ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
(Generate patch)

Comparing BasiliskII/src/Unix/sigsegv.cpp (file contents):
Revision 1.7 by cebix, 2002-01-15T14:58:37Z vs.
Revision 1.80 by gbeauche, 2008-01-14T19:29:29Z

# Line 4 | Line 4
4   *  Derived from Bruno Haible's work on his SIGSEGV library for clisp
5   *  <http://clisp.sourceforge.net/>
6   *
7 < *  Basilisk II (C) 1997-2002 Christian Bauer
7 > *  MacOS X support derived from the post by Timothy J. Wood to the
8 > *  omnigroup macosx-dev list:
9 > *    Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10 > *    tjw@omnigroup.com Sun, 4 Jun 2000
11 > *    www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12 > *
13 > *  Basilisk II (C) 1997-2008 Christian Bauer
14   *
15   *  This program is free software; you can redistribute it and/or modify
16   *  it under the terms of the GNU General Public License as published by
# Line 29 | Line 35
35   #include "config.h"
36   #endif
37  
38 + #include <list>
39 + #include <stdio.h>
40   #include <signal.h>
41   #include "sigsegv.h"
42  
43 + #ifndef NO_STD_NAMESPACE
44 + using std::list;
45 + #endif
46 +
47   // Return value type of a signal handler (standard type if not defined)
48   #ifndef RETSIGTYPE
49   #define RETSIGTYPE void
50   #endif
51  
52 + // Size of an unsigned integer large enough to hold all bits of a pointer
53 + // NOTE: this can be different than SIGSEGV_REGISTER_TYPE. In
54 + // particular, on ILP32 systems with a 64-bit kernel (HP-UX/ia64?)
55 + #ifdef HAVE_WIN32_VM
56 + // Windows is either ILP32 or LLP64
57 + typedef UINT_PTR sigsegv_uintptr_t;
58 + #else
59 + // Other systems are sane enough to follow ILP32 or LP64 models
60 + typedef unsigned long sigsegv_uintptr_t;
61 + #endif
62 +
63   // Type of the system signal handler
64   typedef RETSIGTYPE (*signal_handler)(int);
65  
66   // User's SIGSEGV handler
67 < static sigsegv_handler_t sigsegv_user_handler = 0;
67 > static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
68 >
69 > // Function called to dump state if we can't handle the fault
70 > static sigsegv_state_dumper_t sigsegv_state_dumper = 0;
71  
72   // Actual SIGSEGV handler installer
73   static bool sigsegv_do_install_handler(int sig);
74  
75  
76   /*
77 + *  Instruction decoding aids
78 + */
79 +
80 + // Transfer type
81 + enum transfer_type_t {
82 +        SIGSEGV_TRANSFER_UNKNOWN        = 0,
83 +        SIGSEGV_TRANSFER_LOAD           = 1,
84 +        SIGSEGV_TRANSFER_STORE          = 2
85 + };
86 +
87 + // Transfer size
88 + enum transfer_size_t {
89 +        SIZE_UNKNOWN,
90 +        SIZE_BYTE,
91 +        SIZE_WORD, // 2 bytes
92 +        SIZE_LONG, // 4 bytes
93 +        SIZE_QUAD  // 8 bytes
94 + };
95 +
96 + #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__))
97 + // Addressing mode
98 + enum addressing_mode_t {
99 +        MODE_UNKNOWN,
100 +        MODE_NORM,
101 +        MODE_U,
102 +        MODE_X,
103 +        MODE_UX
104 + };
105 +
106 + // Decoded instruction
107 + struct instruction_t {
108 +        transfer_type_t         transfer_type;
109 +        transfer_size_t         transfer_size;
110 +        addressing_mode_t       addr_mode;
111 +        unsigned int            addr;
112 +        char                            ra, rd;
113 + };
114 +
115 + static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned long * gpr)
116 + {
117 +        // Get opcode and divide into fields
118 +        unsigned int opcode = *((unsigned int *)(unsigned long)nip);
119 +        unsigned int primop = opcode >> 26;
120 +        unsigned int exop = (opcode >> 1) & 0x3ff;
121 +        unsigned int ra = (opcode >> 16) & 0x1f;
122 +        unsigned int rb = (opcode >> 11) & 0x1f;
123 +        unsigned int rd = (opcode >> 21) & 0x1f;
124 +        signed int imm = (signed short)(opcode & 0xffff);
125 +        
126 +        // Analyze opcode
127 +        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
128 +        transfer_size_t transfer_size = SIZE_UNKNOWN;
129 +        addressing_mode_t addr_mode = MODE_UNKNOWN;
130 +        switch (primop) {
131 +        case 31:
132 +                switch (exop) {
133 +                case 23:        // lwzx
134 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
135 +                case 55:        // lwzux
136 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
137 +                case 87:        // lbzx
138 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
139 +                case 119:       // lbzux
140 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
141 +                case 151:       // stwx
142 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
143 +                case 183:       // stwux
144 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
145 +                case 215:       // stbx
146 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
147 +                case 247:       // stbux
148 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
149 +                case 279:       // lhzx
150 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
151 +                case 311:       // lhzux
152 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
153 +                case 343:       // lhax
154 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
155 +                case 375:       // lhaux
156 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
157 +                case 407:       // sthx
158 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
159 +                case 439:       // sthux
160 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
161 +                }
162 +                break;
163 +        
164 +        case 32:        // lwz
165 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
166 +        case 33:        // lwzu
167 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
168 +        case 34:        // lbz
169 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
170 +        case 35:        // lbzu
171 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
172 +        case 36:        // stw
173 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
174 +        case 37:        // stwu
175 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
176 +        case 38:        // stb
177 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
178 +        case 39:        // stbu
179 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
180 +        case 40:        // lhz
181 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
182 +        case 41:        // lhzu
183 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
184 +        case 42:        // lha
185 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
186 +        case 43:        // lhau
187 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
188 +        case 44:        // sth
189 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
190 +        case 45:        // sthu
191 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
192 +        case 58:        // ld, ldu, lwa
193 +                transfer_type = SIGSEGV_TRANSFER_LOAD;
194 +                transfer_size = SIZE_QUAD;
195 +                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
196 +                imm &= ~3;
197 +                break;
198 +        case 62:        // std, stdu, stq
199 +                transfer_type = SIGSEGV_TRANSFER_STORE;
200 +                transfer_size = SIZE_QUAD;
201 +                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
202 +                imm &= ~3;
203 +                break;
204 +        }
205 +        
206 +        // Calculate effective address
207 +        unsigned int addr = 0;
208 +        switch (addr_mode) {
209 +        case MODE_X:
210 +        case MODE_UX:
211 +                if (ra == 0)
212 +                        addr = gpr[rb];
213 +                else
214 +                        addr = gpr[ra] + gpr[rb];
215 +                break;
216 +        case MODE_NORM:
217 +        case MODE_U:
218 +                if (ra == 0)
219 +                        addr = (signed int)(signed short)imm;
220 +                else
221 +                        addr = gpr[ra] + (signed int)(signed short)imm;
222 +                break;
223 +        default:
224 +                break;
225 +        }
226 +        
227 +        // Commit decoded instruction
228 +        instruction->addr = addr;
229 +        instruction->addr_mode = addr_mode;
230 +        instruction->transfer_type = transfer_type;
231 +        instruction->transfer_size = transfer_size;
232 +        instruction->ra = ra;
233 +        instruction->rd = rd;
234 + }
235 + #endif
236 +
237 +
238 + /*
239   *  OS-dependant SIGSEGV signals support section
240   */
241  
242   #if HAVE_SIGINFO_T
243   // Generic extended signal handler
244 + #if defined(__FreeBSD__)
245 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
246 + #else
247   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
248 + #endif
249   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, siginfo_t *sip, void *scp
250 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
251 + #define SIGSEGV_FAULT_HANDLER_ARGS              sip, scp
252   #define SIGSEGV_FAULT_ADDRESS                   sip->si_addr
253 + #if (defined(sgi) || defined(__sgi))
254 + #include <ucontext.h>
255 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
256 + #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)SIGSEGV_CONTEXT_REGS[CTX_EPC]
257 + #if (defined(mips) || defined(__mips))
258 + #define SIGSEGV_REGISTER_FILE                   &SIGSEGV_CONTEXT_REGS[CTX_EPC], &SIGSEGV_CONTEXT_REGS[CTX_R0]
259 + #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
260 + #endif
261 + #endif
262 + #if defined(__sun__)
263 + #if (defined(sparc) || defined(__sparc__))
264 + #include <sys/stack.h>
265 + #include <sys/regset.h>
266 + #include <sys/ucontext.h>
267 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
268 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[REG_PC]
269 + #define SIGSEGV_SPARC_GWINDOWS                  (((ucontext_t *)scp)->uc_mcontext.gwins)
270 + #define SIGSEGV_SPARC_RWINDOW                   (struct rwindow *)((char *)SIGSEGV_CONTEXT_REGS[REG_SP] + STACK_BIAS)
271 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)SIGSEGV_CONTEXT_REGS), SIGSEGV_SPARC_GWINDOWS, SIGSEGV_SPARC_RWINDOW
272 + #define SIGSEGV_SKIP_INSTRUCTION                sparc_skip_instruction
273 + #endif
274 + #if defined(__i386__)
275 + #include <sys/regset.h>
276 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
277 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[EIP]
278 + #define SIGSEGV_REGISTER_FILE                   (SIGSEGV_REGISTER_TYPE *)SIGSEGV_CONTEXT_REGS
279 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
280 + #endif
281 + #endif
282 + #if defined(__FreeBSD__) || defined(__OpenBSD__)
283 + #if (defined(i386) || defined(__i386__))
284 + #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_eip)
285 + #define SIGSEGV_REGISTER_FILE                   ((SIGSEGV_REGISTER_TYPE *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
286 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
287 + #endif
288 + #endif
289 + #if defined(__NetBSD__)
290 + #if (defined(i386) || defined(__i386__))
291 + #include <sys/ucontext.h>
292 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
293 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_EIP]
294 + #define SIGSEGV_REGISTER_FILE                   (SIGSEGV_REGISTER_TYPE *)SIGSEGV_CONTEXT_REGS
295 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
296 + #endif
297 + #if (defined(powerpc) || defined(__powerpc__))
298 + #include <sys/ucontext.h>
299 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
300 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_PC]
301 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_PC], (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_R0]
302 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
303 + #endif
304 + #endif
305   #if defined(__linux__)
306   #if (defined(i386) || defined(__i386__))
307   #include <sys/ucontext.h>
308 < #define SIGSEGV_FAULT_INSTRUCTION               (((ucontext_t *)scp)->uc_mcontext.gregs[14]) /* should use REG_EIP instead */
308 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
309 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
310 > #define SIGSEGV_REGISTER_FILE                   (SIGSEGV_REGISTER_TYPE *)SIGSEGV_CONTEXT_REGS
311 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
312 > #endif
313 > #if (defined(x86_64) || defined(__x86_64__))
314 > #include <sys/ucontext.h>
315 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
316 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
317 > #define SIGSEGV_REGISTER_FILE                   (SIGSEGV_REGISTER_TYPE *)SIGSEGV_CONTEXT_REGS
318 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
319   #endif
320   #if (defined(ia64) || defined(__ia64__))
321 < #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
321 > #define SIGSEGV_CONTEXT_REGS                    ((struct sigcontext *)scp)
322 > #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
323 > #define SIGSEGV_REGISTER_FILE                   SIGSEGV_CONTEXT_REGS
324 > #define SIGSEGV_SKIP_INSTRUCTION                ia64_skip_instruction
325 > #endif
326 > #if (defined(powerpc) || defined(__powerpc__))
327 > #include <sys/ucontext.h>
328 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.regs)
329 > #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS->nip)
330 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned long *)(SIGSEGV_CONTEXT_REGS->gpr)
331 > #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
332 > #endif
333 > #if (defined(hppa) || defined(__hppa__))
334 > #undef  SIGSEGV_FAULT_ADDRESS
335 > #define SIGSEGV_FAULT_ADDRESS                   sip->si_ptr
336 > #endif
337 > #if (defined(arm) || defined(__arm__))
338 > #include <asm/ucontext.h> /* use kernel structure, glibc may not be in sync */
339 > #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
340 > #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.arm_pc)
341 > #define SIGSEGV_REGISTER_FILE                   (&SIGSEGV_CONTEXT_REGS.arm_r0)
342 > #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
343 > #endif
344 > #if (defined(mips) || defined(__mips__))
345 > #include <sys/ucontext.h>
346 > #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
347 > #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.pc)
348 > #define SIGSEGV_REGISTER_FILE                   &SIGSEGV_CONTEXT_REGS.pc, &SIGSEGV_CONTEXT_REGS.gregs[0]
349 > #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
350   #endif
351   #endif
352   #endif
# Line 74 | Line 358 | static bool sigsegv_do_install_handler(i
358   #if (defined(i386) || defined(__i386__))
359   #include <asm/sigcontext.h>
360   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext scs
361 < #define SIGSEGV_FAULT_ADDRESS                   scs.cr2
362 < #define SIGSEGV_FAULT_INSTRUCTION               scs.eip
361 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
362 > #define SIGSEGV_FAULT_HANDLER_ARGS              &scs
363 > #define SIGSEGV_FAULT_ADDRESS                   scp->cr2
364 > #define SIGSEGV_FAULT_INSTRUCTION               scp->eip
365 > #define SIGSEGV_REGISTER_FILE                   (SIGSEGV_REGISTER_TYPE *)scp
366 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
367   #endif
368   #if (defined(sparc) || defined(__sparc__))
369   #include <asm/sigcontext.h>
370   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
371 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
372   #define SIGSEGV_FAULT_ADDRESS                   addr
373   #endif
374   #if (defined(powerpc) || defined(__powerpc__))
375   #include <asm/sigcontext.h>
376   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext *scp
377 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, scp
378   #define SIGSEGV_FAULT_ADDRESS                   scp->regs->dar
379   #define SIGSEGV_FAULT_INSTRUCTION               scp->regs->nip
380 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&scp->regs->nip, (unsigned long *)(scp->regs->gpr)
381 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
382   #endif
383   #if (defined(alpha) || defined(__alpha__))
384   #include <asm/sigcontext.h>
385   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
386 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
387   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
388   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
389 <
390 < // From Boehm's GC 6.0alpha8
391 < static sigsegv_address_t get_fault_address(struct sigcontext *scp)
392 < {
393 <        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
394 <        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
395 <        fault_address += (signed long)(signed short)(instruction & 0xffff);
396 <        return (sigsegv_address_t)fault_address;
397 < }
389 > #endif
390 > #if (defined(arm) || defined(__arm__))
391 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int r1, int r2, int r3, struct sigcontext sc
392 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
393 > #define SIGSEGV_FAULT_HANDLER_ARGS              &sc
394 > #define SIGSEGV_FAULT_ADDRESS                   scp->fault_address
395 > #define SIGSEGV_FAULT_INSTRUCTION               scp->arm_pc
396 > #define SIGSEGV_REGISTER_FILE                   &scp->arm_r0
397 > #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
398   #endif
399   #endif
400  
401   // Irix 5 or 6 on MIPS
402 < #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
402 > #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(_SYSTYPE_SVR4))
403 > #include <ucontext.h>
404   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
405 < #define SIGSEGV_FAULT_ADDRESS                   scp->sc_badvaddr
405 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
406 > #define SIGSEGV_FAULT_ADDRESS                   (unsigned long)scp->sc_badvaddr
407 > #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)scp->sc_pc
408   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
409   #endif
410  
411 + // HP-UX
412 + #if (defined(hpux) || defined(__hpux__))
413 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
414 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
415 + #define SIGSEGV_FAULT_ADDRESS                   scp->sc_sl.sl_ss.ss_narrow.ss_cr21
416 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
417 + #endif
418 +
419   // OSF/1 on Alpha
420   #if defined(__osf__)
421 + #include <ucontext.h>
422   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
423 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
424   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_traparg_a0
425   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
426   #endif
# Line 122 | Line 428 | static sigsegv_address_t get_fault_addre
428   // AIX
429   #if defined(_AIX)
430   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
431 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
432   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_jmpbuf.jmp_context.o_vaddr
433   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
434   #endif
435  
436 < // NetBSD or FreeBSD
437 < #if defined(__NetBSD__) || defined(__FreeBSD__)
436 > // NetBSD
437 > #if defined(__NetBSD__)
438   #if (defined(m68k) || defined(__m68k__))
439   #include <m68k/frame.h>
440   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
441 < #define SIGSEGV_FAULT_ADDRESS                   ({                                                                                                                              \
442 <        struct sigstate {                                                                                                                                                                       \
136 <                int ss_flags;                                                                                                                                                                   \
137 <                struct frame ss_frame;                                                                                                                                                  \
138 <        };                                                                                                                                                                                                      \
139 <        struct sigstate *state = (struct sigstate *)scp->sc_ap;                                                                                         \
140 <        char *fault_addr;                                                                                                                                                                       \
141 <        switch (state->ss_frame.f_format) {                                                                                                                                     \
142 <        case 7:         /* 68040 access error */                                                                                                                                \
143 <                /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */    \
144 <                fault_addr = state->ss_frame.f_fmt7.f_fa;                                                                                                               \
145 <                break;                                                                                                                                                                                  \
146 <        default:                                                                                                                                                                                        \
147 <                fault_addr = (char *)code;                                                                                                                                              \
148 <                break;                                                                                                                                                                                  \
149 <        }                                                                                                                                                                                                       \
150 <        fault_addr;                                                                                                                                                                                     \
151 < })
441 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
442 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
443   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
444 < #else
445 < #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, void *scp, char *addr
446 < #define SIGSEGV_FAULT_ADDRESS                   addr
444 >
445 > // Use decoding scheme from BasiliskII/m68k native
446 > static sigsegv_address_t get_fault_address(struct sigcontext *scp)
447 > {
448 >        struct sigstate {
449 >                int ss_flags;
450 >                struct frame ss_frame;
451 >        };
452 >        struct sigstate *state = (struct sigstate *)scp->sc_ap;
453 >        char *fault_addr;
454 >        switch (state->ss_frame.f_format) {
455 >        case 7:         /* 68040 access error */
456 >                /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */
457 >                fault_addr = state->ss_frame.f_fmt7.f_fa;
458 >                break;
459 >        default:
460 >                fault_addr = (char *)code;
461 >                break;
462 >        }
463 >        return (sigsegv_address_t)fault_addr;
464 > }
465 > #endif
466 > #if (defined(alpha) || defined(__alpha__))
467 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
468 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
469 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
470 > #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
471 > #endif
472 > #if (defined(i386) || defined(__i386__))
473 > #error "FIXME: need to decode instruction and compute EA"
474 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
475 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
476 > #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
477 > #endif
478 > #endif
479 > #if defined(__FreeBSD__)
480 > #if (defined(i386) || defined(__i386__))
481   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
482 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
483 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
484 + #define SIGSEGV_FAULT_ADDRESS                   addr
485 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_eip
486 + #define SIGSEGV_REGISTER_FILE                   ((SIGSEGV_REGISTER_TYPE *)&scp->sc_edi)
487 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
488 + #endif
489 + #if (defined(alpha) || defined(__alpha__))
490 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
491 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, char *addr, struct sigcontext *scp
492 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, addr, scp
493 + #define SIGSEGV_FAULT_ADDRESS                   addr
494 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
495   #endif
496   #endif
497  
498 < // MacOS X
498 > // Extract fault address out of a sigcontext
499 > #if (defined(alpha) || defined(__alpha__))
500 > // From Boehm's GC 6.0alpha8
501 > static sigsegv_address_t get_fault_address(struct sigcontext *scp)
502 > {
503 >        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
504 >        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
505 >        fault_address += (signed long)(signed short)(instruction & 0xffff);
506 >        return (sigsegv_address_t)fault_address;
507 > }
508 > #endif
509 >
510 >
511 > // MacOS X, not sure which version this works in. Under 10.1
512 > // vm_protect does not appear to work from a signal handler. Under
513 > // 10.2 signal handlers get siginfo type arguments but the si_addr
514 > // field is the address of the faulting instruction and not the
515 > // address that caused the SIGBUS. Maybe this works in 10.0? In any
516 > // case with Mach exception handlers there is a way to do what this
517 > // was meant to do.
518 > #ifndef HAVE_MACH_EXCEPTIONS
519   #if defined(__APPLE__) && defined(__MACH__)
520   #if (defined(ppc) || defined(__ppc__))
521   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
522 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
523   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
524   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_ir
525   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
526 + #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&scp->sc_ir, &((unsigned int *) scp->sc_regs)[2]
527 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
528  
529 < // From Boehm's GC 6.0alpha8
169 < #define EXTRACT_OP1(iw)     (((iw) & 0xFC000000) >> 26)
170 < #define EXTRACT_OP2(iw)     (((iw) & 0x000007FE) >> 1)
171 < #define EXTRACT_REGA(iw)    (((iw) & 0x001F0000) >> 16)
172 < #define EXTRACT_REGB(iw)    (((iw) & 0x03E00000) >> 21)
173 < #define EXTRACT_REGC(iw)    (((iw) & 0x0000F800) >> 11)
174 < #define EXTRACT_DISP(iw)    ((short *) &(iw))[1]
175 <
529 > // Use decoding scheme from SheepShaver
530   static sigsegv_address_t get_fault_address(struct sigcontext *scp)
531   {
532 <        unsigned int   instr = *((unsigned int *) scp->sc_ir);
533 <        unsigned int * regs = &((unsigned int *) scp->sc_regs)[2];
534 <        int            disp = 0, tmp;
535 <        unsigned int   baseA = 0, baseB = 0;
536 <        unsigned int   addr, alignmask = 0xFFFFFFFF;
537 <
538 <        switch(EXTRACT_OP1(instr)) {
539 <        case 38:   /* stb */
540 <        case 39:   /* stbu */
541 <        case 54:   /* stfd */
542 <        case 55:   /* stfdu */
543 <        case 52:   /* stfs */
544 <        case 53:   /* stfsu */
545 <        case 44:   /* sth */
546 <        case 45:   /* sthu */
547 <        case 47:   /* stmw */
548 <        case 36:   /* stw */
549 <        case 37:   /* stwu */
550 <                tmp = EXTRACT_REGA(instr);
551 <                if(tmp > 0)
552 <                        baseA = regs[tmp];
553 <                disp = EXTRACT_DISP(instr);
532 >        unsigned int   nip = (unsigned int) scp->sc_ir;
533 >        unsigned int * gpr = &((unsigned int *) scp->sc_regs)[2];
534 >        instruction_t  instr;
535 >
536 >        powerpc_decode_instruction(&instr, nip, gpr);
537 >        return (sigsegv_address_t)instr.addr;
538 > }
539 > #endif
540 > #endif
541 > #endif
542 > #endif
543 >
544 > #if HAVE_WIN32_EXCEPTIONS
545 > #define WIN32_LEAN_AND_MEAN /* avoid including junk */
546 > #include <windows.h>
547 > #include <winerror.h>
548 >
549 > #if defined(_M_IX86)
550 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   EXCEPTION_POINTERS *ExceptionInfo
551 > #define SIGSEGV_FAULT_HANDLER_ARGS              ExceptionInfo
552 > #define SIGSEGV_FAULT_ADDRESS                   ExceptionInfo->ExceptionRecord->ExceptionInformation[1]
553 > #define SIGSEGV_CONTEXT_REGS                    ExceptionInfo->ContextRecord
554 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS->Eip
555 > #define SIGSEGV_REGISTER_FILE                   ((SIGSEGV_REGISTER_TYPE *)&SIGSEGV_CONTEXT_REGS->Edi)
556 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
557 > #endif
558 > #if defined(_M_X64)
559 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   EXCEPTION_POINTERS *ExceptionInfo
560 > #define SIGSEGV_FAULT_HANDLER_ARGS              ExceptionInfo
561 > #define SIGSEGV_FAULT_ADDRESS                   ExceptionInfo->ExceptionRecord->ExceptionInformation[1]
562 > #define SIGSEGV_CONTEXT_REGS                    ExceptionInfo->ContextRecord
563 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS->Rip
564 > #define SIGSEGV_REGISTER_FILE                   ((SIGSEGV_REGISTER_TYPE *)&SIGSEGV_CONTEXT_REGS->Rax)
565 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
566 > #endif
567 > #endif
568 >
569 > #if HAVE_MACH_EXCEPTIONS
570 >
571 > // This can easily be extended to other Mach systems, but really who
572 > // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
573 > // Mach 2.5/3.0?
574 > #if defined(__APPLE__) && defined(__MACH__)
575 >
576 > #include <sys/types.h>
577 > #include <stdlib.h>
578 > #include <stdio.h>
579 > #include <pthread.h>
580 >
581 > /*
582 > * If you are familiar with MIG then you will understand the frustration
583 > * that was necessary to get these embedded into C++ code by hand.
584 > */
585 > extern "C" {
586 > #include <mach/mach.h>
587 > #include <mach/mach_error.h>
588 >
589 > extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
590 > extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
591 >        mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
592 > extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
593 >        exception_type_t, exception_data_t, mach_msg_type_number_t);
594 > extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
595 >        exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
596 >        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
597 > extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
598 >        exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
599 >        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
600 > }
601 >
602 > // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
603 > #define HANDLER_COUNT 64
604 >
605 > // structure to tuck away existing exception handlers
606 > typedef struct _ExceptionPorts {
607 >        mach_msg_type_number_t maskCount;
608 >        exception_mask_t masks[HANDLER_COUNT];
609 >        exception_handler_t handlers[HANDLER_COUNT];
610 >        exception_behavior_t behaviors[HANDLER_COUNT];
611 >        thread_state_flavor_t flavors[HANDLER_COUNT];
612 > } ExceptionPorts;
613 >
614 > // exception handler thread
615 > static pthread_t exc_thread;
616 >
617 > // place where old exception handler info is stored
618 > static ExceptionPorts ports;
619 >
620 > // our exception port
621 > static mach_port_t _exceptionPort = MACH_PORT_NULL;
622 >
623 > #define MACH_CHECK_ERROR(name,ret) \
624 > if (ret != KERN_SUCCESS) { \
625 >        mach_error(#name, ret); \
626 >        exit (1); \
627 > }
628 >
629 > #ifdef __ppc__
630 > #if __DARWIN_UNIX03 && defined _STRUCT_PPC_THREAD_STATE
631 > #define MACH_FIELD_NAME(X)                              __CONCAT(__,X)
632 > #endif
633 > #define SIGSEGV_EXCEPTION_STATE_TYPE    ppc_exception_state_t
634 > #define SIGSEGV_EXCEPTION_STATE_FLAVOR  PPC_EXCEPTION_STATE
635 > #define SIGSEGV_EXCEPTION_STATE_COUNT   PPC_EXCEPTION_STATE_COUNT
636 > #define SIGSEGV_FAULT_ADDRESS                   SIP->exc_state.MACH_FIELD_NAME(dar)
637 > #define SIGSEGV_THREAD_STATE_TYPE               ppc_thread_state_t
638 > #define SIGSEGV_THREAD_STATE_FLAVOR             PPC_THREAD_STATE
639 > #define SIGSEGV_THREAD_STATE_COUNT              PPC_THREAD_STATE_COUNT
640 > #define SIGSEGV_FAULT_INSTRUCTION               SIP->thr_state.MACH_FIELD_NAME(srr0)
641 > #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
642 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIP->thr_state.MACH_FIELD_NAME(srr0), (unsigned long *)&SIP->thr_state.MACH_FIELD_NAME(r0)
643 > #endif
644 > #ifdef __ppc64__
645 > #if __DARWIN_UNIX03 && defined _STRUCT_PPC_THREAD_STATE64
646 > #define MACH_FIELD_NAME(X)                              __CONCAT(__,X)
647 > #endif
648 > #define SIGSEGV_EXCEPTION_STATE_TYPE    ppc_exception_state64_t
649 > #define SIGSEGV_EXCEPTION_STATE_FLAVOR  PPC_EXCEPTION_STATE64
650 > #define SIGSEGV_EXCEPTION_STATE_COUNT   PPC_EXCEPTION_STATE64_COUNT
651 > #define SIGSEGV_FAULT_ADDRESS                   SIP->exc_state.MACH_FIELD_NAME(dar)
652 > #define SIGSEGV_THREAD_STATE_TYPE               ppc_thread_state64_t
653 > #define SIGSEGV_THREAD_STATE_FLAVOR             PPC_THREAD_STATE64
654 > #define SIGSEGV_THREAD_STATE_COUNT              PPC_THREAD_STATE64_COUNT
655 > #define SIGSEGV_FAULT_INSTRUCTION               SIP->thr_state.MACH_FIELD_NAME(srr0)
656 > #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
657 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIP->thr_state.MACH_FIELD_NAME(srr0), (unsigned long *)&SIP->thr_state.MACH_FIELD_NAME(r0)
658 > #endif
659 > #ifdef __i386__
660 > #if __DARWIN_UNIX03 && defined _STRUCT_X86_THREAD_STATE32
661 > #define MACH_FIELD_NAME(X)                              __CONCAT(__,X)
662 > #endif
663 > #define SIGSEGV_EXCEPTION_STATE_TYPE    i386_exception_state_t
664 > #define SIGSEGV_EXCEPTION_STATE_FLAVOR  i386_EXCEPTION_STATE
665 > #define SIGSEGV_EXCEPTION_STATE_COUNT   i386_EXCEPTION_STATE_COUNT
666 > #define SIGSEGV_FAULT_ADDRESS                   SIP->exc_state.MACH_FIELD_NAME(faultvaddr)
667 > #define SIGSEGV_THREAD_STATE_TYPE               i386_thread_state_t
668 > #define SIGSEGV_THREAD_STATE_FLAVOR             i386_THREAD_STATE
669 > #define SIGSEGV_THREAD_STATE_COUNT              i386_THREAD_STATE_COUNT
670 > #define SIGSEGV_FAULT_INSTRUCTION               SIP->thr_state.MACH_FIELD_NAME(eip)
671 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
672 > #define SIGSEGV_REGISTER_FILE                   ((SIGSEGV_REGISTER_TYPE *)&SIP->thr_state.MACH_FIELD_NAME(eax)) /* EAX is the first GPR we consider */
673 > #endif
674 > #ifdef __x86_64__
675 > #if __DARWIN_UNIX03 && defined _STRUCT_X86_THREAD_STATE64
676 > #define MACH_FIELD_NAME(X)                              __CONCAT(__,X)
677 > #endif
678 > #define SIGSEGV_EXCEPTION_STATE_TYPE    x86_exception_state64_t
679 > #define SIGSEGV_EXCEPTION_STATE_FLAVOR  x86_EXCEPTION_STATE64
680 > #define SIGSEGV_EXCEPTION_STATE_COUNT   x86_EXCEPTION_STATE64_COUNT
681 > #define SIGSEGV_FAULT_ADDRESS                   SIP->exc_state.MACH_FIELD_NAME(faultvaddr)
682 > #define SIGSEGV_THREAD_STATE_TYPE               x86_thread_state64_t
683 > #define SIGSEGV_THREAD_STATE_FLAVOR             x86_THREAD_STATE64
684 > #define SIGSEGV_THREAD_STATE_COUNT              x86_THREAD_STATE64_COUNT
685 > #define SIGSEGV_FAULT_INSTRUCTION               SIP->thr_state.MACH_FIELD_NAME(rip)
686 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
687 > #define SIGSEGV_REGISTER_FILE                   ((SIGSEGV_REGISTER_TYPE *)&SIP->thr_state.MACH_FIELD_NAME(rax)) /* RAX is the first GPR we consider */
688 > #endif
689 > #define SIGSEGV_FAULT_ADDRESS_FAST              code[1]
690 > #define SIGSEGV_FAULT_INSTRUCTION_FAST  SIGSEGV_INVALID_ADDRESS
691 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   mach_port_t thread, exception_data_t code
692 > #define SIGSEGV_FAULT_HANDLER_ARGS              thread, code
693 >
694 > #ifndef MACH_FIELD_NAME
695 > #define MACH_FIELD_NAME(X) X
696 > #endif
697 >
698 > // Since there can only be one exception thread running at any time
699 > // this is not a problem.
700 > #define MSG_SIZE 512
701 > static char msgbuf[MSG_SIZE];
702 > static char replybuf[MSG_SIZE];
703 >
704 > /*
705 > * This is the entry point for the exception handler thread. The job
706 > * of this thread is to wait for exception messages on the exception
707 > * port that was setup beforehand and to pass them on to exc_server.
708 > * exc_server is a MIG generated function that is a part of Mach.
709 > * Its job is to decide what to do with the exception message. In our
710 > * case exc_server calls catch_exception_raise on our behalf. After
711 > * exc_server returns, it is our responsibility to send the reply.
712 > */
713 > static void *
714 > handleExceptions(void *priv)
715 > {
716 >        mach_msg_header_t *msg, *reply;
717 >        kern_return_t krc;
718 >
719 >        msg = (mach_msg_header_t *)msgbuf;
720 >        reply = (mach_msg_header_t *)replybuf;
721 >
722 >        for (;;) {
723 >                krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
724 >                                _exceptionPort, 0, MACH_PORT_NULL);
725 >                MACH_CHECK_ERROR(mach_msg, krc);
726 >
727 >                if (!exc_server(msg, reply)) {
728 >                        fprintf(stderr, "exc_server hated the message\n");
729 >                        exit(1);
730 >                }
731 >
732 >                krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
733 >                                 msg->msgh_local_port, 0, MACH_PORT_NULL);
734 >                if (krc != KERN_SUCCESS) {
735 >                        fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
736 >                                krc, mach_error_string(krc));
737 >                        exit(1);
738 >                }
739 >        }
740 > }
741 > #endif
742 > #endif
743 >
744 >
745 > /*
746 > *  Instruction skipping
747 > */
748 >
749 > #ifndef SIGSEGV_REGISTER_TYPE
750 > #define SIGSEGV_REGISTER_TYPE sigsegv_uintptr_t
751 > #endif
752 >
753 > #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
754 > // Decode and skip X86 instruction
755 > #if (defined(i386) || defined(__i386__)) || (defined(__x86_64__) || defined(_M_X64))
756 > #if defined(__linux__)
757 > enum {
758 > #if (defined(i386) || defined(__i386__))
759 >        X86_REG_EIP = 14,
760 >        X86_REG_EAX = 11,
761 >        X86_REG_ECX = 10,
762 >        X86_REG_EDX = 9,
763 >        X86_REG_EBX = 8,
764 >        X86_REG_ESP = 7,
765 >        X86_REG_EBP = 6,
766 >        X86_REG_ESI = 5,
767 >        X86_REG_EDI = 4
768 > #endif
769 > #if defined(__x86_64__)
770 >        X86_REG_R8  = 0,
771 >        X86_REG_R9  = 1,
772 >        X86_REG_R10 = 2,
773 >        X86_REG_R11 = 3,
774 >        X86_REG_R12 = 4,
775 >        X86_REG_R13 = 5,
776 >        X86_REG_R14 = 6,
777 >        X86_REG_R15 = 7,
778 >        X86_REG_EDI = 8,
779 >        X86_REG_ESI = 9,
780 >        X86_REG_EBP = 10,
781 >        X86_REG_EBX = 11,
782 >        X86_REG_EDX = 12,
783 >        X86_REG_EAX = 13,
784 >        X86_REG_ECX = 14,
785 >        X86_REG_ESP = 15,
786 >        X86_REG_EIP = 16
787 > #endif
788 > };
789 > #endif
790 > #if defined(__NetBSD__)
791 > enum {
792 > #if (defined(i386) || defined(__i386__))
793 >        X86_REG_EIP = _REG_EIP,
794 >        X86_REG_EAX = _REG_EAX,
795 >        X86_REG_ECX = _REG_ECX,
796 >        X86_REG_EDX = _REG_EDX,
797 >        X86_REG_EBX = _REG_EBX,
798 >        X86_REG_ESP = _REG_ESP,
799 >        X86_REG_EBP = _REG_EBP,
800 >        X86_REG_ESI = _REG_ESI,
801 >        X86_REG_EDI = _REG_EDI
802 > #endif
803 > };
804 > #endif
805 > #if defined(__FreeBSD__)
806 > enum {
807 > #if (defined(i386) || defined(__i386__))
808 >        X86_REG_EIP = 10,
809 >        X86_REG_EAX = 7,
810 >        X86_REG_ECX = 6,
811 >        X86_REG_EDX = 5,
812 >        X86_REG_EBX = 4,
813 >        X86_REG_ESP = 13,
814 >        X86_REG_EBP = 2,
815 >        X86_REG_ESI = 1,
816 >        X86_REG_EDI = 0
817 > #endif
818 > };
819 > #endif
820 > #if defined(__OpenBSD__)
821 > enum {
822 > #if defined(__i386__)
823 >        // EDI is the first register we consider
824 > #define OREG(REG) offsetof(struct sigcontext, sc_##REG)
825 > #define DREG(REG) ((OREG(REG) - OREG(edi)) / 4)
826 >        X86_REG_EIP = DREG(eip), // 7
827 >        X86_REG_EAX = DREG(eax), // 6
828 >        X86_REG_ECX = DREG(ecx), // 5
829 >        X86_REG_EDX = DREG(edx), // 4
830 >        X86_REG_EBX = DREG(ebx), // 3
831 >        X86_REG_ESP = DREG(esp), // 10
832 >        X86_REG_EBP = DREG(ebp), // 2
833 >        X86_REG_ESI = DREG(esi), // 1
834 >        X86_REG_EDI = DREG(edi)  // 0
835 > #undef DREG
836 > #undef OREG
837 > #endif
838 > };
839 > #endif
840 > #if defined(__sun__)
841 > // Same as for Linux, need to check for x86-64
842 > enum {
843 > #if defined(__i386__)
844 >        X86_REG_EIP = EIP,
845 >        X86_REG_EAX = EAX,
846 >        X86_REG_ECX = ECX,
847 >        X86_REG_EDX = EDX,
848 >        X86_REG_EBX = EBX,
849 >        X86_REG_ESP = ESP,
850 >        X86_REG_EBP = EBP,
851 >        X86_REG_ESI = ESI,
852 >        X86_REG_EDI = EDI
853 > #endif
854 > };
855 > #endif
856 > #if defined(__APPLE__) && defined(__MACH__)
857 > enum {
858 > #if (defined(i386) || defined(__i386__))
859 > #ifdef i386_SAVED_STATE
860 >        // same as FreeBSD (in Open Darwin 8.0.1)
861 >        X86_REG_EIP = 10,
862 >        X86_REG_EAX = 7,
863 >        X86_REG_ECX = 6,
864 >        X86_REG_EDX = 5,
865 >        X86_REG_EBX = 4,
866 >        X86_REG_ESP = 13,
867 >        X86_REG_EBP = 2,
868 >        X86_REG_ESI = 1,
869 >        X86_REG_EDI = 0
870 > #else
871 >        // new layout (MacOS X 10.4.4 for x86)
872 >        X86_REG_EIP = 10,
873 >        X86_REG_EAX = 0,
874 >        X86_REG_ECX = 2,
875 >        X86_REG_EDX = 3,
876 >        X86_REG_EBX = 1,
877 >        X86_REG_ESP = 7,
878 >        X86_REG_EBP = 6,
879 >        X86_REG_ESI = 5,
880 >        X86_REG_EDI = 4
881 > #endif
882 > #endif
883 > #if defined(__x86_64__)
884 >        X86_REG_R8  = 8,
885 >        X86_REG_R9  = 9,
886 >        X86_REG_R10 = 10,
887 >        X86_REG_R11 = 11,
888 >        X86_REG_R12 = 12,
889 >        X86_REG_R13 = 13,
890 >        X86_REG_R14 = 14,
891 >        X86_REG_R15 = 15,
892 >        X86_REG_EDI = 4,
893 >        X86_REG_ESI = 5,
894 >        X86_REG_EBP = 6,
895 >        X86_REG_EBX = 1,
896 >        X86_REG_EDX = 3,
897 >        X86_REG_EAX = 0,
898 >        X86_REG_ECX = 2,
899 >        X86_REG_ESP = 7,
900 >        X86_REG_EIP = 16
901 > #endif
902 > };
903 > #endif
904 > #if defined(_WIN32)
905 > enum {
906 > #if defined(_M_IX86)
907 >        X86_REG_EIP = 7,
908 >        X86_REG_EAX = 5,
909 >        X86_REG_ECX = 4,
910 >        X86_REG_EDX = 3,
911 >        X86_REG_EBX = 2,
912 >        X86_REG_ESP = 10,
913 >        X86_REG_EBP = 6,
914 >        X86_REG_ESI = 1,
915 >        X86_REG_EDI = 0
916 > #endif
917 > #if defined(_M_X64)
918 >        X86_REG_EAX = 0,
919 >        X86_REG_ECX = 1,
920 >        X86_REG_EDX = 2,
921 >        X86_REG_EBX = 3,
922 >        X86_REG_ESP = 4,
923 >        X86_REG_EBP = 5,
924 >        X86_REG_ESI = 6,
925 >        X86_REG_EDI = 7,
926 >        X86_REG_R8  = 8,
927 >        X86_REG_R9  = 9,
928 >        X86_REG_R10 = 10,
929 >        X86_REG_R11 = 11,
930 >        X86_REG_R12 = 12,
931 >        X86_REG_R13 = 13,
932 >        X86_REG_R14 = 14,
933 >        X86_REG_R15 = 15,
934 >        X86_REG_EIP = 16
935 > #endif
936 > };
937 > #endif
938 > // FIXME: this is partly redundant with the instruction decoding phase
939 > // to discover transfer type and register number
940 > static inline int ix86_step_over_modrm(unsigned char * p)
941 > {
942 >        int mod = (p[0] >> 6) & 3;
943 >        int rm = p[0] & 7;
944 >        int offset = 0;
945 >
946 >        // ModR/M Byte
947 >        switch (mod) {
948 >        case 0: // [reg]
949 >                if (rm == 5) return 4; // disp32
950                  break;
951 <        case 31:
952 <                switch(EXTRACT_OP2(instr)) {
953 <                case 86:    /* dcbf */
954 <                case 54:    /* dcbst */
955 <                case 1014:  /* dcbz */
956 <                case 247:   /* stbux */
957 <                case 215:   /* stbx */
958 <                case 759:   /* stfdux */
959 <                case 727:   /* stfdx */
960 <                case 983:   /* stfiwx */
961 <                case 695:   /* stfsux */
962 <                case 663:   /* stfsx */
963 <                case 918:   /* sthbrx */
964 <                case 439:   /* sthux */
965 <                case 407:   /* sthx */
966 <                case 661:   /* stswx */
967 <                case 662:   /* stwbrx */
968 <                case 150:   /* stwcx. */
969 <                case 183:   /* stwux */
970 <                case 151:   /* stwx */
971 <                case 135:   /* stvebx */
972 <                case 167:   /* stvehx */
973 <                case 199:   /* stvewx */
974 <                case 231:   /* stvx */
975 <                case 487:   /* stvxl */
976 <                        tmp = EXTRACT_REGA(instr);
977 <                        if(tmp > 0)
978 <                                baseA = regs[tmp];
979 <                        baseB = regs[EXTRACT_REGC(instr)];
980 <                        /* determine Altivec alignment mask */
981 <                        switch(EXTRACT_OP2(instr)) {
982 <                        case 167:   /* stvehx */
983 <                                alignmask = 0xFFFFFFFE;
984 <                                break;
985 <                        case 199:   /* stvewx */
986 <                                alignmask = 0xFFFFFFFC;
987 <                                break;
988 <                        case 231:   /* stvx */
989 <                                alignmask = 0xFFFFFFF0;
990 <                                break;
991 <                        case 487:  /* stvxl */
992 <                                alignmask = 0xFFFFFFF0;
993 <                                break;
994 <                        }
995 <                        break;
996 <                case 725:   /* stswi */
997 <                        tmp = EXTRACT_REGA(instr);
998 <                        if(tmp > 0)
999 <                                baseA = regs[tmp];
951 >        case 1: // disp8[reg]
952 >                offset = 1;
953 >                break;
954 >        case 2: // disp32[reg]
955 >                offset = 4;
956 >                break;
957 >        case 3: // register
958 >                return 0;
959 >        }
960 >        
961 >        // SIB Byte
962 >        if (rm == 4) {
963 >                if (mod == 0 && (p[1] & 7) == 5)
964 >                        offset = 5; // disp32[index]
965 >                else
966 >                        offset++;
967 >        }
968 >
969 >        return offset;
970 > }
971 >
972 > static bool ix86_skip_instruction(SIGSEGV_REGISTER_TYPE * regs)
973 > {
974 >        unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
975 >
976 >        if (eip == 0)
977 >                return false;
978 > #ifdef _WIN32
979 >        if (IsBadCodePtr((FARPROC)eip))
980 >                return false;
981 > #endif
982 >        
983 >        enum instruction_type_t {
984 >                i_MOV,
985 >                i_ADD
986 >        };
987 >
988 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
989 >        transfer_size_t transfer_size = SIZE_LONG;
990 >        instruction_type_t instruction_type = i_MOV;
991 >        
992 >        int reg = -1;
993 >        int len = 0;
994 >
995 > #if DEBUG
996 >        printf("IP: %p [%02x %02x %02x %02x...]\n",
997 >                   eip, eip[0], eip[1], eip[2], eip[3]);
998 > #endif
999 >
1000 >        // Operand size prefix
1001 >        if (*eip == 0x66) {
1002 >                eip++;
1003 >                len++;
1004 >                transfer_size = SIZE_WORD;
1005 >        }
1006 >
1007 >        // REX prefix
1008 > #if defined(__x86_64__) || defined(_M_X64)
1009 >        struct rex_t {
1010 >                unsigned char W;
1011 >                unsigned char R;
1012 >                unsigned char X;
1013 >                unsigned char B;
1014 >        };
1015 >        rex_t rex = { 0, 0, 0, 0 };
1016 >        bool has_rex = false;
1017 >        if ((*eip & 0xf0) == 0x40) {
1018 >                has_rex = true;
1019 >                const unsigned char b = *eip;
1020 >                rex.W = b & (1 << 3);
1021 >                rex.R = b & (1 << 2);
1022 >                rex.X = b & (1 << 1);
1023 >                rex.B = b & (1 << 0);
1024 > #if DEBUG
1025 >                printf("REX: %c,%c,%c,%c\n",
1026 >                           rex.W ? 'W' : '_',
1027 >                           rex.R ? 'R' : '_',
1028 >                           rex.X ? 'X' : '_',
1029 >                           rex.B ? 'B' : '_');
1030 > #endif
1031 >                eip++;
1032 >                len++;
1033 >                if (rex.W)
1034 >                        transfer_size = SIZE_QUAD;
1035 >        }
1036 > #else
1037 >        const bool has_rex = false;
1038 > #endif
1039 >
1040 >        // Decode instruction
1041 >        int op_len = 1;
1042 >        int target_size = SIZE_UNKNOWN;
1043 >        switch (eip[0]) {
1044 >        case 0x0f:
1045 >                target_size = transfer_size;
1046 >            switch (eip[1]) {
1047 >                case 0xbe: // MOVSX r32, r/m8
1048 >            case 0xb6: // MOVZX r32, r/m8
1049 >                        transfer_size = SIZE_BYTE;
1050 >                        goto do_mov_extend;
1051 >                case 0xbf: // MOVSX r32, r/m16
1052 >            case 0xb7: // MOVZX r32, r/m16
1053 >                        transfer_size = SIZE_WORD;
1054 >                        goto do_mov_extend;
1055 >                  do_mov_extend:
1056 >                        op_len = 2;
1057 >                        goto do_transfer_load;
1058 >                }
1059 >                break;
1060 > #if defined(__x86_64__) || defined(_M_X64)
1061 >        case 0x63: // MOVSXD r64, r/m32
1062 >                if (has_rex && rex.W) {
1063 >                        transfer_size = SIZE_LONG;
1064 >                        target_size = SIZE_QUAD;
1065 >                }
1066 >                else if (transfer_size != SIZE_WORD) {
1067 >                        transfer_size = SIZE_LONG;
1068 >                        target_size = SIZE_QUAD;
1069 >                }
1070 >                goto do_transfer_load;
1071 > #endif
1072 >        case 0x02: // ADD r8, r/m8
1073 >                transfer_size = SIZE_BYTE;
1074 >        case 0x03: // ADD r32, r/m32
1075 >                instruction_type = i_ADD;
1076 >                goto do_transfer_load;
1077 >        case 0x8a: // MOV r8, r/m8
1078 >                transfer_size = SIZE_BYTE;
1079 >        case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
1080 >          do_transfer_load:
1081 >                switch (eip[op_len] & 0xc0) {
1082 >                case 0x80:
1083 >                        reg = (eip[op_len] >> 3) & 7;
1084 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
1085                          break;
1086 <                default:   /* ignore instruction */
1087 <                        return 0;
1086 >                case 0x40:
1087 >                        reg = (eip[op_len] >> 3) & 7;
1088 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
1089 >                        break;
1090 >                case 0x00:
1091 >                        reg = (eip[op_len] >> 3) & 7;
1092 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
1093                          break;
1094                  }
1095 +                len += 1 + op_len + ix86_step_over_modrm(eip + op_len);
1096                  break;
1097 <        default:   /* ignore instruction */
1098 <                return 0;
1097 >        case 0x00: // ADD r/m8, r8
1098 >                transfer_size = SIZE_BYTE;
1099 >        case 0x01: // ADD r/m32, r32
1100 >                instruction_type = i_ADD;
1101 >                goto do_transfer_store;
1102 >        case 0x88: // MOV r/m8, r8
1103 >                transfer_size = SIZE_BYTE;
1104 >        case 0x89: // MOV r/m32, r32 (or 16-bit operation)
1105 >          do_transfer_store:
1106 >                switch (eip[op_len] & 0xc0) {
1107 >                case 0x80:
1108 >                        reg = (eip[op_len] >> 3) & 7;
1109 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
1110 >                        break;
1111 >                case 0x40:
1112 >                        reg = (eip[op_len] >> 3) & 7;
1113 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
1114 >                        break;
1115 >                case 0x00:
1116 >                        reg = (eip[op_len] >> 3) & 7;
1117 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
1118 >                        break;
1119 >                }
1120 >                len += 1 + op_len + ix86_step_over_modrm(eip + op_len);
1121 >                break;
1122 >        }
1123 >        if (target_size == SIZE_UNKNOWN)
1124 >                target_size = transfer_size;
1125 >
1126 >        if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1127 >                // Unknown machine code, let it crash. Then patch the decoder
1128 >                return false;
1129 >        }
1130 >
1131 > #if defined(__x86_64__) || defined(_M_X64)
1132 >        if (rex.R)
1133 >                reg += 8;
1134 > #endif
1135 >
1136 >        if (instruction_type == i_MOV && transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
1137 >                static const int x86_reg_map[] = {
1138 >                        X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
1139 >                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI,
1140 > #if defined(__x86_64__) || defined(_M_X64)
1141 >                        X86_REG_R8,  X86_REG_R9,  X86_REG_R10, X86_REG_R11,
1142 >                        X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15,
1143 > #endif
1144 >                };
1145 >                
1146 >                if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1))
1147 >                        return false;
1148 >
1149 >                // Set 0 to the relevant register part
1150 >                // NOTE: this is only valid for MOV alike instructions
1151 >                int rloc = x86_reg_map[reg];
1152 >                switch (target_size) {
1153 >                case SIZE_BYTE:
1154 >                        if (has_rex || reg < 4)
1155 >                                regs[rloc] = (regs[rloc] & ~0x00ffL);
1156 >                        else {
1157 >                                rloc = x86_reg_map[reg - 4];
1158 >                                regs[rloc] = (regs[rloc] & ~0xff00L);
1159 >                        }
1160 >                        break;
1161 >                case SIZE_WORD:
1162 >                        regs[rloc] = (regs[rloc] & ~0xffffL);
1163 >                        break;
1164 >                case SIZE_LONG:
1165 >                case SIZE_QUAD: // zero-extension
1166 >                        regs[rloc] = 0;
1167 >                        break;
1168 >                }
1169 >        }
1170 >
1171 > #if DEBUG
1172 >        printf("%p: %s %s access", (void *)regs[X86_REG_EIP],
1173 >                   transfer_size == SIZE_BYTE ? "byte" :
1174 >                   transfer_size == SIZE_WORD ? "word" :
1175 >                   transfer_size == SIZE_LONG ? "long" :
1176 >                   transfer_size == SIZE_QUAD ? "quad" : "unknown",
1177 >                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1178 >        
1179 >        if (reg != -1) {
1180 >                static const char * x86_byte_reg_str_map[] = {
1181 >                        "al",   "cl",   "dl",   "bl",
1182 >                        "spl",  "bpl",  "sil",  "dil",
1183 >                        "r8b",  "r9b",  "r10b", "r11b",
1184 >                        "r12b", "r13b", "r14b", "r15b",
1185 >                        "ah",   "ch",   "dh",   "bh",
1186 >                };
1187 >                static const char * x86_word_reg_str_map[] = {
1188 >                        "ax",   "cx",   "dx",   "bx",
1189 >                        "sp",   "bp",   "si",   "di",
1190 >                        "r8w",  "r9w",  "r10w", "r11w",
1191 >                        "r12w", "r13w", "r14w", "r15w",
1192 >                };
1193 >                static const char *x86_long_reg_str_map[] = {
1194 >                        "eax",  "ecx",  "edx",  "ebx",
1195 >                        "esp",  "ebp",  "esi",  "edi",
1196 >                        "r8d",  "r9d",  "r10d", "r11d",
1197 >                        "r12d", "r13d", "r14d", "r15d",
1198 >                };
1199 >                static const char *x86_quad_reg_str_map[] = {
1200 >                        "rax", "rcx", "rdx", "rbx",
1201 >                        "rsp", "rbp", "rsi", "rdi",
1202 >                        "r8",  "r9",  "r10", "r11",
1203 >                        "r12", "r13", "r14", "r15",
1204 >                };
1205 >                const char * reg_str = NULL;
1206 >                switch (target_size) {
1207 >                case SIZE_BYTE:
1208 >                        reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg];
1209 >                        break;
1210 >                case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break;
1211 >                case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break;
1212 >                case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break;
1213 >                }
1214 >                if (reg_str)
1215 >                        printf(" %s register %%%s",
1216 >                                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from",
1217 >                                   reg_str);
1218 >        }
1219 >        printf(", %d bytes instruction\n", len);
1220 > #endif
1221 >        
1222 >        regs[X86_REG_EIP] += len;
1223 >        return true;
1224 > }
1225 > #endif
1226 >
1227 > // Decode and skip IA-64 instruction
1228 > #if defined(__ia64__)
1229 > #if defined(__linux__)
1230 > // We can directly patch the slot number
1231 > #define IA64_CAN_PATCH_IP_SLOT 1
1232 > // Helper macros to access the machine context
1233 > #define IA64_CONTEXT_TYPE               struct sigcontext *
1234 > #define IA64_CONTEXT                    scp
1235 > #define IA64_GET_IP()                   (IA64_CONTEXT->sc_ip)
1236 > #define IA64_SET_IP(V)                  (IA64_CONTEXT->sc_ip = (V))
1237 > #define IA64_GET_PR(P)                  ((IA64_CONTEXT->sc_pr >> (P)) & 1)
1238 > #define IA64_GET_NAT(I)                 ((IA64_CONTEXT->sc_nat >> (I)) & 1)
1239 > #define IA64_SET_NAT(I,V)               (IA64_CONTEXT->sc_nat= (IA64_CONTEXT->sc_nat & ~(1ul << (I))) | (((unsigned long)!!(V)) << (I)))
1240 > #define IA64_GET_GR(R)                  (IA64_CONTEXT->sc_gr[(R)])
1241 > #define IA64_SET_GR(R,V)                (IA64_CONTEXT->sc_gr[(R)] = (V))
1242 > #endif
1243 >
1244 > // Instruction operations
1245 > enum {
1246 >        IA64_INST_UNKNOWN = 0,
1247 >        IA64_INST_LD1,                          // ld1 op0=[op1]
1248 >        IA64_INST_LD1_UPDATE,           // ld1 op0=[op1],op2
1249 >        IA64_INST_LD2,                          // ld2 op0=[op1]
1250 >        IA64_INST_LD2_UPDATE,           // ld2 op0=[op1],op2
1251 >        IA64_INST_LD4,                          // ld4 op0=[op1]
1252 >        IA64_INST_LD4_UPDATE,           // ld4 op0=[op1],op2
1253 >        IA64_INST_LD8,                          // ld8 op0=[op1]
1254 >        IA64_INST_LD8_UPDATE,           // ld8 op0=[op1],op2
1255 >        IA64_INST_ST1,                          // st1 [op0]=op1
1256 >        IA64_INST_ST1_UPDATE,           // st1 [op0]=op1,op2
1257 >        IA64_INST_ST2,                          // st2 [op0]=op1
1258 >        IA64_INST_ST2_UPDATE,           // st2 [op0]=op1,op2
1259 >        IA64_INST_ST4,                          // st4 [op0]=op1
1260 >        IA64_INST_ST4_UPDATE,           // st4 [op0]=op1,op2
1261 >        IA64_INST_ST8,                          // st8 [op0]=op1
1262 >        IA64_INST_ST8_UPDATE,           // st8 [op0]=op1,op2
1263 >        IA64_INST_ADD,                          // add op0=op1,op2,op3
1264 >        IA64_INST_SUB,                          // sub op0=op1,op2,op3
1265 >        IA64_INST_SHLADD,                       // shladd op0=op1,op3,op2
1266 >        IA64_INST_AND,                          // and op0=op1,op2
1267 >        IA64_INST_ANDCM,                        // andcm op0=op1,op2
1268 >        IA64_INST_OR,                           // or op0=op1,op2
1269 >        IA64_INST_XOR,                          // xor op0=op1,op2
1270 >        IA64_INST_SXT1,                         // sxt1 op0=op1
1271 >        IA64_INST_SXT2,                         // sxt2 op0=op1
1272 >        IA64_INST_SXT4,                         // sxt4 op0=op1
1273 >        IA64_INST_ZXT1,                         // zxt1 op0=op1
1274 >        IA64_INST_ZXT2,                         // zxt2 op0=op1
1275 >        IA64_INST_ZXT4,                         // zxt4 op0=op1
1276 >        IA64_INST_NOP                           // nop op0
1277 > };
1278 >
1279 > const int IA64_N_OPERANDS = 4;
1280 >
1281 > // Decoded operand type
1282 > struct ia64_operand_t {
1283 >        unsigned char commit;           // commit result of operation to register file?
1284 >        unsigned char valid;            // XXX: not really used, can be removed (debug)
1285 >        signed char index;                      // index of GPR, or -1 if immediate value
1286 >        unsigned char nat;                      // NaT state before operation
1287 >        unsigned long value;            // register contents or immediate value
1288 > };
1289 >
1290 > // Decoded instruction type
1291 > struct ia64_instruction_t {
1292 >        unsigned char mnemo;            // operation to perform
1293 >        unsigned char pred;                     // predicate register to check
1294 >        unsigned char no_memory;        // used to emulated main fault instruction
1295 >        unsigned long inst;                     // the raw instruction bits (41-bit wide)
1296 >        ia64_operand_t operands[IA64_N_OPERANDS];
1297 > };
1298 >
1299 > // Get immediate sign-bit
1300 > static inline int ia64_inst_get_sbit(unsigned long inst)
1301 > {
1302 >        return (inst >> 36) & 1;
1303 > }
1304 >
1305 > // Get 8-bit immediate value (A3, A8, I27, M30)
1306 > static inline unsigned long ia64_inst_get_imm8(unsigned long inst)
1307 > {
1308 >        unsigned long value = (inst >> 13) & 0x7ful;
1309 >        if (ia64_inst_get_sbit(inst))
1310 >                value |= ~0x7ful;
1311 >        return value;
1312 > }
1313 >
1314 > // Get 9-bit immediate value (M3)
1315 > static inline unsigned long ia64_inst_get_imm9b(unsigned long inst)
1316 > {
1317 >        unsigned long value = (((inst >> 27) & 1) << 7) | ((inst >> 13) & 0x7f);
1318 >        if (ia64_inst_get_sbit(inst))
1319 >                value |= ~0xfful;
1320 >        return value;
1321 > }
1322 >
1323 > // Get 9-bit immediate value (M5)
1324 > static inline unsigned long ia64_inst_get_imm9a(unsigned long inst)
1325 > {
1326 >        unsigned long value = (((inst >> 27) & 1) << 7) | ((inst >> 6) & 0x7f);
1327 >        if (ia64_inst_get_sbit(inst))
1328 >                value |= ~0xfful;
1329 >        return value;
1330 > }
1331 >
1332 > // Get 14-bit immediate value (A4)
1333 > static inline unsigned long ia64_inst_get_imm14(unsigned long inst)
1334 > {
1335 >        unsigned long value = (((inst >> 27) & 0x3f) << 7) | (inst & 0x7f);
1336 >        if (ia64_inst_get_sbit(inst))
1337 >                value |= ~0x1fful;
1338 >        return value;
1339 > }
1340 >
1341 > // Get 22-bit immediate value (A5)
1342 > static inline unsigned long ia64_inst_get_imm22(unsigned long inst)
1343 > {
1344 >        unsigned long value = ((((inst >> 22) & 0x1f) << 16) |
1345 >                                                   (((inst >> 27) & 0x1ff) << 7) |
1346 >                                                   (inst & 0x7f));
1347 >        if (ia64_inst_get_sbit(inst))
1348 >                value |= ~0x1ffffful;
1349 >        return value;
1350 > }
1351 >
1352 > // Get 21-bit immediate value (I19)
1353 > static inline unsigned long ia64_inst_get_imm21(unsigned long inst)
1354 > {
1355 >        return (((inst >> 36) & 1) << 20) | ((inst >> 6) & 0xfffff);
1356 > }
1357 >
1358 > // Get 2-bit count value (A2)
1359 > static inline int ia64_inst_get_count2(unsigned long inst)
1360 > {
1361 >        return (inst >> 27) & 0x3;
1362 > }
1363 >
1364 > // Get bundle template
1365 > static inline unsigned int ia64_get_template(unsigned long raw_ip)
1366 > {
1367 >        unsigned long *ip = (unsigned long *)(raw_ip & ~3ul);
1368 >        return ip[0] & 0x1f;
1369 > }
1370 >
1371 > // Get specified instruction in bundle
1372 > static unsigned long ia64_get_instruction(unsigned long raw_ip, int slot)
1373 > {
1374 >        unsigned long inst;
1375 >        unsigned long *ip = (unsigned long *)(raw_ip & ~3ul);
1376 > #if DEBUG
1377 >        printf("Bundle: %016lx%016lx\n", ip[1], ip[0]);
1378 > #endif
1379 >
1380 >        switch (slot) {
1381 >        case 0:
1382 >                inst = (ip[0] >> 5) & 0x1fffffffffful;
1383 >                break;
1384 >        case 1:
1385 >                inst = ((ip[1] & 0x7ffffful) << 18) | ((ip[0] >> 46) & 0x3fffful);
1386 >                break;
1387 >        case 2:
1388 >                inst = (ip[1] >> 23) & 0x1fffffffffful;
1389 >                break;
1390 >        case 3:
1391 >                fprintf(stderr, "ERROR: ia64_get_instruction(), invalid slot number %d\n", slot);
1392 >                abort();
1393 >                break;
1394 >        }
1395 >
1396 > #if DEBUG
1397 >        printf(" Instruction %d: 0x%016lx\n", slot, inst);
1398 > #endif
1399 >        return inst;
1400 > }
1401 >
1402 > // Decode group 0 instructions
1403 > static bool ia64_decode_instruction_0(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
1404 > {
1405 >        const int r1 = (inst->inst >>  6) & 0x7f;
1406 >        const int r3 = (inst->inst >> 20) & 0x7f;
1407 >
1408 >        const int x3 = (inst->inst >> 33) & 0x07;
1409 >        const int x6 = (inst->inst >> 27) & 0x3f;
1410 >        const int x2 = (inst->inst >> 31) & 0x03;
1411 >        const int x4 = (inst->inst >> 27) & 0x0f;
1412 >
1413 >        if (x3 == 0) {
1414 >                switch (x6) {
1415 >                case 0x01:                                              // nop.i (I19)
1416 >                        inst->mnemo = IA64_INST_NOP;
1417 >                        inst->operands[0].valid = true;
1418 >                        inst->operands[0].index = -1;
1419 >                        inst->operands[0].value = ia64_inst_get_imm21(inst->inst);
1420 >                        return true;
1421 >                case 0x14:                                              // sxt1 (I29)
1422 >                case 0x15:                                              // sxt2 (I29)
1423 >                case 0x16:                                              // sxt4 (I29)
1424 >                case 0x10:                                              // zxt1 (I29)
1425 >                case 0x11:                                              // zxt2 (I29)
1426 >                case 0x12:                                              // zxt4 (I29)
1427 >                        switch (x6) {
1428 >                        case 0x14: inst->mnemo = IA64_INST_SXT1; break;
1429 >                        case 0x15: inst->mnemo = IA64_INST_SXT2; break;
1430 >                        case 0x16: inst->mnemo = IA64_INST_SXT4; break;
1431 >                        case 0x10: inst->mnemo = IA64_INST_ZXT1; break;
1432 >                        case 0x11: inst->mnemo = IA64_INST_ZXT2; break;
1433 >                        case 0x12: inst->mnemo = IA64_INST_ZXT4; break;
1434 >                        default: abort();
1435 >                        }
1436 >                        inst->operands[0].valid = true;
1437 >                        inst->operands[0].index = r1;
1438 >                        inst->operands[1].valid = true;
1439 >                        inst->operands[1].index = r3;
1440 >                        inst->operands[1].value = IA64_GET_GR(r3);
1441 >                        inst->operands[1].nat   = IA64_GET_NAT(r3);
1442 >                        return true;
1443 >                }
1444 >        }
1445 >        return false;
1446 > }
1447 >
1448 > // Decode group 4 instructions (load/store instructions)
1449 > static bool ia64_decode_instruction_4(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
1450 > {
1451 >        const int r1 = (inst->inst >> 6) & 0x7f;
1452 >        const int r2 = (inst->inst >> 13) & 0x7f;
1453 >        const int r3 = (inst->inst >> 20) & 0x7f;
1454 >
1455 >        const int m  = (inst->inst >> 36) & 1;
1456 >        const int x  = (inst->inst >> 27) & 1;
1457 >        const int x6 = (inst->inst >> 30) & 0x3f;
1458 >
1459 >        switch (x6) {
1460 >        case 0x00:
1461 >        case 0x01:
1462 >        case 0x02:
1463 >        case 0x03:
1464 >                if (x == 0) {
1465 >                        inst->operands[0].valid = true;
1466 >                        inst->operands[0].index = r1;
1467 >                        inst->operands[1].valid = true;
1468 >                        inst->operands[1].index = r3;
1469 >                        inst->operands[1].value = IA64_GET_GR(r3);
1470 >                        inst->operands[1].nat   = IA64_GET_NAT(r3);
1471 >                        if (m == 0) {
1472 >                                switch (x6) {
1473 >                                case 0x00: inst->mnemo = IA64_INST_LD1; break;
1474 >                                case 0x01: inst->mnemo = IA64_INST_LD2; break;
1475 >                                case 0x02: inst->mnemo = IA64_INST_LD4; break;
1476 >                                case 0x03: inst->mnemo = IA64_INST_LD8; break;
1477 >                                }
1478 >                        }
1479 >                        else {
1480 >                                inst->operands[2].valid = true;
1481 >                                inst->operands[2].index = r2;
1482 >                                inst->operands[2].value = IA64_GET_GR(r2);
1483 >                                inst->operands[2].nat   = IA64_GET_NAT(r2);
1484 >                                switch (x6) {
1485 >                                case 0x00: inst->mnemo = IA64_INST_LD1_UPDATE; break;
1486 >                                case 0x01: inst->mnemo = IA64_INST_LD2_UPDATE; break;
1487 >                                case 0x02: inst->mnemo = IA64_INST_LD4_UPDATE; break;
1488 >                                case 0x03: inst->mnemo = IA64_INST_LD8_UPDATE; break;
1489 >                                }
1490 >                        }
1491 >                        return true;
1492 >                }
1493 >                break;
1494 >        case 0x30:
1495 >        case 0x31:
1496 >        case 0x32:
1497 >        case 0x33:
1498 >                if (m == 0 && x == 0) {
1499 >                        inst->operands[0].valid = true;
1500 >                        inst->operands[0].index = r3;
1501 >                        inst->operands[0].value = IA64_GET_GR(r3);
1502 >                        inst->operands[0].nat   = IA64_GET_NAT(r3);
1503 >                        inst->operands[1].valid = true;
1504 >                        inst->operands[1].index = r2;
1505 >                        inst->operands[1].value = IA64_GET_GR(r2);
1506 >                        inst->operands[1].nat   = IA64_GET_NAT(r2);
1507 >                        switch (x6) {
1508 >                        case 0x30: inst->mnemo = IA64_INST_ST1; break;
1509 >                        case 0x31: inst->mnemo = IA64_INST_ST2; break;
1510 >                        case 0x32: inst->mnemo = IA64_INST_ST4; break;
1511 >                        case 0x33: inst->mnemo = IA64_INST_ST8; break;
1512 >                        }
1513 >                        return true;
1514 >                }
1515 >                break;
1516 >        }
1517 >        return false;
1518 > }
1519 >
1520 > // Decode group 5 instructions (load/store instructions)
1521 > static bool ia64_decode_instruction_5(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
1522 > {
1523 >        const int r1 = (inst->inst >> 6) & 0x7f;
1524 >        const int r2 = (inst->inst >> 13) & 0x7f;
1525 >        const int r3 = (inst->inst >> 20) & 0x7f;
1526 >
1527 >        const int x6 = (inst->inst >> 30) & 0x3f;
1528 >
1529 >        switch (x6) {
1530 >        case 0x00:
1531 >        case 0x01:
1532 >        case 0x02:
1533 >        case 0x03:
1534 >                inst->operands[0].valid = true;
1535 >                inst->operands[0].index = r1;
1536 >                inst->operands[1].valid = true;
1537 >                inst->operands[1].index = r3;
1538 >                inst->operands[1].value = IA64_GET_GR(r3);
1539 >                inst->operands[1].nat   = IA64_GET_NAT(r3);
1540 >                inst->operands[2].valid = true;
1541 >                inst->operands[2].index = -1;
1542 >                inst->operands[2].value = ia64_inst_get_imm9b(inst->inst);
1543 >                inst->operands[2].nat   = 0;
1544 >                switch (x6) {
1545 >                case 0x00: inst->mnemo = IA64_INST_LD1_UPDATE; break;
1546 >                case 0x01: inst->mnemo = IA64_INST_LD2_UPDATE; break;
1547 >                case 0x02: inst->mnemo = IA64_INST_LD4_UPDATE; break;
1548 >                case 0x03: inst->mnemo = IA64_INST_LD8_UPDATE; break;
1549 >                }
1550 >                return true;
1551 >        case 0x30:
1552 >        case 0x31:
1553 >        case 0x32:
1554 >        case 0x33:
1555 >                inst->operands[0].valid = true;
1556 >                inst->operands[0].index = r3;
1557 >                inst->operands[0].value = IA64_GET_GR(r3);
1558 >                inst->operands[0].nat   = IA64_GET_NAT(r3);
1559 >                inst->operands[1].valid = true;
1560 >                inst->operands[1].index = r2;
1561 >                inst->operands[1].value = IA64_GET_GR(r2);
1562 >                inst->operands[1].nat   = IA64_GET_NAT(r2);
1563 >                inst->operands[2].valid = true;
1564 >                inst->operands[2].index = -1;
1565 >                inst->operands[2].value = ia64_inst_get_imm9a(inst->inst);
1566 >                inst->operands[2].nat   = 0;
1567 >                switch (x6) {
1568 >                case 0x30: inst->mnemo = IA64_INST_ST1_UPDATE; break;
1569 >                case 0x31: inst->mnemo = IA64_INST_ST2_UPDATE; break;
1570 >                case 0x32: inst->mnemo = IA64_INST_ST4_UPDATE; break;
1571 >                case 0x33: inst->mnemo = IA64_INST_ST8_UPDATE; break;
1572 >                }
1573 >                return true;
1574 >        }
1575 >        return false;
1576 > }
1577 >
1578 > // Decode group 8 instructions (ALU integer)
1579 > static bool ia64_decode_instruction_8(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
1580 > {
1581 >        const int r1  = (inst->inst >> 6) & 0x7f;
1582 >        const int r2  = (inst->inst >> 13) & 0x7f;
1583 >        const int r3  = (inst->inst >> 20) & 0x7f;
1584 >
1585 >        const int x2a = (inst->inst >> 34) & 0x3;
1586 >        const int x2b = (inst->inst >> 27) & 0x3;
1587 >        const int x4  = (inst->inst >> 29) & 0xf;
1588 >        const int ve  = (inst->inst >> 33) & 0x1;
1589 >
1590 >        // destination register (r1) is always valid in this group
1591 >        inst->operands[0].valid = true;
1592 >        inst->operands[0].index = r1;
1593 >
1594 >        // source register (r3) is always valid in this group
1595 >        inst->operands[2].valid = true;
1596 >        inst->operands[2].index = r3;
1597 >        inst->operands[2].value = IA64_GET_GR(r3);
1598 >        inst->operands[2].nat   = IA64_GET_NAT(r3);
1599 >
1600 >        if (x2a == 0 && ve == 0) {
1601 >                inst->operands[1].valid = true;
1602 >                inst->operands[1].index = r2;
1603 >                inst->operands[1].value = IA64_GET_GR(r2);
1604 >                inst->operands[1].nat   = IA64_GET_NAT(r2);
1605 >                switch (x4) {
1606 >                case 0x0:                               // add (A1)
1607 >                        inst->mnemo = IA64_INST_ADD;
1608 >                        inst->operands[3].valid = true;
1609 >                        inst->operands[3].index = -1;
1610 >                        inst->operands[3].value = x2b == 1;
1611 >                        return true;
1612 >                case 0x1:                               // add (A1)
1613 >                        inst->mnemo = IA64_INST_SUB;
1614 >                        inst->operands[3].valid = true;
1615 >                        inst->operands[3].index = -1;
1616 >                        inst->operands[3].value = x2b == 0;
1617 >                        return true;
1618 >                case 0x4:                               // shladd (A2)
1619 >                        inst->mnemo = IA64_INST_SHLADD;
1620 >                        inst->operands[3].valid = true;
1621 >                        inst->operands[3].index = -1;
1622 >                        inst->operands[3].value = ia64_inst_get_count2(inst->inst);
1623 >                        return true;
1624 >                case 0x9:
1625 >                        if (x2b == 1) {
1626 >                                inst->mnemo = IA64_INST_SUB;
1627 >                                inst->operands[1].index = -1;
1628 >                                inst->operands[1].value = ia64_inst_get_imm8(inst->inst);
1629 >                                inst->operands[1].nat   = 0;
1630 >                                return true;
1631 >                        }
1632 >                        break;
1633 >                case 0xb:
1634 >                        inst->operands[1].index = -1;
1635 >                        inst->operands[1].value = ia64_inst_get_imm8(inst->inst);
1636 >                        inst->operands[1].nat   = 0;
1637 >                        // fall-through
1638 >                case 0x3:
1639 >                        switch (x2b) {
1640 >                        case 0: inst->mnemo = IA64_INST_AND;   break;
1641 >                        case 1: inst->mnemo = IA64_INST_ANDCM; break;
1642 >                        case 2: inst->mnemo = IA64_INST_OR;    break;
1643 >                        case 3: inst->mnemo = IA64_INST_XOR;   break;
1644 >                        }
1645 >                        return true;
1646 >                }
1647 >        }
1648 >        return false;
1649 > }
1650 >
1651 > // Decode instruction
1652 > static bool ia64_decode_instruction(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
1653 > {
1654 >        const int major = (inst->inst >> 37) & 0xf;
1655 >
1656 >        inst->mnemo = IA64_INST_UNKNOWN;
1657 >        inst->pred  = inst->inst & 0x3f;
1658 >        memset(&inst->operands[0], 0, sizeof(inst->operands));
1659 >
1660 >        switch (major) {
1661 >        case 0x0: return ia64_decode_instruction_0(inst, IA64_CONTEXT);
1662 >        case 0x4: return ia64_decode_instruction_4(inst, IA64_CONTEXT);
1663 >        case 0x5: return ia64_decode_instruction_5(inst, IA64_CONTEXT);
1664 >        case 0x8: return ia64_decode_instruction_8(inst, IA64_CONTEXT);
1665 >        }
1666 >        return false;
1667 > }
1668 >
1669 > static bool ia64_emulate_instruction(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
1670 > {
1671 >        // XXX: handle Register NaT Consumption fault?
1672 >        // XXX: this simple emulator assumes instructions in a bundle
1673 >        // don't depend on effects of other instructions in the same
1674 >        // bundle. It probably would be simpler to JIT-generate code to be
1675 >        // executed natively but probably more costly (inject/extract CPU state)
1676 >        if (inst->mnemo == IA64_INST_UNKNOWN)
1677 >                return false;
1678 >        if (inst->pred && !IA64_GET_PR(inst->pred))
1679 >                return true;
1680 >
1681 >        unsigned char nat, nat2;
1682 >        unsigned long dst, dst2, src1, src2, src3;
1683 >
1684 >        switch (inst->mnemo) {
1685 >        case IA64_INST_NOP:
1686 >                break;
1687 >        case IA64_INST_ADD:
1688 >        case IA64_INST_SUB:
1689 >        case IA64_INST_SHLADD:
1690 >                src3 = inst->operands[3].value;
1691 >                // fall-through
1692 >        case IA64_INST_AND:
1693 >        case IA64_INST_ANDCM:
1694 >        case IA64_INST_OR:
1695 >        case IA64_INST_XOR:
1696 >                src1 = inst->operands[1].value;
1697 >                src2 = inst->operands[2].value;
1698 >                switch (inst->mnemo) {
1699 >                case IA64_INST_ADD:   dst = src1 + src2 + src3; break;
1700 >                case IA64_INST_SUB:   dst = src1 - src2 - src3; break;
1701 >                case IA64_INST_SHLADD: dst = (src1 << src3) + src2; break;
1702 >                case IA64_INST_AND:   dst = src1 & src2;                break;
1703 >                case IA64_INST_ANDCM: dst = src1 &~ src2;               break;
1704 >                case IA64_INST_OR:    dst = src1 | src2;                break;
1705 >                case IA64_INST_XOR:   dst = src1 ^ src2;                break;
1706 >                }
1707 >                inst->operands[0].commit = true;
1708 >                inst->operands[0].value  = dst;
1709 >                inst->operands[0].nat    = inst->operands[1].nat | inst->operands[2].nat;
1710 >                break;
1711 >        case IA64_INST_SXT1:
1712 >        case IA64_INST_SXT2:
1713 >        case IA64_INST_SXT4:
1714 >        case IA64_INST_ZXT1:
1715 >        case IA64_INST_ZXT2:
1716 >        case IA64_INST_ZXT4:
1717 >                src1 = inst->operands[1].value;
1718 >                switch (inst->mnemo) {
1719 >                case IA64_INST_SXT1: dst = (signed long)(signed char)src1;              break;
1720 >                case IA64_INST_SXT2: dst = (signed long)(signed short)src1;             break;
1721 >                case IA64_INST_SXT4: dst = (signed long)(signed int)src1;               break;
1722 >                case IA64_INST_ZXT1: dst = (unsigned char)src1;                                 break;
1723 >                case IA64_INST_ZXT2: dst = (unsigned short)src1;                                break;
1724 >                case IA64_INST_ZXT4: dst = (unsigned int)src1;                                  break;
1725 >                }
1726 >                inst->operands[0].commit = true;
1727 >                inst->operands[0].value  = dst;
1728 >                inst->operands[0].nat    = inst->operands[1].nat;
1729 >                break;
1730 >        case IA64_INST_LD1_UPDATE:
1731 >        case IA64_INST_LD2_UPDATE:
1732 >        case IA64_INST_LD4_UPDATE:
1733 >        case IA64_INST_LD8_UPDATE:
1734 >                inst->operands[1].commit = true;
1735 >                dst2 = inst->operands[1].value + inst->operands[2].value;
1736 >                nat2 = inst->operands[2].nat ? inst->operands[2].nat : 0;
1737 >                // fall-through
1738 >        case IA64_INST_LD1:
1739 >        case IA64_INST_LD2:
1740 >        case IA64_INST_LD4:
1741 >        case IA64_INST_LD8:
1742 >                src1 = inst->operands[1].value;
1743 >                if (inst->no_memory)
1744 >                        dst = 0;
1745 >                else {
1746 >                        switch (inst->mnemo) {
1747 >                        case IA64_INST_LD1: case IA64_INST_LD1_UPDATE: dst = *((unsigned char *)src1);  break;
1748 >                        case IA64_INST_LD2: case IA64_INST_LD2_UPDATE: dst = *((unsigned short *)src1); break;
1749 >                        case IA64_INST_LD4: case IA64_INST_LD4_UPDATE: dst = *((unsigned int *)src1);   break;
1750 >                        case IA64_INST_LD8: case IA64_INST_LD8_UPDATE: dst = *((unsigned long *)src1);  break;
1751 >                        }
1752 >                }
1753 >                inst->operands[0].commit = true;
1754 >                inst->operands[0].value  = dst;
1755 >                inst->operands[0].nat    = 0;
1756 >                inst->operands[1].value  = dst2;
1757 >                inst->operands[1].nat    = nat2;
1758 >                break;
1759 >        case IA64_INST_ST1_UPDATE:
1760 >        case IA64_INST_ST2_UPDATE:
1761 >        case IA64_INST_ST4_UPDATE:
1762 >        case IA64_INST_ST8_UPDATE:
1763 >                inst->operands[0].commit = 0;
1764 >                dst2 = inst->operands[0].value + inst->operands[2].value;
1765 >                nat2 = inst->operands[2].nat ? inst->operands[2].nat : 0;
1766 >                // fall-through
1767 >        case IA64_INST_ST1:
1768 >        case IA64_INST_ST2:
1769 >        case IA64_INST_ST4:
1770 >        case IA64_INST_ST8:
1771 >                dst  = inst->operands[0].value;
1772 >                src1 = inst->operands[1].value;
1773 >                if (!inst->no_memory) {
1774 >                        switch (inst->mnemo) {
1775 >                        case IA64_INST_ST1: case IA64_INST_ST1_UPDATE: *((unsigned char *)dst) = src1;  break;
1776 >                        case IA64_INST_ST2: case IA64_INST_ST2_UPDATE: *((unsigned short *)dst) = src1; break;
1777 >                        case IA64_INST_ST4: case IA64_INST_ST4_UPDATE: *((unsigned int *)dst) = src1;   break;
1778 >                        case IA64_INST_ST8: case IA64_INST_ST8_UPDATE: *((unsigned long *)dst) = src1;  break;
1779 >                        }
1780 >                }
1781 >                inst->operands[0].value  = dst2;
1782 >                inst->operands[0].nat    = nat2;
1783 >                break;
1784 >        default:
1785 >                return false;
1786 >        }
1787 >
1788 >        for (int i = 0; i < IA64_N_OPERANDS; i++) {
1789 >                ia64_operand_t const & op = inst->operands[i];
1790 >                if (!op.commit)
1791 >                        continue;
1792 >                if (op.index == -1)
1793 >                        return false; // XXX: internal error
1794 >                IA64_SET_GR(op.index, op.value);
1795 >                IA64_SET_NAT(op.index, op.nat);
1796 >        }
1797 >        return true;
1798 > }
1799 >
1800 > static bool ia64_emulate_instruction(unsigned long raw_inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
1801 > {
1802 >        ia64_instruction_t inst;
1803 >        memset(&inst, 0, sizeof(inst));
1804 >        inst.inst = raw_inst;
1805 >        if (!ia64_decode_instruction(&inst, IA64_CONTEXT))
1806 >                return false;
1807 >        return ia64_emulate_instruction(&inst, IA64_CONTEXT);
1808 > }
1809 >
1810 > static bool ia64_skip_instruction(IA64_CONTEXT_TYPE IA64_CONTEXT)
1811 > {
1812 >        unsigned long ip = IA64_GET_IP();
1813 > #if DEBUG
1814 >        printf("IP: 0x%016lx\n", ip);
1815 > #if 0
1816 >        printf(" Template 0x%02x\n", ia64_get_template(ip));
1817 >        ia64_get_instruction(ip, 0);
1818 >        ia64_get_instruction(ip, 1);
1819 >        ia64_get_instruction(ip, 2);
1820 > #endif
1821 > #endif
1822 >
1823 >        // Select which decode switch to use
1824 >        ia64_instruction_t inst;
1825 >        inst.inst = ia64_get_instruction(ip, ip & 3);
1826 >        if (!ia64_decode_instruction(&inst, IA64_CONTEXT)) {
1827 >                fprintf(stderr, "ERROR: ia64_skip_instruction(): could not decode instruction\n");
1828 >                return false;
1829 >        }
1830 >
1831 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1832 >        transfer_size_t transfer_size = SIZE_UNKNOWN;
1833 >
1834 >        switch (inst.mnemo) {
1835 >        case IA64_INST_LD1:
1836 >        case IA64_INST_LD2:
1837 >        case IA64_INST_LD4:
1838 >        case IA64_INST_LD8:
1839 >        case IA64_INST_LD1_UPDATE:
1840 >        case IA64_INST_LD2_UPDATE:
1841 >        case IA64_INST_LD4_UPDATE:
1842 >        case IA64_INST_LD8_UPDATE:
1843 >                transfer_type = SIGSEGV_TRANSFER_LOAD;
1844 >                break;
1845 >        case IA64_INST_ST1:
1846 >        case IA64_INST_ST2:
1847 >        case IA64_INST_ST4:
1848 >        case IA64_INST_ST8:
1849 >        case IA64_INST_ST1_UPDATE:
1850 >        case IA64_INST_ST2_UPDATE:
1851 >        case IA64_INST_ST4_UPDATE:
1852 >        case IA64_INST_ST8_UPDATE:
1853 >                transfer_type = SIGSEGV_TRANSFER_STORE;
1854 >                break;
1855 >        }
1856 >
1857 >        if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1858 >                // Unknown machine code, let it crash. Then patch the decoder
1859 >                fprintf(stderr, "ERROR: ia64_skip_instruction(): not a load/store instruction\n");
1860 >                return false;
1861 >        }
1862 >
1863 >        switch (inst.mnemo) {
1864 >        case IA64_INST_LD1:
1865 >        case IA64_INST_LD1_UPDATE:
1866 >        case IA64_INST_ST1:
1867 >        case IA64_INST_ST1_UPDATE:
1868 >                transfer_size = SIZE_BYTE;
1869 >                break;
1870 >        case IA64_INST_LD2:
1871 >        case IA64_INST_LD2_UPDATE:
1872 >        case IA64_INST_ST2:
1873 >        case IA64_INST_ST2_UPDATE:
1874 >                transfer_size = SIZE_WORD;
1875 >                break;
1876 >        case IA64_INST_LD4:
1877 >        case IA64_INST_LD4_UPDATE:
1878 >        case IA64_INST_ST4:
1879 >        case IA64_INST_ST4_UPDATE:
1880 >                transfer_size = SIZE_LONG;
1881 >                break;
1882 >        case IA64_INST_LD8:
1883 >        case IA64_INST_LD8_UPDATE:
1884 >        case IA64_INST_ST8:
1885 >        case IA64_INST_ST8_UPDATE:
1886 >                transfer_size = SIZE_QUAD;
1887 >                break;
1888 >        }
1889 >
1890 >        if (transfer_size == SIZE_UNKNOWN) {
1891 >                // Unknown machine code, let it crash. Then patch the decoder
1892 >                fprintf(stderr, "ERROR: ia64_skip_instruction(): unknown transfer size\n");
1893 >                return false;
1894 >        }
1895 >
1896 >        inst.no_memory = true;
1897 >        if (!ia64_emulate_instruction(&inst, IA64_CONTEXT)) {
1898 >                fprintf(stderr, "ERROR: ia64_skip_instruction(): could not emulate fault instruction\n");
1899 >                return false;
1900 >        }
1901 >
1902 >        int slot = ip & 3;
1903 >        bool emulate_next = false;
1904 >        switch (slot) {
1905 >        case 0:
1906 >                switch (ia64_get_template(ip)) {
1907 >                case 0x2: // MI;I
1908 >                case 0x3: // MI;I;
1909 >                        emulate_next = true;
1910 >                        slot = 2;
1911 >                        break;
1912 >                case 0xa: // M;MI
1913 >                case 0xb: // M;MI;
1914 >                        emulate_next = true;
1915 >                        slot = 1;
1916 >                        break;
1917 >                }
1918                  break;
1919          }
1920 +        if (emulate_next && !IA64_CAN_PATCH_IP_SLOT) {
1921 +                while (slot < 3) {
1922 +                        if (!ia64_emulate_instruction(ia64_get_instruction(ip, slot), IA64_CONTEXT)) {
1923 +                                fprintf(stderr, "ERROR: ia64_skip_instruction(): could not emulate instruction\n");
1924 +                                return false;
1925 +                        }
1926 +                        ++slot;
1927 +                }
1928 +        }
1929 +
1930 + #if IA64_CAN_PATCH_IP_SLOT
1931 +        if ((slot = ip & 3) < 2)
1932 +                IA64_SET_IP((ip & ~3ul) + (slot + 1));
1933 +        else
1934 + #endif
1935 +                IA64_SET_IP((ip & ~3ul) + 16);
1936 + #if DEBUG
1937 +        printf("IP: 0x%016lx\n", IA64_GET_IP());
1938 + #endif
1939 +        return true;
1940 + }
1941 + #endif
1942 +
1943 + // Decode and skip PPC instruction
1944 + #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__))
1945 + static bool powerpc_skip_instruction(unsigned long * nip_p, unsigned long * regs)
1946 + {
1947 +        instruction_t instr;
1948 +        powerpc_decode_instruction(&instr, *nip_p, regs);
1949          
1950 <        addr = (baseA + baseB) + disp;
1951 <        addr &= alignmask;
1952 <        return (sigsegv_address_t)addr;
1950 >        if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1951 >                // Unknown machine code, let it crash. Then patch the decoder
1952 >                return false;
1953 >        }
1954 >
1955 > #if DEBUG
1956 >        printf("%08x: %s %s access", *nip_p,
1957 >                   instr.transfer_size == SIZE_BYTE ? "byte" :
1958 >                   instr.transfer_size == SIZE_WORD ? "word" :
1959 >                   instr.transfer_size == SIZE_LONG ? "long" : "quad",
1960 >                   instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1961 >        
1962 >        if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
1963 >                printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
1964 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
1965 >                printf(" r%d (rd = 0)\n", instr.rd);
1966 > #endif
1967 >        
1968 >        if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
1969 >                regs[instr.ra] = instr.addr;
1970 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
1971 >                regs[instr.rd] = 0;
1972 >        
1973 >        *nip_p += 4;
1974 >        return true;
1975   }
1976   #endif
1977 +
1978 + // Decode and skip MIPS instruction
1979 + #if (defined(mips) || defined(__mips))
1980 + static bool mips_skip_instruction(greg_t * pc_p, greg_t * regs)
1981 + {
1982 +  unsigned int * epc = (unsigned int *)(unsigned long)*pc_p;
1983 +
1984 +  if (epc == 0)
1985 +        return false;
1986 +
1987 + #if DEBUG
1988 +  printf("IP: %p [%08x]\n", epc, epc[0]);
1989   #endif
1990 +
1991 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1992 +  transfer_size_t transfer_size = SIZE_LONG;
1993 +  int direction = 0;
1994 +
1995 +  const unsigned int opcode = epc[0];
1996 +  switch (opcode >> 26) {
1997 +  case 32: // Load Byte
1998 +  case 36: // Load Byte Unsigned
1999 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2000 +        transfer_size = SIZE_BYTE;
2001 +        break;
2002 +  case 33: // Load Halfword
2003 +  case 37: // Load Halfword Unsigned
2004 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2005 +        transfer_size = SIZE_WORD;
2006 +        break;
2007 +  case 35: // Load Word
2008 +  case 39: // Load Word Unsigned
2009 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2010 +        transfer_size = SIZE_LONG;
2011 +        break;
2012 +  case 34: // Load Word Left
2013 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2014 +        transfer_size = SIZE_LONG;
2015 +        direction = -1;
2016 +        break;
2017 +  case 38: // Load Word Right
2018 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2019 +        transfer_size = SIZE_LONG;
2020 +        direction = 1;
2021 +        break;
2022 +  case 55: // Load Doubleword
2023 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2024 +        transfer_size = SIZE_QUAD;
2025 +        break;
2026 +  case 26: // Load Doubleword Left
2027 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2028 +        transfer_size = SIZE_QUAD;
2029 +        direction = -1;
2030 +        break;
2031 +  case 27: // Load Doubleword Right
2032 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2033 +        transfer_size = SIZE_QUAD;
2034 +        direction = 1;
2035 +        break;
2036 +  case 40: // Store Byte
2037 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2038 +        transfer_size = SIZE_BYTE;
2039 +        break;
2040 +  case 41: // Store Halfword
2041 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2042 +        transfer_size = SIZE_WORD;
2043 +        break;
2044 +  case 43: // Store Word
2045 +  case 42: // Store Word Left
2046 +  case 46: // Store Word Right
2047 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2048 +        transfer_size = SIZE_LONG;
2049 +        break;
2050 +  case 63: // Store Doubleword
2051 +  case 44: // Store Doubleword Left
2052 +  case 45: // Store Doubleword Right
2053 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2054 +        transfer_size = SIZE_QUAD;
2055 +        break;
2056 +  /* Misc instructions unlikely to be used within CPU emulators */
2057 +  case 48: // Load Linked Word
2058 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2059 +        transfer_size = SIZE_LONG;
2060 +        break;
2061 +  case 52: // Load Linked Doubleword
2062 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2063 +        transfer_size = SIZE_QUAD;
2064 +        break;
2065 +  case 56: // Store Conditional Word
2066 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2067 +        transfer_size = SIZE_LONG;
2068 +        break;
2069 +  case 60: // Store Conditional Doubleword
2070 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2071 +        transfer_size = SIZE_QUAD;
2072 +        break;
2073 +  }
2074 +
2075 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
2076 +        // Unknown machine code, let it crash. Then patch the decoder
2077 +        return false;
2078 +  }
2079 +
2080 +  // Zero target register in case of a load operation
2081 +  const int reg = (opcode >> 16) & 0x1f;
2082 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD) {
2083 +        if (direction == 0)
2084 +          regs[reg] = 0;
2085 +        else {
2086 +          // FIXME: untested code
2087 +          unsigned long ea = regs[(opcode >> 21) & 0x1f];
2088 +          ea += (signed long)(signed int)(signed short)(opcode & 0xffff);
2089 +          const int offset = ea & (transfer_size == SIZE_LONG ? 3 : 7);
2090 +          unsigned long value;
2091 +          if (direction > 0) {
2092 +                const unsigned long rmask = ~((1L << ((offset + 1) * 8)) - 1);
2093 +                value = regs[reg] & rmask;
2094 +          }
2095 +          else {
2096 +                const unsigned long lmask = (1L << (offset * 8)) - 1;
2097 +                value = regs[reg] & lmask;
2098 +          }
2099 +          // restore most significant bits
2100 +          if (transfer_size == SIZE_LONG)
2101 +                value = (signed long)(signed int)value;
2102 +          regs[reg] = value;
2103 +        }
2104 +  }
2105 +
2106 + #if DEBUG
2107 + #if (defined(_ABIN32) || defined(_ABI64))
2108 +  static const char * mips_gpr_names[32] = {
2109 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
2110 +        "t0",   "t1",   "t2",   "t3",   "t4",   "t5",   "t6",   "t7",
2111 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
2112 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
2113 +  };
2114 + #else
2115 +  static const char * mips_gpr_names[32] = {
2116 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
2117 +        "a4",   "a5",   "a6",   "a7",   "t0",   "t1",   "t2",   "t3",
2118 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
2119 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
2120 +  };
2121 + #endif
2122 +  printf("%s %s register %s\n",
2123 +                 transfer_size == SIZE_BYTE ? "byte" :
2124 +                 transfer_size == SIZE_WORD ? "word" :
2125 +                 transfer_size == SIZE_LONG ? "long" :
2126 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
2127 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
2128 +                 mips_gpr_names[reg]);
2129   #endif
2130  
2131 +  *pc_p += 4;
2132 +  return true;
2133 + }
2134 + #endif
2135 +
2136 + // Decode and skip SPARC instruction
2137 + #if (defined(sparc) || defined(__sparc__))
2138 + enum {
2139 + #if (defined(__sun__))
2140 +  SPARC_REG_G1 = REG_G1,
2141 +  SPARC_REG_O0 = REG_O0,
2142 +  SPARC_REG_PC = REG_PC,
2143 +  SPARC_REG_nPC = REG_nPC
2144 + #endif
2145 + };
2146 + static bool sparc_skip_instruction(unsigned long * regs, gwindows_t * gwins, struct rwindow * rwin)
2147 + {
2148 +  unsigned int * pc = (unsigned int *)regs[SPARC_REG_PC];
2149 +
2150 +  if (pc == 0)
2151 +        return false;
2152 +
2153 + #if DEBUG
2154 +  printf("IP: %p [%08x]\n", pc, pc[0]);
2155 + #endif
2156 +
2157 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
2158 +  transfer_size_t transfer_size = SIZE_LONG;
2159 +  bool register_pair = false;
2160 +
2161 +  const unsigned int opcode = pc[0];
2162 +  if ((opcode >> 30) != 3)
2163 +        return false;
2164 +  switch ((opcode >> 19) & 0x3f) {
2165 +  case 9: // Load Signed Byte
2166 +  case 1: // Load Unsigned Byte
2167 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2168 +        transfer_size = SIZE_BYTE;
2169 +        break;
2170 +  case 10:// Load Signed Halfword
2171 +  case 2: // Load Unsigned Word
2172 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2173 +        transfer_size = SIZE_WORD;
2174 +        break;
2175 +  case 8: // Load Word
2176 +  case 0: // Load Unsigned Word
2177 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2178 +        transfer_size = SIZE_LONG;
2179 +        break;
2180 +  case 11:// Load Extended Word
2181 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2182 +        transfer_size = SIZE_QUAD;
2183 +        break;
2184 +  case 3: // Load Doubleword
2185 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2186 +        transfer_size = SIZE_LONG;
2187 +        register_pair = true;
2188 +        break;
2189 +  case 5: // Store Byte
2190 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2191 +        transfer_size = SIZE_BYTE;
2192 +        break;
2193 +  case 6: // Store Halfword
2194 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2195 +        transfer_size = SIZE_WORD;
2196 +        break;
2197 +  case 4: // Store Word
2198 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2199 +        transfer_size = SIZE_LONG;
2200 +        break;
2201 +  case 14:// Store Extended Word
2202 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2203 +        transfer_size = SIZE_QUAD;
2204 +        break;
2205 +  case 7: // Store Doubleword
2206 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2207 +        transfer_size = SIZE_LONG;
2208 +        register_pair = true;
2209 +        break;
2210 +  }
2211 +
2212 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
2213 +        // Unknown machine code, let it crash. Then patch the decoder
2214 +        return false;
2215 +  }
2216 +
2217 +  const int reg = (opcode >> 25) & 0x1f;
2218 +
2219 + #if DEBUG
2220 +  static const char * reg_names[] = {
2221 +        "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
2222 +        "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
2223 +        "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
2224 +        "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7"
2225 +  };
2226 +  printf("%s %s register %s\n",
2227 +                 transfer_size == SIZE_BYTE ? "byte" :
2228 +                 transfer_size == SIZE_WORD ? "word" :
2229 +                 transfer_size == SIZE_LONG ? "long" :
2230 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
2231 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
2232 +                 reg_names[reg]);
2233 + #endif
2234 +
2235 +  // Zero target register in case of a load operation
2236 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != 0) {
2237 +        // FIXME: code to handle local & input registers is not tested
2238 +        if (reg >= 1 && reg < 8) {
2239 +          // global registers
2240 +          regs[reg - 1 + SPARC_REG_G1] = 0;
2241 +        }
2242 +        else if (reg >= 8 && reg < 16) {
2243 +          // output registers
2244 +          regs[reg - 8 + SPARC_REG_O0] = 0;
2245 +        }
2246 +        else if (reg >= 16 && reg < 24) {
2247 +          // local registers (in register windows)
2248 +          if (gwins)
2249 +                gwins->wbuf->rw_local[reg - 16] = 0;
2250 +          else
2251 +                rwin->rw_local[reg - 16] = 0;
2252 +        }
2253 +        else {
2254 +          // input registers (in register windows)
2255 +          if (gwins)
2256 +                gwins->wbuf->rw_in[reg - 24] = 0;
2257 +          else
2258 +                rwin->rw_in[reg - 24] = 0;
2259 +        }
2260 +  }
2261 +
2262 +  regs[SPARC_REG_PC] += 4;
2263 +  regs[SPARC_REG_nPC] += 4;
2264 +  return true;
2265 + }
2266 + #endif
2267 + #endif
2268 +
2269 + // Decode and skip ARM instruction
2270 + #if (defined(arm) || defined(__arm__))
2271 + enum {
2272 + #if (defined(__linux__))
2273 +  ARM_REG_PC = 15,
2274 +  ARM_REG_CPSR = 16
2275 + #endif
2276 + };
2277 + static bool arm_skip_instruction(unsigned long * regs)
2278 + {
2279 +  unsigned int * pc = (unsigned int *)regs[ARM_REG_PC];
2280 +
2281 +  if (pc == 0)
2282 +        return false;
2283 +
2284 + #if DEBUG
2285 +  printf("IP: %p [%08x]\n", pc, pc[0]);
2286 + #endif
2287 +
2288 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
2289 +  transfer_size_t transfer_size = SIZE_UNKNOWN;
2290 +  enum { op_sdt = 1, op_sdth = 2 };
2291 +  int op = 0;
2292 +
2293 +  // Handle load/store instructions only
2294 +  const unsigned int opcode = pc[0];
2295 +  switch ((opcode >> 25) & 7) {
2296 +  case 0: // Halfword and Signed Data Transfer (LDRH, STRH, LDRSB, LDRSH)
2297 +        op = op_sdth;
2298 +        // Determine transfer size (S/H bits)
2299 +        switch ((opcode >> 5) & 3) {
2300 +        case 0: // SWP instruction
2301 +          break;
2302 +        case 1: // Unsigned halfwords
2303 +        case 3: // Signed halfwords
2304 +          transfer_size = SIZE_WORD;
2305 +          break;
2306 +        case 2: // Signed byte
2307 +          transfer_size = SIZE_BYTE;
2308 +          break;
2309 +        }
2310 +        break;
2311 +  case 2:
2312 +  case 3: // Single Data Transfer (LDR, STR)
2313 +        op = op_sdt;
2314 +        // Determine transfer size (B bit)
2315 +        if (((opcode >> 22) & 1) == 1)
2316 +          transfer_size = SIZE_BYTE;
2317 +        else
2318 +          transfer_size = SIZE_LONG;
2319 +        break;
2320 +  default:
2321 +        // FIXME: support load/store mutliple?
2322 +        return false;
2323 +  }
2324 +
2325 +  // Check for invalid transfer size (SWP instruction?)
2326 +  if (transfer_size == SIZE_UNKNOWN)
2327 +        return false;
2328 +
2329 +  // Determine transfer type (L bit)
2330 +  if (((opcode >> 20) & 1) == 1)
2331 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2332 +  else
2333 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2334 +
2335 +  // Compute offset
2336 +  int offset;
2337 +  if (((opcode >> 25) & 1) == 0) {
2338 +        if (op == op_sdt)
2339 +          offset = opcode & 0xfff;
2340 +        else if (op == op_sdth) {
2341 +          int rm = opcode & 0xf;
2342 +          if (((opcode >> 22) & 1) == 0) {
2343 +                // register offset
2344 +                offset = regs[rm];
2345 +          }
2346 +          else {
2347 +                // immediate offset
2348 +                offset = ((opcode >> 4) & 0xf0) | (opcode & 0x0f);
2349 +          }
2350 +        }
2351 +  }
2352 +  else {
2353 +        const int rm = opcode & 0xf;
2354 +        const int sh = (opcode >> 7) & 0x1f;
2355 +        if (((opcode >> 4) & 1) == 1) {
2356 +          // we expect only legal load/store instructions
2357 +          printf("FATAL: invalid shift operand\n");
2358 +          return false;
2359 +        }
2360 +        const unsigned int v = regs[rm];
2361 +        switch ((opcode >> 5) & 3) {
2362 +        case 0: // logical shift left
2363 +          offset = sh ? v << sh : v;
2364 +          break;
2365 +        case 1: // logical shift right
2366 +          offset = sh ? v >> sh : 0;
2367 +          break;
2368 +        case 2: // arithmetic shift right
2369 +          if (sh)
2370 +                offset = ((signed int)v) >> sh;
2371 +          else
2372 +                offset = (v & 0x80000000) ? 0xffffffff : 0;
2373 +          break;
2374 +        case 3: // rotate right
2375 +          if (sh)
2376 +                offset = (v >> sh) | (v << (32 - sh));
2377 +          else
2378 +                offset = (v >> 1) | ((regs[ARM_REG_CPSR] << 2) & 0x80000000);
2379 +          break;
2380 +        }
2381 +  }
2382 +  if (((opcode >> 23) & 1) == 0)
2383 +        offset = -offset;
2384 +
2385 +  int rd = (opcode >> 12) & 0xf;
2386 +  int rn = (opcode >> 16) & 0xf;
2387 + #if DEBUG
2388 +  static const char * reg_names[] = {
2389 +        "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2390 +        "r9", "r9", "sl", "fp", "ip", "sp", "lr", "pc"
2391 +  };
2392 +  printf("%s %s register %s\n",
2393 +                 transfer_size == SIZE_BYTE ? "byte" :
2394 +                 transfer_size == SIZE_WORD ? "word" :
2395 +                 transfer_size == SIZE_LONG ? "long" : "unknown",
2396 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
2397 +                 reg_names[rd]);
2398 + #endif
2399 +
2400 +  unsigned int base = regs[rn];
2401 +  if (((opcode >> 24) & 1) == 1)
2402 +        base += offset;
2403 +
2404 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD)
2405 +        regs[rd] = 0;
2406 +
2407 +  if (((opcode >> 24) & 1) == 0)                // post-index addressing
2408 +        regs[rn] += offset;
2409 +  else if (((opcode >> 21) & 1) == 1)   // write-back address into base
2410 +        regs[rn] = base;
2411 +
2412 +  regs[ARM_REG_PC] += 4;
2413 +  return true;
2414 + }
2415 + #endif
2416 +
2417 +
2418   // Fallbacks
2419 + #ifndef SIGSEGV_FAULT_ADDRESS_FAST
2420 + #define SIGSEGV_FAULT_ADDRESS_FAST              SIGSEGV_FAULT_ADDRESS
2421 + #endif
2422 + #ifndef SIGSEGV_FAULT_INSTRUCTION_FAST
2423 + #define SIGSEGV_FAULT_INSTRUCTION_FAST  SIGSEGV_FAULT_INSTRUCTION
2424 + #endif
2425   #ifndef SIGSEGV_FAULT_INSTRUCTION
2426 < #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_PC
2426 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_ADDRESS
2427 > #endif
2428 > #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
2429 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
2430 > #endif
2431 > #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
2432 > #define SIGSEGV_FAULT_HANDLER_INVOKE(P) sigsegv_fault_handler(P)
2433   #endif
2434  
2435   // SIGSEGV recovery supported ?
# Line 281 | Line 2442 | static sigsegv_address_t get_fault_addre
2442   *  SIGSEGV global handler
2443   */
2444  
2445 + struct sigsegv_info_t {
2446 +        sigsegv_address_t addr;
2447 +        sigsegv_address_t pc;
2448 + #ifdef HAVE_MACH_EXCEPTIONS
2449 +        mach_port_t thread;
2450 +        bool has_exc_state;
2451 +        SIGSEGV_EXCEPTION_STATE_TYPE exc_state;
2452 +        mach_msg_type_number_t exc_state_count;
2453 +        bool has_thr_state;
2454 +        SIGSEGV_THREAD_STATE_TYPE thr_state;
2455 +        mach_msg_type_number_t thr_state_count;
2456 + #endif
2457 + };
2458 +
2459 + #ifdef HAVE_MACH_EXCEPTIONS
2460 + static void mach_get_exception_state(sigsegv_info_t *SIP)
2461 + {
2462 +        SIP->exc_state_count = SIGSEGV_EXCEPTION_STATE_COUNT;
2463 +        kern_return_t krc = thread_get_state(SIP->thread,
2464 +                                                                                 SIGSEGV_EXCEPTION_STATE_FLAVOR,
2465 +                                                                                 (natural_t *)&SIP->exc_state,
2466 +                                                                                 &SIP->exc_state_count);
2467 +        MACH_CHECK_ERROR(thread_get_state, krc);
2468 +        SIP->has_exc_state = true;
2469 + }
2470 +
2471 + static void mach_get_thread_state(sigsegv_info_t *SIP)
2472 + {
2473 +        SIP->thr_state_count = SIGSEGV_THREAD_STATE_COUNT;
2474 +        kern_return_t krc = thread_get_state(SIP->thread,
2475 +                                                                                 SIGSEGV_THREAD_STATE_FLAVOR,
2476 +                                                                                 (natural_t *)&SIP->thr_state,
2477 +                                                                                 &SIP->thr_state_count);
2478 +        MACH_CHECK_ERROR(thread_get_state, krc);
2479 +        SIP->has_thr_state = true;
2480 + }
2481 +
2482 + static void mach_set_thread_state(sigsegv_info_t *SIP)
2483 + {
2484 +        kern_return_t krc = thread_set_state(SIP->thread,
2485 +                                                                                 SIGSEGV_THREAD_STATE_FLAVOR,
2486 +                                                                                 (natural_t *)&SIP->thr_state,
2487 +                                                                                 SIP->thr_state_count);
2488 +        MACH_CHECK_ERROR(thread_set_state, krc);
2489 + }
2490 + #endif
2491 +
2492 + // Return the address of the invalid memory reference
2493 + sigsegv_address_t sigsegv_get_fault_address(sigsegv_info_t *SIP)
2494 + {
2495 + #ifdef HAVE_MACH_EXCEPTIONS
2496 +        static int use_fast_path = -1;
2497 +        if (use_fast_path != 1 && !SIP->has_exc_state) {
2498 +                mach_get_exception_state(SIP);
2499 +
2500 +                sigsegv_address_t addr = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
2501 +                if (use_fast_path < 0) {
2502 +                        const char *machfault = getenv("SIGSEGV_MACH_FAULT");
2503 +                        if (machfault) {
2504 +                                if (strcmp(machfault, "fast") == 0)
2505 +                                        use_fast_path = 1;
2506 +                                else if (strcmp(machfault, "slow") == 0)
2507 +                                        use_fast_path = 0;
2508 +                        }
2509 +                        if (use_fast_path < 0)
2510 +                                use_fast_path = addr == SIP->addr;
2511 +                }
2512 +                SIP->addr = addr;
2513 +        }
2514 + #endif
2515 +        return SIP->addr;
2516 + }
2517 +
2518 + // Return the address of the instruction that caused the fault, or
2519 + // SIGSEGV_INVALID_ADDRESS if we could not retrieve this information
2520 + sigsegv_address_t sigsegv_get_fault_instruction_address(sigsegv_info_t *SIP)
2521 + {
2522 + #ifdef HAVE_MACH_EXCEPTIONS
2523 +        if (!SIP->has_thr_state) {
2524 +                mach_get_thread_state(SIP);
2525 +
2526 +                SIP->pc = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
2527 +        }
2528 + #endif
2529 +        return SIP->pc;
2530 + }
2531 +
2532 + // This function handles the badaccess to memory.
2533 + // It is called from the signal handler or the exception handler.
2534 + static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
2535 + {
2536 +        sigsegv_info_t SI;
2537 +        SI.addr = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS_FAST;
2538 +        SI.pc = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION_FAST;
2539 + #ifdef HAVE_MACH_EXCEPTIONS
2540 +        SI.thread = thread;
2541 +        SI.has_exc_state = false;
2542 +        SI.has_thr_state = false;
2543 + #endif
2544 +        sigsegv_info_t * const SIP = &SI;
2545 +
2546 +        // Call user's handler and reinstall the global handler, if required
2547 +        switch (SIGSEGV_FAULT_HANDLER_INVOKE(SIP)) {
2548 +        case SIGSEGV_RETURN_SUCCESS:
2549 +                return true;
2550 +
2551 + #if HAVE_SIGSEGV_SKIP_INSTRUCTION
2552 +        case SIGSEGV_RETURN_SKIP_INSTRUCTION:
2553 +                // Call the instruction skipper with the register file
2554 +                // available
2555 + #ifdef HAVE_MACH_EXCEPTIONS
2556 +                if (!SIP->has_thr_state)
2557 +                        mach_get_thread_state(SIP);
2558 + #endif
2559 +                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
2560 + #ifdef HAVE_MACH_EXCEPTIONS
2561 +                        // Unlike UNIX signals where the thread state
2562 +                        // is modified off of the stack, in Mach we
2563 +                        // need to actually call thread_set_state to
2564 +                        // have the register values updated.
2565 +                        mach_set_thread_state(SIP);
2566 + #endif
2567 +                        return true;
2568 +                }
2569 +                break;
2570 + #endif
2571 +        case SIGSEGV_RETURN_FAILURE:
2572 +                // We can't do anything with the fault_address, dump state?
2573 +                if (sigsegv_state_dumper != 0)
2574 +                        sigsegv_state_dumper(SIP);
2575 +                break;
2576 +        }
2577 +
2578 +        return false;
2579 + }
2580 +
2581 +
2582 + /*
2583 + * There are two mechanisms for handling a bad memory access,
2584 + * Mach exceptions and UNIX signals. The implementation specific
2585 + * code appears below. Its reponsibility is to call handle_badaccess
2586 + * which is the routine that handles the fault in an implementation
2587 + * agnostic manner. The implementation specific code below is then
2588 + * reponsible for checking whether handle_badaccess was able
2589 + * to handle the memory access error and perform any implementation
2590 + * specific tasks necessary afterwards.
2591 + */
2592 +
2593 + #ifdef HAVE_MACH_EXCEPTIONS
2594 + /*
2595 + * We need to forward all exceptions that we do not handle.
2596 + * This is important, there are many exceptions that may be
2597 + * handled by other exception handlers. For example debuggers
2598 + * use exceptions and the exception hander is in another
2599 + * process in such a case. (Timothy J. Wood states in his
2600 + * message to the list that he based this code on that from
2601 + * gdb for Darwin.)
2602 + */
2603 + static inline kern_return_t
2604 + forward_exception(mach_port_t thread_port,
2605 +                                  mach_port_t task_port,
2606 +                                  exception_type_t exception_type,
2607 +                                  exception_data_t exception_data,
2608 +                                  mach_msg_type_number_t data_count,
2609 +                                  ExceptionPorts *oldExceptionPorts)
2610 + {
2611 +        kern_return_t kret;
2612 +        unsigned int portIndex;
2613 +        mach_port_t port;
2614 +        exception_behavior_t behavior;
2615 +        thread_state_flavor_t flavor;
2616 +        thread_state_data_t thread_state;
2617 +        mach_msg_type_number_t thread_state_count;
2618 +
2619 +        for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
2620 +                if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
2621 +                        // This handler wants the exception
2622 +                        break;
2623 +                }
2624 +        }
2625 +
2626 +        if (portIndex >= oldExceptionPorts->maskCount) {
2627 +                fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
2628 +                return KERN_FAILURE;
2629 +        }
2630 +
2631 +        port = oldExceptionPorts->handlers[portIndex];
2632 +        behavior = oldExceptionPorts->behaviors[portIndex];
2633 +        flavor = oldExceptionPorts->flavors[portIndex];
2634 +
2635 +        if (!VALID_THREAD_STATE_FLAVOR(flavor)) {
2636 +                fprintf(stderr, "Invalid thread_state flavor = %d. Not forwarding\n", flavor);
2637 +                return KERN_FAILURE;
2638 +        }
2639 +
2640 +        /*
2641 +         fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
2642 +         */
2643 +
2644 +        if (behavior != EXCEPTION_DEFAULT) {
2645 +                thread_state_count = THREAD_STATE_MAX;
2646 +                kret = thread_get_state (thread_port, flavor, (natural_t *)&thread_state,
2647 +                                                                 &thread_state_count);
2648 +                MACH_CHECK_ERROR (thread_get_state, kret);
2649 +        }
2650 +
2651 +        switch (behavior) {
2652 +        case EXCEPTION_DEFAULT:
2653 +          // fprintf(stderr, "forwarding to exception_raise\n");
2654 +          kret = exception_raise(port, thread_port, task_port, exception_type,
2655 +                                                         exception_data, data_count);
2656 +          MACH_CHECK_ERROR (exception_raise, kret);
2657 +          break;
2658 +        case EXCEPTION_STATE:
2659 +          // fprintf(stderr, "forwarding to exception_raise_state\n");
2660 +          kret = exception_raise_state(port, exception_type, exception_data,
2661 +                                                                   data_count, &flavor,
2662 +                                                                   (natural_t *)&thread_state, thread_state_count,
2663 +                                                                   (natural_t *)&thread_state, &thread_state_count);
2664 +          MACH_CHECK_ERROR (exception_raise_state, kret);
2665 +          break;
2666 +        case EXCEPTION_STATE_IDENTITY:
2667 +          // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
2668 +          kret = exception_raise_state_identity(port, thread_port, task_port,
2669 +                                                                                        exception_type, exception_data,
2670 +                                                                                        data_count, &flavor,
2671 +                                                                                        (natural_t *)&thread_state, thread_state_count,
2672 +                                                                                        (natural_t *)&thread_state, &thread_state_count);
2673 +          MACH_CHECK_ERROR (exception_raise_state_identity, kret);
2674 +          break;
2675 +        default:
2676 +          fprintf(stderr, "forward_exception got unknown behavior\n");
2677 +          kret = KERN_FAILURE;
2678 +          break;
2679 +        }
2680 +
2681 +        if (behavior != EXCEPTION_DEFAULT) {
2682 +                kret = thread_set_state (thread_port, flavor, (natural_t *)&thread_state,
2683 +                                                                 thread_state_count);
2684 +                MACH_CHECK_ERROR (thread_set_state, kret);
2685 +        }
2686 +
2687 +        return kret;
2688 + }
2689 +
2690 + /*
2691 + * This is the code that actually handles the exception.
2692 + * It is called by exc_server. For Darwin 5 Apple changed
2693 + * this a bit from how this family of functions worked in
2694 + * Mach. If you are familiar with that it is a little
2695 + * different. The main variation that concerns us here is
2696 + * that code is an array of exception specific codes and
2697 + * codeCount is a count of the number of codes in the code
2698 + * array. In typical Mach all exceptions have a code
2699 + * and sub-code. It happens to be the case that for a
2700 + * EXC_BAD_ACCESS exception the first entry is the type of
2701 + * bad access that occurred and the second entry is the
2702 + * faulting address so these entries correspond exactly to
2703 + * how the code and sub-code are used on Mach.
2704 + *
2705 + * This is a MIG interface. No code in Basilisk II should
2706 + * call this directley. This has to have external C
2707 + * linkage because that is what exc_server expects.
2708 + */
2709 + kern_return_t
2710 + catch_exception_raise(mach_port_t exception_port,
2711 +                                          mach_port_t thread,
2712 +                                          mach_port_t task,
2713 +                                          exception_type_t exception,
2714 +                                          exception_data_t code,
2715 +                                          mach_msg_type_number_t code_count)
2716 + {
2717 +        kern_return_t krc;
2718 +
2719 +        if (exception == EXC_BAD_ACCESS) {
2720 +                switch (code[0]) {
2721 +                case KERN_PROTECTION_FAILURE:
2722 +                case KERN_INVALID_ADDRESS:
2723 +                        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
2724 +                                return KERN_SUCCESS;
2725 +                        break;
2726 +                }
2727 +        }
2728 +
2729 +        // In Mach we do not need to remove the exception handler.
2730 +        // If we forward the exception, eventually some exception handler
2731 +        // will take care of this exception.
2732 +        krc = forward_exception(thread, task, exception, code, code_count, &ports);
2733 +
2734 +        return krc;
2735 + }
2736 + #endif
2737 +
2738   #ifdef HAVE_SIGSEGV_RECOVERY
2739 + // Handle bad memory accesses with signal handler
2740   static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
2741   {
2742 <        // Call user's handler and reinstall the global handler, if required
2743 <        if (sigsegv_user_handler((sigsegv_address_t)SIGSEGV_FAULT_ADDRESS, (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION)) {
2742 >        // Call handler and reinstall the global handler, if required
2743 >        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
2744   #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
2745                  sigsegv_do_install_handler(sig);
2746   #endif
2747 +                return;
2748          }
2749 <        else {
2750 <                // FAIL: reinstall default handler for "safe" crash
2749 >
2750 >        // Failure: reinstall default handler for "safe" crash
2751   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
2752 <                SIGSEGV_ALL_SIGNALS
2752 >        SIGSEGV_ALL_SIGNALS
2753   #undef FAULT_HANDLER
298        }
2754   }
2755   #endif
2756  
# Line 309 | Line 2764 | static bool sigsegv_do_install_handler(i
2764   {
2765          // Setup SIGSEGV handler to process writes to frame buffer
2766   #ifdef HAVE_SIGACTION
2767 <        struct sigaction vosf_sa;
2768 <        sigemptyset(&vosf_sa.sa_mask);
2769 <        vosf_sa.sa_sigaction = sigsegv_handler;
2770 <        vosf_sa.sa_flags = SA_SIGINFO;
2771 <        return (sigaction(sig, &vosf_sa, 0) == 0);
2767 >        struct sigaction sigsegv_sa;
2768 >        sigemptyset(&sigsegv_sa.sa_mask);
2769 >        sigsegv_sa.sa_sigaction = sigsegv_handler;
2770 >        sigsegv_sa.sa_flags = SA_SIGINFO;
2771 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
2772   #else
2773          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
2774   #endif
# Line 325 | Line 2780 | static bool sigsegv_do_install_handler(i
2780   {
2781          // Setup SIGSEGV handler to process writes to frame buffer
2782   #ifdef HAVE_SIGACTION
2783 <        struct sigaction vosf_sa;
2784 <        sigemptyset(&vosf_sa.sa_mask);
2785 <        vosf_sa.sa_handler = (signal_handler)sigsegv_handler;
2783 >        struct sigaction sigsegv_sa;
2784 >        sigemptyset(&sigsegv_sa.sa_mask);
2785 >        sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
2786 >        sigsegv_sa.sa_flags = 0;
2787   #if !EMULATED_68K && defined(__NetBSD__)
2788 <        sigaddset(&vosf_sa.sa_mask, SIGALRM);
2789 <        vosf_sa.sa_flags = SA_ONSTACK;
334 < #else
335 <        vosf_sa.sa_flags = 0;
2788 >        sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
2789 >        sigsegv_sa.sa_flags |= SA_ONSTACK;
2790   #endif
2791 <        return (sigaction(sig, &vosf_sa, 0) == 0);
2791 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
2792   #else
2793          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
2794   #endif
2795   }
2796   #endif
2797  
2798 < bool sigsegv_install_handler(sigsegv_handler_t handler)
2798 > #if defined(HAVE_MACH_EXCEPTIONS)
2799 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
2800   {
2801 < #ifdef HAVE_SIGSEGV_RECOVERY
2802 <        sigsegv_user_handler = handler;
2801 >        /*
2802 >         * Except for the exception port functions, this should be
2803 >         * pretty much stock Mach. If later you choose to support
2804 >         * other Mach's besides Darwin, just check for __MACH__
2805 >         * here and __APPLE__ where the actual differences are.
2806 >         */
2807 > #if defined(__APPLE__) && defined(__MACH__)
2808 >        if (sigsegv_fault_handler != NULL) {
2809 >                sigsegv_fault_handler = handler;
2810 >                return true;
2811 >        }
2812 >
2813 >        kern_return_t krc;
2814 >
2815 >        // create the the exception port
2816 >        krc = mach_port_allocate(mach_task_self(),
2817 >                          MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
2818 >        if (krc != KERN_SUCCESS) {
2819 >                mach_error("mach_port_allocate", krc);
2820 >                return false;
2821 >        }
2822 >
2823 >        // add a port send right
2824 >        krc = mach_port_insert_right(mach_task_self(),
2825 >                              _exceptionPort, _exceptionPort,
2826 >                              MACH_MSG_TYPE_MAKE_SEND);
2827 >        if (krc != KERN_SUCCESS) {
2828 >                mach_error("mach_port_insert_right", krc);
2829 >                return false;
2830 >        }
2831 >
2832 >        // get the old exception ports
2833 >        ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
2834 >        krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
2835 >                                &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
2836 >        if (krc != KERN_SUCCESS) {
2837 >                mach_error("thread_get_exception_ports", krc);
2838 >                return false;
2839 >        }
2840 >
2841 >        // set the new exception port
2842 >        //
2843 >        // We could have used EXCEPTION_STATE_IDENTITY instead of
2844 >        // EXCEPTION_DEFAULT to get the thread state in the initial
2845 >        // message, but it turns out that in the common case this is not
2846 >        // neccessary. If we need it we can later ask for it from the
2847 >        // suspended thread.
2848 >        //
2849 >        // Even with THREAD_STATE_NONE, Darwin provides the program
2850 >        // counter in the thread state.  The comments in the header file
2851 >        // seem to imply that you can count on the GPR's on an exception
2852 >        // as well but just to be safe I use MACHINE_THREAD_STATE because
2853 >        // you have to ask for all of the GPR's anyway just to get the
2854 >        // program counter. In any case because of update effective
2855 >        // address from immediate and update address from effective
2856 >        // addresses of ra and rb modes (as good an name as any for these
2857 >        // addressing modes) used in PPC instructions, you will need the
2858 >        // GPR state anyway.
2859 >        krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
2860 >                                EXCEPTION_DEFAULT, SIGSEGV_THREAD_STATE_FLAVOR);
2861 >        if (krc != KERN_SUCCESS) {
2862 >                mach_error("thread_set_exception_ports", krc);
2863 >                return false;
2864 >        }
2865 >
2866 >        // create the exception handler thread
2867 >        if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
2868 >                (void)fprintf(stderr, "creation of exception thread failed\n");
2869 >                return false;
2870 >        }
2871 >
2872 >        // do not care about the exception thread any longer, let is run standalone
2873 >        (void)pthread_detach(exc_thread);
2874 >
2875 >        sigsegv_fault_handler = handler;
2876 >        return true;
2877 > #else
2878 >        return false;
2879 > #endif
2880 > }
2881 > #endif
2882 >
2883 > #ifdef HAVE_WIN32_EXCEPTIONS
2884 > static LONG WINAPI main_exception_filter(EXCEPTION_POINTERS *ExceptionInfo)
2885 > {
2886 >        if (sigsegv_fault_handler != NULL
2887 >                && ExceptionInfo->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION
2888 >                && ExceptionInfo->ExceptionRecord->NumberParameters == 2
2889 >                && handle_badaccess(ExceptionInfo))
2890 >                return EXCEPTION_CONTINUE_EXECUTION;
2891 >
2892 >        return EXCEPTION_CONTINUE_SEARCH;
2893 > }
2894 >
2895 > #if defined __CYGWIN__ && defined __i386__
2896 > /* In Cygwin programs, SetUnhandledExceptionFilter has no effect because Cygwin
2897 >   installs a global exception handler.  We have to dig deep in order to install
2898 >   our main_exception_filter.  */
2899 >
2900 > /* Data structures for the current thread's exception handler chain.
2901 >   On the x86 Windows uses register fs, offset 0 to point to the current
2902 >   exception handler; Cygwin mucks with it, so we must do the same... :-/ */
2903 >
2904 > /* Magic taken from winsup/cygwin/include/exceptions.h.  */
2905 >
2906 > struct exception_list {
2907 >    struct exception_list *prev;
2908 >    int (*handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
2909 > };
2910 > typedef struct exception_list exception_list;
2911 >
2912 > /* Magic taken from winsup/cygwin/exceptions.cc.  */
2913 >
2914 > __asm__ (".equ __except_list,0");
2915 >
2916 > extern exception_list *_except_list __asm__ ("%fs:__except_list");
2917 >
2918 > /* For debugging.  _except_list is not otherwise accessible from gdb.  */
2919 > static exception_list *
2920 > debug_get_except_list ()
2921 > {
2922 >  return _except_list;
2923 > }
2924 >
2925 > /* Cygwin's original exception handler.  */
2926 > static int (*cygwin_exception_handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
2927 >
2928 > /* Our exception handler.  */
2929 > static int
2930 > libsigsegv_exception_handler (EXCEPTION_RECORD *exception, void *frame, CONTEXT *context, void *dispatch)
2931 > {
2932 >  EXCEPTION_POINTERS ExceptionInfo;
2933 >  ExceptionInfo.ExceptionRecord = exception;
2934 >  ExceptionInfo.ContextRecord = context;
2935 >  if (main_exception_filter (&ExceptionInfo) == EXCEPTION_CONTINUE_SEARCH)
2936 >    return cygwin_exception_handler (exception, frame, context, dispatch);
2937 >  else
2938 >    return 0;
2939 > }
2940 >
2941 > static void
2942 > do_install_main_exception_filter ()
2943 > {
2944 >  /* We cannot insert any handler into the chain, because such handlers
2945 >     must lie on the stack (?).  Instead, we have to replace(!) Cygwin's
2946 >     global exception handler.  */
2947 >  cygwin_exception_handler = _except_list->handler;
2948 >  _except_list->handler = libsigsegv_exception_handler;
2949 > }
2950 >
2951 > #else
2952 >
2953 > static void
2954 > do_install_main_exception_filter ()
2955 > {
2956 >  SetUnhandledExceptionFilter ((LPTOP_LEVEL_EXCEPTION_FILTER) &main_exception_filter);
2957 > }
2958 > #endif
2959 >
2960 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
2961 > {
2962 >        static bool main_exception_filter_installed = false;
2963 >        if (!main_exception_filter_installed) {
2964 >                do_install_main_exception_filter();
2965 >                main_exception_filter_installed = true;
2966 >        }
2967 >        sigsegv_fault_handler = handler;
2968 >        return true;
2969 > }
2970 > #endif
2971 >
2972 > bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
2973 > {
2974 > #if defined(HAVE_SIGSEGV_RECOVERY)
2975          bool success = true;
2976   #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
2977          SIGSEGV_ALL_SIGNALS
2978   #undef FAULT_HANDLER
2979 +        if (success)
2980 +            sigsegv_fault_handler = handler;
2981          return success;
2982 + #elif defined(HAVE_MACH_EXCEPTIONS) || defined(HAVE_WIN32_EXCEPTIONS)
2983 +        return sigsegv_do_install_handler(handler);
2984   #else
2985          // FAIL: no siginfo_t nor sigcontext subterfuge is available
2986          return false;
# Line 363 | Line 2994 | bool sigsegv_install_handler(sigsegv_han
2994  
2995   void sigsegv_deinstall_handler(void)
2996   {
2997 +  // We do nothing for Mach exceptions, the thread would need to be
2998 +  // suspended if not already so, and we might mess with other
2999 +  // exception handlers that came after we registered ours. There is
3000 +  // no need to remove the exception handler, in fact this function is
3001 +  // not called anywhere in Basilisk II.
3002   #ifdef HAVE_SIGSEGV_RECOVERY
3003 <        sigsegv_user_handler = 0;
3003 >        sigsegv_fault_handler = 0;
3004   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
3005          SIGSEGV_ALL_SIGNALS
3006   #undef FAULT_HANDLER
3007   #endif
3008 + #ifdef HAVE_WIN32_EXCEPTIONS
3009 +        sigsegv_fault_handler = NULL;
3010 + #endif
3011   }
3012  
3013 +
3014 + /*
3015 + *  Set callback function when we cannot handle the fault
3016 + */
3017 +
3018 + void sigsegv_set_dump_state(sigsegv_state_dumper_t handler)
3019 + {
3020 +        sigsegv_state_dumper = handler;
3021 + }
3022 +
3023 +
3024   /*
3025   *  Test program used for configure/test
3026   */
# Line 379 | Line 3029 | void sigsegv_deinstall_handler(void)
3029   #include <stdio.h>
3030   #include <stdlib.h>
3031   #include <fcntl.h>
3032 + #ifdef HAVE_SYS_MMAN_H
3033   #include <sys/mman.h>
3034 + #endif
3035   #include "vm_alloc.h"
3036  
3037 < static int page_size;
3037 > const int REF_INDEX = 123;
3038 > const int REF_VALUE = 45;
3039 >
3040 > static sigsegv_uintptr_t page_size;
3041   static volatile char * page = 0;
3042   static volatile int handler_called = 0;
3043  
3044 < static bool sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
3044 > /* Barriers */
3045 > #ifdef __GNUC__
3046 > #define BARRIER() asm volatile ("" : : : "memory")
3047 > #else
3048 > #define BARRIER() /* nothing */
3049 > #endif
3050 >
3051 > #ifdef __GNUC__
3052 > // Code range where we expect the fault to come from
3053 > static void *b_region, *e_region;
3054 > #endif
3055 >
3056 > static sigsegv_return_t sigsegv_test_handler(sigsegv_info_t *sip)
3057   {
3058 +        const sigsegv_address_t fault_address = sigsegv_get_fault_address(sip);
3059 +        const sigsegv_address_t instruction_address = sigsegv_get_fault_instruction_address(sip);
3060 + #if DEBUG
3061 +        printf("sigsegv_test_handler(%p, %p)\n", fault_address, instruction_address);
3062 +        printf("expected fault at %p\n", page + REF_INDEX);
3063 + #ifdef __GNUC__
3064 +        printf("expected instruction address range: %p-%p\n", b_region, e_region);
3065 + #endif
3066 + #endif
3067          handler_called++;
3068 <        if ((fault_address - 123) != page)
3069 <                exit(1);
3070 <        if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
3071 <                exit(1);
3068 >        if ((fault_address - REF_INDEX) != page)
3069 >                exit(10);
3070 > #ifdef __GNUC__
3071 >        // Make sure reported fault instruction address falls into
3072 >        // expected code range
3073 >        if (instruction_address != SIGSEGV_INVALID_ADDRESS
3074 >                && ((instruction_address <  (sigsegv_address_t)b_region) ||
3075 >                        (instruction_address >= (sigsegv_address_t)e_region)))
3076 >                exit(11);
3077 > #endif
3078 >        if (vm_protect((char *)((sigsegv_uintptr_t)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
3079 >                exit(12);
3080 >        return SIGSEGV_RETURN_SUCCESS;
3081 > }
3082 >
3083 > #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
3084 > static sigsegv_return_t sigsegv_insn_handler(sigsegv_info_t *sip)
3085 > {
3086 >        const sigsegv_address_t fault_address = sigsegv_get_fault_address(sip);
3087 >        const sigsegv_address_t instruction_address = sigsegv_get_fault_instruction_address(sip);
3088 > #if DEBUG
3089 >        printf("sigsegv_insn_handler(%p, %p)\n", fault_address, instruction_address);
3090 > #endif
3091 >        if (((sigsegv_uintptr_t)fault_address - (sigsegv_uintptr_t)page) < page_size) {
3092 > #ifdef __GNUC__
3093 >                // Make sure reported fault instruction address falls into
3094 >                // expected code range
3095 >                if (instruction_address != SIGSEGV_INVALID_ADDRESS
3096 >                        && ((instruction_address <  (sigsegv_address_t)b_region) ||
3097 >                                (instruction_address >= (sigsegv_address_t)e_region)))
3098 >                        return SIGSEGV_RETURN_FAILURE;
3099 > #endif
3100 >                return SIGSEGV_RETURN_SKIP_INSTRUCTION;
3101 >        }
3102 >
3103 >        return SIGSEGV_RETURN_FAILURE;
3104 > }
3105 >
3106 > // More sophisticated tests for instruction skipper
3107 > static bool arch_insn_skipper_tests()
3108 > {
3109 > #if (defined(i386) || defined(__i386__)) || (defined(__x86_64__) || defined(_M_X64))
3110 >        static const unsigned char code[] = {
3111 >                0x8a, 0x00,                    // mov    (%eax),%al
3112 >                0x8a, 0x2c, 0x18,              // mov    (%eax,%ebx,1),%ch
3113 >                0x88, 0x20,                    // mov    %ah,(%eax)
3114 >                0x88, 0x08,                    // mov    %cl,(%eax)
3115 >                0x66, 0x8b, 0x00,              // mov    (%eax),%ax
3116 >                0x66, 0x8b, 0x0c, 0x18,        // mov    (%eax,%ebx,1),%cx
3117 >                0x66, 0x89, 0x00,              // mov    %ax,(%eax)
3118 >                0x66, 0x89, 0x0c, 0x18,        // mov    %cx,(%eax,%ebx,1)
3119 >                0x8b, 0x00,                    // mov    (%eax),%eax
3120 >                0x8b, 0x0c, 0x18,              // mov    (%eax,%ebx,1),%ecx
3121 >                0x89, 0x00,                    // mov    %eax,(%eax)
3122 >                0x89, 0x0c, 0x18,              // mov    %ecx,(%eax,%ebx,1)
3123 > #if defined(__x86_64__) || defined(_M_X64)
3124 >                0x44, 0x8a, 0x00,              // mov    (%rax),%r8b
3125 >                0x44, 0x8a, 0x20,              // mov    (%rax),%r12b
3126 >                0x42, 0x8a, 0x3c, 0x10,        // mov    (%rax,%r10,1),%dil
3127 >                0x44, 0x88, 0x00,              // mov    %r8b,(%rax)
3128 >                0x44, 0x88, 0x20,              // mov    %r12b,(%rax)
3129 >                0x42, 0x88, 0x3c, 0x10,        // mov    %dil,(%rax,%r10,1)
3130 >                0x66, 0x44, 0x8b, 0x00,        // mov    (%rax),%r8w
3131 >                0x66, 0x42, 0x8b, 0x0c, 0x10,  // mov    (%rax,%r10,1),%cx
3132 >                0x66, 0x44, 0x89, 0x00,        // mov    %r8w,(%rax)
3133 >                0x66, 0x42, 0x89, 0x0c, 0x10,  // mov    %cx,(%rax,%r10,1)
3134 >                0x44, 0x8b, 0x00,              // mov    (%rax),%r8d
3135 >                0x42, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%ecx
3136 >                0x44, 0x89, 0x00,              // mov    %r8d,(%rax)
3137 >                0x42, 0x89, 0x0c, 0x10,        // mov    %ecx,(%rax,%r10,1)
3138 >                0x48, 0x8b, 0x08,              // mov    (%rax),%rcx
3139 >                0x4c, 0x8b, 0x18,              // mov    (%rax),%r11
3140 >                0x4a, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%rcx
3141 >                0x4e, 0x8b, 0x1c, 0x10,        // mov    (%rax,%r10,1),%r11
3142 >                0x48, 0x89, 0x08,              // mov    %rcx,(%rax)
3143 >                0x4c, 0x89, 0x18,              // mov    %r11,(%rax)
3144 >                0x4a, 0x89, 0x0c, 0x10,        // mov    %rcx,(%rax,%r10,1)
3145 >                0x4e, 0x89, 0x1c, 0x10,        // mov    %r11,(%rax,%r10,1)
3146 >                0x63, 0x47, 0x04,              // movslq 4(%rdi),%eax
3147 >                0x48, 0x63, 0x47, 0x04,        // movslq 4(%rdi),%rax
3148 > #endif
3149 >                0                              // end
3150 >        };
3151 >        const int N_REGS = 20;
3152 >        SIGSEGV_REGISTER_TYPE regs[N_REGS];
3153 >        for (int i = 0; i < N_REGS; i++)
3154 >                regs[i] = i;
3155 >        const sigsegv_uintptr_t start_code = (sigsegv_uintptr_t)&code;
3156 >        regs[X86_REG_EIP] = start_code;
3157 >        while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1)
3158 >                   && ix86_skip_instruction(regs))
3159 >                ; /* simply iterate */
3160 >        return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1);
3161 > #endif
3162          return true;
3163   }
3164 + #endif
3165  
3166   int main(void)
3167   {
3168          if (vm_init() < 0)
3169                  return 1;
3170  
3171 <        page_size = getpagesize();
3171 >        page_size = vm_get_page_size();
3172          if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
3173 <                return 1;
3173 >                return 2;
3174          
3175 +        memset((void *)page, 0, page_size);
3176          if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
3177 <                return 1;
3177 >                return 3;
3178          
3179          if (!sigsegv_install_handler(sigsegv_test_handler))
3180 <                return 1;
3180 >                return 4;
3181 >
3182 > #ifdef __GNUC__
3183 >        b_region = &&L_b_region1;
3184 >        e_region = &&L_e_region1;
3185 > #endif
3186 >        /* This is a really awful hack but otherwise gcc is smart enough
3187 >         * (or bug'ous enough?) to optimize the labels and place them
3188 >         * e.g. at the "main" entry point, which is wrong.
3189 >         */
3190 >        volatile int label_hack = 1;
3191 >        switch (label_hack) {
3192 >        case 1:
3193 >        L_b_region1:
3194 >                page[REF_INDEX] = REF_VALUE;
3195 >                if (page[REF_INDEX] != REF_VALUE)
3196 >                        exit(20);
3197 >                page[REF_INDEX] = REF_VALUE;
3198 >                BARRIER();
3199 >                // fall-through
3200 >        case 2:
3201 >        L_e_region1:
3202 >                BARRIER();
3203 >                break;
3204 >        }
3205 >
3206 >        if (handler_called != 1)
3207 >                return 5;
3208 >
3209 > #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
3210 >        if (!sigsegv_install_handler(sigsegv_insn_handler))
3211 >                return 6;
3212          
3213 <        page[123] = 45;
3214 <        page[123] = 45;
3213 >        if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
3214 >                return 7;
3215          
3216 <        if (handler_called != 1)
3217 <                return 1;
3216 >        for (int i = 0; i < page_size; i++)
3217 >                page[i] = (i + 1) % page_size;
3218 >        
3219 >        if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
3220 >                return 8;
3221 >        
3222 > #define TEST_SKIP_INSTRUCTION(TYPE) do {                                \
3223 >                const unsigned long TAG = 0x12345678 |                  \
3224 >                (sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0);   \
3225 >                TYPE data = *((TYPE *)(page + sizeof(TYPE)));   \
3226 >                volatile unsigned long effect = data + TAG;             \
3227 >                if (effect != TAG)                                                              \
3228 >                        return 9;                                                                       \
3229 >        } while (0)
3230 >        
3231 > #ifdef __GNUC__
3232 >        b_region = &&L_b_region2;
3233 >        e_region = &&L_e_region2;
3234 > #endif
3235 >        switch (label_hack) {
3236 >        case 1:
3237 >        L_b_region2:
3238 >                TEST_SKIP_INSTRUCTION(unsigned char);
3239 >                TEST_SKIP_INSTRUCTION(unsigned short);
3240 >                TEST_SKIP_INSTRUCTION(unsigned int);
3241 >                TEST_SKIP_INSTRUCTION(unsigned long);
3242 >                TEST_SKIP_INSTRUCTION(signed char);
3243 >                TEST_SKIP_INSTRUCTION(signed short);
3244 >                TEST_SKIP_INSTRUCTION(signed int);
3245 >                TEST_SKIP_INSTRUCTION(signed long);
3246 >                BARRIER();
3247 >                // fall-through
3248 >        case 2:
3249 >        L_e_region2:
3250 >                BARRIER();
3251 >                break;
3252 >        }
3253 >        if (!arch_insn_skipper_tests())
3254 >                return 20;
3255 > #endif
3256  
3257          vm_exit();
3258          return 0;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines