ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
(Generate patch)

Comparing BasiliskII/src/Unix/sigsegv.cpp (file contents):
Revision 1.10 by gbeauche, 2002-05-12T11:10:50Z vs.
Revision 1.35 by gbeauche, 2003-11-10T23:54:31Z

# Line 4 | Line 4
4   *  Derived from Bruno Haible's work on his SIGSEGV library for clisp
5   *  <http://clisp.sourceforge.net/>
6   *
7 + *  MacOS X support derived from the post by Timothy J. Wood to the
8 + *  omnigroup macosx-dev list:
9 + *    Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10 + *    tjw@omnigroup.com Sun, 4 Jun 2000
11 + *    www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12 + *
13   *  Basilisk II (C) 1997-2002 Christian Bauer
14   *
15   *  This program is free software; you can redistribute it and/or modify
# Line 29 | Line 35
35   #include "config.h"
36   #endif
37  
38 + #include <list>
39   #include <signal.h>
40   #include "sigsegv.h"
41  
42 + #ifndef NO_STD_NAMESPACE
43 + using std::list;
44 + #endif
45 +
46   // Return value type of a signal handler (standard type if not defined)
47   #ifndef RETSIGTYPE
48   #define RETSIGTYPE void
# Line 40 | Line 51
51   // Type of the system signal handler
52   typedef RETSIGTYPE (*signal_handler)(int);
53  
43 // Is the fault to be ignored?
44 static bool sigsegv_ignore_fault = false;
45
54   // User's SIGSEGV handler
55 < static sigsegv_handler_t sigsegv_user_handler = 0;
55 > static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
56  
57   // Function called to dump state if we can't handle the fault
58 < static sigsegv_handler_t sigsegv_dump_state = 0;
58 > static sigsegv_state_dumper_t sigsegv_state_dumper = 0;
59  
60   // Actual SIGSEGV handler installer
61   static bool sigsegv_do_install_handler(int sig);
62  
63  
64   /*
65 + *  Instruction decoding aids
66 + */
67 +
68 + // Transfer size
69 + enum transfer_size_t {
70 +        SIZE_UNKNOWN,
71 +        SIZE_BYTE,
72 +        SIZE_WORD, // 2 bytes
73 +        SIZE_LONG, // 4 bytes
74 +        SIZE_QUAD, // 8 bytes
75 + };
76 +
77 + // Transfer type
78 + typedef sigsegv_transfer_type_t transfer_type_t;
79 +
80 + #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
81 + // Addressing mode
82 + enum addressing_mode_t {
83 +        MODE_UNKNOWN,
84 +        MODE_NORM,
85 +        MODE_U,
86 +        MODE_X,
87 +        MODE_UX
88 + };
89 +
90 + // Decoded instruction
91 + struct instruction_t {
92 +        transfer_type_t         transfer_type;
93 +        transfer_size_t         transfer_size;
94 +        addressing_mode_t       addr_mode;
95 +        unsigned int            addr;
96 +        char                            ra, rd;
97 + };
98 +
99 + static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned int * gpr)
100 + {
101 +        // Get opcode and divide into fields
102 +        unsigned int opcode = *((unsigned int *)nip);
103 +        unsigned int primop = opcode >> 26;
104 +        unsigned int exop = (opcode >> 1) & 0x3ff;
105 +        unsigned int ra = (opcode >> 16) & 0x1f;
106 +        unsigned int rb = (opcode >> 11) & 0x1f;
107 +        unsigned int rd = (opcode >> 21) & 0x1f;
108 +        signed int imm = (signed short)(opcode & 0xffff);
109 +        
110 +        // Analyze opcode
111 +        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
112 +        transfer_size_t transfer_size = SIZE_UNKNOWN;
113 +        addressing_mode_t addr_mode = MODE_UNKNOWN;
114 +        switch (primop) {
115 +        case 31:
116 +                switch (exop) {
117 +                case 23:        // lwzx
118 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
119 +                case 55:        // lwzux
120 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
121 +                case 87:        // lbzx
122 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
123 +                case 119:       // lbzux
124 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
125 +                case 151:       // stwx
126 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
127 +                case 183:       // stwux
128 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
129 +                case 215:       // stbx
130 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
131 +                case 247:       // stbux
132 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
133 +                case 279:       // lhzx
134 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
135 +                case 311:       // lhzux
136 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
137 +                case 343:       // lhax
138 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
139 +                case 375:       // lhaux
140 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
141 +                case 407:       // sthx
142 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
143 +                case 439:       // sthux
144 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
145 +                }
146 +                break;
147 +        
148 +        case 32:        // lwz
149 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
150 +        case 33:        // lwzu
151 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
152 +        case 34:        // lbz
153 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
154 +        case 35:        // lbzu
155 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
156 +        case 36:        // stw
157 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
158 +        case 37:        // stwu
159 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
160 +        case 38:        // stb
161 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
162 +        case 39:        // stbu
163 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
164 +        case 40:        // lhz
165 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
166 +        case 41:        // lhzu
167 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
168 +        case 42:        // lha
169 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
170 +        case 43:        // lhau
171 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
172 +        case 44:        // sth
173 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
174 +        case 45:        // sthu
175 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
176 +        }
177 +        
178 +        // Calculate effective address
179 +        unsigned int addr = 0;
180 +        switch (addr_mode) {
181 +        case MODE_X:
182 +        case MODE_UX:
183 +                if (ra == 0)
184 +                        addr = gpr[rb];
185 +                else
186 +                        addr = gpr[ra] + gpr[rb];
187 +                break;
188 +        case MODE_NORM:
189 +        case MODE_U:
190 +                if (ra == 0)
191 +                        addr = (signed int)(signed short)imm;
192 +                else
193 +                        addr = gpr[ra] + (signed int)(signed short)imm;
194 +                break;
195 +        default:
196 +                break;
197 +        }
198 +        
199 +        // Commit decoded instruction
200 +        instruction->addr = addr;
201 +        instruction->addr_mode = addr_mode;
202 +        instruction->transfer_type = transfer_type;
203 +        instruction->transfer_size = transfer_size;
204 +        instruction->ra = ra;
205 +        instruction->rd = rd;
206 + }
207 + #endif
208 +
209 +
210 + /*
211   *  OS-dependant SIGSEGV signals support section
212   */
213  
# Line 65 | Line 219 | static bool sigsegv_do_install_handler(i
219   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
220   #endif
221   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, siginfo_t *sip, void *scp
222 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
223 + #define SIGSEGV_FAULT_HANDLER_ARGS              sip, scp
224   #define SIGSEGV_FAULT_ADDRESS                   sip->si_addr
225 + #if defined(__sun__)
226 + #if (defined(sparc) || defined(__sparc__))
227 + #include <sys/ucontext.h>
228 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
229 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[REG_PC]
230 + #endif
231 + #endif
232 + #if defined(__FreeBSD__)
233 + #if (defined(i386) || defined(__i386__))
234 + #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_eip)
235 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
236 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
237 + #endif
238 + #endif
239   #if defined(__linux__)
240   #if (defined(i386) || defined(__i386__))
241   #include <sys/ucontext.h>
242 < #define SIGSEGV_FAULT_INSTRUCTION               (((ucontext_t *)scp)->uc_mcontext.gregs[14]) /* should use REG_EIP instead */
243 < #define SIGSEGV_REGISTER_FILE                   (unsigned long *)(((ucontext_t *)scp)->uc_mcontext.gregs)
242 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
243 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
244 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
245 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
246 > #endif
247 > #if (defined(x86_64) || defined(__x86_64__))
248 > #include <sys/ucontext.h>
249 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
250 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
251 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
252   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
253   #endif
254   #if (defined(ia64) || defined(__ia64__))
# Line 78 | Line 256 | static bool sigsegv_do_install_handler(i
256   #endif
257   #if (defined(powerpc) || defined(__powerpc__))
258   #include <sys/ucontext.h>
259 < #define SIGSEGV_FAULT_INSTRUCTION               (((ucontext_t *)scp)->uc_mcontext.regs->nip)
259 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.regs)
260 > #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS->nip)
261 > #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned int *)(SIGSEGV_CONTEXT_REGS->gpr)
262 > #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
263   #endif
264   #endif
265   #endif
# Line 90 | Line 271 | static bool sigsegv_do_install_handler(i
271   #if (defined(i386) || defined(__i386__))
272   #include <asm/sigcontext.h>
273   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext scs
274 < #define SIGSEGV_FAULT_ADDRESS                   scs.cr2
275 < #define SIGSEGV_FAULT_INSTRUCTION               scs.eip
276 < #define SIGSEGV_REGISTER_FILE                   (unsigned long *)(&scs)
274 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
275 > #define SIGSEGV_FAULT_HANDLER_ARGS              &scs
276 > #define SIGSEGV_FAULT_ADDRESS                   scp->cr2
277 > #define SIGSEGV_FAULT_INSTRUCTION               scp->eip
278 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)scp
279   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
280   #endif
281   #if (defined(sparc) || defined(__sparc__))
282   #include <asm/sigcontext.h>
283   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
284 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
285   #define SIGSEGV_FAULT_ADDRESS                   addr
286   #endif
287   #if (defined(powerpc) || defined(__powerpc__))
288   #include <asm/sigcontext.h>
289   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext *scp
290 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, scp
291   #define SIGSEGV_FAULT_ADDRESS                   scp->regs->dar
292   #define SIGSEGV_FAULT_INSTRUCTION               scp->regs->nip
293 + #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&scp->regs->nip, (unsigned int *)(scp->regs->gpr)
294 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
295   #endif
296   #if (defined(alpha) || defined(__alpha__))
297   #include <asm/sigcontext.h>
298   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
299 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
300   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
301   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
114
115 // From Boehm's GC 6.0alpha8
116 static sigsegv_address_t get_fault_address(struct sigcontext *scp)
117 {
118        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
119        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
120        fault_address += (signed long)(signed short)(instruction & 0xffff);
121        return (sigsegv_address_t)fault_address;
122 }
302   #endif
303   #endif
304  
305   // Irix 5 or 6 on MIPS
306   #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
307 + #include <ucontext.h>
308   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
309 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
310   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_badvaddr
311   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
312   #endif
313  
314 + // HP-UX
315 + #if (defined(hpux) || defined(__hpux__))
316 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
317 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
318 + #define SIGSEGV_FAULT_ADDRESS                   scp->sc_sl.sl_ss.ss_narrow.ss_cr21
319 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
320 + #endif
321 +
322   // OSF/1 on Alpha
323   #if defined(__osf__)
324 + #include <ucontext.h>
325   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
326 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
327   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_traparg_a0
328   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
329   #endif
# Line 140 | Line 331 | static sigsegv_address_t get_fault_addre
331   // AIX
332   #if defined(_AIX)
333   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
334 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
335   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_jmpbuf.jmp_context.o_vaddr
336   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
337   #endif
338  
339 < // NetBSD or FreeBSD
340 < #if defined(__NetBSD__) || defined(__FreeBSD__)
339 > // NetBSD
340 > #if defined(__NetBSD__)
341   #if (defined(m68k) || defined(__m68k__))
342   #include <m68k/frame.h>
343   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
344 < #define SIGSEGV_FAULT_ADDRESS                   ({                                                                                                                              \
345 <        struct sigstate {                                                                                                                                                                       \
154 <                int ss_flags;                                                                                                                                                                   \
155 <                struct frame ss_frame;                                                                                                                                                  \
156 <        };                                                                                                                                                                                                      \
157 <        struct sigstate *state = (struct sigstate *)scp->sc_ap;                                                                                         \
158 <        char *fault_addr;                                                                                                                                                                       \
159 <        switch (state->ss_frame.f_format) {                                                                                                                                     \
160 <        case 7:         /* 68040 access error */                                                                                                                                \
161 <                /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */    \
162 <                fault_addr = state->ss_frame.f_fmt7.f_fa;                                                                                                               \
163 <                break;                                                                                                                                                                                  \
164 <        default:                                                                                                                                                                                        \
165 <                fault_addr = (char *)code;                                                                                                                                              \
166 <                break;                                                                                                                                                                                  \
167 <        }                                                                                                                                                                                                       \
168 <        fault_addr;                                                                                                                                                                                     \
169 < })
344 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
345 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
346   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
347 < #else
348 < #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, void *scp, char *addr
349 < #define SIGSEGV_FAULT_ADDRESS                   addr
347 >
348 > // Use decoding scheme from BasiliskII/m68k native
349 > static sigsegv_address_t get_fault_address(struct sigcontext *scp)
350 > {
351 >        struct sigstate {
352 >                int ss_flags;
353 >                struct frame ss_frame;
354 >        };
355 >        struct sigstate *state = (struct sigstate *)scp->sc_ap;
356 >        char *fault_addr;
357 >        switch (state->ss_frame.f_format) {
358 >        case 7:         /* 68040 access error */
359 >                /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */
360 >                fault_addr = state->ss_frame.f_fmt7.f_fa;
361 >                break;
362 >        default:
363 >                fault_addr = (char *)code;
364 >                break;
365 >        }
366 >        return (sigsegv_address_t)fault_addr;
367 > }
368 > #endif
369 > #if (defined(alpha) || defined(__alpha__))
370 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
371 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
372 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
373   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
374   #endif
375 + #if (defined(i386) || defined(__i386__))
376 + #error "FIXME: need to decode instruction and compute EA"
377 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
378 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
379 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
380 + #endif
381 + #endif
382 + #if defined(__FreeBSD__)
383 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
384 + #if (defined(i386) || defined(__i386__))
385 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
386 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
387 + #define SIGSEGV_FAULT_ADDRESS                   addr
388 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_eip
389 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&scp->sc_edi)
390 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
391 + #endif
392 + #endif
393 +
394 + // Extract fault address out of a sigcontext
395 + #if (defined(alpha) || defined(__alpha__))
396 + // From Boehm's GC 6.0alpha8
397 + static sigsegv_address_t get_fault_address(struct sigcontext *scp)
398 + {
399 +        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
400 +        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
401 +        fault_address += (signed long)(signed short)(instruction & 0xffff);
402 +        return (sigsegv_address_t)fault_address;
403 + }
404   #endif
405  
406 < // MacOS X
406 >
407 > // MacOS X, not sure which version this works in. Under 10.1
408 > // vm_protect does not appear to work from a signal handler. Under
409 > // 10.2 signal handlers get siginfo type arguments but the si_addr
410 > // field is the address of the faulting instruction and not the
411 > // address that caused the SIGBUS. Maybe this works in 10.0? In any
412 > // case with Mach exception handlers there is a way to do what this
413 > // was meant to do.
414 > #ifndef HAVE_MACH_EXCEPTIONS
415   #if defined(__APPLE__) && defined(__MACH__)
416   #if (defined(ppc) || defined(__ppc__))
417   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
418 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
419   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
420   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_ir
421   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
422 + #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&scp->sc_ir, &((unsigned int *) scp->sc_regs)[2]
423 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
424  
425 < // From Boehm's GC 6.0alpha8
187 < #define EXTRACT_OP1(iw)     (((iw) & 0xFC000000) >> 26)
188 < #define EXTRACT_OP2(iw)     (((iw) & 0x000007FE) >> 1)
189 < #define EXTRACT_REGA(iw)    (((iw) & 0x001F0000) >> 16)
190 < #define EXTRACT_REGB(iw)    (((iw) & 0x03E00000) >> 21)
191 < #define EXTRACT_REGC(iw)    (((iw) & 0x0000F800) >> 11)
192 < #define EXTRACT_DISP(iw)    ((short *) &(iw))[1]
193 <
425 > // Use decoding scheme from SheepShaver
426   static sigsegv_address_t get_fault_address(struct sigcontext *scp)
427   {
428 <        unsigned int   instr = *((unsigned int *) scp->sc_ir);
429 <        unsigned int * regs = &((unsigned int *) scp->sc_regs)[2];
430 <        int            disp = 0, tmp;
431 <        unsigned int   baseA = 0, baseB = 0;
432 <        unsigned int   addr, alignmask = 0xFFFFFFFF;
433 <
434 <        switch(EXTRACT_OP1(instr)) {
435 <        case 38:   /* stb */
436 <        case 39:   /* stbu */
437 <        case 54:   /* stfd */
438 <        case 55:   /* stfdu */
439 <        case 52:   /* stfs */
440 <        case 53:   /* stfsu */
441 <        case 44:   /* sth */
442 <        case 45:   /* sthu */
443 <        case 47:   /* stmw */
444 <        case 36:   /* stw */
445 <        case 37:   /* stwu */
446 <                tmp = EXTRACT_REGA(instr);
447 <                if(tmp > 0)
448 <                        baseA = regs[tmp];
449 <                disp = EXTRACT_DISP(instr);
450 <                break;
451 <        case 31:
452 <                switch(EXTRACT_OP2(instr)) {
453 <                case 86:    /* dcbf */
454 <                case 54:    /* dcbst */
455 <                case 1014:  /* dcbz */
456 <                case 247:   /* stbux */
457 <                case 215:   /* stbx */
458 <                case 759:   /* stfdux */
459 <                case 727:   /* stfdx */
460 <                case 983:   /* stfiwx */
461 <                case 695:   /* stfsux */
462 <                case 663:   /* stfsx */
463 <                case 918:   /* sthbrx */
464 <                case 439:   /* sthux */
465 <                case 407:   /* sthx */
466 <                case 661:   /* stswx */
467 <                case 662:   /* stwbrx */
468 <                case 150:   /* stwcx. */
469 <                case 183:   /* stwux */
470 <                case 151:   /* stwx */
471 <                case 135:   /* stvebx */
472 <                case 167:   /* stvehx */
473 <                case 199:   /* stvewx */
474 <                case 231:   /* stvx */
475 <                case 487:   /* stvxl */
476 <                        tmp = EXTRACT_REGA(instr);
477 <                        if(tmp > 0)
478 <                                baseA = regs[tmp];
479 <                        baseB = regs[EXTRACT_REGC(instr)];
480 <                        /* determine Altivec alignment mask */
481 <                        switch(EXTRACT_OP2(instr)) {
482 <                        case 167:   /* stvehx */
483 <                                alignmask = 0xFFFFFFFE;
484 <                                break;
485 <                        case 199:   /* stvewx */
486 <                                alignmask = 0xFFFFFFFC;
487 <                                break;
488 <                        case 231:   /* stvx */
489 <                                alignmask = 0xFFFFFFF0;
490 <                                break;
491 <                        case 487:  /* stvxl */
492 <                                alignmask = 0xFFFFFFF0;
493 <                                break;
494 <                        }
495 <                        break;
496 <                case 725:   /* stswi */
497 <                        tmp = EXTRACT_REGA(instr);
498 <                        if(tmp > 0)
499 <                                baseA = regs[tmp];
500 <                        break;
501 <                default:   /* ignore instruction */
502 <                        return 0;
503 <                        break;
428 >        unsigned int   nip = (unsigned int) scp->sc_ir;
429 >        unsigned int * gpr = &((unsigned int *) scp->sc_regs)[2];
430 >        instruction_t  instr;
431 >
432 >        powerpc_decode_instruction(&instr, nip, gpr);
433 >        return (sigsegv_address_t)instr.addr;
434 > }
435 > #endif
436 > #endif
437 > #endif
438 > #endif
439 >
440 > #if HAVE_MACH_EXCEPTIONS
441 >
442 > // This can easily be extended to other Mach systems, but really who
443 > // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
444 > // Mach 2.5/3.0?
445 > #if defined(__APPLE__) && defined(__MACH__)
446 >
447 > #include <sys/types.h>
448 > #include <stdlib.h>
449 > #include <stdio.h>
450 > #include <pthread.h>
451 >
452 > /*
453 > * If you are familiar with MIG then you will understand the frustration
454 > * that was necessary to get these embedded into C++ code by hand.
455 > */
456 > extern "C" {
457 > #include <mach/mach.h>
458 > #include <mach/mach_error.h>
459 >
460 > extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
461 > extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
462 >        mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
463 > extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
464 >        exception_type_t, exception_data_t, mach_msg_type_number_t);
465 > extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
466 >        exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
467 >        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
468 > extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
469 >        exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
470 >        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
471 > }
472 >
473 > // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
474 > #define HANDLER_COUNT 64
475 >
476 > // structure to tuck away existing exception handlers
477 > typedef struct _ExceptionPorts {
478 >        mach_msg_type_number_t maskCount;
479 >        exception_mask_t masks[HANDLER_COUNT];
480 >        exception_handler_t handlers[HANDLER_COUNT];
481 >        exception_behavior_t behaviors[HANDLER_COUNT];
482 >        thread_state_flavor_t flavors[HANDLER_COUNT];
483 > } ExceptionPorts;
484 >
485 > // exception handler thread
486 > static pthread_t exc_thread;
487 >
488 > // place where old exception handler info is stored
489 > static ExceptionPorts ports;
490 >
491 > // our exception port
492 > static mach_port_t _exceptionPort = MACH_PORT_NULL;
493 >
494 > #define MACH_CHECK_ERROR(name,ret) \
495 > if (ret != KERN_SUCCESS) { \
496 >        mach_error(#name, ret); \
497 >        exit (1); \
498 > }
499 >
500 > #define SIGSEGV_FAULT_ADDRESS                   code[1]
501 > #define SIGSEGV_FAULT_INSTRUCTION               get_fault_instruction(thread, state)
502 > #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  ((code[0] == KERN_PROTECTION_FAILURE) ? sigsegv_fault_handler(ADDR, IP) : SIGSEGV_RETURN_FAILURE)
503 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   mach_port_t thread, exception_data_t code, ppc_thread_state_t *state
504 > #define SIGSEGV_FAULT_HANDLER_ARGS              thread, code, &state
505 > #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
506 > #define SIGSEGV_REGISTER_FILE                   &state->srr0, &state->r0
507 >
508 > // Given a suspended thread, stuff the current instruction and
509 > // registers into state.
510 > //
511 > // It would have been nice to have this be ppc/x86 independant which
512 > // could have been done easily with a thread_state_t instead of
513 > // ppc_thread_state_t, but because of the way this is called it is
514 > // easier to do it this way.
515 > #if (defined(ppc) || defined(__ppc__))
516 > static inline sigsegv_address_t get_fault_instruction(mach_port_t thread, ppc_thread_state_t *state)
517 > {
518 >        kern_return_t krc;
519 >        mach_msg_type_number_t count;
520 >
521 >        count = MACHINE_THREAD_STATE_COUNT;
522 >        krc = thread_get_state(thread, MACHINE_THREAD_STATE, (thread_state_t)state, &count);
523 >        MACH_CHECK_ERROR (thread_get_state, krc);
524 >
525 >        return (sigsegv_address_t)state->srr0;
526 > }
527 > #endif
528 >
529 > // Since there can only be one exception thread running at any time
530 > // this is not a problem.
531 > #define MSG_SIZE 512
532 > static char msgbuf[MSG_SIZE];
533 > static char replybuf[MSG_SIZE];
534 >
535 > /*
536 > * This is the entry point for the exception handler thread. The job
537 > * of this thread is to wait for exception messages on the exception
538 > * port that was setup beforehand and to pass them on to exc_server.
539 > * exc_server is a MIG generated function that is a part of Mach.
540 > * Its job is to decide what to do with the exception message. In our
541 > * case exc_server calls catch_exception_raise on our behalf. After
542 > * exc_server returns, it is our responsibility to send the reply.
543 > */
544 > static void *
545 > handleExceptions(void *priv)
546 > {
547 >        mach_msg_header_t *msg, *reply;
548 >        kern_return_t krc;
549 >
550 >        msg = (mach_msg_header_t *)msgbuf;
551 >        reply = (mach_msg_header_t *)replybuf;
552 >
553 >        for (;;) {
554 >                krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
555 >                                _exceptionPort, 0, MACH_PORT_NULL);
556 >                MACH_CHECK_ERROR(mach_msg, krc);
557 >
558 >                if (!exc_server(msg, reply)) {
559 >                        fprintf(stderr, "exc_server hated the message\n");
560 >                        exit(1);
561 >                }
562 >
563 >                krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
564 >                                 msg->msgh_local_port, 0, MACH_PORT_NULL);
565 >                if (krc != KERN_SUCCESS) {
566 >                        fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
567 >                                krc, mach_error_string(krc));
568 >                        exit(1);
569                  }
273                break;
274        default:   /* ignore instruction */
275                return 0;
276                break;
570          }
278        
279        addr = (baseA + baseB) + disp;
280        addr &= alignmask;
281        return (sigsegv_address_t)addr;
571   }
572   #endif
573   #endif
574 < #endif
574 >
575 >
576 > /*
577 > *  Instruction skipping
578 > */
579  
580   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
581   // Decode and skip X86 instruction
582 < #if (defined(i386) || defined(__i386__))
582 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
583   #if defined(__linux__)
584   enum {
585 + #if (defined(i386) || defined(__i386__))
586          X86_REG_EIP = 14,
587          X86_REG_EAX = 11,
588          X86_REG_ECX = 10,
# Line 298 | Line 592 | enum {
592          X86_REG_EBP = 6,
593          X86_REG_ESI = 5,
594          X86_REG_EDI = 4
595 + #endif
596 + #if defined(__x86_64__)
597 +        X86_REG_R8  = 0,
598 +        X86_REG_R9  = 1,
599 +        X86_REG_R10 = 2,
600 +        X86_REG_R11 = 3,
601 +        X86_REG_R12 = 4,
602 +        X86_REG_R13 = 5,
603 +        X86_REG_R14 = 6,
604 +        X86_REG_R15 = 7,
605 +        X86_REG_EDI = 8,
606 +        X86_REG_ESI = 9,
607 +        X86_REG_EBP = 10,
608 +        X86_REG_EBX = 11,
609 +        X86_REG_EDX = 12,
610 +        X86_REG_EAX = 13,
611 +        X86_REG_ECX = 14,
612 +        X86_REG_ESP = 15,
613 +        X86_REG_EIP = 16
614 + #endif
615 + };
616 + #endif
617 + #if defined(__NetBSD__) || defined(__FreeBSD__)
618 + enum {
619 + #if (defined(i386) || defined(__i386__))
620 +        X86_REG_EIP = 10,
621 +        X86_REG_EAX = 7,
622 +        X86_REG_ECX = 6,
623 +        X86_REG_EDX = 5,
624 +        X86_REG_EBX = 4,
625 +        X86_REG_ESP = 13,
626 +        X86_REG_EBP = 2,
627 +        X86_REG_ESI = 1,
628 +        X86_REG_EDI = 0
629 + #endif
630   };
631   #endif
632   // FIXME: this is partly redundant with the instruction decoding phase
# Line 334 | Line 663 | static inline int ix86_step_over_modrm(u
663          return offset;
664   }
665  
666 < static bool ix86_skip_instruction(sigsegv_address_t fault_instruction, unsigned long * regs)
666 > static bool ix86_skip_instruction(unsigned long * regs)
667   {
668 <        unsigned char * eip = (unsigned char *)fault_instruction;
668 >        unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
669  
670          if (eip == 0)
671                  return false;
672          
673 <        // Transfer type
674 <        enum {
346 <                TYPE_UNKNOWN,
347 <                TYPE_LOAD,
348 <                TYPE_STORE
349 <        } transfer_type = TYPE_UNKNOWN;
350 <        
351 <        // Transfer size
352 <        enum {
353 <                SIZE_BYTE,
354 <                SIZE_WORD,
355 <                SIZE_LONG
356 <        } transfer_size = SIZE_LONG;
673 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
674 >        transfer_size_t transfer_size = SIZE_LONG;
675          
676          int reg = -1;
677          int len = 0;
678 <        
678 >
679 > #if DEBUG
680 >        printf("IP: %p [%02x %02x %02x %02x...]\n",
681 >                   eip, eip[0], eip[1], eip[2], eip[3]);
682 > #endif
683 >
684          // Operand size prefix
685          if (*eip == 0x66) {
686                  eip++;
# Line 365 | Line 688 | static bool ix86_skip_instruction(sigseg
688                  transfer_size = SIZE_WORD;
689          }
690  
691 +        // REX prefix
692 + #if defined(__x86_64__)
693 +        struct rex_t {
694 +                unsigned char W;
695 +                unsigned char R;
696 +                unsigned char X;
697 +                unsigned char B;
698 +        };
699 +        rex_t rex = { 0, 0, 0, 0 };
700 +        bool has_rex = false;
701 +        if ((*eip & 0xf0) == 0x40) {
702 +                has_rex = true;
703 +                const unsigned char b = *eip;
704 +                rex.W = b & (1 << 3);
705 +                rex.R = b & (1 << 2);
706 +                rex.X = b & (1 << 1);
707 +                rex.B = b & (1 << 0);
708 + #if DEBUG
709 +                printf("REX: %c,%c,%c,%c\n",
710 +                           rex.W ? 'W' : '_',
711 +                           rex.R ? 'R' : '_',
712 +                           rex.X ? 'X' : '_',
713 +                           rex.B ? 'B' : '_');
714 + #endif
715 +                eip++;
716 +                len++;
717 +                if (rex.W)
718 +                        transfer_size = SIZE_QUAD;
719 +        }
720 + #else
721 +        const bool has_rex = false;
722 + #endif
723 +
724          // Decode instruction
725          switch (eip[0]) {
726 +        case 0x0f:
727 +            switch (eip[1]) {
728 +            case 0xb6: // MOVZX r32, r/m8
729 +            case 0xb7: // MOVZX r32, r/m16
730 +                switch (eip[2] & 0xc0) {
731 +                case 0x80:
732 +                    reg = (eip[2] >> 3) & 7;
733 +                    transfer_type = SIGSEGV_TRANSFER_LOAD;
734 +                    break;
735 +                case 0x40:
736 +                    reg = (eip[2] >> 3) & 7;
737 +                    transfer_type = SIGSEGV_TRANSFER_LOAD;
738 +                    break;
739 +                case 0x00:
740 +                    reg = (eip[2] >> 3) & 7;
741 +                    transfer_type = SIGSEGV_TRANSFER_LOAD;
742 +                    break;
743 +                }
744 +                len += 3 + ix86_step_over_modrm(eip + 2);
745 +                break;
746 +            }
747 +          break;
748          case 0x8a: // MOV r8, r/m8
749                  transfer_size = SIZE_BYTE;
750          case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
751                  switch (eip[1] & 0xc0) {
752                  case 0x80:
753                          reg = (eip[1] >> 3) & 7;
754 <                        transfer_type = TYPE_LOAD;
754 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
755                          break;
756                  case 0x40:
757                          reg = (eip[1] >> 3) & 7;
758 <                        transfer_type = TYPE_LOAD;
758 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
759                          break;
760                  case 0x00:
761                          reg = (eip[1] >> 3) & 7;
762 <                        transfer_type = TYPE_LOAD;
762 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
763                          break;
764                  }
765                  len += 2 + ix86_step_over_modrm(eip + 1);
# Line 392 | Line 770 | static bool ix86_skip_instruction(sigseg
770                  switch (eip[1] & 0xc0) {
771                  case 0x80:
772                          reg = (eip[1] >> 3) & 7;
773 <                        transfer_type = TYPE_STORE;
773 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
774                          break;
775                  case 0x40:
776                          reg = (eip[1] >> 3) & 7;
777 <                        transfer_type = TYPE_STORE;
777 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
778                          break;
779                  case 0x00:
780                          reg = (eip[1] >> 3) & 7;
781 <                        transfer_type = TYPE_STORE;
781 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
782                          break;
783                  }
784                  len += 2 + ix86_step_over_modrm(eip + 1);
785                  break;
786          }
787  
788 <        if (transfer_type == TYPE_UNKNOWN) {
788 >        if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
789                  // Unknown machine code, let it crash. Then patch the decoder
790                  return false;
791          }
792  
793 <        if (transfer_type == TYPE_LOAD && reg != -1) {
794 <                static const int x86_reg_map[8] = {
793 > #if defined(__x86_64__)
794 >        if (rex.R)
795 >                reg += 8;
796 > #endif
797 >
798 >        if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
799 >                static const int x86_reg_map[] = {
800                          X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
801 <                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI
801 >                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI,
802 > #if defined(__x86_64__)
803 >                        X86_REG_R8,  X86_REG_R9,  X86_REG_R10, X86_REG_R11,
804 >                        X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15,
805 > #endif
806                  };
807                  
808 <                if (reg < 0 || reg >= 8)
808 >                if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1))
809                          return false;
810  
811 +                // Set 0 to the relevant register part
812 +                // NOTE: this is only valid for MOV alike instructions
813                  int rloc = x86_reg_map[reg];
814                  switch (transfer_size) {
815                  case SIZE_BYTE:
816 <                        regs[rloc] = (regs[rloc] & ~0xff);
816 >                        if (!has_rex && reg >= 4)
817 >                                regs[rloc - 4] = (regs[rloc - 4] & ~0xff00L);
818 >                        else
819 >                                regs[rloc] = (regs[rloc] & ~0xffL);
820                          break;
821                  case SIZE_WORD:
822 <                        regs[rloc] = (regs[rloc] & ~0xffff);
822 >                        regs[rloc] = (regs[rloc] & ~0xffffL);
823                          break;
824                  case SIZE_LONG:
825 +                case SIZE_QUAD: // zero-extension
826                          regs[rloc] = 0;
827                          break;
828                  }
# Line 437 | Line 830 | static bool ix86_skip_instruction(sigseg
830  
831   #if DEBUG
832          printf("%08x: %s %s access", regs[X86_REG_EIP],
833 <                   transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : "long",
834 <                   transfer_type == TYPE_LOAD ? "read" : "write");
833 >                   transfer_size == SIZE_BYTE ? "byte" :
834 >                   transfer_size == SIZE_WORD ? "word" :
835 >                   transfer_size == SIZE_LONG ? "long" :
836 >                   transfer_size == SIZE_QUAD ? "quad" : "unknown",
837 >                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
838          
839          if (reg != -1) {
840 <                static const char * x86_reg_str_map[8] = {
841 <                        "eax", "ecx", "edx", "ebx",
842 <                        "esp", "ebp", "esi", "edi"
840 >                static const char * x86_byte_reg_str_map[] = {
841 >                        "al",   "cl",   "dl",   "bl",
842 >                        "spl",  "bpl",  "sil",  "dil",
843 >                        "r8b",  "r9b",  "r10b", "r11b",
844 >                        "r12b", "r13b", "r14b", "r15b",
845 >                        "ah",   "ch",   "dh",   "bh",
846 >                };
847 >                static const char * x86_word_reg_str_map[] = {
848 >                        "ax",   "cx",   "dx",   "bx",
849 >                        "sp",   "bp",   "si",   "di",
850 >                        "r8w",  "r9w",  "r10w", "r11w",
851 >                        "r12w", "r13w", "r14w", "r15w",
852 >                };
853 >                static const char *x86_long_reg_str_map[] = {
854 >                        "eax",  "ecx",  "edx",  "ebx",
855 >                        "esp",  "ebp",  "esi",  "edi",
856 >                        "r8d",  "r9d",  "r10d", "r11d",
857 >                        "r12d", "r13d", "r14d", "r15d",
858 >                };
859 >                static const char *x86_quad_reg_str_map[] = {
860 >                        "rax", "rcx", "rdx", "rbx",
861 >                        "rsp", "rbp", "rsi", "rdi",
862 >                        "r8",  "r9",  "r10", "r11",
863 >                        "r12", "r13", "r14", "r15",
864                  };
865 <                printf(" %s register %%%s", transfer_type == TYPE_LOAD ? "to" : "from", x86_reg_str_map[reg]);
865 >                const char * reg_str = NULL;
866 >                switch (transfer_size) {
867 >                case SIZE_BYTE:
868 >                        reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg];
869 >                        break;
870 >                case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break;
871 >                case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break;
872 >                case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break;
873 >                }
874 >                if (reg_str)
875 >                        printf(" %s register %%%s",
876 >                                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from",
877 >                                   reg_str);
878          }
879          printf(", %d bytes instruction\n", len);
880   #endif
# Line 454 | Line 883 | static bool ix86_skip_instruction(sigseg
883          return true;
884   }
885   #endif
886 +
887 + // Decode and skip PPC instruction
888 + #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
889 + static bool powerpc_skip_instruction(unsigned int * nip_p, unsigned int * regs)
890 + {
891 +        instruction_t instr;
892 +        powerpc_decode_instruction(&instr, *nip_p, regs);
893 +        
894 +        if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
895 +                // Unknown machine code, let it crash. Then patch the decoder
896 +                return false;
897 +        }
898 +
899 + #if DEBUG
900 +        printf("%08x: %s %s access", *nip_p,
901 +                   instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : "long",
902 +                   instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
903 +        
904 +        if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
905 +                printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
906 +        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
907 +                printf(" r%d (rd = 0)\n", instr.rd);
908 + #endif
909 +        
910 +        if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
911 +                regs[instr.ra] = instr.addr;
912 +        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
913 +                regs[instr.rd] = 0;
914 +        
915 +        *nip_p += 4;
916 +        return true;
917 + }
918 + #endif
919   #endif
920  
921   // Fallbacks
922   #ifndef SIGSEGV_FAULT_INSTRUCTION
923   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_PC
924   #endif
925 + #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
926 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
927 + #endif
928 + #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
929 + #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  sigsegv_fault_handler(ADDR, IP)
930 + #endif
931  
932   // SIGSEGV recovery supported ?
933   #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
# Line 471 | Line 939 | static bool ix86_skip_instruction(sigseg
939   *  SIGSEGV global handler
940   */
941  
942 < #ifdef HAVE_SIGSEGV_RECOVERY
943 < static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
942 > #if defined(HAVE_SIGSEGV_RECOVERY) || defined(HAVE_MACH_EXCEPTIONS)
943 > // This function handles the badaccess to memory.
944 > // It is called from the signal handler or the exception handler.
945 > static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
946   {
947          sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
948          sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
479        bool fault_recovered = false;
949          
950          // Call user's handler and reinstall the global handler, if required
951 <        if (sigsegv_user_handler(fault_address, fault_instruction)) {
952 < #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
953 <                sigsegv_do_install_handler(sig);
951 >        switch (SIGSEGV_FAULT_HANDLER_INVOKE(fault_address, fault_instruction)) {
952 >        case SIGSEGV_RETURN_SUCCESS:
953 >                return true;
954 >
955 > #if HAVE_SIGSEGV_SKIP_INSTRUCTION
956 >        case SIGSEGV_RETURN_SKIP_INSTRUCTION:
957 >                // Call the instruction skipper with the register file
958 >                // available
959 >                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
960 > #ifdef HAVE_MACH_EXCEPTIONS
961 >                        // Unlike UNIX signals where the thread state
962 >                        // is modified off of the stack, in Mach we
963 >                        // need to actually call thread_set_state to
964 >                        // have the register values updated.
965 >                        kern_return_t krc;
966 >
967 >                        krc = thread_set_state(thread,
968 >                                                                   MACHINE_THREAD_STATE, (thread_state_t)state,
969 >                                                                   MACHINE_THREAD_STATE_COUNT);
970 >                        MACH_CHECK_ERROR (thread_get_state, krc);
971 > #endif
972 >                        return true;
973 >                }
974 >                break;
975   #endif
486                fault_recovered = true;
976          }
977 < #if HAVE_SIGSEGV_SKIP_INSTRUCTION
978 <        else if (sigsegv_ignore_fault) {
979 <                // Call the instruction skipper with the register file available
980 <                if (SIGSEGV_SKIP_INSTRUCTION(fault_instruction, SIGSEGV_REGISTER_FILE))
981 <                        fault_recovered = true;
977 >        
978 >        // We can't do anything with the fault_address, dump state?
979 >        if (sigsegv_state_dumper != 0)
980 >                sigsegv_state_dumper(fault_address, fault_instruction);
981 >
982 >        return false;
983 > }
984 > #endif
985 >
986 >
987 > /*
988 > * There are two mechanisms for handling a bad memory access,
989 > * Mach exceptions and UNIX signals. The implementation specific
990 > * code appears below. Its reponsibility is to call handle_badaccess
991 > * which is the routine that handles the fault in an implementation
992 > * agnostic manner. The implementation specific code below is then
993 > * reponsible for checking whether handle_badaccess was able
994 > * to handle the memory access error and perform any implementation
995 > * specific tasks necessary afterwards.
996 > */
997 >
998 > #ifdef HAVE_MACH_EXCEPTIONS
999 > /*
1000 > * We need to forward all exceptions that we do not handle.
1001 > * This is important, there are many exceptions that may be
1002 > * handled by other exception handlers. For example debuggers
1003 > * use exceptions and the exception hander is in another
1004 > * process in such a case. (Timothy J. Wood states in his
1005 > * message to the list that he based this code on that from
1006 > * gdb for Darwin.)
1007 > */
1008 > static inline kern_return_t
1009 > forward_exception(mach_port_t thread_port,
1010 >                                  mach_port_t task_port,
1011 >                                  exception_type_t exception_type,
1012 >                                  exception_data_t exception_data,
1013 >                                  mach_msg_type_number_t data_count,
1014 >                                  ExceptionPorts *oldExceptionPorts)
1015 > {
1016 >        kern_return_t kret;
1017 >        unsigned int portIndex;
1018 >        mach_port_t port;
1019 >        exception_behavior_t behavior;
1020 >        thread_state_flavor_t flavor;
1021 >        thread_state_t thread_state;
1022 >        mach_msg_type_number_t thread_state_count;
1023 >
1024 >        for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
1025 >                if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
1026 >                        // This handler wants the exception
1027 >                        break;
1028 >                }
1029 >        }
1030 >
1031 >        if (portIndex >= oldExceptionPorts->maskCount) {
1032 >                fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
1033 >                return KERN_FAILURE;
1034 >        }
1035 >
1036 >        port = oldExceptionPorts->handlers[portIndex];
1037 >        behavior = oldExceptionPorts->behaviors[portIndex];
1038 >        flavor = oldExceptionPorts->flavors[portIndex];
1039 >
1040 >        /*
1041 >         fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
1042 >         */
1043 >
1044 >        if (behavior != EXCEPTION_DEFAULT) {
1045 >                thread_state_count = THREAD_STATE_MAX;
1046 >                kret = thread_get_state (thread_port, flavor, thread_state,
1047 >                                                                 &thread_state_count);
1048 >                MACH_CHECK_ERROR (thread_get_state, kret);
1049 >        }
1050 >
1051 >        switch (behavior) {
1052 >        case EXCEPTION_DEFAULT:
1053 >          // fprintf(stderr, "forwarding to exception_raise\n");
1054 >          kret = exception_raise(port, thread_port, task_port, exception_type,
1055 >                                                         exception_data, data_count);
1056 >          MACH_CHECK_ERROR (exception_raise, kret);
1057 >          break;
1058 >        case EXCEPTION_STATE:
1059 >          // fprintf(stderr, "forwarding to exception_raise_state\n");
1060 >          kret = exception_raise_state(port, exception_type, exception_data,
1061 >                                                                   data_count, &flavor,
1062 >                                                                   thread_state, thread_state_count,
1063 >                                                                   thread_state, &thread_state_count);
1064 >          MACH_CHECK_ERROR (exception_raise_state, kret);
1065 >          break;
1066 >        case EXCEPTION_STATE_IDENTITY:
1067 >          // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
1068 >          kret = exception_raise_state_identity(port, thread_port, task_port,
1069 >                                                                                        exception_type, exception_data,
1070 >                                                                                        data_count, &flavor,
1071 >                                                                                        thread_state, thread_state_count,
1072 >                                                                                        thread_state, &thread_state_count);
1073 >          MACH_CHECK_ERROR (exception_raise_state_identity, kret);
1074 >          break;
1075 >        default:
1076 >          fprintf(stderr, "forward_exception got unknown behavior\n");
1077 >          break;
1078 >        }
1079 >
1080 >        if (behavior != EXCEPTION_DEFAULT) {
1081 >                kret = thread_set_state (thread_port, flavor, thread_state,
1082 >                                                                 thread_state_count);
1083 >                MACH_CHECK_ERROR (thread_set_state, kret);
1084 >        }
1085 >
1086 >        return KERN_SUCCESS;
1087 > }
1088 >
1089 > /*
1090 > * This is the code that actually handles the exception.
1091 > * It is called by exc_server. For Darwin 5 Apple changed
1092 > * this a bit from how this family of functions worked in
1093 > * Mach. If you are familiar with that it is a little
1094 > * different. The main variation that concerns us here is
1095 > * that code is an array of exception specific codes and
1096 > * codeCount is a count of the number of codes in the code
1097 > * array. In typical Mach all exceptions have a code
1098 > * and sub-code. It happens to be the case that for a
1099 > * EXC_BAD_ACCESS exception the first entry is the type of
1100 > * bad access that occurred and the second entry is the
1101 > * faulting address so these entries correspond exactly to
1102 > * how the code and sub-code are used on Mach.
1103 > *
1104 > * This is a MIG interface. No code in Basilisk II should
1105 > * call this directley. This has to have external C
1106 > * linkage because that is what exc_server expects.
1107 > */
1108 > kern_return_t
1109 > catch_exception_raise(mach_port_t exception_port,
1110 >                                          mach_port_t thread,
1111 >                                          mach_port_t task,
1112 >                                          exception_type_t exception,
1113 >                                          exception_data_t code,
1114 >                                          mach_msg_type_number_t codeCount)
1115 > {
1116 >        ppc_thread_state_t state;
1117 >        kern_return_t krc;
1118 >
1119 >        if ((exception == EXC_BAD_ACCESS)  && (codeCount >= 2)) {
1120 >                if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
1121 >                        return KERN_SUCCESS;
1122          }
1123 +
1124 +        // In Mach we do not need to remove the exception handler.
1125 +        // If we forward the exception, eventually some exception handler
1126 +        // will take care of this exception.
1127 +        krc = forward_exception(thread, task, exception, code, codeCount, &ports);
1128 +
1129 +        return krc;
1130 + }
1131 + #endif
1132 +
1133 + #ifdef HAVE_SIGSEGV_RECOVERY
1134 + // Handle bad memory accesses with signal handler
1135 + static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1136 + {
1137 +        // Call handler and reinstall the global handler, if required
1138 +        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
1139 + #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1140 +                sigsegv_do_install_handler(sig);
1141   #endif
1142 +                return;
1143 +        }
1144  
1145 <        if (!fault_recovered) {
497 <                // FAIL: reinstall default handler for "safe" crash
1145 >        // Failure: reinstall default handler for "safe" crash
1146   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1147 <                SIGSEGV_ALL_SIGNALS
1147 >        SIGSEGV_ALL_SIGNALS
1148   #undef FAULT_HANDLER
501                
502                // We can't do anything with the fault_address, dump state?
503                if (sigsegv_dump_state != 0)
504                        sigsegv_dump_state(fault_address, fault_instruction);
505        }
1149   }
1150   #endif
1151  
# Line 516 | Line 1159 | static bool sigsegv_do_install_handler(i
1159   {
1160          // Setup SIGSEGV handler to process writes to frame buffer
1161   #ifdef HAVE_SIGACTION
1162 <        struct sigaction vosf_sa;
1163 <        sigemptyset(&vosf_sa.sa_mask);
1164 <        vosf_sa.sa_sigaction = sigsegv_handler;
1165 <        vosf_sa.sa_flags = SA_SIGINFO;
1166 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1162 >        struct sigaction sigsegv_sa;
1163 >        sigemptyset(&sigsegv_sa.sa_mask);
1164 >        sigsegv_sa.sa_sigaction = sigsegv_handler;
1165 >        sigsegv_sa.sa_flags = SA_SIGINFO;
1166 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1167   #else
1168          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1169   #endif
# Line 532 | Line 1175 | static bool sigsegv_do_install_handler(i
1175   {
1176          // Setup SIGSEGV handler to process writes to frame buffer
1177   #ifdef HAVE_SIGACTION
1178 <        struct sigaction vosf_sa;
1179 <        sigemptyset(&vosf_sa.sa_mask);
1180 <        vosf_sa.sa_handler = (signal_handler)sigsegv_handler;
1178 >        struct sigaction sigsegv_sa;
1179 >        sigemptyset(&sigsegv_sa.sa_mask);
1180 >        sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
1181 >        sigsegv_sa.sa_flags = 0;
1182   #if !EMULATED_68K && defined(__NetBSD__)
1183 <        sigaddset(&vosf_sa.sa_mask, SIGALRM);
1184 <        vosf_sa.sa_flags = SA_ONSTACK;
541 < #else
542 <        vosf_sa.sa_flags = 0;
1183 >        sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
1184 >        sigsegv_sa.sa_flags |= SA_ONSTACK;
1185   #endif
1186 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1186 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1187   #else
1188          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1189   #endif
1190   }
1191   #endif
1192  
1193 < bool sigsegv_install_handler(sigsegv_handler_t handler)
1193 > #if defined(HAVE_MACH_EXCEPTIONS)
1194 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1195   {
1196 < #ifdef HAVE_SIGSEGV_RECOVERY
1197 <        sigsegv_user_handler = handler;
1196 >        /*
1197 >         * Except for the exception port functions, this should be
1198 >         * pretty much stock Mach. If later you choose to support
1199 >         * other Mach's besides Darwin, just check for __MACH__
1200 >         * here and __APPLE__ where the actual differences are.
1201 >         */
1202 > #if defined(__APPLE__) && defined(__MACH__)
1203 >        if (sigsegv_fault_handler != NULL) {
1204 >                sigsegv_fault_handler = handler;
1205 >                return true;
1206 >        }
1207 >
1208 >        kern_return_t krc;
1209 >
1210 >        // create the the exception port
1211 >        krc = mach_port_allocate(mach_task_self(),
1212 >                          MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
1213 >        if (krc != KERN_SUCCESS) {
1214 >                mach_error("mach_port_allocate", krc);
1215 >                return false;
1216 >        }
1217 >
1218 >        // add a port send right
1219 >        krc = mach_port_insert_right(mach_task_self(),
1220 >                              _exceptionPort, _exceptionPort,
1221 >                              MACH_MSG_TYPE_MAKE_SEND);
1222 >        if (krc != KERN_SUCCESS) {
1223 >                mach_error("mach_port_insert_right", krc);
1224 >                return false;
1225 >        }
1226 >
1227 >        // get the old exception ports
1228 >        ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
1229 >        krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
1230 >                                &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
1231 >        if (krc != KERN_SUCCESS) {
1232 >                mach_error("thread_get_exception_ports", krc);
1233 >                return false;
1234 >        }
1235 >
1236 >        // set the new exception port
1237 >        //
1238 >        // We could have used EXCEPTION_STATE_IDENTITY instead of
1239 >        // EXCEPTION_DEFAULT to get the thread state in the initial
1240 >        // message, but it turns out that in the common case this is not
1241 >        // neccessary. If we need it we can later ask for it from the
1242 >        // suspended thread.
1243 >        //
1244 >        // Even with THREAD_STATE_NONE, Darwin provides the program
1245 >        // counter in the thread state.  The comments in the header file
1246 >        // seem to imply that you can count on the GPR's on an exception
1247 >        // as well but just to be safe I use MACHINE_THREAD_STATE because
1248 >        // you have to ask for all of the GPR's anyway just to get the
1249 >        // program counter. In any case because of update effective
1250 >        // address from immediate and update address from effective
1251 >        // addresses of ra and rb modes (as good an name as any for these
1252 >        // addressing modes) used in PPC instructions, you will need the
1253 >        // GPR state anyway.
1254 >        krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
1255 >                                EXCEPTION_DEFAULT, MACHINE_THREAD_STATE);
1256 >        if (krc != KERN_SUCCESS) {
1257 >                mach_error("thread_set_exception_ports", krc);
1258 >                return false;
1259 >        }
1260 >
1261 >        // create the exception handler thread
1262 >        if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
1263 >                (void)fprintf(stderr, "creation of exception thread failed\n");
1264 >                return false;
1265 >        }
1266 >
1267 >        // do not care about the exception thread any longer, let is run standalone
1268 >        (void)pthread_detach(exc_thread);
1269 >
1270 >        sigsegv_fault_handler = handler;
1271 >        return true;
1272 > #else
1273 >        return false;
1274 > #endif
1275 > }
1276 > #endif
1277 >
1278 > bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1279 > {
1280 > #if defined(HAVE_SIGSEGV_RECOVERY)
1281          bool success = true;
1282   #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
1283          SIGSEGV_ALL_SIGNALS
1284   #undef FAULT_HANDLER
1285 +        if (success)
1286 +            sigsegv_fault_handler = handler;
1287          return success;
1288 + #elif defined(HAVE_MACH_EXCEPTIONS)
1289 +        return sigsegv_do_install_handler(handler);
1290   #else
1291          // FAIL: no siginfo_t nor sigcontext subterfuge is available
1292          return false;
# Line 570 | Line 1300 | bool sigsegv_install_handler(sigsegv_han
1300  
1301   void sigsegv_deinstall_handler(void)
1302   {
1303 +  // We do nothing for Mach exceptions, the thread would need to be
1304 +  // suspended if not already so, and we might mess with other
1305 +  // exception handlers that came after we registered ours. There is
1306 +  // no need to remove the exception handler, in fact this function is
1307 +  // not called anywhere in Basilisk II.
1308   #ifdef HAVE_SIGSEGV_RECOVERY
1309 <        sigsegv_user_handler = 0;
1309 >        sigsegv_fault_handler = 0;
1310   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1311          SIGSEGV_ALL_SIGNALS
1312   #undef FAULT_HANDLER
# Line 580 | Line 1315 | void sigsegv_deinstall_handler(void)
1315  
1316  
1317   /*
583 *  SIGSEGV ignore state modifier
584 */
585
586 void sigsegv_set_ignore_state(bool ignore_fault)
587 {
588        sigsegv_ignore_fault = ignore_fault;
589 }
590
591
592 /*
1318   *  Set callback function when we cannot handle the fault
1319   */
1320  
1321 < void sigsegv_set_dump_state(sigsegv_handler_t handler)
1321 > void sigsegv_set_dump_state(sigsegv_state_dumper_t handler)
1322   {
1323 <        sigsegv_dump_state = handler;
1323 >        sigsegv_state_dumper = handler;
1324   }
1325  
1326  
# Line 610 | Line 1335 | void sigsegv_set_dump_state(sigsegv_hand
1335   #include <sys/mman.h>
1336   #include "vm_alloc.h"
1337  
1338 + const int REF_INDEX = 123;
1339 + const int REF_VALUE = 45;
1340 +
1341   static int page_size;
1342   static volatile char * page = 0;
1343   static volatile int handler_called = 0;
1344  
1345 < static bool sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1345 > #ifdef __GNUC__
1346 > // Code range where we expect the fault to come from
1347 > static void *b_region, *e_region;
1348 > #endif
1349 >
1350 > static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1351   {
1352          handler_called++;
1353 <        if ((fault_address - 123) != page)
1354 <                exit(1);
1353 >        if ((fault_address - REF_INDEX) != page)
1354 >                exit(10);
1355 > #ifdef __GNUC__
1356 >        // Make sure reported fault instruction address falls into
1357 >        // expected code range
1358 >        if (instruction_address != SIGSEGV_INVALID_PC
1359 >                && ((instruction_address <  (sigsegv_address_t)b_region) ||
1360 >                        (instruction_address >= (sigsegv_address_t)e_region)))
1361 >                exit(11);
1362 > #endif
1363          if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
1364 <                exit(1);
1365 <        return true;
1364 >                exit(12);
1365 >        return SIGSEGV_RETURN_SUCCESS;
1366   }
1367  
1368   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1369 < static bool sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1369 > static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1370   {
1371 <        return false;
1371 >        if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
1372 > #ifdef __GNUC__
1373 >                // Make sure reported fault instruction address falls into
1374 >                // expected code range
1375 >                if (instruction_address != SIGSEGV_INVALID_PC
1376 >                        && ((instruction_address <  (sigsegv_address_t)b_region) ||
1377 >                                (instruction_address >= (sigsegv_address_t)e_region)))
1378 >                        return SIGSEGV_RETURN_FAILURE;
1379 > #endif
1380 >                return SIGSEGV_RETURN_SKIP_INSTRUCTION;
1381 >        }
1382 >
1383 >        return SIGSEGV_RETURN_FAILURE;
1384 > }
1385 >
1386 > // More sophisticated tests for instruction skipper
1387 > static bool arch_insn_skipper_tests()
1388 > {
1389 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
1390 >        static const unsigned char code[] = {
1391 >                0x8a, 0x00,                    // mov    (%eax),%al
1392 >                0x8a, 0x2c, 0x18,              // mov    (%eax,%ebx,1),%ch
1393 >                0x88, 0x20,                    // mov    %ah,(%eax)
1394 >                0x88, 0x08,                    // mov    %cl,(%eax)
1395 >                0x66, 0x8b, 0x00,              // mov    (%eax),%ax
1396 >                0x66, 0x8b, 0x0c, 0x18,        // mov    (%eax,%ebx,1),%cx
1397 >                0x66, 0x89, 0x00,              // mov    %ax,(%eax)
1398 >                0x66, 0x89, 0x0c, 0x18,        // mov    %cx,(%eax,%ebx,1)
1399 >                0x8b, 0x00,                    // mov    (%eax),%eax
1400 >                0x8b, 0x0c, 0x18,              // mov    (%eax,%ebx,1),%ecx
1401 >                0x89, 0x00,                    // mov    %eax,(%eax)
1402 >                0x89, 0x0c, 0x18,              // mov    %ecx,(%eax,%ebx,1)
1403 > #if defined(__x86_64__)
1404 >                0x44, 0x8a, 0x00,              // mov    (%rax),%r8b
1405 >                0x44, 0x8a, 0x20,              // mov    (%rax),%r12b
1406 >                0x42, 0x8a, 0x3c, 0x10,        // mov    (%rax,%r10,1),%dil
1407 >                0x44, 0x88, 0x00,              // mov    %r8b,(%rax)
1408 >                0x44, 0x88, 0x20,              // mov    %r12b,(%rax)
1409 >                0x42, 0x88, 0x3c, 0x10,        // mov    %dil,(%rax,%r10,1)
1410 >                0x66, 0x44, 0x8b, 0x00,        // mov    (%rax),%r8w
1411 >                0x66, 0x42, 0x8b, 0x0c, 0x10,  // mov    (%rax,%r10,1),%cx
1412 >                0x66, 0x44, 0x89, 0x00,        // mov    %r8w,(%rax)
1413 >                0x66, 0x42, 0x89, 0x0c, 0x10,  // mov    %cx,(%rax,%r10,1)
1414 >                0x44, 0x8b, 0x00,              // mov    (%rax),%r8d
1415 >                0x42, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%ecx
1416 >                0x44, 0x89, 0x00,              // mov    %r8d,(%rax)
1417 >                0x42, 0x89, 0x0c, 0x10,        // mov    %ecx,(%rax,%r10,1)
1418 >                0x48, 0x8b, 0x08,              // mov    (%rax),%rcx
1419 >                0x4c, 0x8b, 0x18,              // mov    (%rax),%r11
1420 >                0x4a, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%rcx
1421 >                0x4e, 0x8b, 0x1c, 0x10,        // mov    (%rax,%r10,1),%r11
1422 >                0x48, 0x89, 0x08,              // mov    %rcx,(%rax)
1423 >                0x4c, 0x89, 0x18,              // mov    %r11,(%rax)
1424 >                0x4a, 0x89, 0x0c, 0x10,        // mov    %rcx,(%rax,%r10,1)
1425 >                0x4e, 0x89, 0x1c, 0x10,        // mov    %r11,(%rax,%r10,1)
1426 > #endif
1427 >                0                              // end
1428 >        };
1429 >        const int N_REGS = 20;
1430 >        unsigned long regs[N_REGS];
1431 >        for (int i = 0; i < N_REGS; i++)
1432 >                regs[i] = i;
1433 >        const unsigned long start_code = (unsigned long)&code;
1434 >        regs[X86_REG_EIP] = start_code;
1435 >        while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1)
1436 >                   && ix86_skip_instruction(regs))
1437 >                ; /* simply iterate */
1438 >        return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1);
1439 > #endif
1440 >        return true;
1441   }
1442   #endif
1443  
# Line 638 | Line 1448 | int main(void)
1448  
1449          page_size = getpagesize();
1450          if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
1451 <                return 1;
1451 >                return 2;
1452          
1453 +        memset((void *)page, 0, page_size);
1454          if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
1455 <                return 1;
1455 >                return 3;
1456          
1457          if (!sigsegv_install_handler(sigsegv_test_handler))
1458 <                return 1;
648 <        
649 <        page[123] = 45;
650 <        page[123] = 45;
1458 >                return 4;
1459          
1460 + #ifdef __GNUC__
1461 +        b_region = &&L_b_region1;
1462 +        e_region = &&L_e_region1;
1463 + #endif
1464 + L_b_region1:
1465 +        page[REF_INDEX] = REF_VALUE;
1466 +        if (page[REF_INDEX] != REF_VALUE)
1467 +          exit(20);
1468 +        page[REF_INDEX] = REF_VALUE;
1469 + L_e_region1:
1470 +
1471          if (handler_called != 1)
1472 <                return 1;
1472 >                return 5;
1473  
1474   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1475          if (!sigsegv_install_handler(sigsegv_insn_handler))
1476 <                return 1;
1476 >                return 6;
1477          
1478 <        if (vm_protect((char *)page, page_size, VM_PAGE_WRITE) < 0)
1479 <                return 1;
1478 >        if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
1479 >                return 7;
1480          
1481          for (int i = 0; i < page_size; i++)
1482                  page[i] = (i + 1) % page_size;
1483          
1484          if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
1485 <                return 1;
1485 >                return 8;
1486          
668        sigsegv_set_ignore_state(true);
669
1487   #define TEST_SKIP_INSTRUCTION(TYPE) do {                                \
1488 <                const unsigned int TAG = 0x12345678;                    \
1488 >                const unsigned long TAG = 0x12345678 |                  \
1489 >                (sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0);   \
1490                  TYPE data = *((TYPE *)(page + sizeof(TYPE)));   \
1491 <                volatile unsigned int effect = data + TAG;              \
1491 >                volatile unsigned long effect = data + TAG;             \
1492                  if (effect != TAG)                                                              \
1493 <                        return 1;                                                                       \
1493 >                        return 9;                                                                       \
1494          } while (0)
1495          
1496 + #ifdef __GNUC__
1497 +        b_region = &&L_b_region2;
1498 +        e_region = &&L_e_region2;
1499 + #endif
1500 + L_b_region2:
1501          TEST_SKIP_INSTRUCTION(unsigned char);
1502          TEST_SKIP_INSTRUCTION(unsigned short);
1503          TEST_SKIP_INSTRUCTION(unsigned int);
1504 +        TEST_SKIP_INSTRUCTION(unsigned long);
1505 + L_e_region2:
1506 +
1507 +        if (!arch_insn_skipper_tests())
1508 +                return 20;
1509   #endif
1510  
1511          vm_exit();

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines