223 +        }
1224 +        else {
1225 +          // input registers (in register windows)
1226 +          if (gwins)
1227 +                gwins->wbuf->rw_in[reg - 24] = 0;
1228 +          else
1229 +                rwin->rw_in[reg - 24] = 0;
1230 +        }
1231 +  }
1232 +
1233 + #if DEBUG
1234 +  static const char * reg_names[] = {
1235 +        "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
1236 +        "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
1237 +        "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
1238 +        "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7"
1239 +  };
1240 +  printf("%s %s register %s\n",
1241 +                 transfer_size == SIZE_BYTE ? "byte" :
1242 +                 transfer_size == SIZE_WORD ? "word" :
1243 +                 transfer_size == SIZE_LONG ? "long" :
1244 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1245 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1246 +                 reg_names[reg]);
1247 + #endif
1248 +
1249 +  regs[SPARC_REG_PC] += 4;
1250 +  return true;
1251 + }
1252 + #endif
1253   #endif
1254  
1255   // Fallbacks
1256   #ifndef SIGSEGV_FAULT_INSTRUCTION
1257   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_PC
1258   #endif
1259 + #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
1260 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
1261 + #endif
1262 + #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
1263 + #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  sigsegv_fault_handler(ADDR, IP)
1264 + #endif
1265  
1266   // SIGSEGV recovery supported ?
1267   #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
# Line 471 | Line 1273 | static bool ix86_skip_instruction(sigseg
1273   *  SIGSEGV global handler
1274   */
1275  
1276 < #ifdef HAVE_SIGSEGV_RECOVERY
1277 < static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1276 > #if defined(HAVE_SIGSEGV_RECOVERY) || defined(HAVE_MACH_EXCEPTIONS)
1277 > // This function handles the badaccess to memory.
1278 > // It is called from the signal handler or the exception handler.
1279 > static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
1280   {
1281          sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
1282          sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
479        bool fault_recovered = false;
1283          
1284          // Call user's handler and reinstall the global handler, if required
1285 <        if (sigsegv_user_handler(fault_address, fault_instruction)) {
1286 < #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1287 <                sigsegv_do_install_handler(sig);
1285 >        switch (SIGSEGV_FAULT_HANDLER_INVOKE(fault_address, fault_instruction)) {
1286 >        case SIGSEGV_RETURN_SUCCESS:
1287 >                return true;
1288 >
1289 > #if HAVE_SIGSEGV_SKIP_INSTRUCTION
1290 >        case SIGSEGV_RETURN_SKIP_INSTRUCTION:
1291 >                // Call the instruction skipper with the register file
1292 >                // available
1293 >                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
1294 > #ifdef HAVE_MACH_EXCEPTIONS
1295 >                        // Unlike UNIX signals where the thread state
1296 >                        // is modified off of the stack, in Mach we
1297 >                        // need to actually call thread_set_state to
1298 >                        // have the register values updated.
1299 >                        kern_return_t krc;
1300 >
1301 >                        krc = thread_set_state(thread,
1302 >                                                                   MACHINE_THREAD_STATE, (thread_state_t)state,
1303 >                                                                   MACHINE_THREAD_STATE_COUNT);
1304 >                        MACH_CHECK_ERROR (thread_get_state, krc);
1305 > #endif
1306 >                        return true;
1307 >                }
1308 >                break;
1309   #endif
486                fault_recovered = true;
1310          }
1311 < #if HAVE_SIGSEGV_SKIP_INSTRUCTION
1312 <        else if (sigsegv_ignore_fault) {
1313 <                // Call the instruction skipper with the register file available
1314 <                if (SIGSEGV_SKIP_INSTRUCTION(fault_instruction, SIGSEGV_REGISTER_FILE))
1315 <                        fault_recovered = true;
1311 >        
1312 >        // We can't do anything with the fault_address, dump state?
1313 >        if (sigsegv_state_dumper != 0)
1314 >                sigsegv_state_dumper(fault_address, fault_instruction);
1315 >
1316 >        return false;
1317 > }
1318 > #endif
1319 >
1320 >
1321 > /*
1322 > * There are two mechanisms for handling a bad memory access,
1323 > * Mach exceptions and UNIX signals. The implementation specific
1324 > * code appears below. Its reponsibility is to call handle_badaccess
1325 > * which is the routine that handles the fault in an implementation
1326 > * agnostic manner. The implementation specific code below is then
1327 > * reponsible for checking whether handle_badaccess was able
1328 > * to handle the memory access error and perform any implementation
1329 > * specific tasks necessary afterwards.
1330 > */
1331 >
1332 > #ifdef HAVE_MACH_EXCEPTIONS
1333 > /*
1334 > * We need to forward all exceptions that we do not handle.
1335 > * This is important, there are many exceptions that may be
1336 > * handled by other exception handlers. For example debuggers
1337 > * use exceptions and the exception hander is in another
1338 > * process in such a case. (Timothy J. Wood states in his
1339 > * message to the list that he based this code on that from
1340 > * gdb for Darwin.)
1341 > */
1342 > static inline kern_return_t
1343 > forward_exception(mach_port_t thread_port,
1344 >                                  mach_port_t task_port,
1345 >                                  exception_type_t exception_type,
1346 >                                  exception_data_t exception_data,
1347 >                                  mach_msg_type_number_t data_count,
1348 >                                  ExceptionPorts *oldExceptionPorts)
1349 > {
1350 >        kern_return_t kret;
1351 >        unsigned int portIndex;
1352 >        mach_port_t port;
1353 >        exception_behavior_t behavior;
1354 >        thread_state_flavor_t flavor;
1355 >        thread_state_t thread_state;
1356 >        mach_msg_type_number_t thread_state_count;
1357 >
1358 >        for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
1359 >                if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
1360 >                        // This handler wants the exception
1361 >                        break;
1362 >                }
1363          }
1364 +
1365 +        if (portIndex >= oldExceptionPorts->maskCount) {
1366 +                fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
1367 +                return KERN_FAILURE;
1368 +        }
1369 +
1370 +        port = oldExceptionPorts->handlers[portIndex];
1371 +        behavior = oldExceptionPorts->behaviors[portIndex];
1372 +        flavor = oldExceptionPorts->flavors[portIndex];
1373 +
1374 +        /*
1375 +         fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
1376 +         */
1377 +
1378 +        if (behavior != EXCEPTION_DEFAULT) {
1379 +                thread_state_count = THREAD_STATE_MAX;
1380 +                kret = thread_get_state (thread_port, flavor, thread_state,
1381 +                                                                 &thread_state_count);
1382 +                MACH_CHECK_ERROR (thread_get_state, kret);
1383 +        }
1384 +
1385 +        switch (behavior) {
1386 +        case EXCEPTION_DEFAULT:
1387 +          // fprintf(stderr, "forwarding to exception_raise\n");
1388 +          kret = exception_raise(port, thread_port, task_port, exception_type,
1389 +                                                         exception_data, data_count);
1390 +          MACH_CHECK_ERROR (exception_raise, kret);
1391 +          break;
1392 +        case EXCEPTION_STATE:
1393 +          // fprintf(stderr, "forwarding to exception_raise_state\n");
1394 +          kret = exception_raise_state(port, exception_type, exception_data,
1395 +                                                                   data_count, &flavor,
1396 +                                                                   thread_state, thread_state_count,
1397 +                                                                   thread_state, &thread_state_count);
1398 +          MACH_CHECK_ERROR (exception_raise_state, kret);
1399 +          break;
1400 +        case EXCEPTION_STATE_IDENTITY:
1401 +          // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
1402 +          kret = exception_raise_state_identity(port, thread_port, task_port,
1403 +                                                                                        exception_type, exception_data,
1404 +                                                                                        data_count, &flavor,
1405 +                                                                                        thread_state, thread_state_count,
1406 +                                                                                        thread_state, &thread_state_count);
1407 +          MACH_CHECK_ERROR (exception_raise_state_identity, kret);
1408 +          break;
1409 +        default:
1410 +          fprintf(stderr, "forward_exception got unknown behavior\n");
1411 +          break;
1412 +        }
1413 +
1414 +        if (behavior != EXCEPTION_DEFAULT) {
1415 +                kret = thread_set_state (thread_port, flavor, thread_state,
1416 +                                                                 thread_state_count);
1417 +                MACH_CHECK_ERROR (thread_set_state, kret);
1418 +        }
1419 +
1420 +        return KERN_SUCCESS;
1421 + }
1422 +
1423 + /*
1424 + * This is the code that actually handles the exception.
1425 + * It is called by exc_server. For Darwin 5 Apple changed
1426 + * this a bit from how this family of functions worked in
1427 + * Mach. If you are familiar with that it is a little
1428 + * different. The main variation that concerns us here is
1429 + * that code is an array of exception specific codes and
1430 + * codeCount is a count of the number of codes in the code
1431 + * array. In typical Mach all exceptions have a code
1432 + * and sub-code. It happens to be the case that for a
1433 + * EXC_BAD_ACCESS exception the first entry is the type of
1434 + * bad access that occurred and the second entry is the
1435 + * faulting address so these entries correspond exactly to
1436 + * how the code and sub-code are used on Mach.
1437 + *
1438 + * This is a MIG interface. No code in Basilisk II should
1439 + * call this directley. This has to have external C
1440 + * linkage because that is what exc_server expects.
1441 + */
1442 + kern_return_t
1443 + catch_exception_raise(mach_port_t exception_port,
1444 +                                          mach_port_t thread,
1445 +                                          mach_port_t task,
1446 +                                          exception_type_t exception,
1447 +                                          exception_data_t code,
1448 +                                          mach_msg_type_number_t codeCount)
1449 + {
1450 +        ppc_thread_state_t state;
1451 +        kern_return_t krc;
1452 +
1453 +        if ((exception == EXC_BAD_ACCESS)  && (codeCount >= 2)) {
1454 +                if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
1455 +                        return KERN_SUCCESS;
1456 +        }
1457 +
1458 +        // In Mach we do not need to remove the exception handler.
1459 +        // If we forward the exception, eventually some exception handler
1460 +        // will take care of this exception.
1461 +        krc = forward_exception(thread, task, exception, code, codeCount, &ports);
1462 +
1463 +        return krc;
1464 + }
1465   #endif
1466  
1467 <        if (!fault_recovered) {
1468 <                // FAIL: reinstall default handler for "safe" crash
1467 > #ifdef HAVE_SIGSEGV_RECOVERY
1468 > // Handle bad memory accesses with signal handler
1469 > static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1470 > {
1471 >        // Call handler and reinstall the global handler, if required
1472 >        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
1473 > #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1474 >                sigsegv_do_install_handler(sig);
1475 > #endif
1476 >                return;
1477 >        }
1478 >
1479 >        // Failure: reinstall default handler for "safe" crash
1480   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1481 <                SIGSEGV_ALL_SIGNALS
1481 >        SIGSEGV_ALL_SIGNALS
1482   #undef FAULT_HANDLER
501                
502                // We can't do anything with the fault_address, dump state?
503                if (sigsegv_dump_state != 0)
504                        sigsegv_dump_state(fault_address, fault_instruction);
505        }
1483   }
1484   #endif
1485  
# Line 516 | Line 1493 | static bool sigsegv_do_install_handler(i
1493   {
1494          // Setup SIGSEGV handler to process writes to frame buffer
1495   #ifdef HAVE_SIGACTION
1496 <        struct sigaction vosf_sa;
1497 <        sigemptyset(&vosf_sa.sa_mask);
1498 <        vosf_sa.sa_sigaction = sigsegv_handler;
1499 <        vosf_sa.sa_flags = SA_SIGINFO;
1500 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1496 >        struct sigaction sigsegv_sa;
1497 >        sigemptyset(&sigsegv_sa.sa_mask);
1498 >        sigsegv_sa.sa_sigaction = sigsegv_handler;
1499 >        sigsegv_sa.sa_flags = SA_SIGINFO;
1500 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1501   #else
1502          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1503   #endif
# Line 532 | Line 1509 | static bool sigsegv_do_install_handler(i
1509   {
1510          // Setup SIGSEGV handler to process writes to frame buffer
1511   #ifdef HAVE_SIGACTION
1512 <        struct sigaction vosf_sa;
1513 <        sigemptyset(&vosf_sa.sa_mask);
1514 <        vosf_sa.sa_handler = (signal_handler)sigsegv_handler;
1512 >        struct sigaction sigsegv_sa;
1513 >        sigemptyset(&sigsegv_sa.sa_mask);
1514 >        sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
1515 >        sigsegv_sa.sa_flags = 0;
1516   #if !EMULATED_68K && defined(__NetBSD__)
1517 <        sigaddset(&vosf_sa.sa_mask, SIGALRM);
1518 <        vosf_sa.sa_flags = SA_ONSTACK;
541 < #else
542 <        vosf_sa.sa_flags = 0;
1517 >        sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
1518 >        sigsegv_sa.sa_flags |= SA_ONSTACK;
1519   #endif
1520 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1520 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1521   #else
1522          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1523   #endif
1524   }
1525   #endif
1526  
1527 < bool sigsegv_install_handler(sigsegv_handler_t handler)
1527 > #if defined(HAVE_MACH_EXCEPTIONS)
1528 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1529   {
1530 < #ifdef HAVE_SIGSEGV_RECOVERY
1531 <        sigsegv_user_handler = handler;
1530 >        /*
1531 >         * Except for the exception port functions, this should be
1532 >         * pretty much stock Mach. If later you choose to support
1533 >         * other Mach's besides Darwin, just check for __MACH__
1534 >         * here and __APPLE__ where the actual differences are.
1535 >         */
1536 > #if defined(__APPLE__) && defined(__MACH__)
1537 >        if (sigsegv_fault_handler != NULL) {
1538 >                sigsegv_fault_handler = handler;
1539 >                return true;
1540 >        }
1541 >
1542 >        kern_return_t krc;
1543 >
1544 >        // create the the exception port
1545 >        krc = mach_port_allocate(mach_task_self(),
1546 >                          MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
1547 >        if (krc != KERN_SUCCESS) {
1548 >                mach_error("mach_port_allocate", krc);
1549 >                return false;
1550 >        }
1551 >
1552 >        // add a port send right
1553 >        krc = mach_port_insert_right(mach_task_self(),
1554 >                              _exceptionPort, _exceptionPort,
1555 >                              MACH_MSG_TYPE_MAKE_SEND);
1556 >        if (krc != KERN_SUCCESS) {
1557 >                mach_error("mach_port_insert_right", krc);
1558 >                return false;
1559 >        }
1560 >
1561 >        // get the old exception ports
1562 >        ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
1563 >        krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
1564 >                                &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
1565 >        if (krc != KERN_SUCCESS) {
1566 >                mach_error("thread_get_exception_ports", krc);
1567 >                return false;
1568 >        }
1569 >
1570 >        // set the new exception port
1571 >        //
1572 >        // We could have used EXCEPTION_STATE_IDENTITY instead of
1573 >        // EXCEPTION_DEFAULT to get the thread state in the initial
1574 >        // message, but it turns out that in the common case this is not
1575 >        // neccessary. If we need it we can later ask for it from the
1576 >        // suspended thread.
1577 >        //
1578 >        // Even with THREAD_STATE_NONE, Darwin provides the program
1579 >        // counter in the thread state.  The comments in the header file
1580 >        // seem to imply that you can count on the GPR's on an exception
1581 >        // as well but just to be safe I use MACHINE_THREAD_STATE because
1582 >        // you have to ask for all of the GPR's anyway just to get the
1583 >        // program counter. In any case because of update effective
1584 >        // address from immediate and update address from effective
1585 >        // addresses of ra and rb modes (as good an name as any for these
1586 >        // addressing modes) used in PPC instructions, you will need the
1587 >        // GPR state anyway.
1588 >        krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
1589 >                                EXCEPTION_DEFAULT, MACHINE_THREAD_STATE);
1590 >        if (krc != KERN_SUCCESS) {
1591 >                mach_error("thread_set_exception_ports", krc);
1592 >                return false;
1593 >        }
1594 >
1595 >        // create the exception handler thread
1596 >        if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
1597 >                (void)fprintf(stderr, "creation of exception thread failed\n");
1598 >                return false;
1599 >        }
1600 >
1601 >        // do not care about the exception thread any longer, let is run standalone
1602 >        (void)pthread_detach(exc_thread);
1603 >
1604 >        sigsegv_fault_handler = handler;
1605 >        return true;
1606 > #else
1607 >        return false;
1608 > #endif
1609 > }
1610 > #endif
1611 >
1612 > bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1613 > {
1614 > #if defined(HAVE_SIGSEGV_RECOVERY)
1615          bool success = true;
1616   #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
1617          SIGSEGV_ALL_SIGNALS
1618   #undef FAULT_HANDLER
1619 +        if (success)
1620 +            sigsegv_fault_handler = handler;
1621          return success;
1622 + #elif defined(HAVE_MACH_EXCEPTIONS)
1623 +        return sigsegv_do_install_handler(handler);
1624   #else
1625          // FAIL: no siginfo_t nor sigcontext subterfuge is available
1626          return false;
# Line 570 | Line 1634 | bool sigsegv_install_handler(sigsegv_han
1634  
1635   void sigsegv_deinstall_handler(void)
1636   {
1637 +  // We do nothing for Mach exceptions, the thread would need to be
1638 +  // suspended if not already so, and we might mess with other
1639 +  // exception handlers that came after we registered ours. There is
1640 +  // no need to remove the exception handler, in fact this function is
1641 +  // not called anywhere in Basilisk II.
1642   #ifdef HAVE_SIGSEGV_RECOVERY
1643 <        sigsegv_user_handler = 0;
1643 >        sigsegv_fault_handler = 0;
1644   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1645          SIGSEGV_ALL_SIGNALS
1646   #undef FAULT_HANDLER
# Line 580 | Line 1649 | void sigsegv_deinstall_handler(void)
1649  
1650  
1651   /*
583 *  SIGSEGV ignore state modifier
584 */
585
586 void sigsegv_set_ignore_state(bool ignore_fault)
587 {
588        sigsegv_ignore_fault = ignore_fault;
589 }
590
591
592 /*
1652   *  Set callback function when we cannot handle the fault
1653   */
1654  
1655 < void sigsegv_set_dump_state(sigsegv_handler_t handler)
1655 > void sigsegv_set_dump_state(sigsegv_state_dumper_t handler)
1656   {
1657 <        sigsegv_dump_state = handler;
1657 >        sigsegv_state_dumper = handler;
1658   }
1659  
1660  
# Line 610 | Line 1669 | void sigsegv_set_dump_state(sigsegv_hand
1669   #include <sys/mman.h>
1670   #include "vm_alloc.h"
1671  
1672 + const int REF_INDEX = 123;
1673 + const int REF_VALUE = 45;
1674 +
1675   static int page_size;
1676   static volatile char * page = 0;
1677   static volatile int handler_called = 0;
1678  
1679 < static bool sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1679 > #ifdef __GNUC__
1680 > // Code range where we expect the fault to come from
1681 > static void *b_region, *e_region;
1682 > #endif
1683 >
1684 > static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1685   {
1686 + #if DEBUG
1687 +        printf("sigsegv_test_handler(%p, %p)\n", fault_address, instruction_address);
1688 +        printf("expected fault at %p\n", page + REF_INDEX);
1689 + #ifdef __GNUC__
1690 +        printf("expected instruction address range: %p-%p\n", b_region, e_region);
1691 + #endif
1692 + #endif
1693          handler_called++;
1694 <        if ((fault_address - 123) != page)
1695 <                exit(1);
1694 >        if ((fault_address - REF_INDEX) != page)
1695 >                exit(10);
1696 > #ifdef __GNUC__
1697 >        // Make sure reported fault instruction address falls into
1698 >        // expected code range
1699 >        if (instruction_address != SIGSEGV_INVALID_PC
1700 >                && ((instruction_address <  (sigsegv_address_t)b_region) ||
1701 >                        (instruction_address >= (sigsegv_address_t)e_region)))
1702 >                exit(11);
1703 > #endif
1704          if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
1705 <                exit(1);
1706 <        return true;
1705 >                exit(12);
1706 >        return SIGSEGV_RETURN_SUCCESS;
1707   }
1708  
1709   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1710 < static bool sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1710 > static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1711   {
1712 <        return false;
1712 >        if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
1713 > #ifdef __GNUC__
1714 >                // Make sure reported fault instruction address falls into
1715 >                // expected code range
1716 >                if (instruction_address != SIGSEGV_INVALID_PC
1717 >                        && ((instruction_address <  (sigsegv_address_t)b_region) ||
1718 >                                (instruction_address >= (sigsegv_address_t)e_region)))
1719 >                        return SIGSEGV_RETURN_FAILURE;
1720 > #endif
1721 >                return SIGSEGV_RETURN_SKIP_INSTRUCTION;
1722 >        }
1723 >
1724 >        return SIGSEGV_RETURN_FAILURE;
1725 > }
1726 >
1727 > // More sophisticated tests for instruction skipper
1728 > static bool arch_insn_skipper_tests()
1729 > {
1730 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
1731 >        static const unsigned char code[] = {
1732 >                0x8a, 0x00,                    // mov    (%eax),%al
1733 >                0x8a, 0x2c, 0x18,              // mov    (%eax,%ebx,1),%ch
1734 >                0x88, 0x20,                    // mov    %ah,(%eax)
1735 >                0x88, 0x08,                    // mov    %cl,(%eax)
1736 >                0x66, 0x8b, 0x00,              // mov    (%eax),%ax
1737 >                0x66, 0x8b, 0x0c, 0x18,        // mov    (%eax,%ebx,1),%cx
1738 >                0x66, 0x89, 0x00,              // mov    %ax,(%eax)
1739 >                0x66, 0x89, 0x0c, 0x18,        // mov    %cx,(%eax,%ebx,1)
1740 >                0x8b, 0x00,                    // mov    (%eax),%eax
1741 >                0x8b, 0x0c, 0x18,              // mov    (%eax,%ebx,1),%ecx
1742 >                0x89, 0x00,                    // mov    %eax,(%eax)
1743 >                0x89, 0x0c, 0x18,              // mov    %ecx,(%eax,%ebx,1)
1744 > #if defined(__x86_64__)
1745 >                0x44, 0x8a, 0x00,              // mov    (%rax),%r8b
1746 >                0x44, 0x8a, 0x20,              // mov    (%rax),%r12b
1747 >                0x42, 0x8a, 0x3c, 0x10,        // mov    (%rax,%r10,1),%dil
1748 >                0x44, 0x88, 0x00,              // mov    %r8b,(%rax)
1749 >                0x44, 0x88, 0x20,              // mov    %r12b,(%rax)
1750 >                0x42, 0x88, 0x3c, 0x10,        // mov    %dil,(%rax,%r10,1)
1751 >                0x66, 0x44, 0x8b, 0x00,        // mov    (%rax),%r8w
1752 >                0x66, 0x42, 0x8b, 0x0c, 0x10,  // mov    (%rax,%r10,1),%cx
1753 >                0x66, 0x44, 0x89, 0x00,        // mov    %r8w,(%rax)
1754 >                0x66, 0x42, 0x89, 0x0c, 0x10,  // mov    %cx,(%rax,%r10,1)
1755 >                0x44, 0x8b, 0x00,              // mov    (%rax),%r8d
1756 >                0x42, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%ecx
1757 >                0x44, 0x89, 0x00,              // mov    %r8d,(%rax)
1758 >                0x42, 0x89, 0x0c, 0x10,        // mov    %ecx,(%rax,%r10,1)
1759 >                0x48, 0x8b, 0x08,              // mov    (%rax),%rcx
1760 >                0x4c, 0x8b, 0x18,              // mov    (%rax),%r11
1761 >                0x4a, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%rcx
1762 >                0x4e, 0x8b, 0x1c, 0x10,        // mov    (%rax,%r10,1),%r11
1763 >                0x48, 0x89, 0x08,              // mov    %rcx,(%rax)
1764 >                0x4c, 0x89, 0x18,              // mov    %r11,(%rax)
1765 >                0x4a, 0x89, 0x0c, 0x10,        // mov    %rcx,(%rax,%r10,1)
1766 >                0x4e, 0x89, 0x1c, 0x10,        // mov    %r11,(%rax,%r10,1)
1767 > #endif
1768 >                0                              // end
1769 >        };
1770 >        const int N_REGS = 20;
1771 >        unsigned long regs[N_REGS];
1772 >        for (int i = 0; i < N_REGS; i++)
1773 >                regs[i] = i;
1774 >        const unsigned long start_code = (unsigned long)&code;
1775 >        regs[X86_REG_EIP] = start_code;
1776 >        while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1)
1777 >                   && ix86_skip_instruction(regs))
1778 >                ; /* simply iterate */
1779 >        return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1);
1780 > #endif
1781 >        return true;
1782   }
1783   #endif
1784  
# Line 638 | Line 1789 | int main(void)
1789  
1790          page_size = getpagesize();
1791          if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
1792 <                return 1;
1792 >                return 2;
1793          
1794 +        memset((void *)page, 0, page_size);
1795          if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
1796 <                return 1;
1796 >                return 3;
1797          
1798          if (!sigsegv_install_handler(sigsegv_test_handler))
1799 <                return 1;
648 <        
649 <        page[123] = 45;
650 <        page[123] = 45;
1799 >                return 4;
1800          
1801 + #ifdef __GNUC__
1802 +        b_region = &&L_b_region1;
1803 +        e_region = &&L_e_region1;
1804 + #endif
1805 + L_b_region1:
1806 +        page[REF_INDEX] = REF_VALUE;
1807 +        if (page[REF_INDEX] != REF_VALUE)
1808 +          exit(20);
1809 +        page[REF_INDEX] = REF_VALUE;
1810 + L_e_region1:
1811 +
1812          if (handler_called != 1)
1813 <                return 1;
1813 >                return 5;
1814  
1815   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1816          if (!sigsegv_install_handler(sigsegv_insn_handler))
1817 <                return 1;
1817 >                return 6;
1818          
1819 <        if (vm_protect((char *)page, page_size, VM_PAGE_WRITE) < 0)
1820 <                return 1;
1819 >        if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
1820 >                return 7;
1821          
1822          for (int i = 0; i < page_size; i++)
1823                  page[i] = (i + 1) % page_size;
1824          
1825          if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
1826 <                return 1;
1826 >                return 8;
1827          
668        sigsegv_set_ignore_state(true);
669
1828   #define TEST_SKIP_INSTRUCTION(TYPE) do {                                \
1829 <                const unsigned int TAG = 0x12345678;                    \
1829 >                const unsigned long TAG = 0x12345678 |                  \
1830 >                (sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0);   \
1831                  TYPE data = *((TYPE *)(page + sizeof(TYPE)));   \
1832 <                volatile unsigned int effect = data + TAG;              \
1832 >                volatile unsigned long effect = data + TAG;             \
1833                  if (effect != TAG)                                                              \
1834 <                        return 1;                                                                       \
1834 >                        return 9;                                                                       \
1835          } while (0)
1836          
1837 + #ifdef __GNUC__
1838 +        b_region = &&L_b_region2;
1839 +        e_region = &&L_e_region2;
1840 + #endif
1841 + L_b_region2:
1842          TEST_SKIP_INSTRUCTION(unsigned char);
1843          TEST_SKIP_INSTRUCTION(unsigned short);
1844          TEST_SKIP_INSTRUCTION(unsigned int);
1845 +        TEST_SKIP_INSTRUCTION(unsigned long);
1846 + L_e_region2:
1847 +
1848 +        if (!arch_insn_skipper_tests())
1849 +                return 20;
1850   #endif
1851  
1852          vm_exit();

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines