ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
(Generate patch)

Comparing BasiliskII/src/Unix/sigsegv.cpp (file contents):
Revision 1.9 by gbeauche, 2002-03-16T21:36:12Z vs.
Revision 1.66 by gbeauche, 2007-06-16T06:21:57Z

# Line 4 | Line 4
4   *  Derived from Bruno Haible's work on his SIGSEGV library for clisp
5   *  <http://clisp.sourceforge.net/>
6   *
7 < *  Basilisk II (C) 1997-2002 Christian Bauer
7 > *  MacOS X support derived from the post by Timothy J. Wood to the
8 > *  omnigroup macosx-dev list:
9 > *    Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10 > *    tjw@omnigroup.com Sun, 4 Jun 2000
11 > *    www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12 > *
13 > *  Basilisk II (C) 1997-2005 Christian Bauer
14   *
15   *  This program is free software; you can redistribute it and/or modify
16   *  it under the terms of the GNU General Public License as published by
# Line 29 | Line 35
35   #include "config.h"
36   #endif
37  
38 + #include <list>
39 + #include <stdio.h>
40   #include <signal.h>
41   #include "sigsegv.h"
42  
43 + #ifndef NO_STD_NAMESPACE
44 + using std::list;
45 + #endif
46 +
47   // Return value type of a signal handler (standard type if not defined)
48   #ifndef RETSIGTYPE
49   #define RETSIGTYPE void
# Line 41 | Line 53
53   typedef RETSIGTYPE (*signal_handler)(int);
54  
55   // User's SIGSEGV handler
56 < static sigsegv_handler_t sigsegv_user_handler = 0;
56 > static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
57 >
58 > // Function called to dump state if we can't handle the fault
59 > static sigsegv_state_dumper_t sigsegv_state_dumper = 0;
60  
61   // Actual SIGSEGV handler installer
62   static bool sigsegv_do_install_handler(int sig);
63  
64  
65   /*
66 + *  Instruction decoding aids
67 + */
68 +
69 + // Transfer type
70 + enum transfer_type_t {
71 +        SIGSEGV_TRANSFER_UNKNOWN        = 0,
72 +        SIGSEGV_TRANSFER_LOAD           = 1,
73 +        SIGSEGV_TRANSFER_STORE          = 2,
74 + };
75 +
76 + // Transfer size
77 + enum transfer_size_t {
78 +        SIZE_UNKNOWN,
79 +        SIZE_BYTE,
80 +        SIZE_WORD, // 2 bytes
81 +        SIZE_LONG, // 4 bytes
82 +        SIZE_QUAD, // 8 bytes
83 + };
84 +
85 + #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
86 + // Addressing mode
87 + enum addressing_mode_t {
88 +        MODE_UNKNOWN,
89 +        MODE_NORM,
90 +        MODE_U,
91 +        MODE_X,
92 +        MODE_UX
93 + };
94 +
95 + // Decoded instruction
96 + struct instruction_t {
97 +        transfer_type_t         transfer_type;
98 +        transfer_size_t         transfer_size;
99 +        addressing_mode_t       addr_mode;
100 +        unsigned int            addr;
101 +        char                            ra, rd;
102 + };
103 +
104 + static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned long * gpr)
105 + {
106 +        // Get opcode and divide into fields
107 +        unsigned int opcode = *((unsigned int *)(unsigned long)nip);
108 +        unsigned int primop = opcode >> 26;
109 +        unsigned int exop = (opcode >> 1) & 0x3ff;
110 +        unsigned int ra = (opcode >> 16) & 0x1f;
111 +        unsigned int rb = (opcode >> 11) & 0x1f;
112 +        unsigned int rd = (opcode >> 21) & 0x1f;
113 +        signed int imm = (signed short)(opcode & 0xffff);
114 +        
115 +        // Analyze opcode
116 +        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
117 +        transfer_size_t transfer_size = SIZE_UNKNOWN;
118 +        addressing_mode_t addr_mode = MODE_UNKNOWN;
119 +        switch (primop) {
120 +        case 31:
121 +                switch (exop) {
122 +                case 23:        // lwzx
123 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
124 +                case 55:        // lwzux
125 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
126 +                case 87:        // lbzx
127 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
128 +                case 119:       // lbzux
129 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
130 +                case 151:       // stwx
131 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
132 +                case 183:       // stwux
133 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
134 +                case 215:       // stbx
135 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
136 +                case 247:       // stbux
137 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
138 +                case 279:       // lhzx
139 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
140 +                case 311:       // lhzux
141 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
142 +                case 343:       // lhax
143 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
144 +                case 375:       // lhaux
145 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
146 +                case 407:       // sthx
147 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
148 +                case 439:       // sthux
149 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
150 +                }
151 +                break;
152 +        
153 +        case 32:        // lwz
154 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
155 +        case 33:        // lwzu
156 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
157 +        case 34:        // lbz
158 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
159 +        case 35:        // lbzu
160 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
161 +        case 36:        // stw
162 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
163 +        case 37:        // stwu
164 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
165 +        case 38:        // stb
166 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
167 +        case 39:        // stbu
168 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
169 +        case 40:        // lhz
170 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
171 +        case 41:        // lhzu
172 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
173 +        case 42:        // lha
174 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
175 +        case 43:        // lhau
176 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
177 +        case 44:        // sth
178 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
179 +        case 45:        // sthu
180 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
181 +        case 58:        // ld, ldu, lwa
182 +                transfer_type = SIGSEGV_TRANSFER_LOAD;
183 +                transfer_size = SIZE_QUAD;
184 +                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
185 +                imm &= ~3;
186 +                break;
187 +        case 62:        // std, stdu, stq
188 +                transfer_type = SIGSEGV_TRANSFER_STORE;
189 +                transfer_size = SIZE_QUAD;
190 +                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
191 +                imm &= ~3;
192 +                break;
193 +        }
194 +        
195 +        // Calculate effective address
196 +        unsigned int addr = 0;
197 +        switch (addr_mode) {
198 +        case MODE_X:
199 +        case MODE_UX:
200 +                if (ra == 0)
201 +                        addr = gpr[rb];
202 +                else
203 +                        addr = gpr[ra] + gpr[rb];
204 +                break;
205 +        case MODE_NORM:
206 +        case MODE_U:
207 +                if (ra == 0)
208 +                        addr = (signed int)(signed short)imm;
209 +                else
210 +                        addr = gpr[ra] + (signed int)(signed short)imm;
211 +                break;
212 +        default:
213 +                break;
214 +        }
215 +        
216 +        // Commit decoded instruction
217 +        instruction->addr = addr;
218 +        instruction->addr_mode = addr_mode;
219 +        instruction->transfer_type = transfer_type;
220 +        instruction->transfer_size = transfer_size;
221 +        instruction->ra = ra;
222 +        instruction->rd = rd;
223 + }
224 + #endif
225 +
226 +
227 + /*
228   *  OS-dependant SIGSEGV signals support section
229   */
230  
231   #if HAVE_SIGINFO_T
232   // Generic extended signal handler
233 < #if defined(__NetBSD__) || defined(__FreeBSD__)
233 > #if defined(__FreeBSD__)
234   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
235   #else
236   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
237   #endif
238   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, siginfo_t *sip, void *scp
239 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
240 + #define SIGSEGV_FAULT_HANDLER_ARGS              sip, scp
241   #define SIGSEGV_FAULT_ADDRESS                   sip->si_addr
242 + #if (defined(sgi) || defined(__sgi))
243 + #include <ucontext.h>
244 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
245 + #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)SIGSEGV_CONTEXT_REGS[CTX_EPC]
246 + #if (defined(mips) || defined(__mips))
247 + #define SIGSEGV_REGISTER_FILE                   &SIGSEGV_CONTEXT_REGS[CTX_EPC], &SIGSEGV_CONTEXT_REGS[CTX_R0]
248 + #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
249 + #endif
250 + #endif
251 + #if defined(__sun__)
252 + #if (defined(sparc) || defined(__sparc__))
253 + #include <sys/stack.h>
254 + #include <sys/regset.h>
255 + #include <sys/ucontext.h>
256 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
257 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[REG_PC]
258 + #define SIGSEGV_SPARC_GWINDOWS                  (((ucontext_t *)scp)->uc_mcontext.gwins)
259 + #define SIGSEGV_SPARC_RWINDOW                   (struct rwindow *)((char *)SIGSEGV_CONTEXT_REGS[REG_SP] + STACK_BIAS)
260 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)SIGSEGV_CONTEXT_REGS), SIGSEGV_SPARC_GWINDOWS, SIGSEGV_SPARC_RWINDOW
261 + #define SIGSEGV_SKIP_INSTRUCTION                sparc_skip_instruction
262 + #endif
263 + #if defined(__i386__)
264 + #include <sys/regset.h>
265 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
266 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[EIP]
267 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
268 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
269 + #endif
270 + #endif
271 + #if defined(__FreeBSD__) || defined(__OpenBSD__)
272 + #if (defined(i386) || defined(__i386__))
273 + #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_eip)
274 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
275 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
276 + #endif
277 + #endif
278 + #if defined(__NetBSD__)
279 + #if (defined(i386) || defined(__i386__))
280 + #include <sys/ucontext.h>
281 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
282 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_EIP]
283 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
284 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
285 + #endif
286 + #if (defined(powerpc) || defined(__powerpc__))
287 + #include <sys/ucontext.h>
288 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
289 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_PC]
290 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_PC], (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_R0]
291 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
292 + #endif
293 + #endif
294   #if defined(__linux__)
295   #if (defined(i386) || defined(__i386__))
296   #include <sys/ucontext.h>
297 < #define SIGSEGV_FAULT_INSTRUCTION               (((ucontext_t *)scp)->uc_mcontext.gregs[14]) /* should use REG_EIP instead */
297 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
298 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
299 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
300 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
301 > #endif
302 > #if (defined(x86_64) || defined(__x86_64__))
303 > #include <sys/ucontext.h>
304 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
305 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
306 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
307 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
308   #endif
309   #if (defined(ia64) || defined(__ia64__))
310   #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
311   #endif
312   #if (defined(powerpc) || defined(__powerpc__))
313   #include <sys/ucontext.h>
314 < #define SIGSEGV_FAULT_INSTRUCTION               (((ucontext_t *)scp)->uc_mcontext.regs->nip)
314 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.regs)
315 > #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS->nip)
316 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned long *)(SIGSEGV_CONTEXT_REGS->gpr)
317 > #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
318 > #endif
319 > #if (defined(hppa) || defined(__hppa__))
320 > #undef  SIGSEGV_FAULT_ADDRESS
321 > #define SIGSEGV_FAULT_ADDRESS                   sip->si_ptr
322 > #endif
323 > #if (defined(arm) || defined(__arm__))
324 > #include <asm/ucontext.h> /* use kernel structure, glibc may not be in sync */
325 > #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
326 > #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.arm_pc)
327 > #define SIGSEGV_REGISTER_FILE                   (&SIGSEGV_CONTEXT_REGS.arm_r0)
328 > #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
329 > #endif
330 > #if (defined(mips) || defined(__mips__))
331 > #include <sys/ucontext.h>
332 > #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
333 > #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.pc)
334 > #define SIGSEGV_REGISTER_FILE                   &SIGSEGV_CONTEXT_REGS.pc, &SIGSEGV_CONTEXT_REGS.gregs[0]
335 > #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
336   #endif
337   #endif
338   #endif
# Line 82 | Line 344 | static bool sigsegv_do_install_handler(i
344   #if (defined(i386) || defined(__i386__))
345   #include <asm/sigcontext.h>
346   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext scs
347 < #define SIGSEGV_FAULT_ADDRESS                   scs.cr2
348 < #define SIGSEGV_FAULT_INSTRUCTION               scs.eip
347 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
348 > #define SIGSEGV_FAULT_HANDLER_ARGS              &scs
349 > #define SIGSEGV_FAULT_ADDRESS                   scp->cr2
350 > #define SIGSEGV_FAULT_INSTRUCTION               scp->eip
351 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)scp
352 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
353   #endif
354   #if (defined(sparc) || defined(__sparc__))
355   #include <asm/sigcontext.h>
356   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
357 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
358   #define SIGSEGV_FAULT_ADDRESS                   addr
359   #endif
360   #if (defined(powerpc) || defined(__powerpc__))
361   #include <asm/sigcontext.h>
362   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext *scp
363 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, scp
364   #define SIGSEGV_FAULT_ADDRESS                   scp->regs->dar
365   #define SIGSEGV_FAULT_INSTRUCTION               scp->regs->nip
366 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&scp->regs->nip, (unsigned long *)(scp->regs->gpr)
367 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
368   #endif
369   #if (defined(alpha) || defined(__alpha__))
370   #include <asm/sigcontext.h>
371   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
372 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
373   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
374   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
375 <
376 < // From Boehm's GC 6.0alpha8
377 < static sigsegv_address_t get_fault_address(struct sigcontext *scp)
378 < {
379 <        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
380 <        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
381 <        fault_address += (signed long)(signed short)(instruction & 0xffff);
382 <        return (sigsegv_address_t)fault_address;
383 < }
375 > #endif
376 > #if (defined(arm) || defined(__arm__))
377 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int r1, int r2, int r3, struct sigcontext sc
378 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
379 > #define SIGSEGV_FAULT_HANDLER_ARGS              &sc
380 > #define SIGSEGV_FAULT_ADDRESS                   scp->fault_address
381 > #define SIGSEGV_FAULT_INSTRUCTION               scp->arm_pc
382 > #define SIGSEGV_REGISTER_FILE                   &scp->arm_r0
383 > #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
384   #endif
385   #endif
386  
387   // Irix 5 or 6 on MIPS
388 < #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
388 > #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(_SYSTYPE_SVR4))
389 > #include <ucontext.h>
390   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
391 < #define SIGSEGV_FAULT_ADDRESS                   scp->sc_badvaddr
391 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
392 > #define SIGSEGV_FAULT_ADDRESS                   (unsigned long)scp->sc_badvaddr
393 > #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)scp->sc_pc
394   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
395   #endif
396  
397 + // HP-UX
398 + #if (defined(hpux) || defined(__hpux__))
399 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
400 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
401 + #define SIGSEGV_FAULT_ADDRESS                   scp->sc_sl.sl_ss.ss_narrow.ss_cr21
402 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
403 + #endif
404 +
405   // OSF/1 on Alpha
406   #if defined(__osf__)
407 + #include <ucontext.h>
408   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
409 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
410   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_traparg_a0
411   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
412   #endif
# Line 130 | Line 414 | static sigsegv_address_t get_fault_addre
414   // AIX
415   #if defined(_AIX)
416   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
417 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
418   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_jmpbuf.jmp_context.o_vaddr
419   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
420   #endif
421  
422 < // NetBSD or FreeBSD
423 < #if defined(__NetBSD__) || defined(__FreeBSD__)
422 > // NetBSD
423 > #if defined(__NetBSD__)
424   #if (defined(m68k) || defined(__m68k__))
425   #include <m68k/frame.h>
426   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
427 < #define SIGSEGV_FAULT_ADDRESS                   ({                                                                                                                              \
428 <        struct sigstate {                                                                                                                                                                       \
144 <                int ss_flags;                                                                                                                                                                   \
145 <                struct frame ss_frame;                                                                                                                                                  \
146 <        };                                                                                                                                                                                                      \
147 <        struct sigstate *state = (struct sigstate *)scp->sc_ap;                                                                                         \
148 <        char *fault_addr;                                                                                                                                                                       \
149 <        switch (state->ss_frame.f_format) {                                                                                                                                     \
150 <        case 7:         /* 68040 access error */                                                                                                                                \
151 <                /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */    \
152 <                fault_addr = state->ss_frame.f_fmt7.f_fa;                                                                                                               \
153 <                break;                                                                                                                                                                                  \
154 <        default:                                                                                                                                                                                        \
155 <                fault_addr = (char *)code;                                                                                                                                              \
156 <                break;                                                                                                                                                                                  \
157 <        }                                                                                                                                                                                                       \
158 <        fault_addr;                                                                                                                                                                                     \
159 < })
427 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
428 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
429   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
430 < #else
431 < #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, void *scp, char *addr
432 < #define SIGSEGV_FAULT_ADDRESS                   addr
430 >
431 > // Use decoding scheme from BasiliskII/m68k native
432 > static sigsegv_address_t get_fault_address(struct sigcontext *scp)
433 > {
434 >        struct sigstate {
435 >                int ss_flags;
436 >                struct frame ss_frame;
437 >        };
438 >        struct sigstate *state = (struct sigstate *)scp->sc_ap;
439 >        char *fault_addr;
440 >        switch (state->ss_frame.f_format) {
441 >        case 7:         /* 68040 access error */
442 >                /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */
443 >                fault_addr = state->ss_frame.f_fmt7.f_fa;
444 >                break;
445 >        default:
446 >                fault_addr = (char *)code;
447 >                break;
448 >        }
449 >        return (sigsegv_address_t)fault_addr;
450 > }
451 > #endif
452 > #if (defined(alpha) || defined(__alpha__))
453 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
454 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
455 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
456 > #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
457 > #endif
458 > #if (defined(i386) || defined(__i386__))
459 > #error "FIXME: need to decode instruction and compute EA"
460 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
461 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
462 > #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
463 > #endif
464 > #endif
465 > #if defined(__FreeBSD__)
466 > #if (defined(i386) || defined(__i386__))
467   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
468 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
469 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
470 + #define SIGSEGV_FAULT_ADDRESS                   addr
471 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_eip
472 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&scp->sc_edi)
473 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
474   #endif
475 + #if (defined(alpha) || defined(__alpha__))
476 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
477 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, char *addr, struct sigcontext *scp
478 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, addr, scp
479 + #define SIGSEGV_FAULT_ADDRESS                   addr
480 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
481 + #endif
482 + #endif
483 +
484 + // Extract fault address out of a sigcontext
485 + #if (defined(alpha) || defined(__alpha__))
486 + // From Boehm's GC 6.0alpha8
487 + static sigsegv_address_t get_fault_address(struct sigcontext *scp)
488 + {
489 +        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
490 +        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
491 +        fault_address += (signed long)(signed short)(instruction & 0xffff);
492 +        return (sigsegv_address_t)fault_address;
493 + }
494   #endif
495  
496 < // MacOS X
496 >
497 > // MacOS X, not sure which version this works in. Under 10.1
498 > // vm_protect does not appear to work from a signal handler. Under
499 > // 10.2 signal handlers get siginfo type arguments but the si_addr
500 > // field is the address of the faulting instruction and not the
501 > // address that caused the SIGBUS. Maybe this works in 10.0? In any
502 > // case with Mach exception handlers there is a way to do what this
503 > // was meant to do.
504 > #ifndef HAVE_MACH_EXCEPTIONS
505   #if defined(__APPLE__) && defined(__MACH__)
506   #if (defined(ppc) || defined(__ppc__))
507   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
508 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
509   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
510   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_ir
511   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
512 + #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&scp->sc_ir, &((unsigned int *) scp->sc_regs)[2]
513 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
514  
515 < // From Boehm's GC 6.0alpha8
177 < #define EXTRACT_OP1(iw)     (((iw) & 0xFC000000) >> 26)
178 < #define EXTRACT_OP2(iw)     (((iw) & 0x000007FE) >> 1)
179 < #define EXTRACT_REGA(iw)    (((iw) & 0x001F0000) >> 16)
180 < #define EXTRACT_REGB(iw)    (((iw) & 0x03E00000) >> 21)
181 < #define EXTRACT_REGC(iw)    (((iw) & 0x0000F800) >> 11)
182 < #define EXTRACT_DISP(iw)    ((short *) &(iw))[1]
183 <
515 > // Use decoding scheme from SheepShaver
516   static sigsegv_address_t get_fault_address(struct sigcontext *scp)
517   {
518 <        unsigned int   instr = *((unsigned int *) scp->sc_ir);
519 <        unsigned int * regs = &((unsigned int *) scp->sc_regs)[2];
520 <        int            disp = 0, tmp;
521 <        unsigned int   baseA = 0, baseB = 0;
522 <        unsigned int   addr, alignmask = 0xFFFFFFFF;
523 <
524 <        switch(EXTRACT_OP1(instr)) {
525 <        case 38:   /* stb */
526 <        case 39:   /* stbu */
527 <        case 54:   /* stfd */
528 <        case 55:   /* stfdu */
529 <        case 52:   /* stfs */
530 <        case 53:   /* stfsu */
531 <        case 44:   /* sth */
532 <        case 45:   /* sthu */
533 <        case 47:   /* stmw */
534 <        case 36:   /* stw */
535 <        case 37:   /* stwu */
536 <                tmp = EXTRACT_REGA(instr);
537 <                if(tmp > 0)
538 <                        baseA = regs[tmp];
539 <                disp = EXTRACT_DISP(instr);
518 >        unsigned int   nip = (unsigned int) scp->sc_ir;
519 >        unsigned int * gpr = &((unsigned int *) scp->sc_regs)[2];
520 >        instruction_t  instr;
521 >
522 >        powerpc_decode_instruction(&instr, nip, gpr);
523 >        return (sigsegv_address_t)instr.addr;
524 > }
525 > #endif
526 > #endif
527 > #endif
528 > #endif
529 >
530 > #if HAVE_WIN32_EXCEPTIONS
531 > #define WIN32_LEAN_AND_MEAN /* avoid including junk */
532 > #include <windows.h>
533 > #include <winerror.h>
534 >
535 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   EXCEPTION_POINTERS *ExceptionInfo
536 > #define SIGSEGV_FAULT_HANDLER_ARGS              ExceptionInfo
537 > #define SIGSEGV_FAULT_ADDRESS                   ExceptionInfo->ExceptionRecord->ExceptionInformation[1]
538 > #define SIGSEGV_CONTEXT_REGS                    ExceptionInfo->ContextRecord
539 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS->Eip
540 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&SIGSEGV_CONTEXT_REGS->Edi)
541 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
542 > #endif
543 >
544 > #if HAVE_MACH_EXCEPTIONS
545 >
546 > // This can easily be extended to other Mach systems, but really who
547 > // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
548 > // Mach 2.5/3.0?
549 > #if defined(__APPLE__) && defined(__MACH__)
550 >
551 > #include <sys/types.h>
552 > #include <stdlib.h>
553 > #include <stdio.h>
554 > #include <pthread.h>
555 >
556 > /*
557 > * If you are familiar with MIG then you will understand the frustration
558 > * that was necessary to get these embedded into C++ code by hand.
559 > */
560 > extern "C" {
561 > #include <mach/mach.h>
562 > #include <mach/mach_error.h>
563 >
564 > extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
565 > extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
566 >        mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
567 > extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
568 >        exception_type_t, exception_data_t, mach_msg_type_number_t);
569 > extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
570 >        exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
571 >        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
572 > extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
573 >        exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
574 >        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
575 > }
576 >
577 > // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
578 > #define HANDLER_COUNT 64
579 >
580 > // structure to tuck away existing exception handlers
581 > typedef struct _ExceptionPorts {
582 >        mach_msg_type_number_t maskCount;
583 >        exception_mask_t masks[HANDLER_COUNT];
584 >        exception_handler_t handlers[HANDLER_COUNT];
585 >        exception_behavior_t behaviors[HANDLER_COUNT];
586 >        thread_state_flavor_t flavors[HANDLER_COUNT];
587 > } ExceptionPorts;
588 >
589 > // exception handler thread
590 > static pthread_t exc_thread;
591 >
592 > // place where old exception handler info is stored
593 > static ExceptionPorts ports;
594 >
595 > // our exception port
596 > static mach_port_t _exceptionPort = MACH_PORT_NULL;
597 >
598 > #define MACH_CHECK_ERROR(name,ret) \
599 > if (ret != KERN_SUCCESS) { \
600 >        mach_error(#name, ret); \
601 >        exit (1); \
602 > }
603 >
604 > #ifdef __ppc__
605 > #define SIGSEGV_EXCEPTION_STATE_TYPE    ppc_exception_state_t
606 > #define SIGSEGV_EXCEPTION_STATE_FLAVOR  PPC_EXCEPTION_STATE
607 > #define SIGSEGV_EXCEPTION_STATE_COUNT   PPC_EXCEPTION_STATE_COUNT
608 > #define SIGSEGV_FAULT_ADDRESS                   exc_state->dar
609 > #define SIGSEGV_THREAD_STATE_TYPE               ppc_thread_state_t
610 > #define SIGSEGV_THREAD_STATE_FLAVOR             PPC_THREAD_STATE
611 > #define SIGSEGV_THREAD_STATE_COUNT              PPC_THREAD_STATE_COUNT
612 > #define SIGSEGV_FAULT_INSTRUCTION               state.srr0
613 > #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
614 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&state.srr0, (unsigned long *)&state.r0
615 > #endif
616 > #ifdef __i386__
617 > #ifdef i386_SAVED_STATE
618 > #define SIGSEGV_THREAD_STATE_TYPE               struct i386_saved_state
619 > #define SIGSEGV_THREAD_STATE_FLAVOR             i386_SAVED_STATE
620 > #define SIGSEGV_THREAD_STATE_COUNT              i386_SAVED_STATE_COUNT
621 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&state.edi) /* EDI is the first GPR we consider */
622 > #else
623 > #define SIGSEGV_EXCEPTION_STATE_TYPE    struct i386_exception_state
624 > #define SIGSEGV_EXCEPTION_STATE_FLAVOR  i386_EXCEPTION_STATE
625 > #define SIGSEGV_EXCEPTION_STATE_COUNT   i386_EXCEPTION_STATE_COUNT
626 > #define SIGSEGV_FAULT_ADDRESS                   exc_state->faultvaddr
627 > #define SIGSEGV_THREAD_STATE_TYPE               struct i386_thread_state
628 > #define SIGSEGV_THREAD_STATE_FLAVOR             i386_THREAD_STATE
629 > #define SIGSEGV_THREAD_STATE_COUNT              i386_THREAD_STATE_COUNT
630 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&state.eax) /* EAX is the first GPR we consider */
631 > #endif
632 > #define SIGSEGV_FAULT_INSTRUCTION               state.eip
633 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
634 > #endif
635 > #ifdef __x86_64__
636 > #define SIGSEGV_EXCEPTION_STATE_TYPE    struct x86_exception_state64
637 > #define SIGSEGV_EXCEPTION_STATE_FLAVOR  x86_EXCEPTION_STATE64
638 > #define SIGSEGV_EXCEPTION_STATE_COUNT   x86_EXCEPTION_STATE64_COUNT
639 > #define SIGSEGV_FAULT_ADDRESS                   exc_state->faultvaddr
640 > #define SIGSEGV_THREAD_STATE_TYPE               struct x86_thread_state64
641 > #define SIGSEGV_THREAD_STATE_FLAVOR             x86_THREAD_STATE64
642 > #define SIGSEGV_THREAD_STATE_COUNT              x86_THREAD_STATE64_COUNT
643 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&state.rax) /* RAX is the first GPR we consider */
644 > #define SIGSEGV_FAULT_INSTRUCTION               state.rip
645 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
646 > #endif
647 > #ifdef SIGSEGV_EXCEPTION_STATE_TYPE
648 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   mach_port_t thread, SIGSEGV_EXCEPTION_STATE_TYPE *exc_state
649 > #define SIGSEGV_FAULT_HANDLER_ARGS              thread, &exc_state
650 > #else
651 > #define SIGSEGV_FAULT_ADDRESS                   code[1]
652 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   mach_port_t thread, exception_data_t code
653 > #define SIGSEGV_FAULT_HANDLER_ARGS              thread, code
654 > #endif
655 >
656 > // Since there can only be one exception thread running at any time
657 > // this is not a problem.
658 > #define MSG_SIZE 512
659 > static char msgbuf[MSG_SIZE];
660 > static char replybuf[MSG_SIZE];
661 >
662 > /*
663 > * This is the entry point for the exception handler thread. The job
664 > * of this thread is to wait for exception messages on the exception
665 > * port that was setup beforehand and to pass them on to exc_server.
666 > * exc_server is a MIG generated function that is a part of Mach.
667 > * Its job is to decide what to do with the exception message. In our
668 > * case exc_server calls catch_exception_raise on our behalf. After
669 > * exc_server returns, it is our responsibility to send the reply.
670 > */
671 > static void *
672 > handleExceptions(void *priv)
673 > {
674 >        mach_msg_header_t *msg, *reply;
675 >        kern_return_t krc;
676 >
677 >        msg = (mach_msg_header_t *)msgbuf;
678 >        reply = (mach_msg_header_t *)replybuf;
679 >
680 >        for (;;) {
681 >                krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
682 >                                _exceptionPort, 0, MACH_PORT_NULL);
683 >                MACH_CHECK_ERROR(mach_msg, krc);
684 >
685 >                if (!exc_server(msg, reply)) {
686 >                        fprintf(stderr, "exc_server hated the message\n");
687 >                        exit(1);
688 >                }
689 >
690 >                krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
691 >                                 msg->msgh_local_port, 0, MACH_PORT_NULL);
692 >                if (krc != KERN_SUCCESS) {
693 >                        fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
694 >                                krc, mach_error_string(krc));
695 >                        exit(1);
696 >                }
697 >        }
698 > }
699 > #endif
700 > #endif
701 >
702 >
703 > /*
704 > *  Instruction skipping
705 > */
706 >
707 > #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
708 > // Decode and skip X86 instruction
709 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
710 > #if defined(__linux__)
711 > enum {
712 > #if (defined(i386) || defined(__i386__))
713 >        X86_REG_EIP = 14,
714 >        X86_REG_EAX = 11,
715 >        X86_REG_ECX = 10,
716 >        X86_REG_EDX = 9,
717 >        X86_REG_EBX = 8,
718 >        X86_REG_ESP = 7,
719 >        X86_REG_EBP = 6,
720 >        X86_REG_ESI = 5,
721 >        X86_REG_EDI = 4
722 > #endif
723 > #if defined(__x86_64__)
724 >        X86_REG_R8  = 0,
725 >        X86_REG_R9  = 1,
726 >        X86_REG_R10 = 2,
727 >        X86_REG_R11 = 3,
728 >        X86_REG_R12 = 4,
729 >        X86_REG_R13 = 5,
730 >        X86_REG_R14 = 6,
731 >        X86_REG_R15 = 7,
732 >        X86_REG_EDI = 8,
733 >        X86_REG_ESI = 9,
734 >        X86_REG_EBP = 10,
735 >        X86_REG_EBX = 11,
736 >        X86_REG_EDX = 12,
737 >        X86_REG_EAX = 13,
738 >        X86_REG_ECX = 14,
739 >        X86_REG_ESP = 15,
740 >        X86_REG_EIP = 16
741 > #endif
742 > };
743 > #endif
744 > #if defined(__NetBSD__)
745 > enum {
746 > #if (defined(i386) || defined(__i386__))
747 >        X86_REG_EIP = _REG_EIP,
748 >        X86_REG_EAX = _REG_EAX,
749 >        X86_REG_ECX = _REG_ECX,
750 >        X86_REG_EDX = _REG_EDX,
751 >        X86_REG_EBX = _REG_EBX,
752 >        X86_REG_ESP = _REG_ESP,
753 >        X86_REG_EBP = _REG_EBP,
754 >        X86_REG_ESI = _REG_ESI,
755 >        X86_REG_EDI = _REG_EDI
756 > #endif
757 > };
758 > #endif
759 > #if defined(__FreeBSD__)
760 > enum {
761 > #if (defined(i386) || defined(__i386__))
762 >        X86_REG_EIP = 10,
763 >        X86_REG_EAX = 7,
764 >        X86_REG_ECX = 6,
765 >        X86_REG_EDX = 5,
766 >        X86_REG_EBX = 4,
767 >        X86_REG_ESP = 13,
768 >        X86_REG_EBP = 2,
769 >        X86_REG_ESI = 1,
770 >        X86_REG_EDI = 0
771 > #endif
772 > };
773 > #endif
774 > #if defined(__OpenBSD__)
775 > enum {
776 > #if defined(__i386__)
777 >        // EDI is the first register we consider
778 > #define OREG(REG) offsetof(struct sigcontext, sc_##REG)
779 > #define DREG(REG) ((OREG(REG) - OREG(edi)) / 4)
780 >        X86_REG_EIP = DREG(eip), // 7
781 >        X86_REG_EAX = DREG(eax), // 6
782 >        X86_REG_ECX = DREG(ecx), // 5
783 >        X86_REG_EDX = DREG(edx), // 4
784 >        X86_REG_EBX = DREG(ebx), // 3
785 >        X86_REG_ESP = DREG(esp), // 10
786 >        X86_REG_EBP = DREG(ebp), // 2
787 >        X86_REG_ESI = DREG(esi), // 1
788 >        X86_REG_EDI = DREG(edi)  // 0
789 > #undef DREG
790 > #undef OREG
791 > #endif
792 > };
793 > #endif
794 > #if defined(__sun__)
795 > // Same as for Linux, need to check for x86-64
796 > enum {
797 > #if defined(__i386__)
798 >        X86_REG_EIP = EIP,
799 >        X86_REG_EAX = EAX,
800 >        X86_REG_ECX = ECX,
801 >        X86_REG_EDX = EDX,
802 >        X86_REG_EBX = EBX,
803 >        X86_REG_ESP = ESP,
804 >        X86_REG_EBP = EBP,
805 >        X86_REG_ESI = ESI,
806 >        X86_REG_EDI = EDI
807 > #endif
808 > };
809 > #endif
810 > #if defined(__APPLE__) && defined(__MACH__)
811 > enum {
812 > #if (defined(i386) || defined(__i386__))
813 > #ifdef i386_SAVED_STATE
814 >        // same as FreeBSD (in Open Darwin 8.0.1)
815 >        X86_REG_EIP = 10,
816 >        X86_REG_EAX = 7,
817 >        X86_REG_ECX = 6,
818 >        X86_REG_EDX = 5,
819 >        X86_REG_EBX = 4,
820 >        X86_REG_ESP = 13,
821 >        X86_REG_EBP = 2,
822 >        X86_REG_ESI = 1,
823 >        X86_REG_EDI = 0
824 > #else
825 >        // new layout (MacOS X 10.4.4 for x86)
826 >        X86_REG_EIP = 10,
827 >        X86_REG_EAX = 0,
828 >        X86_REG_ECX = 2,
829 >        X86_REG_EDX = 3,
830 >        X86_REG_EBX = 1,
831 >        X86_REG_ESP = 7,
832 >        X86_REG_EBP = 6,
833 >        X86_REG_ESI = 5,
834 >        X86_REG_EDI = 4
835 > #endif
836 > #endif
837 > #if defined(__x86_64__)
838 >        X86_REG_R8  = 8,
839 >        X86_REG_R9  = 9,
840 >        X86_REG_R10 = 10,
841 >        X86_REG_R11 = 11,
842 >        X86_REG_R12 = 12,
843 >        X86_REG_R13 = 13,
844 >        X86_REG_R14 = 14,
845 >        X86_REG_R15 = 15,
846 >        X86_REG_EDI = 4,
847 >        X86_REG_ESI = 5,
848 >        X86_REG_EBP = 6,
849 >        X86_REG_EBX = 1,
850 >        X86_REG_EDX = 3,
851 >        X86_REG_EAX = 0,
852 >        X86_REG_ECX = 2,
853 >        X86_REG_ESP = 7,
854 >        X86_REG_EIP = 16
855 > #endif
856 > };
857 > #endif
858 > #if defined(_WIN32)
859 > enum {
860 > #if (defined(i386) || defined(__i386__))
861 >        X86_REG_EIP = 7,
862 >        X86_REG_EAX = 5,
863 >        X86_REG_ECX = 4,
864 >        X86_REG_EDX = 3,
865 >        X86_REG_EBX = 2,
866 >        X86_REG_ESP = 10,
867 >        X86_REG_EBP = 6,
868 >        X86_REG_ESI = 1,
869 >        X86_REG_EDI = 0
870 > #endif
871 > };
872 > #endif
873 > // FIXME: this is partly redundant with the instruction decoding phase
874 > // to discover transfer type and register number
875 > static inline int ix86_step_over_modrm(unsigned char * p)
876 > {
877 >        int mod = (p[0] >> 6) & 3;
878 >        int rm = p[0] & 7;
879 >        int offset = 0;
880 >
881 >        // ModR/M Byte
882 >        switch (mod) {
883 >        case 0: // [reg]
884 >                if (rm == 5) return 4; // disp32
885                  break;
886 <        case 31:
887 <                switch(EXTRACT_OP2(instr)) {
888 <                case 86:    /* dcbf */
889 <                case 54:    /* dcbst */
890 <                case 1014:  /* dcbz */
891 <                case 247:   /* stbux */
892 <                case 215:   /* stbx */
893 <                case 759:   /* stfdux */
894 <                case 727:   /* stfdx */
895 <                case 983:   /* stfiwx */
896 <                case 695:   /* stfsux */
897 <                case 663:   /* stfsx */
898 <                case 918:   /* sthbrx */
899 <                case 439:   /* sthux */
900 <                case 407:   /* sthx */
901 <                case 661:   /* stswx */
902 <                case 662:   /* stwbrx */
903 <                case 150:   /* stwcx. */
904 <                case 183:   /* stwux */
905 <                case 151:   /* stwx */
906 <                case 135:   /* stvebx */
907 <                case 167:   /* stvehx */
908 <                case 199:   /* stvewx */
909 <                case 231:   /* stvx */
910 <                case 487:   /* stvxl */
911 <                        tmp = EXTRACT_REGA(instr);
912 <                        if(tmp > 0)
913 <                                baseA = regs[tmp];
914 <                        baseB = regs[EXTRACT_REGC(instr)];
915 <                        /* determine Altivec alignment mask */
916 <                        switch(EXTRACT_OP2(instr)) {
917 <                        case 167:   /* stvehx */
918 <                                alignmask = 0xFFFFFFFE;
919 <                                break;
920 <                        case 199:   /* stvewx */
921 <                                alignmask = 0xFFFFFFFC;
922 <                                break;
923 <                        case 231:   /* stvx */
924 <                                alignmask = 0xFFFFFFF0;
925 <                                break;
926 <                        case 487:  /* stvxl */
927 <                                alignmask = 0xFFFFFFF0;
928 <                                break;
929 <                        }
886 >        case 1: // disp8[reg]
887 >                offset = 1;
888 >                break;
889 >        case 2: // disp32[reg]
890 >                offset = 4;
891 >                break;
892 >        case 3: // register
893 >                return 0;
894 >        }
895 >        
896 >        // SIB Byte
897 >        if (rm == 4) {
898 >                if (mod == 0 && (p[1] & 7) == 5)
899 >                        offset = 5; // disp32[index]
900 >                else
901 >                        offset++;
902 >        }
903 >
904 >        return offset;
905 > }
906 >
907 > static bool ix86_skip_instruction(unsigned long * regs)
908 > {
909 >        unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
910 >
911 >        if (eip == 0)
912 >                return false;
913 > #ifdef _WIN32
914 >        if (IsBadCodePtr((FARPROC)eip))
915 >                return false;
916 > #endif
917 >        
918 >        enum instruction_type_t {
919 >                i_MOV,
920 >                i_ADD
921 >        };
922 >
923 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
924 >        transfer_size_t transfer_size = SIZE_LONG;
925 >        instruction_type_t instruction_type = i_MOV;
926 >        
927 >        int reg = -1;
928 >        int len = 0;
929 >
930 > #if DEBUG
931 >        printf("IP: %p [%02x %02x %02x %02x...]\n",
932 >                   eip, eip[0], eip[1], eip[2], eip[3]);
933 > #endif
934 >
935 >        // Operand size prefix
936 >        if (*eip == 0x66) {
937 >                eip++;
938 >                len++;
939 >                transfer_size = SIZE_WORD;
940 >        }
941 >
942 >        // REX prefix
943 > #if defined(__x86_64__)
944 >        struct rex_t {
945 >                unsigned char W;
946 >                unsigned char R;
947 >                unsigned char X;
948 >                unsigned char B;
949 >        };
950 >        rex_t rex = { 0, 0, 0, 0 };
951 >        bool has_rex = false;
952 >        if ((*eip & 0xf0) == 0x40) {
953 >                has_rex = true;
954 >                const unsigned char b = *eip;
955 >                rex.W = b & (1 << 3);
956 >                rex.R = b & (1 << 2);
957 >                rex.X = b & (1 << 1);
958 >                rex.B = b & (1 << 0);
959 > #if DEBUG
960 >                printf("REX: %c,%c,%c,%c\n",
961 >                           rex.W ? 'W' : '_',
962 >                           rex.R ? 'R' : '_',
963 >                           rex.X ? 'X' : '_',
964 >                           rex.B ? 'B' : '_');
965 > #endif
966 >                eip++;
967 >                len++;
968 >                if (rex.W)
969 >                        transfer_size = SIZE_QUAD;
970 >        }
971 > #else
972 >        const bool has_rex = false;
973 > #endif
974 >
975 >        // Decode instruction
976 >        int op_len = 1;
977 >        int target_size = SIZE_UNKNOWN;
978 >        switch (eip[0]) {
979 >        case 0x0f:
980 >                target_size = transfer_size;
981 >            switch (eip[1]) {
982 >                case 0xbe: // MOVSX r32, r/m8
983 >            case 0xb6: // MOVZX r32, r/m8
984 >                        transfer_size = SIZE_BYTE;
985 >                        goto do_mov_extend;
986 >                case 0xbf: // MOVSX r32, r/m16
987 >            case 0xb7: // MOVZX r32, r/m16
988 >                        transfer_size = SIZE_WORD;
989 >                        goto do_mov_extend;
990 >                  do_mov_extend:
991 >                        op_len = 2;
992 >                        goto do_transfer_load;
993 >                }
994 >                break;
995 > #if defined(__x86_64__)
996 >        case 0x63: // MOVSXD r64, r/m32
997 >                if (has_rex && rex.W) {
998 >                        transfer_size = SIZE_LONG;
999 >                        target_size = SIZE_QUAD;
1000 >                }
1001 >                else if (transfer_size != SIZE_WORD) {
1002 >                        transfer_size = SIZE_LONG;
1003 >                        target_size = SIZE_QUAD;
1004 >                }
1005 >                goto do_transfer_load;
1006 > #endif
1007 >        case 0x02: // ADD r8, r/m8
1008 >                transfer_size = SIZE_BYTE;
1009 >        case 0x03: // ADD r32, r/m32
1010 >                instruction_type = i_ADD;
1011 >                goto do_transfer_load;
1012 >        case 0x8a: // MOV r8, r/m8
1013 >                transfer_size = SIZE_BYTE;
1014 >        case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
1015 >          do_transfer_load:
1016 >                switch (eip[op_len] & 0xc0) {
1017 >                case 0x80:
1018 >                        reg = (eip[op_len] >> 3) & 7;
1019 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
1020                          break;
1021 <                case 725:   /* stswi */
1022 <                        tmp = EXTRACT_REGA(instr);
1023 <                        if(tmp > 0)
257 <                                baseA = regs[tmp];
1021 >                case 0x40:
1022 >                        reg = (eip[op_len] >> 3) & 7;
1023 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
1024                          break;
1025 <                default:   /* ignore instruction */
1026 <                        return 0;
1025 >                case 0x00:
1026 >                        reg = (eip[op_len] >> 3) & 7;
1027 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
1028                          break;
1029                  }
1030 +                len += 1 + op_len + ix86_step_over_modrm(eip + op_len);
1031                  break;
1032 <        default:   /* ignore instruction */
1033 <                return 0;
1032 >        case 0x00: // ADD r/m8, r8
1033 >                transfer_size = SIZE_BYTE;
1034 >        case 0x01: // ADD r/m32, r32
1035 >                instruction_type = i_ADD;
1036 >                goto do_transfer_store;
1037 >        case 0x88: // MOV r/m8, r8
1038 >                transfer_size = SIZE_BYTE;
1039 >        case 0x89: // MOV r/m32, r32 (or 16-bit operation)
1040 >          do_transfer_store:
1041 >                switch (eip[op_len] & 0xc0) {
1042 >                case 0x80:
1043 >                        reg = (eip[op_len] >> 3) & 7;
1044 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
1045 >                        break;
1046 >                case 0x40:
1047 >                        reg = (eip[op_len] >> 3) & 7;
1048 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
1049 >                        break;
1050 >                case 0x00:
1051 >                        reg = (eip[op_len] >> 3) & 7;
1052 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
1053 >                        break;
1054 >                }
1055 >                len += 1 + op_len + ix86_step_over_modrm(eip + op_len);
1056                  break;
1057          }
1058 +        if (target_size == SIZE_UNKNOWN)
1059 +                target_size = transfer_size;
1060 +
1061 +        if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1062 +                // Unknown machine code, let it crash. Then patch the decoder
1063 +                return false;
1064 +        }
1065 +
1066 + #if defined(__x86_64__)
1067 +        if (rex.R)
1068 +                reg += 8;
1069 + #endif
1070 +
1071 +        if (instruction_type == i_MOV && transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
1072 +                static const int x86_reg_map[] = {
1073 +                        X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
1074 +                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI,
1075 + #if defined(__x86_64__)
1076 +                        X86_REG_R8,  X86_REG_R9,  X86_REG_R10, X86_REG_R11,
1077 +                        X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15,
1078 + #endif
1079 +                };
1080 +                
1081 +                if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1))
1082 +                        return false;
1083 +
1084 +                // Set 0 to the relevant register part
1085 +                // NOTE: this is only valid for MOV alike instructions
1086 +                int rloc = x86_reg_map[reg];
1087 +                switch (target_size) {
1088 +                case SIZE_BYTE:
1089 +                        if (has_rex || reg < 4)
1090 +                                regs[rloc] = (regs[rloc] & ~0x00ffL);
1091 +                        else {
1092 +                                rloc = x86_reg_map[reg - 4];
1093 +                                regs[rloc] = (regs[rloc] & ~0xff00L);
1094 +                        }
1095 +                        break;
1096 +                case SIZE_WORD:
1097 +                        regs[rloc] = (regs[rloc] & ~0xffffL);
1098 +                        break;
1099 +                case SIZE_LONG:
1100 +                case SIZE_QUAD: // zero-extension
1101 +                        regs[rloc] = 0;
1102 +                        break;
1103 +                }
1104 +        }
1105 +
1106 + #if DEBUG
1107 +        printf("%p: %s %s access", (void *)regs[X86_REG_EIP],
1108 +                   transfer_size == SIZE_BYTE ? "byte" :
1109 +                   transfer_size == SIZE_WORD ? "word" :
1110 +                   transfer_size == SIZE_LONG ? "long" :
1111 +                   transfer_size == SIZE_QUAD ? "quad" : "unknown",
1112 +                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1113 +        
1114 +        if (reg != -1) {
1115 +                static const char * x86_byte_reg_str_map[] = {
1116 +                        "al",   "cl",   "dl",   "bl",
1117 +                        "spl",  "bpl",  "sil",  "dil",
1118 +                        "r8b",  "r9b",  "r10b", "r11b",
1119 +                        "r12b", "r13b", "r14b", "r15b",
1120 +                        "ah",   "ch",   "dh",   "bh",
1121 +                };
1122 +                static const char * x86_word_reg_str_map[] = {
1123 +                        "ax",   "cx",   "dx",   "bx",
1124 +                        "sp",   "bp",   "si",   "di",
1125 +                        "r8w",  "r9w",  "r10w", "r11w",
1126 +                        "r12w", "r13w", "r14w", "r15w",
1127 +                };
1128 +                static const char *x86_long_reg_str_map[] = {
1129 +                        "eax",  "ecx",  "edx",  "ebx",
1130 +                        "esp",  "ebp",  "esi",  "edi",
1131 +                        "r8d",  "r9d",  "r10d", "r11d",
1132 +                        "r12d", "r13d", "r14d", "r15d",
1133 +                };
1134 +                static const char *x86_quad_reg_str_map[] = {
1135 +                        "rax", "rcx", "rdx", "rbx",
1136 +                        "rsp", "rbp", "rsi", "rdi",
1137 +                        "r8",  "r9",  "r10", "r11",
1138 +                        "r12", "r13", "r14", "r15",
1139 +                };
1140 +                const char * reg_str = NULL;
1141 +                switch (target_size) {
1142 +                case SIZE_BYTE:
1143 +                        reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg];
1144 +                        break;
1145 +                case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break;
1146 +                case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break;
1147 +                case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break;
1148 +                }
1149 +                if (reg_str)
1150 +                        printf(" %s register %%%s",
1151 +                                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from",
1152 +                                   reg_str);
1153 +        }
1154 +        printf(", %d bytes instruction\n", len);
1155 + #endif
1156 +        
1157 +        regs[X86_REG_EIP] += len;
1158 +        return true;
1159 + }
1160 + #endif
1161 +
1162 + // Decode and skip PPC instruction
1163 + #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
1164 + static bool powerpc_skip_instruction(unsigned long * nip_p, unsigned long * regs)
1165 + {
1166 +        instruction_t instr;
1167 +        powerpc_decode_instruction(&instr, *nip_p, regs);
1168 +        
1169 +        if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1170 +                // Unknown machine code, let it crash. Then patch the decoder
1171 +                return false;
1172 +        }
1173 +
1174 + #if DEBUG
1175 +        printf("%08x: %s %s access", *nip_p,
1176 +                   instr.transfer_size == SIZE_BYTE ? "byte" :
1177 +                   instr.transfer_size == SIZE_WORD ? "word" :
1178 +                   instr.transfer_size == SIZE_LONG ? "long" : "quad",
1179 +                   instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1180 +        
1181 +        if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
1182 +                printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
1183 +        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
1184 +                printf(" r%d (rd = 0)\n", instr.rd);
1185 + #endif
1186 +        
1187 +        if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
1188 +                regs[instr.ra] = instr.addr;
1189 +        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
1190 +                regs[instr.rd] = 0;
1191          
1192 <        addr = (baseA + baseB) + disp;
1193 <        addr &= alignmask;
1194 <        return (sigsegv_address_t)addr;
1192 >        *nip_p += 4;
1193 >        return true;
1194 > }
1195 > #endif
1196 >
1197 > // Decode and skip MIPS instruction
1198 > #if (defined(mips) || defined(__mips))
1199 > static bool mips_skip_instruction(greg_t * pc_p, greg_t * regs)
1200 > {
1201 >  unsigned int * epc = (unsigned int *)(unsigned long)*pc_p;
1202 >
1203 >  if (epc == 0)
1204 >        return false;
1205 >
1206 > #if DEBUG
1207 >  printf("IP: %p [%08x]\n", epc, epc[0]);
1208 > #endif
1209 >
1210 >  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1211 >  transfer_size_t transfer_size = SIZE_LONG;
1212 >  int direction = 0;
1213 >
1214 >  const unsigned int opcode = epc[0];
1215 >  switch (opcode >> 26) {
1216 >  case 32: // Load Byte
1217 >  case 36: // Load Byte Unsigned
1218 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1219 >        transfer_size = SIZE_BYTE;
1220 >        break;
1221 >  case 33: // Load Halfword
1222 >  case 37: // Load Halfword Unsigned
1223 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1224 >        transfer_size = SIZE_WORD;
1225 >        break;
1226 >  case 35: // Load Word
1227 >  case 39: // Load Word Unsigned
1228 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1229 >        transfer_size = SIZE_LONG;
1230 >        break;
1231 >  case 34: // Load Word Left
1232 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1233 >        transfer_size = SIZE_LONG;
1234 >        direction = -1;
1235 >        break;
1236 >  case 38: // Load Word Right
1237 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1238 >        transfer_size = SIZE_LONG;
1239 >        direction = 1;
1240 >        break;
1241 >  case 55: // Load Doubleword
1242 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1243 >        transfer_size = SIZE_QUAD;
1244 >        break;
1245 >  case 26: // Load Doubleword Left
1246 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1247 >        transfer_size = SIZE_QUAD;
1248 >        direction = -1;
1249 >        break;
1250 >  case 27: // Load Doubleword Right
1251 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1252 >        transfer_size = SIZE_QUAD;
1253 >        direction = 1;
1254 >        break;
1255 >  case 40: // Store Byte
1256 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1257 >        transfer_size = SIZE_BYTE;
1258 >        break;
1259 >  case 41: // Store Halfword
1260 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1261 >        transfer_size = SIZE_WORD;
1262 >        break;
1263 >  case 43: // Store Word
1264 >  case 42: // Store Word Left
1265 >  case 46: // Store Word Right
1266 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1267 >        transfer_size = SIZE_LONG;
1268 >        break;
1269 >  case 63: // Store Doubleword
1270 >  case 44: // Store Doubleword Left
1271 >  case 45: // Store Doubleword Right
1272 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1273 >        transfer_size = SIZE_QUAD;
1274 >        break;
1275 >  /* Misc instructions unlikely to be used within CPU emulators */
1276 >  case 48: // Load Linked Word
1277 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1278 >        transfer_size = SIZE_LONG;
1279 >        break;
1280 >  case 52: // Load Linked Doubleword
1281 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1282 >        transfer_size = SIZE_QUAD;
1283 >        break;
1284 >  case 56: // Store Conditional Word
1285 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1286 >        transfer_size = SIZE_LONG;
1287 >        break;
1288 >  case 60: // Store Conditional Doubleword
1289 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1290 >        transfer_size = SIZE_QUAD;
1291 >        break;
1292 >  }
1293 >
1294 >  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1295 >        // Unknown machine code, let it crash. Then patch the decoder
1296 >        return false;
1297 >  }
1298 >
1299 >  // Zero target register in case of a load operation
1300 >  const int reg = (opcode >> 16) & 0x1f;
1301 >  if (transfer_type == SIGSEGV_TRANSFER_LOAD) {
1302 >        if (direction == 0)
1303 >          regs[reg] = 0;
1304 >        else {
1305 >          // FIXME: untested code
1306 >          unsigned long ea = regs[(opcode >> 21) & 0x1f];
1307 >          ea += (signed long)(signed int)(signed short)(opcode & 0xffff);
1308 >          const int offset = ea & (transfer_size == SIZE_LONG ? 3 : 7);
1309 >          unsigned long value;
1310 >          if (direction > 0) {
1311 >                const unsigned long rmask = ~((1L << ((offset + 1) * 8)) - 1);
1312 >                value = regs[reg] & rmask;
1313 >          }
1314 >          else {
1315 >                const unsigned long lmask = (1L << (offset * 8)) - 1;
1316 >                value = regs[reg] & lmask;
1317 >          }
1318 >          // restore most significant bits
1319 >          if (transfer_size == SIZE_LONG)
1320 >                value = (signed long)(signed int)value;
1321 >          regs[reg] = value;
1322 >        }
1323 >  }
1324 >
1325 > #if DEBUG
1326 > #if (defined(_ABIN32) || defined(_ABI64))
1327 >  static const char * mips_gpr_names[32] = {
1328 >        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1329 >        "t0",   "t1",   "t2",   "t3",   "t4",   "t5",   "t6",   "t7",
1330 >        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1331 >        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1332 >  };
1333 > #else
1334 >  static const char * mips_gpr_names[32] = {
1335 >        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1336 >        "a4",   "a5",   "a6",   "a7",   "t0",   "t1",   "t2",   "t3",
1337 >        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1338 >        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1339 >  };
1340 > #endif
1341 >  printf("%s %s register %s\n",
1342 >                 transfer_size == SIZE_BYTE ? "byte" :
1343 >                 transfer_size == SIZE_WORD ? "word" :
1344 >                 transfer_size == SIZE_LONG ? "long" :
1345 >                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1346 >                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1347 >                 mips_gpr_names[reg]);
1348 > #endif
1349 >
1350 >  *pc_p += 4;
1351 >  return true;
1352 > }
1353 > #endif
1354 >
1355 > // Decode and skip SPARC instruction
1356 > #if (defined(sparc) || defined(__sparc__))
1357 > enum {
1358 > #if (defined(__sun__))
1359 >  SPARC_REG_G1 = REG_G1,
1360 >  SPARC_REG_O0 = REG_O0,
1361 >  SPARC_REG_PC = REG_PC,
1362 >  SPARC_REG_nPC = REG_nPC
1363 > #endif
1364 > };
1365 > static bool sparc_skip_instruction(unsigned long * regs, gwindows_t * gwins, struct rwindow * rwin)
1366 > {
1367 >  unsigned int * pc = (unsigned int *)regs[SPARC_REG_PC];
1368 >
1369 >  if (pc == 0)
1370 >        return false;
1371 >
1372 > #if DEBUG
1373 >  printf("IP: %p [%08x]\n", pc, pc[0]);
1374 > #endif
1375 >
1376 >  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1377 >  transfer_size_t transfer_size = SIZE_LONG;
1378 >  bool register_pair = false;
1379 >
1380 >  const unsigned int opcode = pc[0];
1381 >  if ((opcode >> 30) != 3)
1382 >        return false;
1383 >  switch ((opcode >> 19) & 0x3f) {
1384 >  case 9: // Load Signed Byte
1385 >  case 1: // Load Unsigned Byte
1386 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1387 >        transfer_size = SIZE_BYTE;
1388 >        break;
1389 >  case 10:// Load Signed Halfword
1390 >  case 2: // Load Unsigned Word
1391 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1392 >        transfer_size = SIZE_WORD;
1393 >        break;
1394 >  case 8: // Load Word
1395 >  case 0: // Load Unsigned Word
1396 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1397 >        transfer_size = SIZE_LONG;
1398 >        break;
1399 >  case 11:// Load Extended Word
1400 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1401 >        transfer_size = SIZE_QUAD;
1402 >        break;
1403 >  case 3: // Load Doubleword
1404 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1405 >        transfer_size = SIZE_LONG;
1406 >        register_pair = true;
1407 >        break;
1408 >  case 5: // Store Byte
1409 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1410 >        transfer_size = SIZE_BYTE;
1411 >        break;
1412 >  case 6: // Store Halfword
1413 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1414 >        transfer_size = SIZE_WORD;
1415 >        break;
1416 >  case 4: // Store Word
1417 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1418 >        transfer_size = SIZE_LONG;
1419 >        break;
1420 >  case 14:// Store Extended Word
1421 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1422 >        transfer_size = SIZE_QUAD;
1423 >        break;
1424 >  case 7: // Store Doubleword
1425 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1426 >        transfer_size = SIZE_LONG;
1427 >        register_pair = true;
1428 >        break;
1429 >  }
1430 >
1431 >  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1432 >        // Unknown machine code, let it crash. Then patch the decoder
1433 >        return false;
1434 >  }
1435 >
1436 >  const int reg = (opcode >> 25) & 0x1f;
1437 >
1438 > #if DEBUG
1439 >  static const char * reg_names[] = {
1440 >        "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
1441 >        "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
1442 >        "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
1443 >        "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7"
1444 >  };
1445 >  printf("%s %s register %s\n",
1446 >                 transfer_size == SIZE_BYTE ? "byte" :
1447 >                 transfer_size == SIZE_WORD ? "word" :
1448 >                 transfer_size == SIZE_LONG ? "long" :
1449 >                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1450 >                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1451 >                 reg_names[reg]);
1452 > #endif
1453 >
1454 >  // Zero target register in case of a load operation
1455 >  if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != 0) {
1456 >        // FIXME: code to handle local & input registers is not tested
1457 >        if (reg >= 1 && reg < 8) {
1458 >          // global registers
1459 >          regs[reg - 1 + SPARC_REG_G1] = 0;
1460 >        }
1461 >        else if (reg >= 8 && reg < 16) {
1462 >          // output registers
1463 >          regs[reg - 8 + SPARC_REG_O0] = 0;
1464 >        }
1465 >        else if (reg >= 16 && reg < 24) {
1466 >          // local registers (in register windows)
1467 >          if (gwins)
1468 >                gwins->wbuf->rw_local[reg - 16] = 0;
1469 >          else
1470 >                rwin->rw_local[reg - 16] = 0;
1471 >        }
1472 >        else {
1473 >          // input registers (in register windows)
1474 >          if (gwins)
1475 >                gwins->wbuf->rw_in[reg - 24] = 0;
1476 >          else
1477 >                rwin->rw_in[reg - 24] = 0;
1478 >        }
1479 >  }
1480 >
1481 >  regs[SPARC_REG_PC] += 4;
1482 >  regs[SPARC_REG_nPC] += 4;
1483 >  return true;
1484   }
1485   #endif
1486   #endif
1487 +
1488 + // Decode and skip ARM instruction
1489 + #if (defined(arm) || defined(__arm__))
1490 + enum {
1491 + #if (defined(__linux__))
1492 +  ARM_REG_PC = 15,
1493 +  ARM_REG_CPSR = 16
1494 + #endif
1495 + };
1496 + static bool arm_skip_instruction(unsigned long * regs)
1497 + {
1498 +  unsigned int * pc = (unsigned int *)regs[ARM_REG_PC];
1499 +
1500 +  if (pc == 0)
1501 +        return false;
1502 +
1503 + #if DEBUG
1504 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1505 + #endif
1506 +
1507 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1508 +  transfer_size_t transfer_size = SIZE_UNKNOWN;
1509 +  enum { op_sdt = 1, op_sdth = 2 };
1510 +  int op = 0;
1511 +
1512 +  // Handle load/store instructions only
1513 +  const unsigned int opcode = pc[0];
1514 +  switch ((opcode >> 25) & 7) {
1515 +  case 0: // Halfword and Signed Data Transfer (LDRH, STRH, LDRSB, LDRSH)
1516 +        op = op_sdth;
1517 +        // Determine transfer size (S/H bits)
1518 +        switch ((opcode >> 5) & 3) {
1519 +        case 0: // SWP instruction
1520 +          break;
1521 +        case 1: // Unsigned halfwords
1522 +        case 3: // Signed halfwords
1523 +          transfer_size = SIZE_WORD;
1524 +          break;
1525 +        case 2: // Signed byte
1526 +          transfer_size = SIZE_BYTE;
1527 +          break;
1528 +        }
1529 +        break;
1530 +  case 2:
1531 +  case 3: // Single Data Transfer (LDR, STR)
1532 +        op = op_sdt;
1533 +        // Determine transfer size (B bit)
1534 +        if (((opcode >> 22) & 1) == 1)
1535 +          transfer_size = SIZE_BYTE;
1536 +        else
1537 +          transfer_size = SIZE_LONG;
1538 +        break;
1539 +  default:
1540 +        // FIXME: support load/store mutliple?
1541 +        return false;
1542 +  }
1543 +
1544 +  // Check for invalid transfer size (SWP instruction?)
1545 +  if (transfer_size == SIZE_UNKNOWN)
1546 +        return false;
1547 +
1548 +  // Determine transfer type (L bit)
1549 +  if (((opcode >> 20) & 1) == 1)
1550 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1551 +  else
1552 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1553 +
1554 +  // Compute offset
1555 +  int offset;
1556 +  if (((opcode >> 25) & 1) == 0) {
1557 +        if (op == op_sdt)
1558 +          offset = opcode & 0xfff;
1559 +        else if (op == op_sdth) {
1560 +          int rm = opcode & 0xf;
1561 +          if (((opcode >> 22) & 1) == 0) {
1562 +                // register offset
1563 +                offset = regs[rm];
1564 +          }
1565 +          else {
1566 +                // immediate offset
1567 +                offset = ((opcode >> 4) & 0xf0) | (opcode & 0x0f);
1568 +          }
1569 +        }
1570 +  }
1571 +  else {
1572 +        const int rm = opcode & 0xf;
1573 +        const int sh = (opcode >> 7) & 0x1f;
1574 +        if (((opcode >> 4) & 1) == 1) {
1575 +          // we expect only legal load/store instructions
1576 +          printf("FATAL: invalid shift operand\n");
1577 +          return false;
1578 +        }
1579 +        const unsigned int v = regs[rm];
1580 +        switch ((opcode >> 5) & 3) {
1581 +        case 0: // logical shift left
1582 +          offset = sh ? v << sh : v;
1583 +          break;
1584 +        case 1: // logical shift right
1585 +          offset = sh ? v >> sh : 0;
1586 +          break;
1587 +        case 2: // arithmetic shift right
1588 +          if (sh)
1589 +                offset = ((signed int)v) >> sh;
1590 +          else
1591 +                offset = (v & 0x80000000) ? 0xffffffff : 0;
1592 +          break;
1593 +        case 3: // rotate right
1594 +          if (sh)
1595 +                offset = (v >> sh) | (v << (32 - sh));
1596 +          else
1597 +                offset = (v >> 1) | ((regs[ARM_REG_CPSR] << 2) & 0x80000000);
1598 +          break;
1599 +        }
1600 +  }
1601 +  if (((opcode >> 23) & 1) == 0)
1602 +        offset = -offset;
1603 +
1604 +  int rd = (opcode >> 12) & 0xf;
1605 +  int rn = (opcode >> 16) & 0xf;
1606 + #if DEBUG
1607 +  static const char * reg_names[] = {
1608 +        "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1609 +        "r9", "r9", "sl", "fp", "ip", "sp", "lr", "pc"
1610 +  };
1611 +  printf("%s %s register %s\n",
1612 +                 transfer_size == SIZE_BYTE ? "byte" :
1613 +                 transfer_size == SIZE_WORD ? "word" :
1614 +                 transfer_size == SIZE_LONG ? "long" : "unknown",
1615 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1616 +                 reg_names[rd]);
1617 + #endif
1618 +
1619 +  unsigned int base = regs[rn];
1620 +  if (((opcode >> 24) & 1) == 1)
1621 +        base += offset;
1622 +
1623 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD)
1624 +        regs[rd] = 0;
1625 +
1626 +  if (((opcode >> 24) & 1) == 0)                // post-index addressing
1627 +        regs[rn] += offset;
1628 +  else if (((opcode >> 21) & 1) == 1)   // write-back address into base
1629 +        regs[rn] = base;
1630 +
1631 +  regs[ARM_REG_PC] += 4;
1632 +  return true;
1633 + }
1634   #endif
1635  
1636 +
1637   // Fallbacks
1638   #ifndef SIGSEGV_FAULT_INSTRUCTION
1639   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_PC
1640   #endif
1641 + #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
1642 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
1643 + #endif
1644 + #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
1645 + #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  sigsegv_fault_handler(ADDR, IP)
1646 + #endif
1647  
1648   // SIGSEGV recovery supported ?
1649   #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
# Line 289 | Line 1655 | static sigsegv_address_t get_fault_addre
1655   *  SIGSEGV global handler
1656   */
1657  
1658 + // This function handles the badaccess to memory.
1659 + // It is called from the signal handler or the exception handler.
1660 + static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
1661 + {
1662 + #ifdef HAVE_MACH_EXCEPTIONS
1663 +        // We must match the initial count when writing back the CPU state registers
1664 +        kern_return_t krc;
1665 +        mach_msg_type_number_t count;
1666 +        SIGSEGV_THREAD_STATE_TYPE state;
1667 +
1668 +        count = SIGSEGV_THREAD_STATE_COUNT;
1669 +        krc = thread_get_state(thread, SIGSEGV_THREAD_STATE_FLAVOR, (thread_state_t)&state, &count);
1670 +        MACH_CHECK_ERROR (thread_get_state, krc);
1671 + #endif
1672 +
1673 +        sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
1674 +        sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
1675 +        
1676 +        // Call user's handler and reinstall the global handler, if required
1677 +        switch (SIGSEGV_FAULT_HANDLER_INVOKE(fault_address, fault_instruction)) {
1678 +        case SIGSEGV_RETURN_SUCCESS:
1679 +                return true;
1680 +
1681 + #if HAVE_SIGSEGV_SKIP_INSTRUCTION
1682 +        case SIGSEGV_RETURN_SKIP_INSTRUCTION:
1683 +                // Call the instruction skipper with the register file
1684 +                // available
1685 +                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
1686 + #ifdef HAVE_MACH_EXCEPTIONS
1687 +                        // Unlike UNIX signals where the thread state
1688 +                        // is modified off of the stack, in Mach we
1689 +                        // need to actually call thread_set_state to
1690 +                        // have the register values updated.
1691 +                        krc = thread_set_state(thread,
1692 +                                                                   SIGSEGV_THREAD_STATE_FLAVOR, (thread_state_t)&state,
1693 +                                                                   count);
1694 +                        MACH_CHECK_ERROR (thread_set_state, krc);
1695 + #endif
1696 +                        return true;
1697 +                }
1698 +                break;
1699 + #endif
1700 +        case SIGSEGV_RETURN_FAILURE:
1701 +                // We can't do anything with the fault_address, dump state?
1702 +                if (sigsegv_state_dumper != 0)
1703 +                        sigsegv_state_dumper(fault_address, fault_instruction);
1704 +                break;
1705 +        }
1706 +
1707 +        return false;
1708 + }
1709 +
1710 +
1711 + /*
1712 + * There are two mechanisms for handling a bad memory access,
1713 + * Mach exceptions and UNIX signals. The implementation specific
1714 + * code appears below. Its reponsibility is to call handle_badaccess
1715 + * which is the routine that handles the fault in an implementation
1716 + * agnostic manner. The implementation specific code below is then
1717 + * reponsible for checking whether handle_badaccess was able
1718 + * to handle the memory access error and perform any implementation
1719 + * specific tasks necessary afterwards.
1720 + */
1721 +
1722 + #ifdef HAVE_MACH_EXCEPTIONS
1723 + /*
1724 + * We need to forward all exceptions that we do not handle.
1725 + * This is important, there are many exceptions that may be
1726 + * handled by other exception handlers. For example debuggers
1727 + * use exceptions and the exception hander is in another
1728 + * process in such a case. (Timothy J. Wood states in his
1729 + * message to the list that he based this code on that from
1730 + * gdb for Darwin.)
1731 + */
1732 + static inline kern_return_t
1733 + forward_exception(mach_port_t thread_port,
1734 +                                  mach_port_t task_port,
1735 +                                  exception_type_t exception_type,
1736 +                                  exception_data_t exception_data,
1737 +                                  mach_msg_type_number_t data_count,
1738 +                                  ExceptionPorts *oldExceptionPorts)
1739 + {
1740 +        kern_return_t kret;
1741 +        unsigned int portIndex;
1742 +        mach_port_t port;
1743 +        exception_behavior_t behavior;
1744 +        thread_state_flavor_t flavor;
1745 +        thread_state_data_t thread_state;
1746 +        mach_msg_type_number_t thread_state_count;
1747 +
1748 +        for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
1749 +                if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
1750 +                        // This handler wants the exception
1751 +                        break;
1752 +                }
1753 +        }
1754 +
1755 +        if (portIndex >= oldExceptionPorts->maskCount) {
1756 +                fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
1757 +                return KERN_FAILURE;
1758 +        }
1759 +
1760 +        port = oldExceptionPorts->handlers[portIndex];
1761 +        behavior = oldExceptionPorts->behaviors[portIndex];
1762 +        flavor = oldExceptionPorts->flavors[portIndex];
1763 +
1764 +        if (!VALID_THREAD_STATE_FLAVOR(flavor)) {
1765 +                fprintf(stderr, "Invalid thread_state flavor = %d. Not forwarding\n", flavor);
1766 +                return KERN_FAILURE;
1767 +        }
1768 +
1769 +        /*
1770 +         fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
1771 +         */
1772 +
1773 +        if (behavior != EXCEPTION_DEFAULT) {
1774 +                thread_state_count = THREAD_STATE_MAX;
1775 +                kret = thread_get_state (thread_port, flavor, (natural_t *)&thread_state,
1776 +                                                                 &thread_state_count);
1777 +                MACH_CHECK_ERROR (thread_get_state, kret);
1778 +        }
1779 +
1780 +        switch (behavior) {
1781 +        case EXCEPTION_DEFAULT:
1782 +          // fprintf(stderr, "forwarding to exception_raise\n");
1783 +          kret = exception_raise(port, thread_port, task_port, exception_type,
1784 +                                                         exception_data, data_count);
1785 +          MACH_CHECK_ERROR (exception_raise, kret);
1786 +          break;
1787 +        case EXCEPTION_STATE:
1788 +          // fprintf(stderr, "forwarding to exception_raise_state\n");
1789 +          kret = exception_raise_state(port, exception_type, exception_data,
1790 +                                                                   data_count, &flavor,
1791 +                                                                   (natural_t *)&thread_state, thread_state_count,
1792 +                                                                   (natural_t *)&thread_state, &thread_state_count);
1793 +          MACH_CHECK_ERROR (exception_raise_state, kret);
1794 +          break;
1795 +        case EXCEPTION_STATE_IDENTITY:
1796 +          // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
1797 +          kret = exception_raise_state_identity(port, thread_port, task_port,
1798 +                                                                                        exception_type, exception_data,
1799 +                                                                                        data_count, &flavor,
1800 +                                                                                        (natural_t *)&thread_state, thread_state_count,
1801 +                                                                                        (natural_t *)&thread_state, &thread_state_count);
1802 +          MACH_CHECK_ERROR (exception_raise_state_identity, kret);
1803 +          break;
1804 +        default:
1805 +          fprintf(stderr, "forward_exception got unknown behavior\n");
1806 +          kret = KERN_FAILURE;
1807 +          break;
1808 +        }
1809 +
1810 +        if (behavior != EXCEPTION_DEFAULT) {
1811 +                kret = thread_set_state (thread_port, flavor, (natural_t *)&thread_state,
1812 +                                                                 thread_state_count);
1813 +                MACH_CHECK_ERROR (thread_set_state, kret);
1814 +        }
1815 +
1816 +        return kret;
1817 + }
1818 +
1819 + /*
1820 + * This is the code that actually handles the exception.
1821 + * It is called by exc_server. For Darwin 5 Apple changed
1822 + * this a bit from how this family of functions worked in
1823 + * Mach. If you are familiar with that it is a little
1824 + * different. The main variation that concerns us here is
1825 + * that code is an array of exception specific codes and
1826 + * codeCount is a count of the number of codes in the code
1827 + * array. In typical Mach all exceptions have a code
1828 + * and sub-code. It happens to be the case that for a
1829 + * EXC_BAD_ACCESS exception the first entry is the type of
1830 + * bad access that occurred and the second entry is the
1831 + * faulting address so these entries correspond exactly to
1832 + * how the code and sub-code are used on Mach.
1833 + *
1834 + * This is a MIG interface. No code in Basilisk II should
1835 + * call this directley. This has to have external C
1836 + * linkage because that is what exc_server expects.
1837 + */
1838 + kern_return_t
1839 + catch_exception_raise(mach_port_t exception_port,
1840 +                                          mach_port_t thread,
1841 +                                          mach_port_t task,
1842 +                                          exception_type_t exception,
1843 +                                          exception_data_t code,
1844 +                                          mach_msg_type_number_t code_count)
1845 + {
1846 +        kern_return_t krc;
1847 +
1848 +        if (exception == EXC_BAD_ACCESS) {
1849 +                switch (code[0]) {
1850 +                case KERN_PROTECTION_FAILURE:
1851 +                case KERN_INVALID_ADDRESS:
1852 +                {
1853 + #ifdef SIGSEGV_EXCEPTION_STATE_TYPE
1854 +                        SIGSEGV_EXCEPTION_STATE_TYPE exc_state;
1855 +                        mach_msg_type_number_t exc_state_count;
1856 +                        exc_state_count = SIGSEGV_EXCEPTION_STATE_COUNT;
1857 +                        krc = thread_get_state(thread, SIGSEGV_EXCEPTION_STATE_FLAVOR, (natural_t *)&exc_state, &exc_state_count);
1858 +                        MACH_CHECK_ERROR (thread_get_state, krc);
1859 + #endif
1860 +
1861 +                        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
1862 +                                return KERN_SUCCESS;
1863 +                        break;
1864 +                }
1865 +                }
1866 +        }
1867 +
1868 +        // In Mach we do not need to remove the exception handler.
1869 +        // If we forward the exception, eventually some exception handler
1870 +        // will take care of this exception.
1871 +        krc = forward_exception(thread, task, exception, code, code_count, &ports);
1872 +
1873 +        return krc;
1874 + }
1875 + #endif
1876 +
1877   #ifdef HAVE_SIGSEGV_RECOVERY
1878 + // Handle bad memory accesses with signal handler
1879   static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1880   {
1881 <        // Call user's handler and reinstall the global handler, if required
1882 <        if (sigsegv_user_handler((sigsegv_address_t)SIGSEGV_FAULT_ADDRESS, (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION)) {
1881 >        // Call handler and reinstall the global handler, if required
1882 >        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
1883   #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1884                  sigsegv_do_install_handler(sig);
1885   #endif
1886 +                return;
1887          }
1888 <        else {
1889 <                // FAIL: reinstall default handler for "safe" crash
1888 >
1889 >        // Failure: reinstall default handler for "safe" crash
1890   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1891 <                SIGSEGV_ALL_SIGNALS
1891 >        SIGSEGV_ALL_SIGNALS
1892   #undef FAULT_HANDLER
306        }
1893   }
1894   #endif
1895  
# Line 317 | Line 1903 | static bool sigsegv_do_install_handler(i
1903   {
1904          // Setup SIGSEGV handler to process writes to frame buffer
1905   #ifdef HAVE_SIGACTION
1906 <        struct sigaction vosf_sa;
1907 <        sigemptyset(&vosf_sa.sa_mask);
1908 <        vosf_sa.sa_sigaction = sigsegv_handler;
1909 <        vosf_sa.sa_flags = SA_SIGINFO;
1910 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1906 >        struct sigaction sigsegv_sa;
1907 >        sigemptyset(&sigsegv_sa.sa_mask);
1908 >        sigsegv_sa.sa_sigaction = sigsegv_handler;
1909 >        sigsegv_sa.sa_flags = SA_SIGINFO;
1910 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1911   #else
1912          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1913   #endif
# Line 333 | Line 1919 | static bool sigsegv_do_install_handler(i
1919   {
1920          // Setup SIGSEGV handler to process writes to frame buffer
1921   #ifdef HAVE_SIGACTION
1922 <        struct sigaction vosf_sa;
1923 <        sigemptyset(&vosf_sa.sa_mask);
1924 <        vosf_sa.sa_handler = (signal_handler)sigsegv_handler;
1922 >        struct sigaction sigsegv_sa;
1923 >        sigemptyset(&sigsegv_sa.sa_mask);
1924 >        sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
1925 >        sigsegv_sa.sa_flags = 0;
1926   #if !EMULATED_68K && defined(__NetBSD__)
1927 <        sigaddset(&vosf_sa.sa_mask, SIGALRM);
1928 <        vosf_sa.sa_flags = SA_ONSTACK;
342 < #else
343 <        vosf_sa.sa_flags = 0;
1927 >        sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
1928 >        sigsegv_sa.sa_flags |= SA_ONSTACK;
1929   #endif
1930 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1930 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1931   #else
1932          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1933   #endif
1934   }
1935   #endif
1936  
1937 < bool sigsegv_install_handler(sigsegv_handler_t handler)
1937 > #if defined(HAVE_MACH_EXCEPTIONS)
1938 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1939   {
1940 < #ifdef HAVE_SIGSEGV_RECOVERY
1941 <        sigsegv_user_handler = handler;
1940 >        /*
1941 >         * Except for the exception port functions, this should be
1942 >         * pretty much stock Mach. If later you choose to support
1943 >         * other Mach's besides Darwin, just check for __MACH__
1944 >         * here and __APPLE__ where the actual differences are.
1945 >         */
1946 > #if defined(__APPLE__) && defined(__MACH__)
1947 >        if (sigsegv_fault_handler != NULL) {
1948 >                sigsegv_fault_handler = handler;
1949 >                return true;
1950 >        }
1951 >
1952 >        kern_return_t krc;
1953 >
1954 >        // create the the exception port
1955 >        krc = mach_port_allocate(mach_task_self(),
1956 >                          MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
1957 >        if (krc != KERN_SUCCESS) {
1958 >                mach_error("mach_port_allocate", krc);
1959 >                return false;
1960 >        }
1961 >
1962 >        // add a port send right
1963 >        krc = mach_port_insert_right(mach_task_self(),
1964 >                              _exceptionPort, _exceptionPort,
1965 >                              MACH_MSG_TYPE_MAKE_SEND);
1966 >        if (krc != KERN_SUCCESS) {
1967 >                mach_error("mach_port_insert_right", krc);
1968 >                return false;
1969 >        }
1970 >
1971 >        // get the old exception ports
1972 >        ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
1973 >        krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
1974 >                                &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
1975 >        if (krc != KERN_SUCCESS) {
1976 >                mach_error("thread_get_exception_ports", krc);
1977 >                return false;
1978 >        }
1979 >
1980 >        // set the new exception port
1981 >        //
1982 >        // We could have used EXCEPTION_STATE_IDENTITY instead of
1983 >        // EXCEPTION_DEFAULT to get the thread state in the initial
1984 >        // message, but it turns out that in the common case this is not
1985 >        // neccessary. If we need it we can later ask for it from the
1986 >        // suspended thread.
1987 >        //
1988 >        // Even with THREAD_STATE_NONE, Darwin provides the program
1989 >        // counter in the thread state.  The comments in the header file
1990 >        // seem to imply that you can count on the GPR's on an exception
1991 >        // as well but just to be safe I use MACHINE_THREAD_STATE because
1992 >        // you have to ask for all of the GPR's anyway just to get the
1993 >        // program counter. In any case because of update effective
1994 >        // address from immediate and update address from effective
1995 >        // addresses of ra and rb modes (as good an name as any for these
1996 >        // addressing modes) used in PPC instructions, you will need the
1997 >        // GPR state anyway.
1998 >        krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
1999 >                                EXCEPTION_DEFAULT, SIGSEGV_THREAD_STATE_FLAVOR);
2000 >        if (krc != KERN_SUCCESS) {
2001 >                mach_error("thread_set_exception_ports", krc);
2002 >                return false;
2003 >        }
2004 >
2005 >        // create the exception handler thread
2006 >        if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
2007 >                (void)fprintf(stderr, "creation of exception thread failed\n");
2008 >                return false;
2009 >        }
2010 >
2011 >        // do not care about the exception thread any longer, let is run standalone
2012 >        (void)pthread_detach(exc_thread);
2013 >
2014 >        sigsegv_fault_handler = handler;
2015 >        return true;
2016 > #else
2017 >        return false;
2018 > #endif
2019 > }
2020 > #endif
2021 >
2022 > #ifdef HAVE_WIN32_EXCEPTIONS
2023 > static LONG WINAPI main_exception_filter(EXCEPTION_POINTERS *ExceptionInfo)
2024 > {
2025 >        if (sigsegv_fault_handler != NULL
2026 >                && ExceptionInfo->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION
2027 >                && ExceptionInfo->ExceptionRecord->NumberParameters == 2
2028 >                && handle_badaccess(ExceptionInfo))
2029 >                return EXCEPTION_CONTINUE_EXECUTION;
2030 >
2031 >        return EXCEPTION_CONTINUE_SEARCH;
2032 > }
2033 >
2034 > #if defined __CYGWIN__ && defined __i386__
2035 > /* In Cygwin programs, SetUnhandledExceptionFilter has no effect because Cygwin
2036 >   installs a global exception handler.  We have to dig deep in order to install
2037 >   our main_exception_filter.  */
2038 >
2039 > /* Data structures for the current thread's exception handler chain.
2040 >   On the x86 Windows uses register fs, offset 0 to point to the current
2041 >   exception handler; Cygwin mucks with it, so we must do the same... :-/ */
2042 >
2043 > /* Magic taken from winsup/cygwin/include/exceptions.h.  */
2044 >
2045 > struct exception_list {
2046 >    struct exception_list *prev;
2047 >    int (*handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
2048 > };
2049 > typedef struct exception_list exception_list;
2050 >
2051 > /* Magic taken from winsup/cygwin/exceptions.cc.  */
2052 >
2053 > __asm__ (".equ __except_list,0");
2054 >
2055 > extern exception_list *_except_list __asm__ ("%fs:__except_list");
2056 >
2057 > /* For debugging.  _except_list is not otherwise accessible from gdb.  */
2058 > static exception_list *
2059 > debug_get_except_list ()
2060 > {
2061 >  return _except_list;
2062 > }
2063 >
2064 > /* Cygwin's original exception handler.  */
2065 > static int (*cygwin_exception_handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
2066 >
2067 > /* Our exception handler.  */
2068 > static int
2069 > libsigsegv_exception_handler (EXCEPTION_RECORD *exception, void *frame, CONTEXT *context, void *dispatch)
2070 > {
2071 >  EXCEPTION_POINTERS ExceptionInfo;
2072 >  ExceptionInfo.ExceptionRecord = exception;
2073 >  ExceptionInfo.ContextRecord = context;
2074 >  if (main_exception_filter (&ExceptionInfo) == EXCEPTION_CONTINUE_SEARCH)
2075 >    return cygwin_exception_handler (exception, frame, context, dispatch);
2076 >  else
2077 >    return 0;
2078 > }
2079 >
2080 > static void
2081 > do_install_main_exception_filter ()
2082 > {
2083 >  /* We cannot insert any handler into the chain, because such handlers
2084 >     must lie on the stack (?).  Instead, we have to replace(!) Cygwin's
2085 >     global exception handler.  */
2086 >  cygwin_exception_handler = _except_list->handler;
2087 >  _except_list->handler = libsigsegv_exception_handler;
2088 > }
2089 >
2090 > #else
2091 >
2092 > static void
2093 > do_install_main_exception_filter ()
2094 > {
2095 >  SetUnhandledExceptionFilter ((LPTOP_LEVEL_EXCEPTION_FILTER) &main_exception_filter);
2096 > }
2097 > #endif
2098 >
2099 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
2100 > {
2101 >        static bool main_exception_filter_installed = false;
2102 >        if (!main_exception_filter_installed) {
2103 >                do_install_main_exception_filter();
2104 >                main_exception_filter_installed = true;
2105 >        }
2106 >        sigsegv_fault_handler = handler;
2107 >        return true;
2108 > }
2109 > #endif
2110 >
2111 > bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
2112 > {
2113 > #if defined(HAVE_SIGSEGV_RECOVERY)
2114          bool success = true;
2115   #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
2116          SIGSEGV_ALL_SIGNALS
2117   #undef FAULT_HANDLER
2118 +        if (success)
2119 +            sigsegv_fault_handler = handler;
2120          return success;
2121 + #elif defined(HAVE_MACH_EXCEPTIONS) || defined(HAVE_WIN32_EXCEPTIONS)
2122 +        return sigsegv_do_install_handler(handler);
2123   #else
2124          // FAIL: no siginfo_t nor sigcontext subterfuge is available
2125          return false;
# Line 371 | Line 2133 | bool sigsegv_install_handler(sigsegv_han
2133  
2134   void sigsegv_deinstall_handler(void)
2135   {
2136 +  // We do nothing for Mach exceptions, the thread would need to be
2137 +  // suspended if not already so, and we might mess with other
2138 +  // exception handlers that came after we registered ours. There is
2139 +  // no need to remove the exception handler, in fact this function is
2140 +  // not called anywhere in Basilisk II.
2141   #ifdef HAVE_SIGSEGV_RECOVERY
2142 <        sigsegv_user_handler = 0;
2142 >        sigsegv_fault_handler = 0;
2143   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
2144          SIGSEGV_ALL_SIGNALS
2145   #undef FAULT_HANDLER
2146   #endif
2147 + #ifdef HAVE_WIN32_EXCEPTIONS
2148 +        sigsegv_fault_handler = NULL;
2149 + #endif
2150 + }
2151 +
2152 +
2153 + /*
2154 + *  Set callback function when we cannot handle the fault
2155 + */
2156 +
2157 + void sigsegv_set_dump_state(sigsegv_state_dumper_t handler)
2158 + {
2159 +        sigsegv_state_dumper = handler;
2160   }
2161  
2162 +
2163   /*
2164   *  Test program used for configure/test
2165   */
# Line 387 | Line 2168 | void sigsegv_deinstall_handler(void)
2168   #include <stdio.h>
2169   #include <stdlib.h>
2170   #include <fcntl.h>
2171 + #ifdef HAVE_SYS_MMAN_H
2172   #include <sys/mman.h>
2173 + #endif
2174   #include "vm_alloc.h"
2175  
2176 + const int REF_INDEX = 123;
2177 + const int REF_VALUE = 45;
2178 +
2179   static int page_size;
2180   static volatile char * page = 0;
2181   static volatile int handler_called = 0;
2182  
2183 < static bool sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2183 > /* Barriers */
2184 > #ifdef __GNUC__
2185 > #define BARRIER() asm volatile ("" : : : "memory")
2186 > #else
2187 > #define BARRIER() /* nothing */
2188 > #endif
2189 >
2190 > #ifdef __GNUC__
2191 > // Code range where we expect the fault to come from
2192 > static void *b_region, *e_region;
2193 > #endif
2194 >
2195 > static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2196   {
2197 + #if DEBUG
2198 +        printf("sigsegv_test_handler(%p, %p)\n", fault_address, instruction_address);
2199 +        printf("expected fault at %p\n", page + REF_INDEX);
2200 + #ifdef __GNUC__
2201 +        printf("expected instruction address range: %p-%p\n", b_region, e_region);
2202 + #endif
2203 + #endif
2204          handler_called++;
2205 <        if ((fault_address - 123) != page)
2206 <                exit(1);
2205 >        if ((fault_address - REF_INDEX) != page)
2206 >                exit(10);
2207 > #ifdef __GNUC__
2208 >        // Make sure reported fault instruction address falls into
2209 >        // expected code range
2210 >        if (instruction_address != SIGSEGV_INVALID_PC
2211 >                && ((instruction_address <  (sigsegv_address_t)b_region) ||
2212 >                        (instruction_address >= (sigsegv_address_t)e_region)))
2213 >                exit(11);
2214 > #endif
2215          if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
2216 <                exit(1);
2216 >                exit(12);
2217 >        return SIGSEGV_RETURN_SUCCESS;
2218 > }
2219 >
2220 > #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
2221 > static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2222 > {
2223 > #if DEBUG
2224 >        printf("sigsegv_insn_handler(%p, %p)\n", fault_address, instruction_address);
2225 > #endif
2226 >        if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
2227 > #ifdef __GNUC__
2228 >                // Make sure reported fault instruction address falls into
2229 >                // expected code range
2230 >                if (instruction_address != SIGSEGV_INVALID_PC
2231 >                        && ((instruction_address <  (sigsegv_address_t)b_region) ||
2232 >                                (instruction_address >= (sigsegv_address_t)e_region)))
2233 >                        return SIGSEGV_RETURN_FAILURE;
2234 > #endif
2235 >                return SIGSEGV_RETURN_SKIP_INSTRUCTION;
2236 >        }
2237 >
2238 >        return SIGSEGV_RETURN_FAILURE;
2239 > }
2240 >
2241 > // More sophisticated tests for instruction skipper
2242 > static bool arch_insn_skipper_tests()
2243 > {
2244 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
2245 >        static const unsigned char code[] = {
2246 >                0x8a, 0x00,                    // mov    (%eax),%al
2247 >                0x8a, 0x2c, 0x18,              // mov    (%eax,%ebx,1),%ch
2248 >                0x88, 0x20,                    // mov    %ah,(%eax)
2249 >                0x88, 0x08,                    // mov    %cl,(%eax)
2250 >                0x66, 0x8b, 0x00,              // mov    (%eax),%ax
2251 >                0x66, 0x8b, 0x0c, 0x18,        // mov    (%eax,%ebx,1),%cx
2252 >                0x66, 0x89, 0x00,              // mov    %ax,(%eax)
2253 >                0x66, 0x89, 0x0c, 0x18,        // mov    %cx,(%eax,%ebx,1)
2254 >                0x8b, 0x00,                    // mov    (%eax),%eax
2255 >                0x8b, 0x0c, 0x18,              // mov    (%eax,%ebx,1),%ecx
2256 >                0x89, 0x00,                    // mov    %eax,(%eax)
2257 >                0x89, 0x0c, 0x18,              // mov    %ecx,(%eax,%ebx,1)
2258 > #if defined(__x86_64__)
2259 >                0x44, 0x8a, 0x00,              // mov    (%rax),%r8b
2260 >                0x44, 0x8a, 0x20,              // mov    (%rax),%r12b
2261 >                0x42, 0x8a, 0x3c, 0x10,        // mov    (%rax,%r10,1),%dil
2262 >                0x44, 0x88, 0x00,              // mov    %r8b,(%rax)
2263 >                0x44, 0x88, 0x20,              // mov    %r12b,(%rax)
2264 >                0x42, 0x88, 0x3c, 0x10,        // mov    %dil,(%rax,%r10,1)
2265 >                0x66, 0x44, 0x8b, 0x00,        // mov    (%rax),%r8w
2266 >                0x66, 0x42, 0x8b, 0x0c, 0x10,  // mov    (%rax,%r10,1),%cx
2267 >                0x66, 0x44, 0x89, 0x00,        // mov    %r8w,(%rax)
2268 >                0x66, 0x42, 0x89, 0x0c, 0x10,  // mov    %cx,(%rax,%r10,1)
2269 >                0x44, 0x8b, 0x00,              // mov    (%rax),%r8d
2270 >                0x42, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%ecx
2271 >                0x44, 0x89, 0x00,              // mov    %r8d,(%rax)
2272 >                0x42, 0x89, 0x0c, 0x10,        // mov    %ecx,(%rax,%r10,1)
2273 >                0x48, 0x8b, 0x08,              // mov    (%rax),%rcx
2274 >                0x4c, 0x8b, 0x18,              // mov    (%rax),%r11
2275 >                0x4a, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%rcx
2276 >                0x4e, 0x8b, 0x1c, 0x10,        // mov    (%rax,%r10,1),%r11
2277 >                0x48, 0x89, 0x08,              // mov    %rcx,(%rax)
2278 >                0x4c, 0x89, 0x18,              // mov    %r11,(%rax)
2279 >                0x4a, 0x89, 0x0c, 0x10,        // mov    %rcx,(%rax,%r10,1)
2280 >                0x4e, 0x89, 0x1c, 0x10,        // mov    %r11,(%rax,%r10,1)
2281 >                0x63, 0x47, 0x04,              // movslq 4(%rdi),%eax
2282 >                0x48, 0x63, 0x47, 0x04,        // movslq 4(%rdi),%rax
2283 > #endif
2284 >                0                              // end
2285 >        };
2286 >        const int N_REGS = 20;
2287 >        unsigned long regs[N_REGS];
2288 >        for (int i = 0; i < N_REGS; i++)
2289 >                regs[i] = i;
2290 >        const unsigned long start_code = (unsigned long)&code;
2291 >        regs[X86_REG_EIP] = start_code;
2292 >        while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1)
2293 >                   && ix86_skip_instruction(regs))
2294 >                ; /* simply iterate */
2295 >        return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1);
2296 > #endif
2297          return true;
2298   }
2299 + #endif
2300  
2301   int main(void)
2302   {
2303          if (vm_init() < 0)
2304                  return 1;
2305  
2306 <        page_size = getpagesize();
2306 >        page_size = vm_get_page_size();
2307          if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
2308 <                return 1;
2308 >                return 2;
2309          
2310 +        memset((void *)page, 0, page_size);
2311          if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
2312 <                return 1;
2312 >                return 3;
2313          
2314          if (!sigsegv_install_handler(sigsegv_test_handler))
2315 <                return 1;
421 <        
422 <        page[123] = 45;
423 <        page[123] = 45;
2315 >                return 4;
2316          
2317 + #ifdef __GNUC__
2318 +        b_region = &&L_b_region1;
2319 +        e_region = &&L_e_region1;
2320 + #endif
2321 + L_b_region1:
2322 +        page[REF_INDEX] = REF_VALUE;
2323 +        if (page[REF_INDEX] != REF_VALUE)
2324 +          exit(20);
2325 +        page[REF_INDEX] = REF_VALUE;
2326 +        BARRIER();
2327 + L_e_region1:
2328 +
2329          if (handler_called != 1)
2330 <                return 1;
2330 >                return 5;
2331 >
2332 > #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
2333 >        if (!sigsegv_install_handler(sigsegv_insn_handler))
2334 >                return 6;
2335 >        
2336 >        if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
2337 >                return 7;
2338 >        
2339 >        for (int i = 0; i < page_size; i++)
2340 >                page[i] = (i + 1) % page_size;
2341 >        
2342 >        if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
2343 >                return 8;
2344 >        
2345 > #define TEST_SKIP_INSTRUCTION(TYPE) do {                                \
2346 >                const unsigned long TAG = 0x12345678 |                  \
2347 >                (sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0);   \
2348 >                TYPE data = *((TYPE *)(page + sizeof(TYPE)));   \
2349 >                volatile unsigned long effect = data + TAG;             \
2350 >                if (effect != TAG)                                                              \
2351 >                        return 9;                                                                       \
2352 >        } while (0)
2353 >        
2354 > #ifdef __GNUC__
2355 >        b_region = &&L_b_region2;
2356 >        e_region = &&L_e_region2;
2357 > #endif
2358 > L_b_region2:
2359 >        TEST_SKIP_INSTRUCTION(unsigned char);
2360 >        TEST_SKIP_INSTRUCTION(unsigned short);
2361 >        TEST_SKIP_INSTRUCTION(unsigned int);
2362 >        TEST_SKIP_INSTRUCTION(unsigned long);
2363 >        TEST_SKIP_INSTRUCTION(signed char);
2364 >        TEST_SKIP_INSTRUCTION(signed short);
2365 >        TEST_SKIP_INSTRUCTION(signed int);
2366 >        TEST_SKIP_INSTRUCTION(signed long);
2367 >        BARRIER();
2368 > L_e_region2:
2369 >
2370 >        if (!arch_insn_skipper_tests())
2371 >                return 20;
2372 > #endif
2373  
2374          vm_exit();
2375          return 0;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines