ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
(Generate patch)

Comparing BasiliskII/src/Unix/sigsegv.cpp (file contents):
Revision 1.22 by gbeauche, 2003-05-14T06:50:05Z vs.
Revision 1.66 by gbeauche, 2007-06-16T06:21:57Z

# Line 4 | Line 4
4   *  Derived from Bruno Haible's work on his SIGSEGV library for clisp
5   *  <http://clisp.sourceforge.net/>
6   *
7 < *  Basilisk II (C) 1997-2002 Christian Bauer
7 > *  MacOS X support derived from the post by Timothy J. Wood to the
8 > *  omnigroup macosx-dev list:
9 > *    Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10 > *    tjw@omnigroup.com Sun, 4 Jun 2000
11 > *    www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12 > *
13 > *  Basilisk II (C) 1997-2005 Christian Bauer
14   *
15   *  This program is free software; you can redistribute it and/or modify
16   *  it under the terms of the GNU General Public License as published by
# Line 30 | Line 36
36   #endif
37  
38   #include <list>
39 + #include <stdio.h>
40   #include <signal.h>
41   #include "sigsegv.h"
42  
# Line 45 | Line 52 | using std::list;
52   // Type of the system signal handler
53   typedef RETSIGTYPE (*signal_handler)(int);
54  
48 // Ignore range chain
49 struct ignore_range_t {
50        sigsegv_address_t       start;
51        unsigned long           length;
52        int                                     transfer_type;
53 };
54
55 typedef list<ignore_range_t> ignore_range_list_t;
56 ignore_range_list_t sigsegv_ignore_ranges;
57
55   // User's SIGSEGV handler
56   static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
57  
# Line 64 | Line 61 | static sigsegv_state_dumper_t sigsegv_st
61   // Actual SIGSEGV handler installer
62   static bool sigsegv_do_install_handler(int sig);
63  
67 // Find ignore range matching address
68 static inline ignore_range_list_t::iterator sigsegv_find_ignore_range(sigsegv_address_t address)
69 {
70        ignore_range_list_t::iterator it;
71        for (it = sigsegv_ignore_ranges.begin(); it != sigsegv_ignore_ranges.end(); it++)
72                if (address >= it->start && address < it->start + it->length)
73                        break;
74        return it;
75 }
76
64  
65   /*
66   *  Instruction decoding aids
67   */
68  
69 + // Transfer type
70 + enum transfer_type_t {
71 +        SIGSEGV_TRANSFER_UNKNOWN        = 0,
72 +        SIGSEGV_TRANSFER_LOAD           = 1,
73 +        SIGSEGV_TRANSFER_STORE          = 2,
74 + };
75 +
76   // Transfer size
77   enum transfer_size_t {
78          SIZE_UNKNOWN,
79          SIZE_BYTE,
80 <        SIZE_WORD,
81 <        SIZE_LONG
80 >        SIZE_WORD, // 2 bytes
81 >        SIZE_LONG, // 4 bytes
82 >        SIZE_QUAD, // 8 bytes
83   };
84  
85   #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
# Line 98 | Line 93 | enum addressing_mode_t {
93   };
94  
95   // Decoded instruction
101 typedef sigsegv_transfer_type_t transfer_type_t;
96   struct instruction_t {
97          transfer_type_t         transfer_type;
98          transfer_size_t         transfer_size;
# Line 107 | Line 101 | struct instruction_t {
101          char                            ra, rd;
102   };
103  
104 < static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned int * gpr)
104 > static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned long * gpr)
105   {
106          // Get opcode and divide into fields
107 <        unsigned int opcode = *((unsigned int *)nip);
107 >        unsigned int opcode = *((unsigned int *)(unsigned long)nip);
108          unsigned int primop = opcode >> 26;
109          unsigned int exop = (opcode >> 1) & 0x3ff;
110          unsigned int ra = (opcode >> 16) & 0x1f;
# Line 184 | Line 178 | static void powerpc_decode_instruction(i
178                  transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
179          case 45:        // sthu
180                  transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
181 +        case 58:        // ld, ldu, lwa
182 +                transfer_type = SIGSEGV_TRANSFER_LOAD;
183 +                transfer_size = SIZE_QUAD;
184 +                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
185 +                imm &= ~3;
186 +                break;
187 +        case 62:        // std, stdu, stq
188 +                transfer_type = SIGSEGV_TRANSFER_STORE;
189 +                transfer_size = SIZE_QUAD;
190 +                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
191 +                imm &= ~3;
192 +                break;
193          }
194          
195          // Calculate effective address
# Line 224 | Line 230 | static void powerpc_decode_instruction(i
230  
231   #if HAVE_SIGINFO_T
232   // Generic extended signal handler
233 < #if defined(__NetBSD__) || defined(__FreeBSD__)
233 > #if defined(__FreeBSD__)
234   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
235   #else
236   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
237   #endif
238   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, siginfo_t *sip, void *scp
239 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
240 + #define SIGSEGV_FAULT_HANDLER_ARGS              sip, scp
241   #define SIGSEGV_FAULT_ADDRESS                   sip->si_addr
242 < #if defined(__NetBSD__) || defined(__FreeBSD__)
242 > #if (defined(sgi) || defined(__sgi))
243 > #include <ucontext.h>
244 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
245 > #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)SIGSEGV_CONTEXT_REGS[CTX_EPC]
246 > #if (defined(mips) || defined(__mips))
247 > #define SIGSEGV_REGISTER_FILE                   &SIGSEGV_CONTEXT_REGS[CTX_EPC], &SIGSEGV_CONTEXT_REGS[CTX_R0]
248 > #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
249 > #endif
250 > #endif
251 > #if defined(__sun__)
252 > #if (defined(sparc) || defined(__sparc__))
253 > #include <sys/stack.h>
254 > #include <sys/regset.h>
255 > #include <sys/ucontext.h>
256 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
257 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[REG_PC]
258 > #define SIGSEGV_SPARC_GWINDOWS                  (((ucontext_t *)scp)->uc_mcontext.gwins)
259 > #define SIGSEGV_SPARC_RWINDOW                   (struct rwindow *)((char *)SIGSEGV_CONTEXT_REGS[REG_SP] + STACK_BIAS)
260 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)SIGSEGV_CONTEXT_REGS), SIGSEGV_SPARC_GWINDOWS, SIGSEGV_SPARC_RWINDOW
261 > #define SIGSEGV_SKIP_INSTRUCTION                sparc_skip_instruction
262 > #endif
263 > #if defined(__i386__)
264 > #include <sys/regset.h>
265 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
266 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[EIP]
267 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
268 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
269 > #endif
270 > #endif
271 > #if defined(__FreeBSD__) || defined(__OpenBSD__)
272   #if (defined(i386) || defined(__i386__))
273   #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_eip)
274 < #define SIGSEGV_REGISTER_FILE                   ((unsigned int *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
274 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
275 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
276 > #endif
277 > #endif
278 > #if defined(__NetBSD__)
279 > #if (defined(i386) || defined(__i386__))
280 > #include <sys/ucontext.h>
281 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
282 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_EIP]
283 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
284   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
285   #endif
286 + #if (defined(powerpc) || defined(__powerpc__))
287 + #include <sys/ucontext.h>
288 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
289 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_PC]
290 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_PC], (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_R0]
291 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
292 + #endif
293   #endif
294   #if defined(__linux__)
295   #if (defined(i386) || defined(__i386__))
296   #include <sys/ucontext.h>
297   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
298   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
299 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)SIGSEGV_CONTEXT_REGS
299 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
300   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
301   #endif
302   #if (defined(x86_64) || defined(__x86_64__))
# Line 251 | Line 304 | static void powerpc_decode_instruction(i
304   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
305   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
306   #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
307 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
308   #endif
309   #if (defined(ia64) || defined(__ia64__))
310   #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
# Line 259 | Line 313 | static void powerpc_decode_instruction(i
313   #include <sys/ucontext.h>
314   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.regs)
315   #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS->nip)
316 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned int *)(SIGSEGV_CONTEXT_REGS->gpr)
316 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned long *)(SIGSEGV_CONTEXT_REGS->gpr)
317   #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
318   #endif
319 + #if (defined(hppa) || defined(__hppa__))
320 + #undef  SIGSEGV_FAULT_ADDRESS
321 + #define SIGSEGV_FAULT_ADDRESS                   sip->si_ptr
322 + #endif
323 + #if (defined(arm) || defined(__arm__))
324 + #include <asm/ucontext.h> /* use kernel structure, glibc may not be in sync */
325 + #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
326 + #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.arm_pc)
327 + #define SIGSEGV_REGISTER_FILE                   (&SIGSEGV_CONTEXT_REGS.arm_r0)
328 + #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
329 + #endif
330 + #if (defined(mips) || defined(__mips__))
331 + #include <sys/ucontext.h>
332 + #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
333 + #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.pc)
334 + #define SIGSEGV_REGISTER_FILE                   &SIGSEGV_CONTEXT_REGS.pc, &SIGSEGV_CONTEXT_REGS.gregs[0]
335 + #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
336 + #endif
337   #endif
338   #endif
339  
# Line 272 | Line 344 | static void powerpc_decode_instruction(i
344   #if (defined(i386) || defined(__i386__))
345   #include <asm/sigcontext.h>
346   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext scs
347 < #define SIGSEGV_FAULT_ADDRESS                   scs.cr2
348 < #define SIGSEGV_FAULT_INSTRUCTION               scs.eip
349 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)(&scs)
347 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
348 > #define SIGSEGV_FAULT_HANDLER_ARGS              &scs
349 > #define SIGSEGV_FAULT_ADDRESS                   scp->cr2
350 > #define SIGSEGV_FAULT_INSTRUCTION               scp->eip
351 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)scp
352   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
353   #endif
354   #if (defined(sparc) || defined(__sparc__))
355   #include <asm/sigcontext.h>
356   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
357 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
358   #define SIGSEGV_FAULT_ADDRESS                   addr
359   #endif
360   #if (defined(powerpc) || defined(__powerpc__))
361   #include <asm/sigcontext.h>
362   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext *scp
363 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, scp
364   #define SIGSEGV_FAULT_ADDRESS                   scp->regs->dar
365   #define SIGSEGV_FAULT_INSTRUCTION               scp->regs->nip
366 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&scp->regs->nip, (unsigned int *)(scp->regs->gpr)
366 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&scp->regs->nip, (unsigned long *)(scp->regs->gpr)
367   #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
368   #endif
369   #if (defined(alpha) || defined(__alpha__))
370   #include <asm/sigcontext.h>
371   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
372 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
373   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
374   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
375 <
376 < // From Boehm's GC 6.0alpha8
377 < static sigsegv_address_t get_fault_address(struct sigcontext *scp)
378 < {
379 <        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
380 <        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
381 <        fault_address += (signed long)(signed short)(instruction & 0xffff);
382 <        return (sigsegv_address_t)fault_address;
383 < }
375 > #endif
376 > #if (defined(arm) || defined(__arm__))
377 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int r1, int r2, int r3, struct sigcontext sc
378 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
379 > #define SIGSEGV_FAULT_HANDLER_ARGS              &sc
380 > #define SIGSEGV_FAULT_ADDRESS                   scp->fault_address
381 > #define SIGSEGV_FAULT_INSTRUCTION               scp->arm_pc
382 > #define SIGSEGV_REGISTER_FILE                   &scp->arm_r0
383 > #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
384   #endif
385   #endif
386  
387   // Irix 5 or 6 on MIPS
388 < #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
388 > #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(_SYSTYPE_SVR4))
389   #include <ucontext.h>
390   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
391 < #define SIGSEGV_FAULT_ADDRESS                   scp->sc_badvaddr
391 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
392 > #define SIGSEGV_FAULT_ADDRESS                   (unsigned long)scp->sc_badvaddr
393 > #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)scp->sc_pc
394   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
395   #endif
396  
397   // HP-UX
398   #if (defined(hpux) || defined(__hpux__))
399   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
400 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
401   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_sl.sl_ss.ss_narrow.ss_cr21
402   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
403   #endif
# Line 326 | Line 406 | static sigsegv_address_t get_fault_addre
406   #if defined(__osf__)
407   #include <ucontext.h>
408   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
409 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
410   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_traparg_a0
411   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
412   #endif
# Line 333 | Line 414 | static sigsegv_address_t get_fault_addre
414   // AIX
415   #if defined(_AIX)
416   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
417 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
418   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_jmpbuf.jmp_context.o_vaddr
419   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
420   #endif
421  
422 < // NetBSD or FreeBSD
423 < #if defined(__NetBSD__) || defined(__FreeBSD__)
422 > // NetBSD
423 > #if defined(__NetBSD__)
424   #if (defined(m68k) || defined(__m68k__))
425   #include <m68k/frame.h>
426   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
427 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
428   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
429   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
430  
# Line 365 | Line 448 | static sigsegv_address_t get_fault_addre
448          }
449          return (sigsegv_address_t)fault_addr;
450   }
451 < #else
452 < #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, void *scp, char *addr
453 < #define SIGSEGV_FAULT_ADDRESS                   addr
451 > #endif
452 > #if (defined(alpha) || defined(__alpha__))
453 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
454 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
455 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
456 > #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
457 > #endif
458 > #if (defined(i386) || defined(__i386__))
459 > #error "FIXME: need to decode instruction and compute EA"
460 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
461 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
462 > #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
463 > #endif
464 > #endif
465 > #if defined(__FreeBSD__)
466 > #if (defined(i386) || defined(__i386__))
467   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
468 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
469 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
470 + #define SIGSEGV_FAULT_ADDRESS                   addr
471 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_eip
472 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&scp->sc_edi)
473 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
474 + #endif
475 + #if (defined(alpha) || defined(__alpha__))
476 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
477 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, char *addr, struct sigcontext *scp
478 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, addr, scp
479 + #define SIGSEGV_FAULT_ADDRESS                   addr
480 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
481   #endif
482   #endif
483  
484 < // MacOS X
484 > // Extract fault address out of a sigcontext
485 > #if (defined(alpha) || defined(__alpha__))
486 > // From Boehm's GC 6.0alpha8
487 > static sigsegv_address_t get_fault_address(struct sigcontext *scp)
488 > {
489 >        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
490 >        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
491 >        fault_address += (signed long)(signed short)(instruction & 0xffff);
492 >        return (sigsegv_address_t)fault_address;
493 > }
494 > #endif
495 >
496 >
497 > // MacOS X, not sure which version this works in. Under 10.1
498 > // vm_protect does not appear to work from a signal handler. Under
499 > // 10.2 signal handlers get siginfo type arguments but the si_addr
500 > // field is the address of the faulting instruction and not the
501 > // address that caused the SIGBUS. Maybe this works in 10.0? In any
502 > // case with Mach exception handlers there is a way to do what this
503 > // was meant to do.
504 > #ifndef HAVE_MACH_EXCEPTIONS
505   #if defined(__APPLE__) && defined(__MACH__)
506   #if (defined(ppc) || defined(__ppc__))
507   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
508 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
509   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
510   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_ir
511   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
# Line 395 | Line 525 | static sigsegv_address_t get_fault_addre
525   #endif
526   #endif
527   #endif
528 + #endif
529 +
530 + #if HAVE_WIN32_EXCEPTIONS
531 + #define WIN32_LEAN_AND_MEAN /* avoid including junk */
532 + #include <windows.h>
533 + #include <winerror.h>
534 +
535 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   EXCEPTION_POINTERS *ExceptionInfo
536 + #define SIGSEGV_FAULT_HANDLER_ARGS              ExceptionInfo
537 + #define SIGSEGV_FAULT_ADDRESS                   ExceptionInfo->ExceptionRecord->ExceptionInformation[1]
538 + #define SIGSEGV_CONTEXT_REGS                    ExceptionInfo->ContextRecord
539 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS->Eip
540 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&SIGSEGV_CONTEXT_REGS->Edi)
541 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
542 + #endif
543 +
544 + #if HAVE_MACH_EXCEPTIONS
545 +
546 + // This can easily be extended to other Mach systems, but really who
547 + // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
548 + // Mach 2.5/3.0?
549 + #if defined(__APPLE__) && defined(__MACH__)
550 +
551 + #include <sys/types.h>
552 + #include <stdlib.h>
553 + #include <stdio.h>
554 + #include <pthread.h>
555 +
556 + /*
557 + * If you are familiar with MIG then you will understand the frustration
558 + * that was necessary to get these embedded into C++ code by hand.
559 + */
560 + extern "C" {
561 + #include <mach/mach.h>
562 + #include <mach/mach_error.h>
563 +
564 + extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
565 + extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
566 +        mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
567 + extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
568 +        exception_type_t, exception_data_t, mach_msg_type_number_t);
569 + extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
570 +        exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
571 +        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
572 + extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
573 +        exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
574 +        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
575 + }
576 +
577 + // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
578 + #define HANDLER_COUNT 64
579 +
580 + // structure to tuck away existing exception handlers
581 + typedef struct _ExceptionPorts {
582 +        mach_msg_type_number_t maskCount;
583 +        exception_mask_t masks[HANDLER_COUNT];
584 +        exception_handler_t handlers[HANDLER_COUNT];
585 +        exception_behavior_t behaviors[HANDLER_COUNT];
586 +        thread_state_flavor_t flavors[HANDLER_COUNT];
587 + } ExceptionPorts;
588 +
589 + // exception handler thread
590 + static pthread_t exc_thread;
591 +
592 + // place where old exception handler info is stored
593 + static ExceptionPorts ports;
594 +
595 + // our exception port
596 + static mach_port_t _exceptionPort = MACH_PORT_NULL;
597 +
598 + #define MACH_CHECK_ERROR(name,ret) \
599 + if (ret != KERN_SUCCESS) { \
600 +        mach_error(#name, ret); \
601 +        exit (1); \
602 + }
603 +
604 + #ifdef __ppc__
605 + #define SIGSEGV_EXCEPTION_STATE_TYPE    ppc_exception_state_t
606 + #define SIGSEGV_EXCEPTION_STATE_FLAVOR  PPC_EXCEPTION_STATE
607 + #define SIGSEGV_EXCEPTION_STATE_COUNT   PPC_EXCEPTION_STATE_COUNT
608 + #define SIGSEGV_FAULT_ADDRESS                   exc_state->dar
609 + #define SIGSEGV_THREAD_STATE_TYPE               ppc_thread_state_t
610 + #define SIGSEGV_THREAD_STATE_FLAVOR             PPC_THREAD_STATE
611 + #define SIGSEGV_THREAD_STATE_COUNT              PPC_THREAD_STATE_COUNT
612 + #define SIGSEGV_FAULT_INSTRUCTION               state.srr0
613 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
614 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&state.srr0, (unsigned long *)&state.r0
615 + #endif
616 + #ifdef __i386__
617 + #ifdef i386_SAVED_STATE
618 + #define SIGSEGV_THREAD_STATE_TYPE               struct i386_saved_state
619 + #define SIGSEGV_THREAD_STATE_FLAVOR             i386_SAVED_STATE
620 + #define SIGSEGV_THREAD_STATE_COUNT              i386_SAVED_STATE_COUNT
621 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&state.edi) /* EDI is the first GPR we consider */
622 + #else
623 + #define SIGSEGV_EXCEPTION_STATE_TYPE    struct i386_exception_state
624 + #define SIGSEGV_EXCEPTION_STATE_FLAVOR  i386_EXCEPTION_STATE
625 + #define SIGSEGV_EXCEPTION_STATE_COUNT   i386_EXCEPTION_STATE_COUNT
626 + #define SIGSEGV_FAULT_ADDRESS                   exc_state->faultvaddr
627 + #define SIGSEGV_THREAD_STATE_TYPE               struct i386_thread_state
628 + #define SIGSEGV_THREAD_STATE_FLAVOR             i386_THREAD_STATE
629 + #define SIGSEGV_THREAD_STATE_COUNT              i386_THREAD_STATE_COUNT
630 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&state.eax) /* EAX is the first GPR we consider */
631 + #endif
632 + #define SIGSEGV_FAULT_INSTRUCTION               state.eip
633 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
634 + #endif
635 + #ifdef __x86_64__
636 + #define SIGSEGV_EXCEPTION_STATE_TYPE    struct x86_exception_state64
637 + #define SIGSEGV_EXCEPTION_STATE_FLAVOR  x86_EXCEPTION_STATE64
638 + #define SIGSEGV_EXCEPTION_STATE_COUNT   x86_EXCEPTION_STATE64_COUNT
639 + #define SIGSEGV_FAULT_ADDRESS                   exc_state->faultvaddr
640 + #define SIGSEGV_THREAD_STATE_TYPE               struct x86_thread_state64
641 + #define SIGSEGV_THREAD_STATE_FLAVOR             x86_THREAD_STATE64
642 + #define SIGSEGV_THREAD_STATE_COUNT              x86_THREAD_STATE64_COUNT
643 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&state.rax) /* RAX is the first GPR we consider */
644 + #define SIGSEGV_FAULT_INSTRUCTION               state.rip
645 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
646 + #endif
647 + #ifdef SIGSEGV_EXCEPTION_STATE_TYPE
648 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   mach_port_t thread, SIGSEGV_EXCEPTION_STATE_TYPE *exc_state
649 + #define SIGSEGV_FAULT_HANDLER_ARGS              thread, &exc_state
650 + #else
651 + #define SIGSEGV_FAULT_ADDRESS                   code[1]
652 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   mach_port_t thread, exception_data_t code
653 + #define SIGSEGV_FAULT_HANDLER_ARGS              thread, code
654 + #endif
655 +
656 + // Since there can only be one exception thread running at any time
657 + // this is not a problem.
658 + #define MSG_SIZE 512
659 + static char msgbuf[MSG_SIZE];
660 + static char replybuf[MSG_SIZE];
661 +
662 + /*
663 + * This is the entry point for the exception handler thread. The job
664 + * of this thread is to wait for exception messages on the exception
665 + * port that was setup beforehand and to pass them on to exc_server.
666 + * exc_server is a MIG generated function that is a part of Mach.
667 + * Its job is to decide what to do with the exception message. In our
668 + * case exc_server calls catch_exception_raise on our behalf. After
669 + * exc_server returns, it is our responsibility to send the reply.
670 + */
671 + static void *
672 + handleExceptions(void *priv)
673 + {
674 +        mach_msg_header_t *msg, *reply;
675 +        kern_return_t krc;
676 +
677 +        msg = (mach_msg_header_t *)msgbuf;
678 +        reply = (mach_msg_header_t *)replybuf;
679 +
680 +        for (;;) {
681 +                krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
682 +                                _exceptionPort, 0, MACH_PORT_NULL);
683 +                MACH_CHECK_ERROR(mach_msg, krc);
684 +
685 +                if (!exc_server(msg, reply)) {
686 +                        fprintf(stderr, "exc_server hated the message\n");
687 +                        exit(1);
688 +                }
689 +
690 +                krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
691 +                                 msg->msgh_local_port, 0, MACH_PORT_NULL);
692 +                if (krc != KERN_SUCCESS) {
693 +                        fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
694 +                                krc, mach_error_string(krc));
695 +                        exit(1);
696 +                }
697 +        }
698 + }
699 + #endif
700 + #endif
701  
702  
703   /*
# Line 403 | Line 706 | static sigsegv_address_t get_fault_addre
706  
707   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
708   // Decode and skip X86 instruction
709 < #if (defined(i386) || defined(__i386__))
709 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
710   #if defined(__linux__)
711   enum {
712 + #if (defined(i386) || defined(__i386__))
713          X86_REG_EIP = 14,
714          X86_REG_EAX = 11,
715          X86_REG_ECX = 10,
# Line 415 | Line 719 | enum {
719          X86_REG_EBP = 6,
720          X86_REG_ESI = 5,
721          X86_REG_EDI = 4
722 + #endif
723 + #if defined(__x86_64__)
724 +        X86_REG_R8  = 0,
725 +        X86_REG_R9  = 1,
726 +        X86_REG_R10 = 2,
727 +        X86_REG_R11 = 3,
728 +        X86_REG_R12 = 4,
729 +        X86_REG_R13 = 5,
730 +        X86_REG_R14 = 6,
731 +        X86_REG_R15 = 7,
732 +        X86_REG_EDI = 8,
733 +        X86_REG_ESI = 9,
734 +        X86_REG_EBP = 10,
735 +        X86_REG_EBX = 11,
736 +        X86_REG_EDX = 12,
737 +        X86_REG_EAX = 13,
738 +        X86_REG_ECX = 14,
739 +        X86_REG_ESP = 15,
740 +        X86_REG_EIP = 16
741 + #endif
742 + };
743 + #endif
744 + #if defined(__NetBSD__)
745 + enum {
746 + #if (defined(i386) || defined(__i386__))
747 +        X86_REG_EIP = _REG_EIP,
748 +        X86_REG_EAX = _REG_EAX,
749 +        X86_REG_ECX = _REG_ECX,
750 +        X86_REG_EDX = _REG_EDX,
751 +        X86_REG_EBX = _REG_EBX,
752 +        X86_REG_ESP = _REG_ESP,
753 +        X86_REG_EBP = _REG_EBP,
754 +        X86_REG_ESI = _REG_ESI,
755 +        X86_REG_EDI = _REG_EDI
756 + #endif
757 + };
758 + #endif
759 + #if defined(__FreeBSD__)
760 + enum {
761 + #if (defined(i386) || defined(__i386__))
762 +        X86_REG_EIP = 10,
763 +        X86_REG_EAX = 7,
764 +        X86_REG_ECX = 6,
765 +        X86_REG_EDX = 5,
766 +        X86_REG_EBX = 4,
767 +        X86_REG_ESP = 13,
768 +        X86_REG_EBP = 2,
769 +        X86_REG_ESI = 1,
770 +        X86_REG_EDI = 0
771 + #endif
772 + };
773 + #endif
774 + #if defined(__OpenBSD__)
775 + enum {
776 + #if defined(__i386__)
777 +        // EDI is the first register we consider
778 + #define OREG(REG) offsetof(struct sigcontext, sc_##REG)
779 + #define DREG(REG) ((OREG(REG) - OREG(edi)) / 4)
780 +        X86_REG_EIP = DREG(eip), // 7
781 +        X86_REG_EAX = DREG(eax), // 6
782 +        X86_REG_ECX = DREG(ecx), // 5
783 +        X86_REG_EDX = DREG(edx), // 4
784 +        X86_REG_EBX = DREG(ebx), // 3
785 +        X86_REG_ESP = DREG(esp), // 10
786 +        X86_REG_EBP = DREG(ebp), // 2
787 +        X86_REG_ESI = DREG(esi), // 1
788 +        X86_REG_EDI = DREG(edi)  // 0
789 + #undef DREG
790 + #undef OREG
791 + #endif
792 + };
793 + #endif
794 + #if defined(__sun__)
795 + // Same as for Linux, need to check for x86-64
796 + enum {
797 + #if defined(__i386__)
798 +        X86_REG_EIP = EIP,
799 +        X86_REG_EAX = EAX,
800 +        X86_REG_ECX = ECX,
801 +        X86_REG_EDX = EDX,
802 +        X86_REG_EBX = EBX,
803 +        X86_REG_ESP = ESP,
804 +        X86_REG_EBP = EBP,
805 +        X86_REG_ESI = ESI,
806 +        X86_REG_EDI = EDI
807 + #endif
808   };
809   #endif
810 < #if defined(__NetBSD__) || defined(__FreeBSD__)
810 > #if defined(__APPLE__) && defined(__MACH__)
811   enum {
812 + #if (defined(i386) || defined(__i386__))
813 + #ifdef i386_SAVED_STATE
814 +        // same as FreeBSD (in Open Darwin 8.0.1)
815          X86_REG_EIP = 10,
816          X86_REG_EAX = 7,
817          X86_REG_ECX = 6,
# Line 428 | Line 821 | enum {
821          X86_REG_EBP = 2,
822          X86_REG_ESI = 1,
823          X86_REG_EDI = 0
824 + #else
825 +        // new layout (MacOS X 10.4.4 for x86)
826 +        X86_REG_EIP = 10,
827 +        X86_REG_EAX = 0,
828 +        X86_REG_ECX = 2,
829 +        X86_REG_EDX = 3,
830 +        X86_REG_EBX = 1,
831 +        X86_REG_ESP = 7,
832 +        X86_REG_EBP = 6,
833 +        X86_REG_ESI = 5,
834 +        X86_REG_EDI = 4
835 + #endif
836 + #endif
837 + #if defined(__x86_64__)
838 +        X86_REG_R8  = 8,
839 +        X86_REG_R9  = 9,
840 +        X86_REG_R10 = 10,
841 +        X86_REG_R11 = 11,
842 +        X86_REG_R12 = 12,
843 +        X86_REG_R13 = 13,
844 +        X86_REG_R14 = 14,
845 +        X86_REG_R15 = 15,
846 +        X86_REG_EDI = 4,
847 +        X86_REG_ESI = 5,
848 +        X86_REG_EBP = 6,
849 +        X86_REG_EBX = 1,
850 +        X86_REG_EDX = 3,
851 +        X86_REG_EAX = 0,
852 +        X86_REG_ECX = 2,
853 +        X86_REG_ESP = 7,
854 +        X86_REG_EIP = 16
855 + #endif
856 + };
857 + #endif
858 + #if defined(_WIN32)
859 + enum {
860 + #if (defined(i386) || defined(__i386__))
861 +        X86_REG_EIP = 7,
862 +        X86_REG_EAX = 5,
863 +        X86_REG_ECX = 4,
864 +        X86_REG_EDX = 3,
865 +        X86_REG_EBX = 2,
866 +        X86_REG_ESP = 10,
867 +        X86_REG_EBP = 6,
868 +        X86_REG_ESI = 1,
869 +        X86_REG_EDI = 0
870 + #endif
871   };
872   #endif
873   // FIXME: this is partly redundant with the instruction decoding phase
# Line 464 | Line 904 | static inline int ix86_step_over_modrm(u
904          return offset;
905   }
906  
907 < static bool ix86_skip_instruction(unsigned int * regs)
907 > static bool ix86_skip_instruction(unsigned long * regs)
908   {
909          unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
910  
911          if (eip == 0)
912                  return false;
913 + #ifdef _WIN32
914 +        if (IsBadCodePtr((FARPROC)eip))
915 +                return false;
916 + #endif
917          
918 +        enum instruction_type_t {
919 +                i_MOV,
920 +                i_ADD
921 +        };
922 +
923          transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
924          transfer_size_t transfer_size = SIZE_LONG;
925 +        instruction_type_t instruction_type = i_MOV;
926          
927          int reg = -1;
928          int len = 0;
929 <        
929 >
930 > #if DEBUG
931 >        printf("IP: %p [%02x %02x %02x %02x...]\n",
932 >                   eip, eip[0], eip[1], eip[2], eip[3]);
933 > #endif
934 >
935          // Operand size prefix
936          if (*eip == 0x66) {
937                  eip++;
# Line 484 | Line 939 | static bool ix86_skip_instruction(unsign
939                  transfer_size = SIZE_WORD;
940          }
941  
942 +        // REX prefix
943 + #if defined(__x86_64__)
944 +        struct rex_t {
945 +                unsigned char W;
946 +                unsigned char R;
947 +                unsigned char X;
948 +                unsigned char B;
949 +        };
950 +        rex_t rex = { 0, 0, 0, 0 };
951 +        bool has_rex = false;
952 +        if ((*eip & 0xf0) == 0x40) {
953 +                has_rex = true;
954 +                const unsigned char b = *eip;
955 +                rex.W = b & (1 << 3);
956 +                rex.R = b & (1 << 2);
957 +                rex.X = b & (1 << 1);
958 +                rex.B = b & (1 << 0);
959 + #if DEBUG
960 +                printf("REX: %c,%c,%c,%c\n",
961 +                           rex.W ? 'W' : '_',
962 +                           rex.R ? 'R' : '_',
963 +                           rex.X ? 'X' : '_',
964 +                           rex.B ? 'B' : '_');
965 + #endif
966 +                eip++;
967 +                len++;
968 +                if (rex.W)
969 +                        transfer_size = SIZE_QUAD;
970 +        }
971 + #else
972 +        const bool has_rex = false;
973 + #endif
974 +
975          // Decode instruction
976 +        int op_len = 1;
977 +        int target_size = SIZE_UNKNOWN;
978          switch (eip[0]) {
979          case 0x0f:
980 +                target_size = transfer_size;
981              switch (eip[1]) {
982 +                case 0xbe: // MOVSX r32, r/m8
983              case 0xb6: // MOVZX r32, r/m8
984 +                        transfer_size = SIZE_BYTE;
985 +                        goto do_mov_extend;
986 +                case 0xbf: // MOVSX r32, r/m16
987              case 0xb7: // MOVZX r32, r/m16
988 <                switch (eip[2] & 0xc0) {
989 <                case 0x80:
990 <                    reg = (eip[2] >> 3) & 7;
991 <                    transfer_type = SIGSEGV_TRANSFER_LOAD;
992 <                    break;
498 <                case 0x40:
499 <                    reg = (eip[2] >> 3) & 7;
500 <                    transfer_type = SIGSEGV_TRANSFER_LOAD;
501 <                    break;
502 <                case 0x00:
503 <                    reg = (eip[2] >> 3) & 7;
504 <                    transfer_type = SIGSEGV_TRANSFER_LOAD;
505 <                    break;
988 >                        transfer_size = SIZE_WORD;
989 >                        goto do_mov_extend;
990 >                  do_mov_extend:
991 >                        op_len = 2;
992 >                        goto do_transfer_load;
993                  }
507                len += 3 + ix86_step_over_modrm(eip + 2);
994                  break;
995 <            }
996 <          break;
995 > #if defined(__x86_64__)
996 >        case 0x63: // MOVSXD r64, r/m32
997 >                if (has_rex && rex.W) {
998 >                        transfer_size = SIZE_LONG;
999 >                        target_size = SIZE_QUAD;
1000 >                }
1001 >                else if (transfer_size != SIZE_WORD) {
1002 >                        transfer_size = SIZE_LONG;
1003 >                        target_size = SIZE_QUAD;
1004 >                }
1005 >                goto do_transfer_load;
1006 > #endif
1007 >        case 0x02: // ADD r8, r/m8
1008 >                transfer_size = SIZE_BYTE;
1009 >        case 0x03: // ADD r32, r/m32
1010 >                instruction_type = i_ADD;
1011 >                goto do_transfer_load;
1012          case 0x8a: // MOV r8, r/m8
1013                  transfer_size = SIZE_BYTE;
1014          case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
1015 <                switch (eip[1] & 0xc0) {
1015 >          do_transfer_load:
1016 >                switch (eip[op_len] & 0xc0) {
1017                  case 0x80:
1018 <                        reg = (eip[1] >> 3) & 7;
1018 >                        reg = (eip[op_len] >> 3) & 7;
1019                          transfer_type = SIGSEGV_TRANSFER_LOAD;
1020                          break;
1021                  case 0x40:
1022 <                        reg = (eip[1] >> 3) & 7;
1022 >                        reg = (eip[op_len] >> 3) & 7;
1023                          transfer_type = SIGSEGV_TRANSFER_LOAD;
1024                          break;
1025                  case 0x00:
1026 <                        reg = (eip[1] >> 3) & 7;
1026 >                        reg = (eip[op_len] >> 3) & 7;
1027                          transfer_type = SIGSEGV_TRANSFER_LOAD;
1028                          break;
1029                  }
1030 <                len += 2 + ix86_step_over_modrm(eip + 1);
1030 >                len += 1 + op_len + ix86_step_over_modrm(eip + op_len);
1031                  break;
1032 +        case 0x00: // ADD r/m8, r8
1033 +                transfer_size = SIZE_BYTE;
1034 +        case 0x01: // ADD r/m32, r32
1035 +                instruction_type = i_ADD;
1036 +                goto do_transfer_store;
1037          case 0x88: // MOV r/m8, r8
1038                  transfer_size = SIZE_BYTE;
1039          case 0x89: // MOV r/m32, r32 (or 16-bit operation)
1040 <                switch (eip[1] & 0xc0) {
1040 >          do_transfer_store:
1041 >                switch (eip[op_len] & 0xc0) {
1042                  case 0x80:
1043 <                        reg = (eip[1] >> 3) & 7;
1043 >                        reg = (eip[op_len] >> 3) & 7;
1044                          transfer_type = SIGSEGV_TRANSFER_STORE;
1045                          break;
1046                  case 0x40:
1047 <                        reg = (eip[1] >> 3) & 7;
1047 >                        reg = (eip[op_len] >> 3) & 7;
1048                          transfer_type = SIGSEGV_TRANSFER_STORE;
1049                          break;
1050                  case 0x00:
1051 <                        reg = (eip[1] >> 3) & 7;
1051 >                        reg = (eip[op_len] >> 3) & 7;
1052                          transfer_type = SIGSEGV_TRANSFER_STORE;
1053                          break;
1054                  }
1055 <                len += 2 + ix86_step_over_modrm(eip + 1);
1055 >                len += 1 + op_len + ix86_step_over_modrm(eip + op_len);
1056                  break;
1057          }
1058 +        if (target_size == SIZE_UNKNOWN)
1059 +                target_size = transfer_size;
1060  
1061          if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1062                  // Unknown machine code, let it crash. Then patch the decoder
1063                  return false;
1064          }
1065  
1066 <        if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
1067 <                static const int x86_reg_map[8] = {
1066 > #if defined(__x86_64__)
1067 >        if (rex.R)
1068 >                reg += 8;
1069 > #endif
1070 >
1071 >        if (instruction_type == i_MOV && transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
1072 >                static const int x86_reg_map[] = {
1073                          X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
1074 <                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI
1074 >                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI,
1075 > #if defined(__x86_64__)
1076 >                        X86_REG_R8,  X86_REG_R9,  X86_REG_R10, X86_REG_R11,
1077 >                        X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15,
1078 > #endif
1079                  };
1080                  
1081 <                if (reg < 0 || reg >= 8)
1081 >                if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1))
1082                          return false;
1083  
1084 +                // Set 0 to the relevant register part
1085 +                // NOTE: this is only valid for MOV alike instructions
1086                  int rloc = x86_reg_map[reg];
1087 <                switch (transfer_size) {
1087 >                switch (target_size) {
1088                  case SIZE_BYTE:
1089 <                        regs[rloc] = (regs[rloc] & ~0xff);
1089 >                        if (has_rex || reg < 4)
1090 >                                regs[rloc] = (regs[rloc] & ~0x00ffL);
1091 >                        else {
1092 >                                rloc = x86_reg_map[reg - 4];
1093 >                                regs[rloc] = (regs[rloc] & ~0xff00L);
1094 >                        }
1095                          break;
1096                  case SIZE_WORD:
1097 <                        regs[rloc] = (regs[rloc] & ~0xffff);
1097 >                        regs[rloc] = (regs[rloc] & ~0xffffL);
1098                          break;
1099                  case SIZE_LONG:
1100 +                case SIZE_QUAD: // zero-extension
1101                          regs[rloc] = 0;
1102                          break;
1103                  }
1104          }
1105  
1106   #if DEBUG
1107 <        printf("%08x: %s %s access", regs[X86_REG_EIP],
1108 <                   transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : "long",
1107 >        printf("%p: %s %s access", (void *)regs[X86_REG_EIP],
1108 >                   transfer_size == SIZE_BYTE ? "byte" :
1109 >                   transfer_size == SIZE_WORD ? "word" :
1110 >                   transfer_size == SIZE_LONG ? "long" :
1111 >                   transfer_size == SIZE_QUAD ? "quad" : "unknown",
1112                     transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1113          
1114          if (reg != -1) {
1115 <                static const char * x86_reg_str_map[8] = {
1116 <                        "eax", "ecx", "edx", "ebx",
1117 <                        "esp", "ebp", "esi", "edi"
1115 >                static const char * x86_byte_reg_str_map[] = {
1116 >                        "al",   "cl",   "dl",   "bl",
1117 >                        "spl",  "bpl",  "sil",  "dil",
1118 >                        "r8b",  "r9b",  "r10b", "r11b",
1119 >                        "r12b", "r13b", "r14b", "r15b",
1120 >                        "ah",   "ch",   "dh",   "bh",
1121                  };
1122 <                printf(" %s register %%%s", transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from", x86_reg_str_map[reg]);
1122 >                static const char * x86_word_reg_str_map[] = {
1123 >                        "ax",   "cx",   "dx",   "bx",
1124 >                        "sp",   "bp",   "si",   "di",
1125 >                        "r8w",  "r9w",  "r10w", "r11w",
1126 >                        "r12w", "r13w", "r14w", "r15w",
1127 >                };
1128 >                static const char *x86_long_reg_str_map[] = {
1129 >                        "eax",  "ecx",  "edx",  "ebx",
1130 >                        "esp",  "ebp",  "esi",  "edi",
1131 >                        "r8d",  "r9d",  "r10d", "r11d",
1132 >                        "r12d", "r13d", "r14d", "r15d",
1133 >                };
1134 >                static const char *x86_quad_reg_str_map[] = {
1135 >                        "rax", "rcx", "rdx", "rbx",
1136 >                        "rsp", "rbp", "rsi", "rdi",
1137 >                        "r8",  "r9",  "r10", "r11",
1138 >                        "r12", "r13", "r14", "r15",
1139 >                };
1140 >                const char * reg_str = NULL;
1141 >                switch (target_size) {
1142 >                case SIZE_BYTE:
1143 >                        reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg];
1144 >                        break;
1145 >                case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break;
1146 >                case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break;
1147 >                case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break;
1148 >                }
1149 >                if (reg_str)
1150 >                        printf(" %s register %%%s",
1151 >                                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from",
1152 >                                   reg_str);
1153          }
1154          printf(", %d bytes instruction\n", len);
1155   #endif
# Line 598 | Line 1161 | static bool ix86_skip_instruction(unsign
1161  
1162   // Decode and skip PPC instruction
1163   #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
1164 < static bool powerpc_skip_instruction(unsigned int * nip_p, unsigned int * regs)
1164 > static bool powerpc_skip_instruction(unsigned long * nip_p, unsigned long * regs)
1165   {
1166          instruction_t instr;
1167          powerpc_decode_instruction(&instr, *nip_p, regs);
# Line 608 | Line 1171 | static bool powerpc_skip_instruction(uns
1171                  return false;
1172          }
1173  
611        ignore_range_list_t::iterator it = sigsegv_find_ignore_range((sigsegv_address_t)instr.addr);
612        if (it == sigsegv_ignore_ranges.end() || ((it->transfer_type & instr.transfer_type) != instr.transfer_type)) {
613                // Address doesn't fall into ignore ranges list, let it crash.
614                return false;
615        }
616
1174   #if DEBUG
1175          printf("%08x: %s %s access", *nip_p,
1176 <                   instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : "long",
1176 >                   instr.transfer_size == SIZE_BYTE ? "byte" :
1177 >                   instr.transfer_size == SIZE_WORD ? "word" :
1178 >                   instr.transfer_size == SIZE_LONG ? "long" : "quad",
1179                     instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1180          
1181          if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
# Line 634 | Line 1193 | static bool powerpc_skip_instruction(uns
1193          return true;
1194   }
1195   #endif
1196 +
1197 + // Decode and skip MIPS instruction
1198 + #if (defined(mips) || defined(__mips))
1199 + static bool mips_skip_instruction(greg_t * pc_p, greg_t * regs)
1200 + {
1201 +  unsigned int * epc = (unsigned int *)(unsigned long)*pc_p;
1202 +
1203 +  if (epc == 0)
1204 +        return false;
1205 +
1206 + #if DEBUG
1207 +  printf("IP: %p [%08x]\n", epc, epc[0]);
1208 + #endif
1209 +
1210 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1211 +  transfer_size_t transfer_size = SIZE_LONG;
1212 +  int direction = 0;
1213 +
1214 +  const unsigned int opcode = epc[0];
1215 +  switch (opcode >> 26) {
1216 +  case 32: // Load Byte
1217 +  case 36: // Load Byte Unsigned
1218 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1219 +        transfer_size = SIZE_BYTE;
1220 +        break;
1221 +  case 33: // Load Halfword
1222 +  case 37: // Load Halfword Unsigned
1223 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1224 +        transfer_size = SIZE_WORD;
1225 +        break;
1226 +  case 35: // Load Word
1227 +  case 39: // Load Word Unsigned
1228 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1229 +        transfer_size = SIZE_LONG;
1230 +        break;
1231 +  case 34: // Load Word Left
1232 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1233 +        transfer_size = SIZE_LONG;
1234 +        direction = -1;
1235 +        break;
1236 +  case 38: // Load Word Right
1237 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1238 +        transfer_size = SIZE_LONG;
1239 +        direction = 1;
1240 +        break;
1241 +  case 55: // Load Doubleword
1242 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1243 +        transfer_size = SIZE_QUAD;
1244 +        break;
1245 +  case 26: // Load Doubleword Left
1246 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1247 +        transfer_size = SIZE_QUAD;
1248 +        direction = -1;
1249 +        break;
1250 +  case 27: // Load Doubleword Right
1251 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1252 +        transfer_size = SIZE_QUAD;
1253 +        direction = 1;
1254 +        break;
1255 +  case 40: // Store Byte
1256 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1257 +        transfer_size = SIZE_BYTE;
1258 +        break;
1259 +  case 41: // Store Halfword
1260 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1261 +        transfer_size = SIZE_WORD;
1262 +        break;
1263 +  case 43: // Store Word
1264 +  case 42: // Store Word Left
1265 +  case 46: // Store Word Right
1266 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1267 +        transfer_size = SIZE_LONG;
1268 +        break;
1269 +  case 63: // Store Doubleword
1270 +  case 44: // Store Doubleword Left
1271 +  case 45: // Store Doubleword Right
1272 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1273 +        transfer_size = SIZE_QUAD;
1274 +        break;
1275 +  /* Misc instructions unlikely to be used within CPU emulators */
1276 +  case 48: // Load Linked Word
1277 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1278 +        transfer_size = SIZE_LONG;
1279 +        break;
1280 +  case 52: // Load Linked Doubleword
1281 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1282 +        transfer_size = SIZE_QUAD;
1283 +        break;
1284 +  case 56: // Store Conditional Word
1285 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1286 +        transfer_size = SIZE_LONG;
1287 +        break;
1288 +  case 60: // Store Conditional Doubleword
1289 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1290 +        transfer_size = SIZE_QUAD;
1291 +        break;
1292 +  }
1293 +
1294 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1295 +        // Unknown machine code, let it crash. Then patch the decoder
1296 +        return false;
1297 +  }
1298 +
1299 +  // Zero target register in case of a load operation
1300 +  const int reg = (opcode >> 16) & 0x1f;
1301 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD) {
1302 +        if (direction == 0)
1303 +          regs[reg] = 0;
1304 +        else {
1305 +          // FIXME: untested code
1306 +          unsigned long ea = regs[(opcode >> 21) & 0x1f];
1307 +          ea += (signed long)(signed int)(signed short)(opcode & 0xffff);
1308 +          const int offset = ea & (transfer_size == SIZE_LONG ? 3 : 7);
1309 +          unsigned long value;
1310 +          if (direction > 0) {
1311 +                const unsigned long rmask = ~((1L << ((offset + 1) * 8)) - 1);
1312 +                value = regs[reg] & rmask;
1313 +          }
1314 +          else {
1315 +                const unsigned long lmask = (1L << (offset * 8)) - 1;
1316 +                value = regs[reg] & lmask;
1317 +          }
1318 +          // restore most significant bits
1319 +          if (transfer_size == SIZE_LONG)
1320 +                value = (signed long)(signed int)value;
1321 +          regs[reg] = value;
1322 +        }
1323 +  }
1324 +
1325 + #if DEBUG
1326 + #if (defined(_ABIN32) || defined(_ABI64))
1327 +  static const char * mips_gpr_names[32] = {
1328 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1329 +        "t0",   "t1",   "t2",   "t3",   "t4",   "t5",   "t6",   "t7",
1330 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1331 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1332 +  };
1333 + #else
1334 +  static const char * mips_gpr_names[32] = {
1335 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1336 +        "a4",   "a5",   "a6",   "a7",   "t0",   "t1",   "t2",   "t3",
1337 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1338 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1339 +  };
1340 + #endif
1341 +  printf("%s %s register %s\n",
1342 +                 transfer_size == SIZE_BYTE ? "byte" :
1343 +                 transfer_size == SIZE_WORD ? "word" :
1344 +                 transfer_size == SIZE_LONG ? "long" :
1345 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1346 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1347 +                 mips_gpr_names[reg]);
1348 + #endif
1349 +
1350 +  *pc_p += 4;
1351 +  return true;
1352 + }
1353 + #endif
1354 +
1355 + // Decode and skip SPARC instruction
1356 + #if (defined(sparc) || defined(__sparc__))
1357 + enum {
1358 + #if (defined(__sun__))
1359 +  SPARC_REG_G1 = REG_G1,
1360 +  SPARC_REG_O0 = REG_O0,
1361 +  SPARC_REG_PC = REG_PC,
1362 +  SPARC_REG_nPC = REG_nPC
1363 + #endif
1364 + };
1365 + static bool sparc_skip_instruction(unsigned long * regs, gwindows_t * gwins, struct rwindow * rwin)
1366 + {
1367 +  unsigned int * pc = (unsigned int *)regs[SPARC_REG_PC];
1368 +
1369 +  if (pc == 0)
1370 +        return false;
1371 +
1372 + #if DEBUG
1373 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1374 + #endif
1375 +
1376 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1377 +  transfer_size_t transfer_size = SIZE_LONG;
1378 +  bool register_pair = false;
1379 +
1380 +  const unsigned int opcode = pc[0];
1381 +  if ((opcode >> 30) != 3)
1382 +        return false;
1383 +  switch ((opcode >> 19) & 0x3f) {
1384 +  case 9: // Load Signed Byte
1385 +  case 1: // Load Unsigned Byte
1386 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1387 +        transfer_size = SIZE_BYTE;
1388 +        break;
1389 +  case 10:// Load Signed Halfword
1390 +  case 2: // Load Unsigned Word
1391 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1392 +        transfer_size = SIZE_WORD;
1393 +        break;
1394 +  case 8: // Load Word
1395 +  case 0: // Load Unsigned Word
1396 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1397 +        transfer_size = SIZE_LONG;
1398 +        break;
1399 +  case 11:// Load Extended Word
1400 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1401 +        transfer_size = SIZE_QUAD;
1402 +        break;
1403 +  case 3: // Load Doubleword
1404 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1405 +        transfer_size = SIZE_LONG;
1406 +        register_pair = true;
1407 +        break;
1408 +  case 5: // Store Byte
1409 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1410 +        transfer_size = SIZE_BYTE;
1411 +        break;
1412 +  case 6: // Store Halfword
1413 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1414 +        transfer_size = SIZE_WORD;
1415 +        break;
1416 +  case 4: // Store Word
1417 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1418 +        transfer_size = SIZE_LONG;
1419 +        break;
1420 +  case 14:// Store Extended Word
1421 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1422 +        transfer_size = SIZE_QUAD;
1423 +        break;
1424 +  case 7: // Store Doubleword
1425 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1426 +        transfer_size = SIZE_LONG;
1427 +        register_pair = true;
1428 +        break;
1429 +  }
1430 +
1431 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1432 +        // Unknown machine code, let it crash. Then patch the decoder
1433 +        return false;
1434 +  }
1435 +
1436 +  const int reg = (opcode >> 25) & 0x1f;
1437 +
1438 + #if DEBUG
1439 +  static const char * reg_names[] = {
1440 +        "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
1441 +        "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
1442 +        "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
1443 +        "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7"
1444 +  };
1445 +  printf("%s %s register %s\n",
1446 +                 transfer_size == SIZE_BYTE ? "byte" :
1447 +                 transfer_size == SIZE_WORD ? "word" :
1448 +                 transfer_size == SIZE_LONG ? "long" :
1449 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1450 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1451 +                 reg_names[reg]);
1452 + #endif
1453 +
1454 +  // Zero target register in case of a load operation
1455 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != 0) {
1456 +        // FIXME: code to handle local & input registers is not tested
1457 +        if (reg >= 1 && reg < 8) {
1458 +          // global registers
1459 +          regs[reg - 1 + SPARC_REG_G1] = 0;
1460 +        }
1461 +        else if (reg >= 8 && reg < 16) {
1462 +          // output registers
1463 +          regs[reg - 8 + SPARC_REG_O0] = 0;
1464 +        }
1465 +        else if (reg >= 16 && reg < 24) {
1466 +          // local registers (in register windows)
1467 +          if (gwins)
1468 +                gwins->wbuf->rw_local[reg - 16] = 0;
1469 +          else
1470 +                rwin->rw_local[reg - 16] = 0;
1471 +        }
1472 +        else {
1473 +          // input registers (in register windows)
1474 +          if (gwins)
1475 +                gwins->wbuf->rw_in[reg - 24] = 0;
1476 +          else
1477 +                rwin->rw_in[reg - 24] = 0;
1478 +        }
1479 +  }
1480 +
1481 +  regs[SPARC_REG_PC] += 4;
1482 +  regs[SPARC_REG_nPC] += 4;
1483 +  return true;
1484 + }
1485 + #endif
1486 + #endif
1487 +
1488 + // Decode and skip ARM instruction
1489 + #if (defined(arm) || defined(__arm__))
1490 + enum {
1491 + #if (defined(__linux__))
1492 +  ARM_REG_PC = 15,
1493 +  ARM_REG_CPSR = 16
1494 + #endif
1495 + };
1496 + static bool arm_skip_instruction(unsigned long * regs)
1497 + {
1498 +  unsigned int * pc = (unsigned int *)regs[ARM_REG_PC];
1499 +
1500 +  if (pc == 0)
1501 +        return false;
1502 +
1503 + #if DEBUG
1504 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1505 + #endif
1506 +
1507 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1508 +  transfer_size_t transfer_size = SIZE_UNKNOWN;
1509 +  enum { op_sdt = 1, op_sdth = 2 };
1510 +  int op = 0;
1511 +
1512 +  // Handle load/store instructions only
1513 +  const unsigned int opcode = pc[0];
1514 +  switch ((opcode >> 25) & 7) {
1515 +  case 0: // Halfword and Signed Data Transfer (LDRH, STRH, LDRSB, LDRSH)
1516 +        op = op_sdth;
1517 +        // Determine transfer size (S/H bits)
1518 +        switch ((opcode >> 5) & 3) {
1519 +        case 0: // SWP instruction
1520 +          break;
1521 +        case 1: // Unsigned halfwords
1522 +        case 3: // Signed halfwords
1523 +          transfer_size = SIZE_WORD;
1524 +          break;
1525 +        case 2: // Signed byte
1526 +          transfer_size = SIZE_BYTE;
1527 +          break;
1528 +        }
1529 +        break;
1530 +  case 2:
1531 +  case 3: // Single Data Transfer (LDR, STR)
1532 +        op = op_sdt;
1533 +        // Determine transfer size (B bit)
1534 +        if (((opcode >> 22) & 1) == 1)
1535 +          transfer_size = SIZE_BYTE;
1536 +        else
1537 +          transfer_size = SIZE_LONG;
1538 +        break;
1539 +  default:
1540 +        // FIXME: support load/store mutliple?
1541 +        return false;
1542 +  }
1543 +
1544 +  // Check for invalid transfer size (SWP instruction?)
1545 +  if (transfer_size == SIZE_UNKNOWN)
1546 +        return false;
1547 +
1548 +  // Determine transfer type (L bit)
1549 +  if (((opcode >> 20) & 1) == 1)
1550 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1551 +  else
1552 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1553 +
1554 +  // Compute offset
1555 +  int offset;
1556 +  if (((opcode >> 25) & 1) == 0) {
1557 +        if (op == op_sdt)
1558 +          offset = opcode & 0xfff;
1559 +        else if (op == op_sdth) {
1560 +          int rm = opcode & 0xf;
1561 +          if (((opcode >> 22) & 1) == 0) {
1562 +                // register offset
1563 +                offset = regs[rm];
1564 +          }
1565 +          else {
1566 +                // immediate offset
1567 +                offset = ((opcode >> 4) & 0xf0) | (opcode & 0x0f);
1568 +          }
1569 +        }
1570 +  }
1571 +  else {
1572 +        const int rm = opcode & 0xf;
1573 +        const int sh = (opcode >> 7) & 0x1f;
1574 +        if (((opcode >> 4) & 1) == 1) {
1575 +          // we expect only legal load/store instructions
1576 +          printf("FATAL: invalid shift operand\n");
1577 +          return false;
1578 +        }
1579 +        const unsigned int v = regs[rm];
1580 +        switch ((opcode >> 5) & 3) {
1581 +        case 0: // logical shift left
1582 +          offset = sh ? v << sh : v;
1583 +          break;
1584 +        case 1: // logical shift right
1585 +          offset = sh ? v >> sh : 0;
1586 +          break;
1587 +        case 2: // arithmetic shift right
1588 +          if (sh)
1589 +                offset = ((signed int)v) >> sh;
1590 +          else
1591 +                offset = (v & 0x80000000) ? 0xffffffff : 0;
1592 +          break;
1593 +        case 3: // rotate right
1594 +          if (sh)
1595 +                offset = (v >> sh) | (v << (32 - sh));
1596 +          else
1597 +                offset = (v >> 1) | ((regs[ARM_REG_CPSR] << 2) & 0x80000000);
1598 +          break;
1599 +        }
1600 +  }
1601 +  if (((opcode >> 23) & 1) == 0)
1602 +        offset = -offset;
1603 +
1604 +  int rd = (opcode >> 12) & 0xf;
1605 +  int rn = (opcode >> 16) & 0xf;
1606 + #if DEBUG
1607 +  static const char * reg_names[] = {
1608 +        "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1609 +        "r9", "r9", "sl", "fp", "ip", "sp", "lr", "pc"
1610 +  };
1611 +  printf("%s %s register %s\n",
1612 +                 transfer_size == SIZE_BYTE ? "byte" :
1613 +                 transfer_size == SIZE_WORD ? "word" :
1614 +                 transfer_size == SIZE_LONG ? "long" : "unknown",
1615 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1616 +                 reg_names[rd]);
1617 + #endif
1618 +
1619 +  unsigned int base = regs[rn];
1620 +  if (((opcode >> 24) & 1) == 1)
1621 +        base += offset;
1622 +
1623 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD)
1624 +        regs[rd] = 0;
1625 +
1626 +  if (((opcode >> 24) & 1) == 0)                // post-index addressing
1627 +        regs[rn] += offset;
1628 +  else if (((opcode >> 21) & 1) == 1)   // write-back address into base
1629 +        regs[rn] = base;
1630 +
1631 +  regs[ARM_REG_PC] += 4;
1632 +  return true;
1633 + }
1634   #endif
1635  
1636 +
1637   // Fallbacks
1638   #ifndef SIGSEGV_FAULT_INSTRUCTION
1639   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_PC
1640   #endif
1641 + #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
1642 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
1643 + #endif
1644 + #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
1645 + #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  sigsegv_fault_handler(ADDR, IP)
1646 + #endif
1647  
1648   // SIGSEGV recovery supported ?
1649   #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
# Line 651 | Line 1655 | static bool powerpc_skip_instruction(uns
1655   *  SIGSEGV global handler
1656   */
1657  
1658 < #ifdef HAVE_SIGSEGV_RECOVERY
1659 < static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1658 > // This function handles the badaccess to memory.
1659 > // It is called from the signal handler or the exception handler.
1660 > static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
1661   {
1662 + #ifdef HAVE_MACH_EXCEPTIONS
1663 +        // We must match the initial count when writing back the CPU state registers
1664 +        kern_return_t krc;
1665 +        mach_msg_type_number_t count;
1666 +        SIGSEGV_THREAD_STATE_TYPE state;
1667 +
1668 +        count = SIGSEGV_THREAD_STATE_COUNT;
1669 +        krc = thread_get_state(thread, SIGSEGV_THREAD_STATE_FLAVOR, (thread_state_t)&state, &count);
1670 +        MACH_CHECK_ERROR (thread_get_state, krc);
1671 + #endif
1672 +
1673          sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
1674          sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
659        bool fault_recovered = false;
1675          
1676          // Call user's handler and reinstall the global handler, if required
1677 <        if (sigsegv_fault_handler(fault_address, fault_instruction)) {
1678 < #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1679 <                sigsegv_do_install_handler(sig);
1677 >        switch (SIGSEGV_FAULT_HANDLER_INVOKE(fault_address, fault_instruction)) {
1678 >        case SIGSEGV_RETURN_SUCCESS:
1679 >                return true;
1680 >
1681 > #if HAVE_SIGSEGV_SKIP_INSTRUCTION
1682 >        case SIGSEGV_RETURN_SKIP_INSTRUCTION:
1683 >                // Call the instruction skipper with the register file
1684 >                // available
1685 >                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
1686 > #ifdef HAVE_MACH_EXCEPTIONS
1687 >                        // Unlike UNIX signals where the thread state
1688 >                        // is modified off of the stack, in Mach we
1689 >                        // need to actually call thread_set_state to
1690 >                        // have the register values updated.
1691 >                        krc = thread_set_state(thread,
1692 >                                                                   SIGSEGV_THREAD_STATE_FLAVOR, (thread_state_t)&state,
1693 >                                                                   count);
1694 >                        MACH_CHECK_ERROR (thread_set_state, krc);
1695 > #endif
1696 >                        return true;
1697 >                }
1698 >                break;
1699   #endif
1700 <                fault_recovered = true;
1700 >        case SIGSEGV_RETURN_FAILURE:
1701 >                // We can't do anything with the fault_address, dump state?
1702 >                if (sigsegv_state_dumper != 0)
1703 >                        sigsegv_state_dumper(fault_address, fault_instruction);
1704 >                break;
1705          }
1706 < #if HAVE_SIGSEGV_SKIP_INSTRUCTION
1707 <        else if (sigsegv_ignore_ranges.size() > 0) {
1708 <                // Call the instruction skipper with the register file available
1709 <                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE))
1710 <                        fault_recovered = true;
1706 >
1707 >        return false;
1708 > }
1709 >
1710 >
1711 > /*
1712 > * There are two mechanisms for handling a bad memory access,
1713 > * Mach exceptions and UNIX signals. The implementation specific
1714 > * code appears below. Its reponsibility is to call handle_badaccess
1715 > * which is the routine that handles the fault in an implementation
1716 > * agnostic manner. The implementation specific code below is then
1717 > * reponsible for checking whether handle_badaccess was able
1718 > * to handle the memory access error and perform any implementation
1719 > * specific tasks necessary afterwards.
1720 > */
1721 >
1722 > #ifdef HAVE_MACH_EXCEPTIONS
1723 > /*
1724 > * We need to forward all exceptions that we do not handle.
1725 > * This is important, there are many exceptions that may be
1726 > * handled by other exception handlers. For example debuggers
1727 > * use exceptions and the exception hander is in another
1728 > * process in such a case. (Timothy J. Wood states in his
1729 > * message to the list that he based this code on that from
1730 > * gdb for Darwin.)
1731 > */
1732 > static inline kern_return_t
1733 > forward_exception(mach_port_t thread_port,
1734 >                                  mach_port_t task_port,
1735 >                                  exception_type_t exception_type,
1736 >                                  exception_data_t exception_data,
1737 >                                  mach_msg_type_number_t data_count,
1738 >                                  ExceptionPorts *oldExceptionPorts)
1739 > {
1740 >        kern_return_t kret;
1741 >        unsigned int portIndex;
1742 >        mach_port_t port;
1743 >        exception_behavior_t behavior;
1744 >        thread_state_flavor_t flavor;
1745 >        thread_state_data_t thread_state;
1746 >        mach_msg_type_number_t thread_state_count;
1747 >
1748 >        for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
1749 >                if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
1750 >                        // This handler wants the exception
1751 >                        break;
1752 >                }
1753 >        }
1754 >
1755 >        if (portIndex >= oldExceptionPorts->maskCount) {
1756 >                fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
1757 >                return KERN_FAILURE;
1758 >        }
1759 >
1760 >        port = oldExceptionPorts->handlers[portIndex];
1761 >        behavior = oldExceptionPorts->behaviors[portIndex];
1762 >        flavor = oldExceptionPorts->flavors[portIndex];
1763 >
1764 >        if (!VALID_THREAD_STATE_FLAVOR(flavor)) {
1765 >                fprintf(stderr, "Invalid thread_state flavor = %d. Not forwarding\n", flavor);
1766 >                return KERN_FAILURE;
1767 >        }
1768 >
1769 >        /*
1770 >         fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
1771 >         */
1772 >
1773 >        if (behavior != EXCEPTION_DEFAULT) {
1774 >                thread_state_count = THREAD_STATE_MAX;
1775 >                kret = thread_get_state (thread_port, flavor, (natural_t *)&thread_state,
1776 >                                                                 &thread_state_count);
1777 >                MACH_CHECK_ERROR (thread_get_state, kret);
1778 >        }
1779 >
1780 >        switch (behavior) {
1781 >        case EXCEPTION_DEFAULT:
1782 >          // fprintf(stderr, "forwarding to exception_raise\n");
1783 >          kret = exception_raise(port, thread_port, task_port, exception_type,
1784 >                                                         exception_data, data_count);
1785 >          MACH_CHECK_ERROR (exception_raise, kret);
1786 >          break;
1787 >        case EXCEPTION_STATE:
1788 >          // fprintf(stderr, "forwarding to exception_raise_state\n");
1789 >          kret = exception_raise_state(port, exception_type, exception_data,
1790 >                                                                   data_count, &flavor,
1791 >                                                                   (natural_t *)&thread_state, thread_state_count,
1792 >                                                                   (natural_t *)&thread_state, &thread_state_count);
1793 >          MACH_CHECK_ERROR (exception_raise_state, kret);
1794 >          break;
1795 >        case EXCEPTION_STATE_IDENTITY:
1796 >          // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
1797 >          kret = exception_raise_state_identity(port, thread_port, task_port,
1798 >                                                                                        exception_type, exception_data,
1799 >                                                                                        data_count, &flavor,
1800 >                                                                                        (natural_t *)&thread_state, thread_state_count,
1801 >                                                                                        (natural_t *)&thread_state, &thread_state_count);
1802 >          MACH_CHECK_ERROR (exception_raise_state_identity, kret);
1803 >          break;
1804 >        default:
1805 >          fprintf(stderr, "forward_exception got unknown behavior\n");
1806 >          kret = KERN_FAILURE;
1807 >          break;
1808 >        }
1809 >
1810 >        if (behavior != EXCEPTION_DEFAULT) {
1811 >                kret = thread_set_state (thread_port, flavor, (natural_t *)&thread_state,
1812 >                                                                 thread_state_count);
1813 >                MACH_CHECK_ERROR (thread_set_state, kret);
1814          }
1815 +
1816 +        return kret;
1817 + }
1818 +
1819 + /*
1820 + * This is the code that actually handles the exception.
1821 + * It is called by exc_server. For Darwin 5 Apple changed
1822 + * this a bit from how this family of functions worked in
1823 + * Mach. If you are familiar with that it is a little
1824 + * different. The main variation that concerns us here is
1825 + * that code is an array of exception specific codes and
1826 + * codeCount is a count of the number of codes in the code
1827 + * array. In typical Mach all exceptions have a code
1828 + * and sub-code. It happens to be the case that for a
1829 + * EXC_BAD_ACCESS exception the first entry is the type of
1830 + * bad access that occurred and the second entry is the
1831 + * faulting address so these entries correspond exactly to
1832 + * how the code and sub-code are used on Mach.
1833 + *
1834 + * This is a MIG interface. No code in Basilisk II should
1835 + * call this directley. This has to have external C
1836 + * linkage because that is what exc_server expects.
1837 + */
1838 + kern_return_t
1839 + catch_exception_raise(mach_port_t exception_port,
1840 +                                          mach_port_t thread,
1841 +                                          mach_port_t task,
1842 +                                          exception_type_t exception,
1843 +                                          exception_data_t code,
1844 +                                          mach_msg_type_number_t code_count)
1845 + {
1846 +        kern_return_t krc;
1847 +
1848 +        if (exception == EXC_BAD_ACCESS) {
1849 +                switch (code[0]) {
1850 +                case KERN_PROTECTION_FAILURE:
1851 +                case KERN_INVALID_ADDRESS:
1852 +                {
1853 + #ifdef SIGSEGV_EXCEPTION_STATE_TYPE
1854 +                        SIGSEGV_EXCEPTION_STATE_TYPE exc_state;
1855 +                        mach_msg_type_number_t exc_state_count;
1856 +                        exc_state_count = SIGSEGV_EXCEPTION_STATE_COUNT;
1857 +                        krc = thread_get_state(thread, SIGSEGV_EXCEPTION_STATE_FLAVOR, (natural_t *)&exc_state, &exc_state_count);
1858 +                        MACH_CHECK_ERROR (thread_get_state, krc);
1859   #endif
1860  
1861 <        if (!fault_recovered) {
1862 <                // FAIL: reinstall default handler for "safe" crash
1861 >                        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
1862 >                                return KERN_SUCCESS;
1863 >                        break;
1864 >                }
1865 >                }
1866 >        }
1867 >
1868 >        // In Mach we do not need to remove the exception handler.
1869 >        // If we forward the exception, eventually some exception handler
1870 >        // will take care of this exception.
1871 >        krc = forward_exception(thread, task, exception, code, code_count, &ports);
1872 >
1873 >        return krc;
1874 > }
1875 > #endif
1876 >
1877 > #ifdef HAVE_SIGSEGV_RECOVERY
1878 > // Handle bad memory accesses with signal handler
1879 > static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1880 > {
1881 >        // Call handler and reinstall the global handler, if required
1882 >        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
1883 > #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1884 >                sigsegv_do_install_handler(sig);
1885 > #endif
1886 >                return;
1887 >        }
1888 >
1889 >        // Failure: reinstall default handler for "safe" crash
1890   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1891 <                SIGSEGV_ALL_SIGNALS
1891 >        SIGSEGV_ALL_SIGNALS
1892   #undef FAULT_HANDLER
681                
682                // We can't do anything with the fault_address, dump state?
683                if (sigsegv_state_dumper != 0)
684                        sigsegv_state_dumper(fault_address, fault_instruction);
685        }
1893   }
1894   #endif
1895  
# Line 727 | Line 1934 | static bool sigsegv_do_install_handler(i
1934   }
1935   #endif
1936  
1937 < bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1937 > #if defined(HAVE_MACH_EXCEPTIONS)
1938 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1939   {
1940 < #ifdef HAVE_SIGSEGV_RECOVERY
1940 >        /*
1941 >         * Except for the exception port functions, this should be
1942 >         * pretty much stock Mach. If later you choose to support
1943 >         * other Mach's besides Darwin, just check for __MACH__
1944 >         * here and __APPLE__ where the actual differences are.
1945 >         */
1946 > #if defined(__APPLE__) && defined(__MACH__)
1947 >        if (sigsegv_fault_handler != NULL) {
1948 >                sigsegv_fault_handler = handler;
1949 >                return true;
1950 >        }
1951 >
1952 >        kern_return_t krc;
1953 >
1954 >        // create the the exception port
1955 >        krc = mach_port_allocate(mach_task_self(),
1956 >                          MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
1957 >        if (krc != KERN_SUCCESS) {
1958 >                mach_error("mach_port_allocate", krc);
1959 >                return false;
1960 >        }
1961 >
1962 >        // add a port send right
1963 >        krc = mach_port_insert_right(mach_task_self(),
1964 >                              _exceptionPort, _exceptionPort,
1965 >                              MACH_MSG_TYPE_MAKE_SEND);
1966 >        if (krc != KERN_SUCCESS) {
1967 >                mach_error("mach_port_insert_right", krc);
1968 >                return false;
1969 >        }
1970 >
1971 >        // get the old exception ports
1972 >        ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
1973 >        krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
1974 >                                &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
1975 >        if (krc != KERN_SUCCESS) {
1976 >                mach_error("thread_get_exception_ports", krc);
1977 >                return false;
1978 >        }
1979 >
1980 >        // set the new exception port
1981 >        //
1982 >        // We could have used EXCEPTION_STATE_IDENTITY instead of
1983 >        // EXCEPTION_DEFAULT to get the thread state in the initial
1984 >        // message, but it turns out that in the common case this is not
1985 >        // neccessary. If we need it we can later ask for it from the
1986 >        // suspended thread.
1987 >        //
1988 >        // Even with THREAD_STATE_NONE, Darwin provides the program
1989 >        // counter in the thread state.  The comments in the header file
1990 >        // seem to imply that you can count on the GPR's on an exception
1991 >        // as well but just to be safe I use MACHINE_THREAD_STATE because
1992 >        // you have to ask for all of the GPR's anyway just to get the
1993 >        // program counter. In any case because of update effective
1994 >        // address from immediate and update address from effective
1995 >        // addresses of ra and rb modes (as good an name as any for these
1996 >        // addressing modes) used in PPC instructions, you will need the
1997 >        // GPR state anyway.
1998 >        krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
1999 >                                EXCEPTION_DEFAULT, SIGSEGV_THREAD_STATE_FLAVOR);
2000 >        if (krc != KERN_SUCCESS) {
2001 >                mach_error("thread_set_exception_ports", krc);
2002 >                return false;
2003 >        }
2004 >
2005 >        // create the exception handler thread
2006 >        if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
2007 >                (void)fprintf(stderr, "creation of exception thread failed\n");
2008 >                return false;
2009 >        }
2010 >
2011 >        // do not care about the exception thread any longer, let is run standalone
2012 >        (void)pthread_detach(exc_thread);
2013 >
2014 >        sigsegv_fault_handler = handler;
2015 >        return true;
2016 > #else
2017 >        return false;
2018 > #endif
2019 > }
2020 > #endif
2021 >
2022 > #ifdef HAVE_WIN32_EXCEPTIONS
2023 > static LONG WINAPI main_exception_filter(EXCEPTION_POINTERS *ExceptionInfo)
2024 > {
2025 >        if (sigsegv_fault_handler != NULL
2026 >                && ExceptionInfo->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION
2027 >                && ExceptionInfo->ExceptionRecord->NumberParameters == 2
2028 >                && handle_badaccess(ExceptionInfo))
2029 >                return EXCEPTION_CONTINUE_EXECUTION;
2030 >
2031 >        return EXCEPTION_CONTINUE_SEARCH;
2032 > }
2033 >
2034 > #if defined __CYGWIN__ && defined __i386__
2035 > /* In Cygwin programs, SetUnhandledExceptionFilter has no effect because Cygwin
2036 >   installs a global exception handler.  We have to dig deep in order to install
2037 >   our main_exception_filter.  */
2038 >
2039 > /* Data structures for the current thread's exception handler chain.
2040 >   On the x86 Windows uses register fs, offset 0 to point to the current
2041 >   exception handler; Cygwin mucks with it, so we must do the same... :-/ */
2042 >
2043 > /* Magic taken from winsup/cygwin/include/exceptions.h.  */
2044 >
2045 > struct exception_list {
2046 >    struct exception_list *prev;
2047 >    int (*handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
2048 > };
2049 > typedef struct exception_list exception_list;
2050 >
2051 > /* Magic taken from winsup/cygwin/exceptions.cc.  */
2052 >
2053 > __asm__ (".equ __except_list,0");
2054 >
2055 > extern exception_list *_except_list __asm__ ("%fs:__except_list");
2056 >
2057 > /* For debugging.  _except_list is not otherwise accessible from gdb.  */
2058 > static exception_list *
2059 > debug_get_except_list ()
2060 > {
2061 >  return _except_list;
2062 > }
2063 >
2064 > /* Cygwin's original exception handler.  */
2065 > static int (*cygwin_exception_handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
2066 >
2067 > /* Our exception handler.  */
2068 > static int
2069 > libsigsegv_exception_handler (EXCEPTION_RECORD *exception, void *frame, CONTEXT *context, void *dispatch)
2070 > {
2071 >  EXCEPTION_POINTERS ExceptionInfo;
2072 >  ExceptionInfo.ExceptionRecord = exception;
2073 >  ExceptionInfo.ContextRecord = context;
2074 >  if (main_exception_filter (&ExceptionInfo) == EXCEPTION_CONTINUE_SEARCH)
2075 >    return cygwin_exception_handler (exception, frame, context, dispatch);
2076 >  else
2077 >    return 0;
2078 > }
2079 >
2080 > static void
2081 > do_install_main_exception_filter ()
2082 > {
2083 >  /* We cannot insert any handler into the chain, because such handlers
2084 >     must lie on the stack (?).  Instead, we have to replace(!) Cygwin's
2085 >     global exception handler.  */
2086 >  cygwin_exception_handler = _except_list->handler;
2087 >  _except_list->handler = libsigsegv_exception_handler;
2088 > }
2089 >
2090 > #else
2091 >
2092 > static void
2093 > do_install_main_exception_filter ()
2094 > {
2095 >  SetUnhandledExceptionFilter ((LPTOP_LEVEL_EXCEPTION_FILTER) &main_exception_filter);
2096 > }
2097 > #endif
2098 >
2099 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
2100 > {
2101 >        static bool main_exception_filter_installed = false;
2102 >        if (!main_exception_filter_installed) {
2103 >                do_install_main_exception_filter();
2104 >                main_exception_filter_installed = true;
2105 >        }
2106          sigsegv_fault_handler = handler;
2107 +        return true;
2108 + }
2109 + #endif
2110 +
2111 + bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
2112 + {
2113 + #if defined(HAVE_SIGSEGV_RECOVERY)
2114          bool success = true;
2115   #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
2116          SIGSEGV_ALL_SIGNALS
2117   #undef FAULT_HANDLER
2118 +        if (success)
2119 +            sigsegv_fault_handler = handler;
2120          return success;
2121 + #elif defined(HAVE_MACH_EXCEPTIONS) || defined(HAVE_WIN32_EXCEPTIONS)
2122 +        return sigsegv_do_install_handler(handler);
2123   #else
2124          // FAIL: no siginfo_t nor sigcontext subterfuge is available
2125          return false;
# Line 749 | Line 2133 | bool sigsegv_install_handler(sigsegv_fau
2133  
2134   void sigsegv_deinstall_handler(void)
2135   {
2136 +  // We do nothing for Mach exceptions, the thread would need to be
2137 +  // suspended if not already so, and we might mess with other
2138 +  // exception handlers that came after we registered ours. There is
2139 +  // no need to remove the exception handler, in fact this function is
2140 +  // not called anywhere in Basilisk II.
2141   #ifdef HAVE_SIGSEGV_RECOVERY
2142          sigsegv_fault_handler = 0;
2143   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
2144          SIGSEGV_ALL_SIGNALS
2145   #undef FAULT_HANDLER
2146   #endif
2147 < }
2148 <
2149 <
761 < /*
762 < *  Add SIGSEGV ignore range
763 < */
764 <
765 < void sigsegv_add_ignore_range(sigsegv_address_t address, unsigned long length, int transfer_type)
766 < {
767 <        ignore_range_t ignore_range;
768 <        ignore_range.start = address;
769 <        ignore_range.length = length;
770 <        ignore_range.transfer_type = transfer_type;
771 <        sigsegv_ignore_ranges.push_front(ignore_range);
772 < }
773 <
774 <
775 < /*
776 < *  Remove SIGSEGV ignore range. Range must match installed one, otherwise FALSE is returned.
777 < */
778 <
779 < bool sigsegv_remove_ignore_range(sigsegv_address_t address, unsigned long length, int transfer_type)
780 < {
781 <        ignore_range_list_t::iterator it;
782 <        for (it = sigsegv_ignore_ranges.begin(); it != sigsegv_ignore_ranges.end(); it++)
783 <                if (it->start == address && it->length == length && ((it->transfer_type & transfer_type) == transfer_type))
784 <                        break;
785 <
786 <        if (it != sigsegv_ignore_ranges.end()) {
787 <                if (it->transfer_type != transfer_type)
788 <                        it->transfer_type &= ~transfer_type;
789 <                else
790 <                        sigsegv_ignore_ranges.erase(it);
791 <                return true;
792 <        }
793 <
794 <        return false;
2147 > #ifdef HAVE_WIN32_EXCEPTIONS
2148 >        sigsegv_fault_handler = NULL;
2149 > #endif
2150   }
2151  
2152  
# Line 813 | Line 2168 | void sigsegv_set_dump_state(sigsegv_stat
2168   #include <stdio.h>
2169   #include <stdlib.h>
2170   #include <fcntl.h>
2171 + #ifdef HAVE_SYS_MMAN_H
2172   #include <sys/mman.h>
2173 + #endif
2174   #include "vm_alloc.h"
2175  
2176 + const int REF_INDEX = 123;
2177 + const int REF_VALUE = 45;
2178 +
2179   static int page_size;
2180   static volatile char * page = 0;
2181   static volatile int handler_called = 0;
2182  
2183 < static bool sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2183 > /* Barriers */
2184 > #ifdef __GNUC__
2185 > #define BARRIER() asm volatile ("" : : : "memory")
2186 > #else
2187 > #define BARRIER() /* nothing */
2188 > #endif
2189 >
2190 > #ifdef __GNUC__
2191 > // Code range where we expect the fault to come from
2192 > static void *b_region, *e_region;
2193 > #endif
2194 >
2195 > static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2196   {
2197 + #if DEBUG
2198 +        printf("sigsegv_test_handler(%p, %p)\n", fault_address, instruction_address);
2199 +        printf("expected fault at %p\n", page + REF_INDEX);
2200 + #ifdef __GNUC__
2201 +        printf("expected instruction address range: %p-%p\n", b_region, e_region);
2202 + #endif
2203 + #endif
2204          handler_called++;
2205 <        if ((fault_address - 123) != page)
2206 <                exit(1);
2205 >        if ((fault_address - REF_INDEX) != page)
2206 >                exit(10);
2207 > #ifdef __GNUC__
2208 >        // Make sure reported fault instruction address falls into
2209 >        // expected code range
2210 >        if (instruction_address != SIGSEGV_INVALID_PC
2211 >                && ((instruction_address <  (sigsegv_address_t)b_region) ||
2212 >                        (instruction_address >= (sigsegv_address_t)e_region)))
2213 >                exit(11);
2214 > #endif
2215          if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
2216 <                exit(1);
2217 <        return true;
2216 >                exit(12);
2217 >        return SIGSEGV_RETURN_SUCCESS;
2218   }
2219  
2220   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
2221 < static bool sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2221 > static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2222   {
2223 <        return false;
2223 > #if DEBUG
2224 >        printf("sigsegv_insn_handler(%p, %p)\n", fault_address, instruction_address);
2225 > #endif
2226 >        if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
2227 > #ifdef __GNUC__
2228 >                // Make sure reported fault instruction address falls into
2229 >                // expected code range
2230 >                if (instruction_address != SIGSEGV_INVALID_PC
2231 >                        && ((instruction_address <  (sigsegv_address_t)b_region) ||
2232 >                                (instruction_address >= (sigsegv_address_t)e_region)))
2233 >                        return SIGSEGV_RETURN_FAILURE;
2234 > #endif
2235 >                return SIGSEGV_RETURN_SKIP_INSTRUCTION;
2236 >        }
2237 >
2238 >        return SIGSEGV_RETURN_FAILURE;
2239 > }
2240 >
2241 > // More sophisticated tests for instruction skipper
2242 > static bool arch_insn_skipper_tests()
2243 > {
2244 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
2245 >        static const unsigned char code[] = {
2246 >                0x8a, 0x00,                    // mov    (%eax),%al
2247 >                0x8a, 0x2c, 0x18,              // mov    (%eax,%ebx,1),%ch
2248 >                0x88, 0x20,                    // mov    %ah,(%eax)
2249 >                0x88, 0x08,                    // mov    %cl,(%eax)
2250 >                0x66, 0x8b, 0x00,              // mov    (%eax),%ax
2251 >                0x66, 0x8b, 0x0c, 0x18,        // mov    (%eax,%ebx,1),%cx
2252 >                0x66, 0x89, 0x00,              // mov    %ax,(%eax)
2253 >                0x66, 0x89, 0x0c, 0x18,        // mov    %cx,(%eax,%ebx,1)
2254 >                0x8b, 0x00,                    // mov    (%eax),%eax
2255 >                0x8b, 0x0c, 0x18,              // mov    (%eax,%ebx,1),%ecx
2256 >                0x89, 0x00,                    // mov    %eax,(%eax)
2257 >                0x89, 0x0c, 0x18,              // mov    %ecx,(%eax,%ebx,1)
2258 > #if defined(__x86_64__)
2259 >                0x44, 0x8a, 0x00,              // mov    (%rax),%r8b
2260 >                0x44, 0x8a, 0x20,              // mov    (%rax),%r12b
2261 >                0x42, 0x8a, 0x3c, 0x10,        // mov    (%rax,%r10,1),%dil
2262 >                0x44, 0x88, 0x00,              // mov    %r8b,(%rax)
2263 >                0x44, 0x88, 0x20,              // mov    %r12b,(%rax)
2264 >                0x42, 0x88, 0x3c, 0x10,        // mov    %dil,(%rax,%r10,1)
2265 >                0x66, 0x44, 0x8b, 0x00,        // mov    (%rax),%r8w
2266 >                0x66, 0x42, 0x8b, 0x0c, 0x10,  // mov    (%rax,%r10,1),%cx
2267 >                0x66, 0x44, 0x89, 0x00,        // mov    %r8w,(%rax)
2268 >                0x66, 0x42, 0x89, 0x0c, 0x10,  // mov    %cx,(%rax,%r10,1)
2269 >                0x44, 0x8b, 0x00,              // mov    (%rax),%r8d
2270 >                0x42, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%ecx
2271 >                0x44, 0x89, 0x00,              // mov    %r8d,(%rax)
2272 >                0x42, 0x89, 0x0c, 0x10,        // mov    %ecx,(%rax,%r10,1)
2273 >                0x48, 0x8b, 0x08,              // mov    (%rax),%rcx
2274 >                0x4c, 0x8b, 0x18,              // mov    (%rax),%r11
2275 >                0x4a, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%rcx
2276 >                0x4e, 0x8b, 0x1c, 0x10,        // mov    (%rax,%r10,1),%r11
2277 >                0x48, 0x89, 0x08,              // mov    %rcx,(%rax)
2278 >                0x4c, 0x89, 0x18,              // mov    %r11,(%rax)
2279 >                0x4a, 0x89, 0x0c, 0x10,        // mov    %rcx,(%rax,%r10,1)
2280 >                0x4e, 0x89, 0x1c, 0x10,        // mov    %r11,(%rax,%r10,1)
2281 >                0x63, 0x47, 0x04,              // movslq 4(%rdi),%eax
2282 >                0x48, 0x63, 0x47, 0x04,        // movslq 4(%rdi),%rax
2283 > #endif
2284 >                0                              // end
2285 >        };
2286 >        const int N_REGS = 20;
2287 >        unsigned long regs[N_REGS];
2288 >        for (int i = 0; i < N_REGS; i++)
2289 >                regs[i] = i;
2290 >        const unsigned long start_code = (unsigned long)&code;
2291 >        regs[X86_REG_EIP] = start_code;
2292 >        while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1)
2293 >                   && ix86_skip_instruction(regs))
2294 >                ; /* simply iterate */
2295 >        return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1);
2296 > #endif
2297 >        return true;
2298   }
2299   #endif
2300  
# Line 842 | Line 2303 | int main(void)
2303          if (vm_init() < 0)
2304                  return 1;
2305  
2306 <        page_size = getpagesize();
2306 >        page_size = vm_get_page_size();
2307          if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
2308 <                return 1;
2308 >                return 2;
2309          
2310 +        memset((void *)page, 0, page_size);
2311          if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
2312 <                return 1;
2312 >                return 3;
2313          
2314          if (!sigsegv_install_handler(sigsegv_test_handler))
2315 <                return 1;
854 <        
855 <        page[123] = 45;
856 <        page[123] = 45;
2315 >                return 4;
2316          
2317 + #ifdef __GNUC__
2318 +        b_region = &&L_b_region1;
2319 +        e_region = &&L_e_region1;
2320 + #endif
2321 + L_b_region1:
2322 +        page[REF_INDEX] = REF_VALUE;
2323 +        if (page[REF_INDEX] != REF_VALUE)
2324 +          exit(20);
2325 +        page[REF_INDEX] = REF_VALUE;
2326 +        BARRIER();
2327 + L_e_region1:
2328 +
2329          if (handler_called != 1)
2330 <                return 1;
2330 >                return 5;
2331  
2332   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
2333          if (!sigsegv_install_handler(sigsegv_insn_handler))
2334 <                return 1;
2334 >                return 6;
2335          
2336          if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
2337 <                return 1;
2337 >                return 7;
2338          
2339          for (int i = 0; i < page_size; i++)
2340                  page[i] = (i + 1) % page_size;
2341          
2342          if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
2343 <                return 1;
2343 >                return 8;
2344          
874        sigsegv_add_ignore_range((char *)page, page_size, SIGSEGV_TRANSFER_LOAD | SIGSEGV_TRANSFER_STORE);
875
2345   #define TEST_SKIP_INSTRUCTION(TYPE) do {                                \
2346 <                const unsigned int TAG = 0x12345678;                    \
2346 >                const unsigned long TAG = 0x12345678 |                  \
2347 >                (sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0);   \
2348                  TYPE data = *((TYPE *)(page + sizeof(TYPE)));   \
2349 <                volatile unsigned int effect = data + TAG;              \
2349 >                volatile unsigned long effect = data + TAG;             \
2350                  if (effect != TAG)                                                              \
2351 <                        return 1;                                                                       \
2351 >                        return 9;                                                                       \
2352          } while (0)
2353          
2354 + #ifdef __GNUC__
2355 +        b_region = &&L_b_region2;
2356 +        e_region = &&L_e_region2;
2357 + #endif
2358 + L_b_region2:
2359          TEST_SKIP_INSTRUCTION(unsigned char);
2360          TEST_SKIP_INSTRUCTION(unsigned short);
2361          TEST_SKIP_INSTRUCTION(unsigned int);
2362 +        TEST_SKIP_INSTRUCTION(unsigned long);
2363 +        TEST_SKIP_INSTRUCTION(signed char);
2364 +        TEST_SKIP_INSTRUCTION(signed short);
2365 +        TEST_SKIP_INSTRUCTION(signed int);
2366 +        TEST_SKIP_INSTRUCTION(signed long);
2367 +        BARRIER();
2368 + L_e_region2:
2369 +
2370 +        if (!arch_insn_skipper_tests())
2371 +                return 20;
2372   #endif
2373  
2374          vm_exit();

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines