ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
(Generate patch)

Comparing BasiliskII/src/Unix/sigsegv.cpp (file contents):
Revision 1.8 by cebix, 2002-02-01T19:25:49Z vs.
Revision 1.62 by gbeauche, 2006-03-30T22:45:49Z

# Line 4 | Line 4
4   *  Derived from Bruno Haible's work on his SIGSEGV library for clisp
5   *  <http://clisp.sourceforge.net/>
6   *
7 < *  Basilisk II (C) 1997-2002 Christian Bauer
7 > *  MacOS X support derived from the post by Timothy J. Wood to the
8 > *  omnigroup macosx-dev list:
9 > *    Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10 > *    tjw@omnigroup.com Sun, 4 Jun 2000
11 > *    www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12 > *
13 > *  Basilisk II (C) 1997-2005 Christian Bauer
14   *
15   *  This program is free software; you can redistribute it and/or modify
16   *  it under the terms of the GNU General Public License as published by
# Line 29 | Line 35
35   #include "config.h"
36   #endif
37  
38 + #include <list>
39 + #include <stdio.h>
40   #include <signal.h>
41   #include "sigsegv.h"
42  
43 + #ifndef NO_STD_NAMESPACE
44 + using std::list;
45 + #endif
46 +
47   // Return value type of a signal handler (standard type if not defined)
48   #ifndef RETSIGTYPE
49   #define RETSIGTYPE void
# Line 41 | Line 53
53   typedef RETSIGTYPE (*signal_handler)(int);
54  
55   // User's SIGSEGV handler
56 < static sigsegv_handler_t sigsegv_user_handler = 0;
56 > static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
57 >
58 > // Function called to dump state if we can't handle the fault
59 > static sigsegv_state_dumper_t sigsegv_state_dumper = 0;
60  
61   // Actual SIGSEGV handler installer
62   static bool sigsegv_do_install_handler(int sig);
63  
64  
65   /*
66 + *  Instruction decoding aids
67 + */
68 +
69 + // Transfer size
70 + enum transfer_size_t {
71 +        SIZE_UNKNOWN,
72 +        SIZE_BYTE,
73 +        SIZE_WORD, // 2 bytes
74 +        SIZE_LONG, // 4 bytes
75 +        SIZE_QUAD, // 8 bytes
76 + };
77 +
78 + // Transfer type
79 + typedef sigsegv_transfer_type_t transfer_type_t;
80 +
81 + #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
82 + // Addressing mode
83 + enum addressing_mode_t {
84 +        MODE_UNKNOWN,
85 +        MODE_NORM,
86 +        MODE_U,
87 +        MODE_X,
88 +        MODE_UX
89 + };
90 +
91 + // Decoded instruction
92 + struct instruction_t {
93 +        transfer_type_t         transfer_type;
94 +        transfer_size_t         transfer_size;
95 +        addressing_mode_t       addr_mode;
96 +        unsigned int            addr;
97 +        char                            ra, rd;
98 + };
99 +
100 + static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned long * gpr)
101 + {
102 +        // Get opcode and divide into fields
103 +        unsigned int opcode = *((unsigned int *)(unsigned long)nip);
104 +        unsigned int primop = opcode >> 26;
105 +        unsigned int exop = (opcode >> 1) & 0x3ff;
106 +        unsigned int ra = (opcode >> 16) & 0x1f;
107 +        unsigned int rb = (opcode >> 11) & 0x1f;
108 +        unsigned int rd = (opcode >> 21) & 0x1f;
109 +        signed int imm = (signed short)(opcode & 0xffff);
110 +        
111 +        // Analyze opcode
112 +        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
113 +        transfer_size_t transfer_size = SIZE_UNKNOWN;
114 +        addressing_mode_t addr_mode = MODE_UNKNOWN;
115 +        switch (primop) {
116 +        case 31:
117 +                switch (exop) {
118 +                case 23:        // lwzx
119 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
120 +                case 55:        // lwzux
121 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
122 +                case 87:        // lbzx
123 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
124 +                case 119:       // lbzux
125 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
126 +                case 151:       // stwx
127 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
128 +                case 183:       // stwux
129 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
130 +                case 215:       // stbx
131 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
132 +                case 247:       // stbux
133 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
134 +                case 279:       // lhzx
135 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
136 +                case 311:       // lhzux
137 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
138 +                case 343:       // lhax
139 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
140 +                case 375:       // lhaux
141 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
142 +                case 407:       // sthx
143 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
144 +                case 439:       // sthux
145 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
146 +                }
147 +                break;
148 +        
149 +        case 32:        // lwz
150 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
151 +        case 33:        // lwzu
152 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
153 +        case 34:        // lbz
154 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
155 +        case 35:        // lbzu
156 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
157 +        case 36:        // stw
158 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
159 +        case 37:        // stwu
160 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
161 +        case 38:        // stb
162 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
163 +        case 39:        // stbu
164 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
165 +        case 40:        // lhz
166 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
167 +        case 41:        // lhzu
168 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
169 +        case 42:        // lha
170 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
171 +        case 43:        // lhau
172 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
173 +        case 44:        // sth
174 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
175 +        case 45:        // sthu
176 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
177 +        case 58:        // ld, ldu, lwa
178 +                transfer_type = SIGSEGV_TRANSFER_LOAD;
179 +                transfer_size = SIZE_QUAD;
180 +                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
181 +                imm &= ~3;
182 +                break;
183 +        case 62:        // std, stdu, stq
184 +                transfer_type = SIGSEGV_TRANSFER_STORE;
185 +                transfer_size = SIZE_QUAD;
186 +                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
187 +                imm &= ~3;
188 +                break;
189 +        }
190 +        
191 +        // Calculate effective address
192 +        unsigned int addr = 0;
193 +        switch (addr_mode) {
194 +        case MODE_X:
195 +        case MODE_UX:
196 +                if (ra == 0)
197 +                        addr = gpr[rb];
198 +                else
199 +                        addr = gpr[ra] + gpr[rb];
200 +                break;
201 +        case MODE_NORM:
202 +        case MODE_U:
203 +                if (ra == 0)
204 +                        addr = (signed int)(signed short)imm;
205 +                else
206 +                        addr = gpr[ra] + (signed int)(signed short)imm;
207 +                break;
208 +        default:
209 +                break;
210 +        }
211 +        
212 +        // Commit decoded instruction
213 +        instruction->addr = addr;
214 +        instruction->addr_mode = addr_mode;
215 +        instruction->transfer_type = transfer_type;
216 +        instruction->transfer_size = transfer_size;
217 +        instruction->ra = ra;
218 +        instruction->rd = rd;
219 + }
220 + #endif
221 +
222 +
223 + /*
224   *  OS-dependant SIGSEGV signals support section
225   */
226  
227   #if HAVE_SIGINFO_T
228   // Generic extended signal handler
229 < #if defined(__NetBSD__) || defined(__FreeBSD__)
229 > #if defined(__FreeBSD__)
230   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
231   #else
232   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
233   #endif
234   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, siginfo_t *sip, void *scp
235 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
236 + #define SIGSEGV_FAULT_HANDLER_ARGS              sip, scp
237   #define SIGSEGV_FAULT_ADDRESS                   sip->si_addr
238 + #if (defined(sgi) || defined(__sgi))
239 + #include <ucontext.h>
240 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
241 + #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)SIGSEGV_CONTEXT_REGS[CTX_EPC]
242 + #if (defined(mips) || defined(__mips))
243 + #define SIGSEGV_REGISTER_FILE                   SIGSEGV_CONTEXT_REGS
244 + #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
245 + #endif
246 + #endif
247 + #if defined(__sun__)
248 + #if (defined(sparc) || defined(__sparc__))
249 + #include <sys/stack.h>
250 + #include <sys/regset.h>
251 + #include <sys/ucontext.h>
252 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
253 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[REG_PC]
254 + #define SIGSEGV_SPARC_GWINDOWS                  (((ucontext_t *)scp)->uc_mcontext.gwins)
255 + #define SIGSEGV_SPARC_RWINDOW                   (struct rwindow *)((char *)SIGSEGV_CONTEXT_REGS[REG_SP] + STACK_BIAS)
256 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)SIGSEGV_CONTEXT_REGS), SIGSEGV_SPARC_GWINDOWS, SIGSEGV_SPARC_RWINDOW
257 + #define SIGSEGV_SKIP_INSTRUCTION                sparc_skip_instruction
258 + #endif
259 + #if defined(__i386__)
260 + #include <sys/regset.h>
261 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
262 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[EIP]
263 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
264 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
265 + #endif
266 + #endif
267 + #if defined(__FreeBSD__) || defined(__OpenBSD__)
268 + #if (defined(i386) || defined(__i386__))
269 + #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_eip)
270 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
271 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
272 + #endif
273 + #endif
274 + #if defined(__NetBSD__)
275 + #if (defined(i386) || defined(__i386__))
276 + #include <sys/ucontext.h>
277 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
278 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_EIP]
279 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
280 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
281 + #endif
282 + #if (defined(powerpc) || defined(__powerpc__))
283 + #include <sys/ucontext.h>
284 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
285 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_PC]
286 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_PC], (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_R0]
287 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
288 + #endif
289 + #endif
290   #if defined(__linux__)
291   #if (defined(i386) || defined(__i386__))
292   #include <sys/ucontext.h>
293 < #define SIGSEGV_FAULT_INSTRUCTION               (((ucontext_t *)scp)->uc_mcontext.gregs[14]) /* should use REG_EIP instead */
293 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
294 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
295 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
296 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
297 > #endif
298 > #if (defined(x86_64) || defined(__x86_64__))
299 > #include <sys/ucontext.h>
300 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
301 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
302 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
303 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
304   #endif
305   #if (defined(ia64) || defined(__ia64__))
306   #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
307   #endif
308 + #if (defined(powerpc) || defined(__powerpc__))
309 + #include <sys/ucontext.h>
310 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.regs)
311 + #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS->nip)
312 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned long *)(SIGSEGV_CONTEXT_REGS->gpr)
313 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
314 + #endif
315 + #if (defined(hppa) || defined(__hppa__))
316 + #undef  SIGSEGV_FAULT_ADDRESS
317 + #define SIGSEGV_FAULT_ADDRESS                   sip->si_ptr
318 + #endif
319 + #if (defined(arm) || defined(__arm__))
320 + #include <asm/ucontext.h> /* use kernel structure, glibc may not be in sync */
321 + #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
322 + #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.arm_pc)
323 + #define SIGSEGV_REGISTER_FILE                   (&SIGSEGV_CONTEXT_REGS.arm_r0)
324 + #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
325 + #endif
326   #endif
327   #endif
328  
# Line 78 | Line 333 | static bool sigsegv_do_install_handler(i
333   #if (defined(i386) || defined(__i386__))
334   #include <asm/sigcontext.h>
335   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext scs
336 < #define SIGSEGV_FAULT_ADDRESS                   scs.cr2
337 < #define SIGSEGV_FAULT_INSTRUCTION               scs.eip
336 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
337 > #define SIGSEGV_FAULT_HANDLER_ARGS              &scs
338 > #define SIGSEGV_FAULT_ADDRESS                   scp->cr2
339 > #define SIGSEGV_FAULT_INSTRUCTION               scp->eip
340 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)scp
341 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
342   #endif
343   #if (defined(sparc) || defined(__sparc__))
344   #include <asm/sigcontext.h>
345   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
346 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
347   #define SIGSEGV_FAULT_ADDRESS                   addr
348   #endif
349   #if (defined(powerpc) || defined(__powerpc__))
350   #include <asm/sigcontext.h>
351   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext *scp
352 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, scp
353   #define SIGSEGV_FAULT_ADDRESS                   scp->regs->dar
354   #define SIGSEGV_FAULT_INSTRUCTION               scp->regs->nip
355 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&scp->regs->nip, (unsigned long *)(scp->regs->gpr)
356 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
357   #endif
358   #if (defined(alpha) || defined(__alpha__))
359   #include <asm/sigcontext.h>
360   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
361 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
362   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
363   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
364 <
365 < // From Boehm's GC 6.0alpha8
366 < static sigsegv_address_t get_fault_address(struct sigcontext *scp)
367 < {
368 <        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
369 <        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
370 <        fault_address += (signed long)(signed short)(instruction & 0xffff);
371 <        return (sigsegv_address_t)fault_address;
372 < }
364 > #endif
365 > #if (defined(arm) || defined(__arm__))
366 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int r1, int r2, int r3, struct sigcontext sc
367 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
368 > #define SIGSEGV_FAULT_HANDLER_ARGS              &sc
369 > #define SIGSEGV_FAULT_ADDRESS                   scp->fault_address
370 > #define SIGSEGV_FAULT_INSTRUCTION               scp->arm_pc
371 > #define SIGSEGV_REGISTER_FILE                   &scp->arm_r0
372 > #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
373   #endif
374   #endif
375  
376   // Irix 5 or 6 on MIPS
377 < #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
377 > #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(_SYSTYPE_SVR4))
378 > #include <ucontext.h>
379   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
380 < #define SIGSEGV_FAULT_ADDRESS                   scp->sc_badvaddr
380 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
381 > #define SIGSEGV_FAULT_ADDRESS                   (unsigned long)scp->sc_badvaddr
382 > #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)scp->sc_pc
383   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
384   #endif
385  
386 + // HP-UX
387 + #if (defined(hpux) || defined(__hpux__))
388 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
389 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
390 + #define SIGSEGV_FAULT_ADDRESS                   scp->sc_sl.sl_ss.ss_narrow.ss_cr21
391 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
392 + #endif
393 +
394   // OSF/1 on Alpha
395   #if defined(__osf__)
396 + #include <ucontext.h>
397   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
398 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
399   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_traparg_a0
400   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
401   #endif
# Line 126 | Line 403 | static sigsegv_address_t get_fault_addre
403   // AIX
404   #if defined(_AIX)
405   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
406 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
407   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_jmpbuf.jmp_context.o_vaddr
408   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
409   #endif
410  
411 < // NetBSD or FreeBSD
412 < #if defined(__NetBSD__) || defined(__FreeBSD__)
411 > // NetBSD
412 > #if defined(__NetBSD__)
413   #if (defined(m68k) || defined(__m68k__))
414   #include <m68k/frame.h>
415   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
416 < #define SIGSEGV_FAULT_ADDRESS                   ({                                                                                                                              \
417 <        struct sigstate {                                                                                                                                                                       \
140 <                int ss_flags;                                                                                                                                                                   \
141 <                struct frame ss_frame;                                                                                                                                                  \
142 <        };                                                                                                                                                                                                      \
143 <        struct sigstate *state = (struct sigstate *)scp->sc_ap;                                                                                         \
144 <        char *fault_addr;                                                                                                                                                                       \
145 <        switch (state->ss_frame.f_format) {                                                                                                                                     \
146 <        case 7:         /* 68040 access error */                                                                                                                                \
147 <                /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */    \
148 <                fault_addr = state->ss_frame.f_fmt7.f_fa;                                                                                                               \
149 <                break;                                                                                                                                                                                  \
150 <        default:                                                                                                                                                                                        \
151 <                fault_addr = (char *)code;                                                                                                                                              \
152 <                break;                                                                                                                                                                                  \
153 <        }                                                                                                                                                                                                       \
154 <        fault_addr;                                                                                                                                                                                     \
155 < })
416 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
417 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
418   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
419 < #else
420 < #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, void *scp, char *addr
421 < #define SIGSEGV_FAULT_ADDRESS                   addr
419 >
420 > // Use decoding scheme from BasiliskII/m68k native
421 > static sigsegv_address_t get_fault_address(struct sigcontext *scp)
422 > {
423 >        struct sigstate {
424 >                int ss_flags;
425 >                struct frame ss_frame;
426 >        };
427 >        struct sigstate *state = (struct sigstate *)scp->sc_ap;
428 >        char *fault_addr;
429 >        switch (state->ss_frame.f_format) {
430 >        case 7:         /* 68040 access error */
431 >                /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */
432 >                fault_addr = state->ss_frame.f_fmt7.f_fa;
433 >                break;
434 >        default:
435 >                fault_addr = (char *)code;
436 >                break;
437 >        }
438 >        return (sigsegv_address_t)fault_addr;
439 > }
440 > #endif
441 > #if (defined(alpha) || defined(__alpha__))
442 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
443 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
444 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
445   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
446   #endif
447 + #if (defined(i386) || defined(__i386__))
448 + #error "FIXME: need to decode instruction and compute EA"
449 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
450 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
451 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
452 + #endif
453 + #endif
454 + #if defined(__FreeBSD__)
455 + #if (defined(i386) || defined(__i386__))
456 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
457 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
458 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
459 + #define SIGSEGV_FAULT_ADDRESS                   addr
460 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_eip
461 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&scp->sc_edi)
462 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
463 + #endif
464 + #if (defined(alpha) || defined(__alpha__))
465 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
466 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, char *addr, struct sigcontext *scp
467 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, addr, scp
468 + #define SIGSEGV_FAULT_ADDRESS                   addr
469 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
470 + #endif
471   #endif
472  
473 < // MacOS X
473 > // Extract fault address out of a sigcontext
474 > #if (defined(alpha) || defined(__alpha__))
475 > // From Boehm's GC 6.0alpha8
476 > static sigsegv_address_t get_fault_address(struct sigcontext *scp)
477 > {
478 >        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
479 >        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
480 >        fault_address += (signed long)(signed short)(instruction & 0xffff);
481 >        return (sigsegv_address_t)fault_address;
482 > }
483 > #endif
484 >
485 >
486 > // MacOS X, not sure which version this works in. Under 10.1
487 > // vm_protect does not appear to work from a signal handler. Under
488 > // 10.2 signal handlers get siginfo type arguments but the si_addr
489 > // field is the address of the faulting instruction and not the
490 > // address that caused the SIGBUS. Maybe this works in 10.0? In any
491 > // case with Mach exception handlers there is a way to do what this
492 > // was meant to do.
493 > #ifndef HAVE_MACH_EXCEPTIONS
494   #if defined(__APPLE__) && defined(__MACH__)
495   #if (defined(ppc) || defined(__ppc__))
496   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
497 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
498   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
499   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_ir
500   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
501 + #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&scp->sc_ir, &((unsigned int *) scp->sc_regs)[2]
502 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
503  
504 < // From Boehm's GC 6.0alpha8
173 < #define EXTRACT_OP1(iw)     (((iw) & 0xFC000000) >> 26)
174 < #define EXTRACT_OP2(iw)     (((iw) & 0x000007FE) >> 1)
175 < #define EXTRACT_REGA(iw)    (((iw) & 0x001F0000) >> 16)
176 < #define EXTRACT_REGB(iw)    (((iw) & 0x03E00000) >> 21)
177 < #define EXTRACT_REGC(iw)    (((iw) & 0x0000F800) >> 11)
178 < #define EXTRACT_DISP(iw)    ((short *) &(iw))[1]
179 <
504 > // Use decoding scheme from SheepShaver
505   static sigsegv_address_t get_fault_address(struct sigcontext *scp)
506   {
507 <        unsigned int   instr = *((unsigned int *) scp->sc_ir);
508 <        unsigned int * regs = &((unsigned int *) scp->sc_regs)[2];
509 <        int            disp = 0, tmp;
510 <        unsigned int   baseA = 0, baseB = 0;
511 <        unsigned int   addr, alignmask = 0xFFFFFFFF;
512 <
513 <        switch(EXTRACT_OP1(instr)) {
514 <        case 38:   /* stb */
515 <        case 39:   /* stbu */
516 <        case 54:   /* stfd */
517 <        case 55:   /* stfdu */
518 <        case 52:   /* stfs */
519 <        case 53:   /* stfsu */
520 <        case 44:   /* sth */
521 <        case 45:   /* sthu */
522 <        case 47:   /* stmw */
523 <        case 36:   /* stw */
524 <        case 37:   /* stwu */
525 <                tmp = EXTRACT_REGA(instr);
526 <                if(tmp > 0)
527 <                        baseA = regs[tmp];
528 <                disp = EXTRACT_DISP(instr);
507 >        unsigned int   nip = (unsigned int) scp->sc_ir;
508 >        unsigned int * gpr = &((unsigned int *) scp->sc_regs)[2];
509 >        instruction_t  instr;
510 >
511 >        powerpc_decode_instruction(&instr, nip, gpr);
512 >        return (sigsegv_address_t)instr.addr;
513 > }
514 > #endif
515 > #endif
516 > #endif
517 > #endif
518 >
519 > #if HAVE_WIN32_EXCEPTIONS
520 > #define WIN32_LEAN_AND_MEAN /* avoid including junk */
521 > #include <windows.h>
522 > #include <winerror.h>
523 >
524 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   EXCEPTION_POINTERS *ExceptionInfo
525 > #define SIGSEGV_FAULT_HANDLER_ARGS              ExceptionInfo
526 > #define SIGSEGV_FAULT_ADDRESS                   ExceptionInfo->ExceptionRecord->ExceptionInformation[1]
527 > #define SIGSEGV_CONTEXT_REGS                    ExceptionInfo->ContextRecord
528 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS->Eip
529 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&SIGSEGV_CONTEXT_REGS->Edi)
530 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
531 > #endif
532 >
533 > #if HAVE_MACH_EXCEPTIONS
534 >
535 > // This can easily be extended to other Mach systems, but really who
536 > // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
537 > // Mach 2.5/3.0?
538 > #if defined(__APPLE__) && defined(__MACH__)
539 >
540 > #include <sys/types.h>
541 > #include <stdlib.h>
542 > #include <stdio.h>
543 > #include <pthread.h>
544 >
545 > /*
546 > * If you are familiar with MIG then you will understand the frustration
547 > * that was necessary to get these embedded into C++ code by hand.
548 > */
549 > extern "C" {
550 > #include <mach/mach.h>
551 > #include <mach/mach_error.h>
552 >
553 > extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
554 > extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
555 >        mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
556 > extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
557 >        exception_type_t, exception_data_t, mach_msg_type_number_t);
558 > extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
559 >        exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
560 >        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
561 > extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
562 >        exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
563 >        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
564 > }
565 >
566 > // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
567 > #define HANDLER_COUNT 64
568 >
569 > // structure to tuck away existing exception handlers
570 > typedef struct _ExceptionPorts {
571 >        mach_msg_type_number_t maskCount;
572 >        exception_mask_t masks[HANDLER_COUNT];
573 >        exception_handler_t handlers[HANDLER_COUNT];
574 >        exception_behavior_t behaviors[HANDLER_COUNT];
575 >        thread_state_flavor_t flavors[HANDLER_COUNT];
576 > } ExceptionPorts;
577 >
578 > // exception handler thread
579 > static pthread_t exc_thread;
580 >
581 > // place where old exception handler info is stored
582 > static ExceptionPorts ports;
583 >
584 > // our exception port
585 > static mach_port_t _exceptionPort = MACH_PORT_NULL;
586 >
587 > #define MACH_CHECK_ERROR(name,ret) \
588 > if (ret != KERN_SUCCESS) { \
589 >        mach_error(#name, ret); \
590 >        exit (1); \
591 > }
592 >
593 > #ifdef __ppc__
594 > #define SIGSEGV_THREAD_STATE_TYPE               ppc_thread_state_t
595 > #define SIGSEGV_THREAD_STATE_FLAVOR             PPC_THREAD_STATE
596 > #define SIGSEGV_THREAD_STATE_COUNT              PPC_THREAD_STATE_COUNT
597 > #define SIGSEGV_FAULT_INSTRUCTION               state->srr0
598 > #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
599 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&state->srr0, (unsigned long *)&state->r0
600 > #endif
601 > #ifdef __i386__
602 > #ifdef i386_SAVED_STATE
603 > #define SIGSEGV_THREAD_STATE_TYPE               struct i386_saved_state
604 > #define SIGSEGV_THREAD_STATE_FLAVOR             i386_SAVED_STATE
605 > #define SIGSEGV_THREAD_STATE_COUNT              i386_SAVED_STATE_COUNT
606 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&state->edi) /* EDI is the first GPR we consider */
607 > #else
608 > #define SIGSEGV_THREAD_STATE_TYPE               struct i386_thread_state
609 > #define SIGSEGV_THREAD_STATE_FLAVOR             i386_THREAD_STATE
610 > #define SIGSEGV_THREAD_STATE_COUNT              i386_THREAD_STATE_COUNT
611 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&state->eax) /* EAX is the first GPR we consider */
612 > #endif
613 > #define SIGSEGV_FAULT_INSTRUCTION               state->eip
614 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
615 > #endif
616 > #define SIGSEGV_FAULT_ADDRESS                   code[1]
617 > #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  ((code[0] == KERN_PROTECTION_FAILURE) ? sigsegv_fault_handler(ADDR, IP) : SIGSEGV_RETURN_FAILURE)
618 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   mach_port_t thread, exception_data_t code, SIGSEGV_THREAD_STATE_TYPE *state
619 > #define SIGSEGV_FAULT_HANDLER_ARGS              thread, code, &state
620 >
621 > // Since there can only be one exception thread running at any time
622 > // this is not a problem.
623 > #define MSG_SIZE 512
624 > static char msgbuf[MSG_SIZE];
625 > static char replybuf[MSG_SIZE];
626 >
627 > /*
628 > * This is the entry point for the exception handler thread. The job
629 > * of this thread is to wait for exception messages on the exception
630 > * port that was setup beforehand and to pass them on to exc_server.
631 > * exc_server is a MIG generated function that is a part of Mach.
632 > * Its job is to decide what to do with the exception message. In our
633 > * case exc_server calls catch_exception_raise on our behalf. After
634 > * exc_server returns, it is our responsibility to send the reply.
635 > */
636 > static void *
637 > handleExceptions(void *priv)
638 > {
639 >        mach_msg_header_t *msg, *reply;
640 >        kern_return_t krc;
641 >
642 >        msg = (mach_msg_header_t *)msgbuf;
643 >        reply = (mach_msg_header_t *)replybuf;
644 >
645 >        for (;;) {
646 >                krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
647 >                                _exceptionPort, 0, MACH_PORT_NULL);
648 >                MACH_CHECK_ERROR(mach_msg, krc);
649 >
650 >                if (!exc_server(msg, reply)) {
651 >                        fprintf(stderr, "exc_server hated the message\n");
652 >                        exit(1);
653 >                }
654 >
655 >                krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
656 >                                 msg->msgh_local_port, 0, MACH_PORT_NULL);
657 >                if (krc != KERN_SUCCESS) {
658 >                        fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
659 >                                krc, mach_error_string(krc));
660 >                        exit(1);
661 >                }
662 >        }
663 > }
664 > #endif
665 > #endif
666 >
667 >
668 > /*
669 > *  Instruction skipping
670 > */
671 >
672 > #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
673 > // Decode and skip X86 instruction
674 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
675 > #if defined(__linux__)
676 > enum {
677 > #if (defined(i386) || defined(__i386__))
678 >        X86_REG_EIP = 14,
679 >        X86_REG_EAX = 11,
680 >        X86_REG_ECX = 10,
681 >        X86_REG_EDX = 9,
682 >        X86_REG_EBX = 8,
683 >        X86_REG_ESP = 7,
684 >        X86_REG_EBP = 6,
685 >        X86_REG_ESI = 5,
686 >        X86_REG_EDI = 4
687 > #endif
688 > #if defined(__x86_64__)
689 >        X86_REG_R8  = 0,
690 >        X86_REG_R9  = 1,
691 >        X86_REG_R10 = 2,
692 >        X86_REG_R11 = 3,
693 >        X86_REG_R12 = 4,
694 >        X86_REG_R13 = 5,
695 >        X86_REG_R14 = 6,
696 >        X86_REG_R15 = 7,
697 >        X86_REG_EDI = 8,
698 >        X86_REG_ESI = 9,
699 >        X86_REG_EBP = 10,
700 >        X86_REG_EBX = 11,
701 >        X86_REG_EDX = 12,
702 >        X86_REG_EAX = 13,
703 >        X86_REG_ECX = 14,
704 >        X86_REG_ESP = 15,
705 >        X86_REG_EIP = 16
706 > #endif
707 > };
708 > #endif
709 > #if defined(__NetBSD__)
710 > enum {
711 > #if (defined(i386) || defined(__i386__))
712 >        X86_REG_EIP = _REG_EIP,
713 >        X86_REG_EAX = _REG_EAX,
714 >        X86_REG_ECX = _REG_ECX,
715 >        X86_REG_EDX = _REG_EDX,
716 >        X86_REG_EBX = _REG_EBX,
717 >        X86_REG_ESP = _REG_ESP,
718 >        X86_REG_EBP = _REG_EBP,
719 >        X86_REG_ESI = _REG_ESI,
720 >        X86_REG_EDI = _REG_EDI
721 > #endif
722 > };
723 > #endif
724 > #if defined(__FreeBSD__)
725 > enum {
726 > #if (defined(i386) || defined(__i386__))
727 >        X86_REG_EIP = 10,
728 >        X86_REG_EAX = 7,
729 >        X86_REG_ECX = 6,
730 >        X86_REG_EDX = 5,
731 >        X86_REG_EBX = 4,
732 >        X86_REG_ESP = 13,
733 >        X86_REG_EBP = 2,
734 >        X86_REG_ESI = 1,
735 >        X86_REG_EDI = 0
736 > #endif
737 > };
738 > #endif
739 > #if defined(__OpenBSD__)
740 > enum {
741 > #if defined(__i386__)
742 >        // EDI is the first register we consider
743 > #define OREG(REG) offsetof(struct sigcontext, sc_##REG)
744 > #define DREG(REG) ((OREG(REG) - OREG(edi)) / 4)
745 >        X86_REG_EIP = DREG(eip), // 7
746 >        X86_REG_EAX = DREG(eax), // 6
747 >        X86_REG_ECX = DREG(ecx), // 5
748 >        X86_REG_EDX = DREG(edx), // 4
749 >        X86_REG_EBX = DREG(ebx), // 3
750 >        X86_REG_ESP = DREG(esp), // 10
751 >        X86_REG_EBP = DREG(ebp), // 2
752 >        X86_REG_ESI = DREG(esi), // 1
753 >        X86_REG_EDI = DREG(edi)  // 0
754 > #undef DREG
755 > #undef OREG
756 > #endif
757 > };
758 > #endif
759 > #if defined(__sun__)
760 > // Same as for Linux, need to check for x86-64
761 > enum {
762 > #if defined(__i386__)
763 >        X86_REG_EIP = EIP,
764 >        X86_REG_EAX = EAX,
765 >        X86_REG_ECX = ECX,
766 >        X86_REG_EDX = EDX,
767 >        X86_REG_EBX = EBX,
768 >        X86_REG_ESP = ESP,
769 >        X86_REG_EBP = EBP,
770 >        X86_REG_ESI = ESI,
771 >        X86_REG_EDI = EDI
772 > #endif
773 > };
774 > #endif
775 > #if defined(__APPLE__) && defined(__MACH__)
776 > enum {
777 > #ifdef i386_SAVED_STATE
778 >        // same as FreeBSD (in Open Darwin 8.0.1)
779 >        X86_REG_EIP = 10,
780 >        X86_REG_EAX = 7,
781 >        X86_REG_ECX = 6,
782 >        X86_REG_EDX = 5,
783 >        X86_REG_EBX = 4,
784 >        X86_REG_ESP = 13,
785 >        X86_REG_EBP = 2,
786 >        X86_REG_ESI = 1,
787 >        X86_REG_EDI = 0
788 > #else
789 >        // new layout (MacOS X 10.4.4 for x86)
790 >        X86_REG_EIP = 10,
791 >        X86_REG_EAX = 0,
792 >        X86_REG_ECX = 2,
793 >        X86_REG_EDX = 4,
794 >        X86_REG_EBX = 1,
795 >        X86_REG_ESP = 7,
796 >        X86_REG_EBP = 6,
797 >        X86_REG_ESI = 5,
798 >        X86_REG_EDI = 4
799 > #endif
800 > };
801 > #endif
802 > #if defined(_WIN32)
803 > enum {
804 > #if (defined(i386) || defined(__i386__))
805 >        X86_REG_EIP = 7,
806 >        X86_REG_EAX = 5,
807 >        X86_REG_ECX = 4,
808 >        X86_REG_EDX = 3,
809 >        X86_REG_EBX = 2,
810 >        X86_REG_ESP = 10,
811 >        X86_REG_EBP = 6,
812 >        X86_REG_ESI = 1,
813 >        X86_REG_EDI = 0
814 > #endif
815 > };
816 > #endif
817 > // FIXME: this is partly redundant with the instruction decoding phase
818 > // to discover transfer type and register number
819 > static inline int ix86_step_over_modrm(unsigned char * p)
820 > {
821 >        int mod = (p[0] >> 6) & 3;
822 >        int rm = p[0] & 7;
823 >        int offset = 0;
824 >
825 >        // ModR/M Byte
826 >        switch (mod) {
827 >        case 0: // [reg]
828 >                if (rm == 5) return 4; // disp32
829                  break;
830 <        case 31:
831 <                switch(EXTRACT_OP2(instr)) {
832 <                case 86:    /* dcbf */
833 <                case 54:    /* dcbst */
834 <                case 1014:  /* dcbz */
835 <                case 247:   /* stbux */
836 <                case 215:   /* stbx */
837 <                case 759:   /* stfdux */
838 <                case 727:   /* stfdx */
839 <                case 983:   /* stfiwx */
840 <                case 695:   /* stfsux */
841 <                case 663:   /* stfsx */
842 <                case 918:   /* sthbrx */
843 <                case 439:   /* sthux */
844 <                case 407:   /* sthx */
845 <                case 661:   /* stswx */
846 <                case 662:   /* stwbrx */
847 <                case 150:   /* stwcx. */
848 <                case 183:   /* stwux */
849 <                case 151:   /* stwx */
850 <                case 135:   /* stvebx */
851 <                case 167:   /* stvehx */
852 <                case 199:   /* stvewx */
853 <                case 231:   /* stvx */
854 <                case 487:   /* stvxl */
855 <                        tmp = EXTRACT_REGA(instr);
856 <                        if(tmp > 0)
857 <                                baseA = regs[tmp];
858 <                        baseB = regs[EXTRACT_REGC(instr)];
859 <                        /* determine Altivec alignment mask */
860 <                        switch(EXTRACT_OP2(instr)) {
861 <                        case 167:   /* stvehx */
862 <                                alignmask = 0xFFFFFFFE;
863 <                                break;
864 <                        case 199:   /* stvewx */
865 <                                alignmask = 0xFFFFFFFC;
830 >        case 1: // disp8[reg]
831 >                offset = 1;
832 >                break;
833 >        case 2: // disp32[reg]
834 >                offset = 4;
835 >                break;
836 >        case 3: // register
837 >                return 0;
838 >        }
839 >        
840 >        // SIB Byte
841 >        if (rm == 4) {
842 >                if (mod == 0 && (p[1] & 7) == 5)
843 >                        offset = 5; // disp32[index]
844 >                else
845 >                        offset++;
846 >        }
847 >
848 >        return offset;
849 > }
850 >
851 > static bool ix86_skip_instruction(unsigned long * regs)
852 > {
853 >        unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
854 >
855 >        if (eip == 0)
856 >                return false;
857 > #ifdef _WIN32
858 >        if (IsBadCodePtr((FARPROC)eip))
859 >                return false;
860 > #endif
861 >        
862 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
863 >        transfer_size_t transfer_size = SIZE_LONG;
864 >        
865 >        int reg = -1;
866 >        int len = 0;
867 >
868 > #if DEBUG
869 >        printf("IP: %p [%02x %02x %02x %02x...]\n",
870 >                   eip, eip[0], eip[1], eip[2], eip[3]);
871 > #endif
872 >
873 >        // Operand size prefix
874 >        if (*eip == 0x66) {
875 >                eip++;
876 >                len++;
877 >                transfer_size = SIZE_WORD;
878 >        }
879 >
880 >        // REX prefix
881 > #if defined(__x86_64__)
882 >        struct rex_t {
883 >                unsigned char W;
884 >                unsigned char R;
885 >                unsigned char X;
886 >                unsigned char B;
887 >        };
888 >        rex_t rex = { 0, 0, 0, 0 };
889 >        bool has_rex = false;
890 >        if ((*eip & 0xf0) == 0x40) {
891 >                has_rex = true;
892 >                const unsigned char b = *eip;
893 >                rex.W = b & (1 << 3);
894 >                rex.R = b & (1 << 2);
895 >                rex.X = b & (1 << 1);
896 >                rex.B = b & (1 << 0);
897 > #if DEBUG
898 >                printf("REX: %c,%c,%c,%c\n",
899 >                           rex.W ? 'W' : '_',
900 >                           rex.R ? 'R' : '_',
901 >                           rex.X ? 'X' : '_',
902 >                           rex.B ? 'B' : '_');
903 > #endif
904 >                eip++;
905 >                len++;
906 >                if (rex.W)
907 >                        transfer_size = SIZE_QUAD;
908 >        }
909 > #else
910 >        const bool has_rex = false;
911 > #endif
912 >
913 >        // Decode instruction
914 >        int target_size = SIZE_UNKNOWN;
915 >        switch (eip[0]) {
916 >        case 0x0f:
917 >                target_size = transfer_size;
918 >            switch (eip[1]) {
919 >                case 0xbe: // MOVSX r32, r/m8
920 >            case 0xb6: // MOVZX r32, r/m8
921 >                        transfer_size = SIZE_BYTE;
922 >                        goto do_mov_extend;
923 >                case 0xbf: // MOVSX r32, r/m16
924 >            case 0xb7: // MOVZX r32, r/m16
925 >                        transfer_size = SIZE_WORD;
926 >                        goto do_mov_extend;
927 >                  do_mov_extend:
928 >                        switch (eip[2] & 0xc0) {
929 >                        case 0x80:
930 >                                reg = (eip[2] >> 3) & 7;
931 >                                transfer_type = SIGSEGV_TRANSFER_LOAD;
932                                  break;
933 <                        case 231:   /* stvx */
934 <                                alignmask = 0xFFFFFFF0;
933 >                        case 0x40:
934 >                                reg = (eip[2] >> 3) & 7;
935 >                                transfer_type = SIGSEGV_TRANSFER_LOAD;
936                                  break;
937 <                        case 487:  /* stvxl */
938 <                                alignmask = 0xFFFFFFF0;
937 >                        case 0x00:
938 >                                reg = (eip[2] >> 3) & 7;
939 >                                transfer_type = SIGSEGV_TRANSFER_LOAD;
940                                  break;
941                          }
942 +                        len += 3 + ix86_step_over_modrm(eip + 2);
943                          break;
944 <                case 725:   /* stswi */
945 <                        tmp = EXTRACT_REGA(instr);
946 <                        if(tmp > 0)
947 <                                baseA = regs[tmp];
944 >            }
945 >          break;
946 > #if defined(__x86_64__)
947 >        case 0x63: // MOVSXD r64, r/m32
948 >                if (has_rex && rex.W) {
949 >                        transfer_size = SIZE_LONG;
950 >                        target_size = SIZE_QUAD;
951 >                }
952 >                else if (transfer_size != SIZE_WORD) {
953 >                        transfer_size = SIZE_LONG;
954 >                        target_size = SIZE_QUAD;
955 >                }
956 >                switch (eip[1] & 0xc0) {
957 >                case 0x80:
958 >                        reg = (eip[1] >> 3) & 7;
959 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
960 >                        break;
961 >                case 0x40:
962 >                        reg = (eip[1] >> 3) & 7;
963 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
964                          break;
965 <                default:   /* ignore instruction */
966 <                        return 0;
965 >                case 0x00:
966 >                        reg = (eip[1] >> 3) & 7;
967 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
968                          break;
969                  }
970 +                len += 2 + ix86_step_over_modrm(eip + 1);
971                  break;
972 <        default:   /* ignore instruction */
973 <                return 0;
972 > #endif
973 >        case 0x8a: // MOV r8, r/m8
974 >                transfer_size = SIZE_BYTE;
975 >        case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
976 >                switch (eip[1] & 0xc0) {
977 >                case 0x80:
978 >                        reg = (eip[1] >> 3) & 7;
979 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
980 >                        break;
981 >                case 0x40:
982 >                        reg = (eip[1] >> 3) & 7;
983 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
984 >                        break;
985 >                case 0x00:
986 >                        reg = (eip[1] >> 3) & 7;
987 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
988 >                        break;
989 >                }
990 >                len += 2 + ix86_step_over_modrm(eip + 1);
991                  break;
992 +        case 0x88: // MOV r/m8, r8
993 +                transfer_size = SIZE_BYTE;
994 +        case 0x89: // MOV r/m32, r32 (or 16-bit operation)
995 +                switch (eip[1] & 0xc0) {
996 +                case 0x80:
997 +                        reg = (eip[1] >> 3) & 7;
998 +                        transfer_type = SIGSEGV_TRANSFER_STORE;
999 +                        break;
1000 +                case 0x40:
1001 +                        reg = (eip[1] >> 3) & 7;
1002 +                        transfer_type = SIGSEGV_TRANSFER_STORE;
1003 +                        break;
1004 +                case 0x00:
1005 +                        reg = (eip[1] >> 3) & 7;
1006 +                        transfer_type = SIGSEGV_TRANSFER_STORE;
1007 +                        break;
1008 +                }
1009 +                len += 2 + ix86_step_over_modrm(eip + 1);
1010 +                break;
1011 +        }
1012 +        if (target_size == SIZE_UNKNOWN)
1013 +                target_size = transfer_size;
1014 +
1015 +        if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1016 +                // Unknown machine code, let it crash. Then patch the decoder
1017 +                return false;
1018 +        }
1019 +
1020 + #if defined(__x86_64__)
1021 +        if (rex.R)
1022 +                reg += 8;
1023 + #endif
1024 +
1025 +        if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
1026 +                static const int x86_reg_map[] = {
1027 +                        X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
1028 +                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI,
1029 + #if defined(__x86_64__)
1030 +                        X86_REG_R8,  X86_REG_R9,  X86_REG_R10, X86_REG_R11,
1031 +                        X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15,
1032 + #endif
1033 +                };
1034 +                
1035 +                if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1))
1036 +                        return false;
1037 +
1038 +                // Set 0 to the relevant register part
1039 +                // NOTE: this is only valid for MOV alike instructions
1040 +                int rloc = x86_reg_map[reg];
1041 +                switch (target_size) {
1042 +                case SIZE_BYTE:
1043 +                        if (has_rex || reg < 4)
1044 +                                regs[rloc] = (regs[rloc] & ~0x00ffL);
1045 +                        else {
1046 +                                rloc = x86_reg_map[reg - 4];
1047 +                                regs[rloc] = (regs[rloc] & ~0xff00L);
1048 +                        }
1049 +                        break;
1050 +                case SIZE_WORD:
1051 +                        regs[rloc] = (regs[rloc] & ~0xffffL);
1052 +                        break;
1053 +                case SIZE_LONG:
1054 +                case SIZE_QUAD: // zero-extension
1055 +                        regs[rloc] = 0;
1056 +                        break;
1057 +                }
1058          }
1059 +
1060 + #if DEBUG
1061 +        printf("%08x: %s %s access", regs[X86_REG_EIP],
1062 +                   transfer_size == SIZE_BYTE ? "byte" :
1063 +                   transfer_size == SIZE_WORD ? "word" :
1064 +                   transfer_size == SIZE_LONG ? "long" :
1065 +                   transfer_size == SIZE_QUAD ? "quad" : "unknown",
1066 +                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1067          
1068 <        addr = (baseA + baseB) + disp;
1069 <        addr &= alignmask;
1070 <        return (sigsegv_address_t)addr;
1068 >        if (reg != -1) {
1069 >                static const char * x86_byte_reg_str_map[] = {
1070 >                        "al",   "cl",   "dl",   "bl",
1071 >                        "spl",  "bpl",  "sil",  "dil",
1072 >                        "r8b",  "r9b",  "r10b", "r11b",
1073 >                        "r12b", "r13b", "r14b", "r15b",
1074 >                        "ah",   "ch",   "dh",   "bh",
1075 >                };
1076 >                static const char * x86_word_reg_str_map[] = {
1077 >                        "ax",   "cx",   "dx",   "bx",
1078 >                        "sp",   "bp",   "si",   "di",
1079 >                        "r8w",  "r9w",  "r10w", "r11w",
1080 >                        "r12w", "r13w", "r14w", "r15w",
1081 >                };
1082 >                static const char *x86_long_reg_str_map[] = {
1083 >                        "eax",  "ecx",  "edx",  "ebx",
1084 >                        "esp",  "ebp",  "esi",  "edi",
1085 >                        "r8d",  "r9d",  "r10d", "r11d",
1086 >                        "r12d", "r13d", "r14d", "r15d",
1087 >                };
1088 >                static const char *x86_quad_reg_str_map[] = {
1089 >                        "rax", "rcx", "rdx", "rbx",
1090 >                        "rsp", "rbp", "rsi", "rdi",
1091 >                        "r8",  "r9",  "r10", "r11",
1092 >                        "r12", "r13", "r14", "r15",
1093 >                };
1094 >                const char * reg_str = NULL;
1095 >                switch (target_size) {
1096 >                case SIZE_BYTE:
1097 >                        reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg];
1098 >                        break;
1099 >                case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break;
1100 >                case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break;
1101 >                case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break;
1102 >                }
1103 >                if (reg_str)
1104 >                        printf(" %s register %%%s",
1105 >                                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from",
1106 >                                   reg_str);
1107 >        }
1108 >        printf(", %d bytes instruction\n", len);
1109 > #endif
1110 >        
1111 >        regs[X86_REG_EIP] += len;
1112 >        return true;
1113   }
1114   #endif
1115 +
1116 + // Decode and skip PPC instruction
1117 + #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
1118 + static bool powerpc_skip_instruction(unsigned long * nip_p, unsigned long * regs)
1119 + {
1120 +        instruction_t instr;
1121 +        powerpc_decode_instruction(&instr, *nip_p, regs);
1122 +        
1123 +        if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1124 +                // Unknown machine code, let it crash. Then patch the decoder
1125 +                return false;
1126 +        }
1127 +
1128 + #if DEBUG
1129 +        printf("%08x: %s %s access", *nip_p,
1130 +                   instr.transfer_size == SIZE_BYTE ? "byte" :
1131 +                   instr.transfer_size == SIZE_WORD ? "word" :
1132 +                   instr.transfer_size == SIZE_LONG ? "long" : "quad",
1133 +                   instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1134 +        
1135 +        if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
1136 +                printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
1137 +        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
1138 +                printf(" r%d (rd = 0)\n", instr.rd);
1139   #endif
1140 +        
1141 +        if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
1142 +                regs[instr.ra] = instr.addr;
1143 +        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
1144 +                regs[instr.rd] = 0;
1145 +        
1146 +        *nip_p += 4;
1147 +        return true;
1148 + }
1149 + #endif
1150 +
1151 + // Decode and skip MIPS instruction
1152 + #if (defined(mips) || defined(__mips))
1153 + enum {
1154 + #if (defined(sgi) || defined(__sgi))
1155 +  MIPS_REG_EPC = 35,
1156 + #endif
1157 + };
1158 + static bool mips_skip_instruction(greg_t * regs)
1159 + {
1160 +  unsigned int * epc = (unsigned int *)(unsigned long)regs[MIPS_REG_EPC];
1161 +
1162 +  if (epc == 0)
1163 +        return false;
1164 +
1165 + #if DEBUG
1166 +  printf("IP: %p [%08x]\n", epc, epc[0]);
1167 + #endif
1168 +
1169 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1170 +  transfer_size_t transfer_size = SIZE_LONG;
1171 +  int direction = 0;
1172 +
1173 +  const unsigned int opcode = epc[0];
1174 +  switch (opcode >> 26) {
1175 +  case 32: // Load Byte
1176 +  case 36: // Load Byte Unsigned
1177 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1178 +        transfer_size = SIZE_BYTE;
1179 +        break;
1180 +  case 33: // Load Halfword
1181 +  case 37: // Load Halfword Unsigned
1182 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1183 +        transfer_size = SIZE_WORD;
1184 +        break;
1185 +  case 35: // Load Word
1186 +  case 39: // Load Word Unsigned
1187 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1188 +        transfer_size = SIZE_LONG;
1189 +        break;
1190 +  case 34: // Load Word Left
1191 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1192 +        transfer_size = SIZE_LONG;
1193 +        direction = -1;
1194 +        break;
1195 +  case 38: // Load Word Right
1196 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1197 +        transfer_size = SIZE_LONG;
1198 +        direction = 1;
1199 +        break;
1200 +  case 55: // Load Doubleword
1201 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1202 +        transfer_size = SIZE_QUAD;
1203 +        break;
1204 +  case 26: // Load Doubleword Left
1205 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1206 +        transfer_size = SIZE_QUAD;
1207 +        direction = -1;
1208 +        break;
1209 +  case 27: // Load Doubleword Right
1210 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1211 +        transfer_size = SIZE_QUAD;
1212 +        direction = 1;
1213 +        break;
1214 +  case 40: // Store Byte
1215 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1216 +        transfer_size = SIZE_BYTE;
1217 +        break;
1218 +  case 41: // Store Halfword
1219 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1220 +        transfer_size = SIZE_WORD;
1221 +        break;
1222 +  case 43: // Store Word
1223 +  case 42: // Store Word Left
1224 +  case 46: // Store Word Right
1225 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1226 +        transfer_size = SIZE_LONG;
1227 +        break;
1228 +  case 63: // Store Doubleword
1229 +  case 44: // Store Doubleword Left
1230 +  case 45: // Store Doubleword Right
1231 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1232 +        transfer_size = SIZE_QUAD;
1233 +        break;
1234 +  /* Misc instructions unlikely to be used within CPU emulators */
1235 +  case 48: // Load Linked Word
1236 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1237 +        transfer_size = SIZE_LONG;
1238 +        break;
1239 +  case 52: // Load Linked Doubleword
1240 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1241 +        transfer_size = SIZE_QUAD;
1242 +        break;
1243 +  case 56: // Store Conditional Word
1244 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1245 +        transfer_size = SIZE_LONG;
1246 +        break;
1247 +  case 60: // Store Conditional Doubleword
1248 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1249 +        transfer_size = SIZE_QUAD;
1250 +        break;
1251 +  }
1252 +
1253 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1254 +        // Unknown machine code, let it crash. Then patch the decoder
1255 +        return false;
1256 +  }
1257 +
1258 +  // Zero target register in case of a load operation
1259 +  const int reg = (opcode >> 16) & 0x1f;
1260 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD) {
1261 +        if (direction == 0)
1262 +          regs[reg] = 0;
1263 +        else {
1264 +          // FIXME: untested code
1265 +          unsigned long ea = regs[(opcode >> 21) & 0x1f];
1266 +          ea += (signed long)(signed int)(signed short)(opcode & 0xffff);
1267 +          const int offset = ea & (transfer_size == SIZE_LONG ? 3 : 7);
1268 +          unsigned long value;
1269 +          if (direction > 0) {
1270 +                const unsigned long rmask = ~((1L << ((offset + 1) * 8)) - 1);
1271 +                value = regs[reg] & rmask;
1272 +          }
1273 +          else {
1274 +                const unsigned long lmask = (1L << (offset * 8)) - 1;
1275 +                value = regs[reg] & lmask;
1276 +          }
1277 +          // restore most significant bits
1278 +          if (transfer_size == SIZE_LONG)
1279 +                value = (signed long)(signed int)value;
1280 +          regs[reg] = value;
1281 +        }
1282 +  }
1283 +
1284 + #if DEBUG
1285 + #if (defined(_ABIN32) || defined(_ABI64))
1286 +  static const char * mips_gpr_names[32] = {
1287 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1288 +        "t0",   "t1",   "t2",   "t3",   "t4",   "t5",   "t6",   "t7",
1289 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1290 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1291 +  };
1292 + #else
1293 +  static const char * mips_gpr_names[32] = {
1294 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1295 +        "a4",   "a5",   "a6",   "a7",   "t0",   "t1",   "t2",   "t3",
1296 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1297 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1298 +  };
1299 + #endif
1300 +  printf("%s %s register %s\n",
1301 +                 transfer_size == SIZE_BYTE ? "byte" :
1302 +                 transfer_size == SIZE_WORD ? "word" :
1303 +                 transfer_size == SIZE_LONG ? "long" :
1304 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1305 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1306 +                 mips_gpr_names[reg]);
1307 + #endif
1308 +
1309 +  regs[MIPS_REG_EPC] += 4;
1310 +  return true;
1311 + }
1312 + #endif
1313 +
1314 + // Decode and skip SPARC instruction
1315 + #if (defined(sparc) || defined(__sparc__))
1316 + enum {
1317 + #if (defined(__sun__))
1318 +  SPARC_REG_G1 = REG_G1,
1319 +  SPARC_REG_O0 = REG_O0,
1320 +  SPARC_REG_PC = REG_PC,
1321 +  SPARC_REG_nPC = REG_nPC
1322 + #endif
1323 + };
1324 + static bool sparc_skip_instruction(unsigned long * regs, gwindows_t * gwins, struct rwindow * rwin)
1325 + {
1326 +  unsigned int * pc = (unsigned int *)regs[SPARC_REG_PC];
1327 +
1328 +  if (pc == 0)
1329 +        return false;
1330 +
1331 + #if DEBUG
1332 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1333 + #endif
1334 +
1335 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1336 +  transfer_size_t transfer_size = SIZE_LONG;
1337 +  bool register_pair = false;
1338 +
1339 +  const unsigned int opcode = pc[0];
1340 +  if ((opcode >> 30) != 3)
1341 +        return false;
1342 +  switch ((opcode >> 19) & 0x3f) {
1343 +  case 9: // Load Signed Byte
1344 +  case 1: // Load Unsigned Byte
1345 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1346 +        transfer_size = SIZE_BYTE;
1347 +        break;
1348 +  case 10:// Load Signed Halfword
1349 +  case 2: // Load Unsigned Word
1350 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1351 +        transfer_size = SIZE_WORD;
1352 +        break;
1353 +  case 8: // Load Word
1354 +  case 0: // Load Unsigned Word
1355 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1356 +        transfer_size = SIZE_LONG;
1357 +        break;
1358 +  case 11:// Load Extended Word
1359 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1360 +        transfer_size = SIZE_QUAD;
1361 +        break;
1362 +  case 3: // Load Doubleword
1363 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1364 +        transfer_size = SIZE_LONG;
1365 +        register_pair = true;
1366 +        break;
1367 +  case 5: // Store Byte
1368 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1369 +        transfer_size = SIZE_BYTE;
1370 +        break;
1371 +  case 6: // Store Halfword
1372 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1373 +        transfer_size = SIZE_WORD;
1374 +        break;
1375 +  case 4: // Store Word
1376 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1377 +        transfer_size = SIZE_LONG;
1378 +        break;
1379 +  case 14:// Store Extended Word
1380 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1381 +        transfer_size = SIZE_QUAD;
1382 +        break;
1383 +  case 7: // Store Doubleword
1384 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1385 +        transfer_size = SIZE_LONG;
1386 +        register_pair = true;
1387 +        break;
1388 +  }
1389 +
1390 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1391 +        // Unknown machine code, let it crash. Then patch the decoder
1392 +        return false;
1393 +  }
1394 +
1395 +  const int reg = (opcode >> 25) & 0x1f;
1396 +
1397 + #if DEBUG
1398 +  static const char * reg_names[] = {
1399 +        "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
1400 +        "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
1401 +        "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
1402 +        "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7"
1403 +  };
1404 +  printf("%s %s register %s\n",
1405 +                 transfer_size == SIZE_BYTE ? "byte" :
1406 +                 transfer_size == SIZE_WORD ? "word" :
1407 +                 transfer_size == SIZE_LONG ? "long" :
1408 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1409 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1410 +                 reg_names[reg]);
1411 + #endif
1412 +
1413 +  // Zero target register in case of a load operation
1414 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != 0) {
1415 +        // FIXME: code to handle local & input registers is not tested
1416 +        if (reg >= 1 && reg < 8) {
1417 +          // global registers
1418 +          regs[reg - 1 + SPARC_REG_G1] = 0;
1419 +        }
1420 +        else if (reg >= 8 && reg < 16) {
1421 +          // output registers
1422 +          regs[reg - 8 + SPARC_REG_O0] = 0;
1423 +        }
1424 +        else if (reg >= 16 && reg < 24) {
1425 +          // local registers (in register windows)
1426 +          if (gwins)
1427 +                gwins->wbuf->rw_local[reg - 16] = 0;
1428 +          else
1429 +                rwin->rw_local[reg - 16] = 0;
1430 +        }
1431 +        else {
1432 +          // input registers (in register windows)
1433 +          if (gwins)
1434 +                gwins->wbuf->rw_in[reg - 24] = 0;
1435 +          else
1436 +                rwin->rw_in[reg - 24] = 0;
1437 +        }
1438 +  }
1439 +
1440 +  regs[SPARC_REG_PC] += 4;
1441 +  regs[SPARC_REG_nPC] += 4;
1442 +  return true;
1443 + }
1444 + #endif
1445 + #endif
1446 +
1447 + // Decode and skip ARM instruction
1448 + #if (defined(arm) || defined(__arm__))
1449 + enum {
1450 + #if (defined(__linux__))
1451 +  ARM_REG_PC = 15,
1452 +  ARM_REG_CPSR = 16
1453 + #endif
1454 + };
1455 + static bool arm_skip_instruction(unsigned long * regs)
1456 + {
1457 +  unsigned int * pc = (unsigned int *)regs[ARM_REG_PC];
1458 +
1459 +  if (pc == 0)
1460 +        return false;
1461 +
1462 + #if DEBUG
1463 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1464 + #endif
1465 +
1466 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1467 +  transfer_size_t transfer_size = SIZE_UNKNOWN;
1468 +  enum { op_sdt = 1, op_sdth = 2 };
1469 +  int op = 0;
1470 +
1471 +  // Handle load/store instructions only
1472 +  const unsigned int opcode = pc[0];
1473 +  switch ((opcode >> 25) & 7) {
1474 +  case 0: // Halfword and Signed Data Transfer (LDRH, STRH, LDRSB, LDRSH)
1475 +        op = op_sdth;
1476 +        // Determine transfer size (S/H bits)
1477 +        switch ((opcode >> 5) & 3) {
1478 +        case 0: // SWP instruction
1479 +          break;
1480 +        case 1: // Unsigned halfwords
1481 +        case 3: // Signed halfwords
1482 +          transfer_size = SIZE_WORD;
1483 +          break;
1484 +        case 2: // Signed byte
1485 +          transfer_size = SIZE_BYTE;
1486 +          break;
1487 +        }
1488 +        break;
1489 +  case 2:
1490 +  case 3: // Single Data Transfer (LDR, STR)
1491 +        op = op_sdt;
1492 +        // Determine transfer size (B bit)
1493 +        if (((opcode >> 22) & 1) == 1)
1494 +          transfer_size = SIZE_BYTE;
1495 +        else
1496 +          transfer_size = SIZE_LONG;
1497 +        break;
1498 +  default:
1499 +        // FIXME: support load/store mutliple?
1500 +        return false;
1501 +  }
1502 +
1503 +  // Check for invalid transfer size (SWP instruction?)
1504 +  if (transfer_size == SIZE_UNKNOWN)
1505 +        return false;
1506 +
1507 +  // Determine transfer type (L bit)
1508 +  if (((opcode >> 20) & 1) == 1)
1509 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1510 +  else
1511 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1512 +
1513 +  // Compute offset
1514 +  int offset;
1515 +  if (((opcode >> 25) & 1) == 0) {
1516 +        if (op == op_sdt)
1517 +          offset = opcode & 0xfff;
1518 +        else if (op == op_sdth) {
1519 +          int rm = opcode & 0xf;
1520 +          if (((opcode >> 22) & 1) == 0) {
1521 +                // register offset
1522 +                offset = regs[rm];
1523 +          }
1524 +          else {
1525 +                // immediate offset
1526 +                offset = ((opcode >> 4) & 0xf0) | (opcode & 0x0f);
1527 +          }
1528 +        }
1529 +  }
1530 +  else {
1531 +        const int rm = opcode & 0xf;
1532 +        const int sh = (opcode >> 7) & 0x1f;
1533 +        if (((opcode >> 4) & 1) == 1) {
1534 +          // we expect only legal load/store instructions
1535 +          printf("FATAL: invalid shift operand\n");
1536 +          return false;
1537 +        }
1538 +        const unsigned int v = regs[rm];
1539 +        switch ((opcode >> 5) & 3) {
1540 +        case 0: // logical shift left
1541 +          offset = sh ? v << sh : v;
1542 +          break;
1543 +        case 1: // logical shift right
1544 +          offset = sh ? v >> sh : 0;
1545 +          break;
1546 +        case 2: // arithmetic shift right
1547 +          if (sh)
1548 +                offset = ((signed int)v) >> sh;
1549 +          else
1550 +                offset = (v & 0x80000000) ? 0xffffffff : 0;
1551 +          break;
1552 +        case 3: // rotate right
1553 +          if (sh)
1554 +                offset = (v >> sh) | (v << (32 - sh));
1555 +          else
1556 +                offset = (v >> 1) | ((regs[ARM_REG_CPSR] << 2) & 0x80000000);
1557 +          break;
1558 +        }
1559 +  }
1560 +  if (((opcode >> 23) & 1) == 0)
1561 +        offset = -offset;
1562 +
1563 +  int rd = (opcode >> 12) & 0xf;
1564 +  int rn = (opcode >> 16) & 0xf;
1565 + #if DEBUG
1566 +  static const char * reg_names[] = {
1567 +        "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1568 +        "r9", "r9", "sl", "fp", "ip", "sp", "lr", "pc"
1569 +  };
1570 +  printf("%s %s register %s\n",
1571 +                 transfer_size == SIZE_BYTE ? "byte" :
1572 +                 transfer_size == SIZE_WORD ? "word" :
1573 +                 transfer_size == SIZE_LONG ? "long" : "unknown",
1574 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1575 +                 reg_names[rd]);
1576 + #endif
1577 +
1578 +  unsigned int base = regs[rn];
1579 +  if (((opcode >> 24) & 1) == 1)
1580 +        base += offset;
1581 +
1582 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD)
1583 +        regs[rd] = 0;
1584 +
1585 +  if (((opcode >> 24) & 1) == 0)                // post-index addressing
1586 +        regs[rn] += offset;
1587 +  else if (((opcode >> 21) & 1) == 1)   // write-back address into base
1588 +        regs[rn] = base;
1589 +
1590 +  regs[ARM_REG_PC] += 4;
1591 +  return true;
1592 + }
1593   #endif
1594  
1595 +
1596   // Fallbacks
1597   #ifndef SIGSEGV_FAULT_INSTRUCTION
1598   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_PC
1599   #endif
1600 + #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
1601 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
1602 + #endif
1603 + #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
1604 + #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  sigsegv_fault_handler(ADDR, IP)
1605 + #endif
1606  
1607   // SIGSEGV recovery supported ?
1608   #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
# Line 285 | Line 1614 | static sigsegv_address_t get_fault_addre
1614   *  SIGSEGV global handler
1615   */
1616  
1617 + // This function handles the badaccess to memory.
1618 + // It is called from the signal handler or the exception handler.
1619 + static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
1620 + {
1621 + #ifdef HAVE_MACH_EXCEPTIONS
1622 +        // We must match the initial count when writing back the CPU state registers
1623 +        kern_return_t krc;
1624 +        mach_msg_type_number_t count;
1625 +
1626 +        count = SIGSEGV_THREAD_STATE_COUNT;
1627 +        krc = thread_get_state(thread, SIGSEGV_THREAD_STATE_FLAVOR, (thread_state_t)state, &count);
1628 +        MACH_CHECK_ERROR (thread_get_state, krc);
1629 + #endif
1630 +
1631 +        sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
1632 +        sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
1633 +        
1634 +        // Call user's handler and reinstall the global handler, if required
1635 +        switch (SIGSEGV_FAULT_HANDLER_INVOKE(fault_address, fault_instruction)) {
1636 +        case SIGSEGV_RETURN_SUCCESS:
1637 +                return true;
1638 +
1639 + #if HAVE_SIGSEGV_SKIP_INSTRUCTION
1640 +        case SIGSEGV_RETURN_SKIP_INSTRUCTION:
1641 +                // Call the instruction skipper with the register file
1642 +                // available
1643 +                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
1644 + #ifdef HAVE_MACH_EXCEPTIONS
1645 +                        // Unlike UNIX signals where the thread state
1646 +                        // is modified off of the stack, in Mach we
1647 +                        // need to actually call thread_set_state to
1648 +                        // have the register values updated.
1649 +                        krc = thread_set_state(thread,
1650 +                                                                   SIGSEGV_THREAD_STATE_FLAVOR, (thread_state_t)state,
1651 +                                                                   count);
1652 +                        MACH_CHECK_ERROR (thread_set_state, krc);
1653 + #endif
1654 +                        return true;
1655 +                }
1656 +                break;
1657 + #endif
1658 +        case SIGSEGV_RETURN_FAILURE:
1659 +                // We can't do anything with the fault_address, dump state?
1660 +                if (sigsegv_state_dumper != 0)
1661 +                        sigsegv_state_dumper(fault_address, fault_instruction);
1662 +                break;
1663 +        }
1664 +
1665 +        return false;
1666 + }
1667 +
1668 +
1669 + /*
1670 + * There are two mechanisms for handling a bad memory access,
1671 + * Mach exceptions and UNIX signals. The implementation specific
1672 + * code appears below. Its reponsibility is to call handle_badaccess
1673 + * which is the routine that handles the fault in an implementation
1674 + * agnostic manner. The implementation specific code below is then
1675 + * reponsible for checking whether handle_badaccess was able
1676 + * to handle the memory access error and perform any implementation
1677 + * specific tasks necessary afterwards.
1678 + */
1679 +
1680 + #ifdef HAVE_MACH_EXCEPTIONS
1681 + /*
1682 + * We need to forward all exceptions that we do not handle.
1683 + * This is important, there are many exceptions that may be
1684 + * handled by other exception handlers. For example debuggers
1685 + * use exceptions and the exception hander is in another
1686 + * process in such a case. (Timothy J. Wood states in his
1687 + * message to the list that he based this code on that from
1688 + * gdb for Darwin.)
1689 + */
1690 + static inline kern_return_t
1691 + forward_exception(mach_port_t thread_port,
1692 +                                  mach_port_t task_port,
1693 +                                  exception_type_t exception_type,
1694 +                                  exception_data_t exception_data,
1695 +                                  mach_msg_type_number_t data_count,
1696 +                                  ExceptionPorts *oldExceptionPorts)
1697 + {
1698 +        kern_return_t kret;
1699 +        unsigned int portIndex;
1700 +        mach_port_t port;
1701 +        exception_behavior_t behavior;
1702 +        thread_state_flavor_t flavor;
1703 +        thread_state_data_t thread_state;
1704 +        mach_msg_type_number_t thread_state_count;
1705 +
1706 +        for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
1707 +                if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
1708 +                        // This handler wants the exception
1709 +                        break;
1710 +                }
1711 +        }
1712 +
1713 +        if (portIndex >= oldExceptionPorts->maskCount) {
1714 +                fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
1715 +                return KERN_FAILURE;
1716 +        }
1717 +
1718 +        port = oldExceptionPorts->handlers[portIndex];
1719 +        behavior = oldExceptionPorts->behaviors[portIndex];
1720 +        flavor = oldExceptionPorts->flavors[portIndex];
1721 +
1722 +        /*
1723 +         fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
1724 +         */
1725 +
1726 +        if (behavior != EXCEPTION_DEFAULT) {
1727 +                thread_state_count = THREAD_STATE_MAX;
1728 +                kret = thread_get_state (thread_port, flavor, (natural_t *)&thread_state,
1729 +                                                                 &thread_state_count);
1730 +                MACH_CHECK_ERROR (thread_get_state, kret);
1731 +        }
1732 +
1733 +        switch (behavior) {
1734 +        case EXCEPTION_DEFAULT:
1735 +          // fprintf(stderr, "forwarding to exception_raise\n");
1736 +          kret = exception_raise(port, thread_port, task_port, exception_type,
1737 +                                                         exception_data, data_count);
1738 +          MACH_CHECK_ERROR (exception_raise, kret);
1739 +          break;
1740 +        case EXCEPTION_STATE:
1741 +          // fprintf(stderr, "forwarding to exception_raise_state\n");
1742 +          kret = exception_raise_state(port, exception_type, exception_data,
1743 +                                                                   data_count, &flavor,
1744 +                                                                   (natural_t *)&thread_state, thread_state_count,
1745 +                                                                   (natural_t *)&thread_state, &thread_state_count);
1746 +          MACH_CHECK_ERROR (exception_raise_state, kret);
1747 +          break;
1748 +        case EXCEPTION_STATE_IDENTITY:
1749 +          // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
1750 +          kret = exception_raise_state_identity(port, thread_port, task_port,
1751 +                                                                                        exception_type, exception_data,
1752 +                                                                                        data_count, &flavor,
1753 +                                                                                        (natural_t *)&thread_state, thread_state_count,
1754 +                                                                                        (natural_t *)&thread_state, &thread_state_count);
1755 +          MACH_CHECK_ERROR (exception_raise_state_identity, kret);
1756 +          break;
1757 +        default:
1758 +          fprintf(stderr, "forward_exception got unknown behavior\n");
1759 +          break;
1760 +        }
1761 +
1762 +        if (behavior != EXCEPTION_DEFAULT) {
1763 +                kret = thread_set_state (thread_port, flavor, (natural_t *)&thread_state,
1764 +                                                                 thread_state_count);
1765 +                MACH_CHECK_ERROR (thread_set_state, kret);
1766 +        }
1767 +
1768 +        return KERN_SUCCESS;
1769 + }
1770 +
1771 + /*
1772 + * This is the code that actually handles the exception.
1773 + * It is called by exc_server. For Darwin 5 Apple changed
1774 + * this a bit from how this family of functions worked in
1775 + * Mach. If you are familiar with that it is a little
1776 + * different. The main variation that concerns us here is
1777 + * that code is an array of exception specific codes and
1778 + * codeCount is a count of the number of codes in the code
1779 + * array. In typical Mach all exceptions have a code
1780 + * and sub-code. It happens to be the case that for a
1781 + * EXC_BAD_ACCESS exception the first entry is the type of
1782 + * bad access that occurred and the second entry is the
1783 + * faulting address so these entries correspond exactly to
1784 + * how the code and sub-code are used on Mach.
1785 + *
1786 + * This is a MIG interface. No code in Basilisk II should
1787 + * call this directley. This has to have external C
1788 + * linkage because that is what exc_server expects.
1789 + */
1790 + kern_return_t
1791 + catch_exception_raise(mach_port_t exception_port,
1792 +                                          mach_port_t thread,
1793 +                                          mach_port_t task,
1794 +                                          exception_type_t exception,
1795 +                                          exception_data_t code,
1796 +                                          mach_msg_type_number_t codeCount)
1797 + {
1798 +        SIGSEGV_THREAD_STATE_TYPE state;
1799 +        kern_return_t krc;
1800 +
1801 +        if ((exception == EXC_BAD_ACCESS)  && (codeCount >= 2)) {
1802 +                if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
1803 +                        return KERN_SUCCESS;
1804 +        }
1805 +
1806 +        // In Mach we do not need to remove the exception handler.
1807 +        // If we forward the exception, eventually some exception handler
1808 +        // will take care of this exception.
1809 +        krc = forward_exception(thread, task, exception, code, codeCount, &ports);
1810 +
1811 +        return krc;
1812 + }
1813 + #endif
1814 +
1815   #ifdef HAVE_SIGSEGV_RECOVERY
1816 + // Handle bad memory accesses with signal handler
1817   static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1818   {
1819 <        // Call user's handler and reinstall the global handler, if required
1820 <        if (sigsegv_user_handler((sigsegv_address_t)SIGSEGV_FAULT_ADDRESS, (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION)) {
1819 >        // Call handler and reinstall the global handler, if required
1820 >        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
1821   #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1822                  sigsegv_do_install_handler(sig);
1823   #endif
1824 +                return;
1825          }
1826 <        else {
1827 <                // FAIL: reinstall default handler for "safe" crash
1826 >
1827 >        // Failure: reinstall default handler for "safe" crash
1828   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1829 <                SIGSEGV_ALL_SIGNALS
1829 >        SIGSEGV_ALL_SIGNALS
1830   #undef FAULT_HANDLER
302        }
1831   }
1832   #endif
1833  
# Line 313 | Line 1841 | static bool sigsegv_do_install_handler(i
1841   {
1842          // Setup SIGSEGV handler to process writes to frame buffer
1843   #ifdef HAVE_SIGACTION
1844 <        struct sigaction vosf_sa;
1845 <        sigemptyset(&vosf_sa.sa_mask);
1846 <        vosf_sa.sa_sigaction = sigsegv_handler;
1847 <        vosf_sa.sa_flags = SA_SIGINFO;
1848 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1844 >        struct sigaction sigsegv_sa;
1845 >        sigemptyset(&sigsegv_sa.sa_mask);
1846 >        sigsegv_sa.sa_sigaction = sigsegv_handler;
1847 >        sigsegv_sa.sa_flags = SA_SIGINFO;
1848 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1849   #else
1850          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1851   #endif
# Line 329 | Line 1857 | static bool sigsegv_do_install_handler(i
1857   {
1858          // Setup SIGSEGV handler to process writes to frame buffer
1859   #ifdef HAVE_SIGACTION
1860 <        struct sigaction vosf_sa;
1861 <        sigemptyset(&vosf_sa.sa_mask);
1862 <        vosf_sa.sa_handler = (signal_handler)sigsegv_handler;
1860 >        struct sigaction sigsegv_sa;
1861 >        sigemptyset(&sigsegv_sa.sa_mask);
1862 >        sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
1863 >        sigsegv_sa.sa_flags = 0;
1864   #if !EMULATED_68K && defined(__NetBSD__)
1865 <        sigaddset(&vosf_sa.sa_mask, SIGALRM);
1866 <        vosf_sa.sa_flags = SA_ONSTACK;
338 < #else
339 <        vosf_sa.sa_flags = 0;
1865 >        sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
1866 >        sigsegv_sa.sa_flags |= SA_ONSTACK;
1867   #endif
1868 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1868 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1869   #else
1870          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1871   #endif
1872   }
1873   #endif
1874  
1875 < bool sigsegv_install_handler(sigsegv_handler_t handler)
1875 > #if defined(HAVE_MACH_EXCEPTIONS)
1876 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1877   {
1878 < #ifdef HAVE_SIGSEGV_RECOVERY
1879 <        sigsegv_user_handler = handler;
1878 >        /*
1879 >         * Except for the exception port functions, this should be
1880 >         * pretty much stock Mach. If later you choose to support
1881 >         * other Mach's besides Darwin, just check for __MACH__
1882 >         * here and __APPLE__ where the actual differences are.
1883 >         */
1884 > #if defined(__APPLE__) && defined(__MACH__)
1885 >        if (sigsegv_fault_handler != NULL) {
1886 >                sigsegv_fault_handler = handler;
1887 >                return true;
1888 >        }
1889 >
1890 >        kern_return_t krc;
1891 >
1892 >        // create the the exception port
1893 >        krc = mach_port_allocate(mach_task_self(),
1894 >                          MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
1895 >        if (krc != KERN_SUCCESS) {
1896 >                mach_error("mach_port_allocate", krc);
1897 >                return false;
1898 >        }
1899 >
1900 >        // add a port send right
1901 >        krc = mach_port_insert_right(mach_task_self(),
1902 >                              _exceptionPort, _exceptionPort,
1903 >                              MACH_MSG_TYPE_MAKE_SEND);
1904 >        if (krc != KERN_SUCCESS) {
1905 >                mach_error("mach_port_insert_right", krc);
1906 >                return false;
1907 >        }
1908 >
1909 >        // get the old exception ports
1910 >        ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
1911 >        krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
1912 >                                &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
1913 >        if (krc != KERN_SUCCESS) {
1914 >                mach_error("thread_get_exception_ports", krc);
1915 >                return false;
1916 >        }
1917 >
1918 >        // set the new exception port
1919 >        //
1920 >        // We could have used EXCEPTION_STATE_IDENTITY instead of
1921 >        // EXCEPTION_DEFAULT to get the thread state in the initial
1922 >        // message, but it turns out that in the common case this is not
1923 >        // neccessary. If we need it we can later ask for it from the
1924 >        // suspended thread.
1925 >        //
1926 >        // Even with THREAD_STATE_NONE, Darwin provides the program
1927 >        // counter in the thread state.  The comments in the header file
1928 >        // seem to imply that you can count on the GPR's on an exception
1929 >        // as well but just to be safe I use MACHINE_THREAD_STATE because
1930 >        // you have to ask for all of the GPR's anyway just to get the
1931 >        // program counter. In any case because of update effective
1932 >        // address from immediate and update address from effective
1933 >        // addresses of ra and rb modes (as good an name as any for these
1934 >        // addressing modes) used in PPC instructions, you will need the
1935 >        // GPR state anyway.
1936 >        krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
1937 >                                EXCEPTION_DEFAULT, SIGSEGV_THREAD_STATE_FLAVOR);
1938 >        if (krc != KERN_SUCCESS) {
1939 >                mach_error("thread_set_exception_ports", krc);
1940 >                return false;
1941 >        }
1942 >
1943 >        // create the exception handler thread
1944 >        if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
1945 >                (void)fprintf(stderr, "creation of exception thread failed\n");
1946 >                return false;
1947 >        }
1948 >
1949 >        // do not care about the exception thread any longer, let is run standalone
1950 >        (void)pthread_detach(exc_thread);
1951 >
1952 >        sigsegv_fault_handler = handler;
1953 >        return true;
1954 > #else
1955 >        return false;
1956 > #endif
1957 > }
1958 > #endif
1959 >
1960 > #ifdef HAVE_WIN32_EXCEPTIONS
1961 > static LONG WINAPI main_exception_filter(EXCEPTION_POINTERS *ExceptionInfo)
1962 > {
1963 >        if (sigsegv_fault_handler != NULL
1964 >                && ExceptionInfo->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION
1965 >                && ExceptionInfo->ExceptionRecord->NumberParameters == 2
1966 >                && handle_badaccess(ExceptionInfo))
1967 >                return EXCEPTION_CONTINUE_EXECUTION;
1968 >
1969 >        return EXCEPTION_CONTINUE_SEARCH;
1970 > }
1971 >
1972 > #if defined __CYGWIN__ && defined __i386__
1973 > /* In Cygwin programs, SetUnhandledExceptionFilter has no effect because Cygwin
1974 >   installs a global exception handler.  We have to dig deep in order to install
1975 >   our main_exception_filter.  */
1976 >
1977 > /* Data structures for the current thread's exception handler chain.
1978 >   On the x86 Windows uses register fs, offset 0 to point to the current
1979 >   exception handler; Cygwin mucks with it, so we must do the same... :-/ */
1980 >
1981 > /* Magic taken from winsup/cygwin/include/exceptions.h.  */
1982 >
1983 > struct exception_list {
1984 >    struct exception_list *prev;
1985 >    int (*handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
1986 > };
1987 > typedef struct exception_list exception_list;
1988 >
1989 > /* Magic taken from winsup/cygwin/exceptions.cc.  */
1990 >
1991 > __asm__ (".equ __except_list,0");
1992 >
1993 > extern exception_list *_except_list __asm__ ("%fs:__except_list");
1994 >
1995 > /* For debugging.  _except_list is not otherwise accessible from gdb.  */
1996 > static exception_list *
1997 > debug_get_except_list ()
1998 > {
1999 >  return _except_list;
2000 > }
2001 >
2002 > /* Cygwin's original exception handler.  */
2003 > static int (*cygwin_exception_handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
2004 >
2005 > /* Our exception handler.  */
2006 > static int
2007 > libsigsegv_exception_handler (EXCEPTION_RECORD *exception, void *frame, CONTEXT *context, void *dispatch)
2008 > {
2009 >  EXCEPTION_POINTERS ExceptionInfo;
2010 >  ExceptionInfo.ExceptionRecord = exception;
2011 >  ExceptionInfo.ContextRecord = context;
2012 >  if (main_exception_filter (&ExceptionInfo) == EXCEPTION_CONTINUE_SEARCH)
2013 >    return cygwin_exception_handler (exception, frame, context, dispatch);
2014 >  else
2015 >    return 0;
2016 > }
2017 >
2018 > static void
2019 > do_install_main_exception_filter ()
2020 > {
2021 >  /* We cannot insert any handler into the chain, because such handlers
2022 >     must lie on the stack (?).  Instead, we have to replace(!) Cygwin's
2023 >     global exception handler.  */
2024 >  cygwin_exception_handler = _except_list->handler;
2025 >  _except_list->handler = libsigsegv_exception_handler;
2026 > }
2027 >
2028 > #else
2029 >
2030 > static void
2031 > do_install_main_exception_filter ()
2032 > {
2033 >  SetUnhandledExceptionFilter ((LPTOP_LEVEL_EXCEPTION_FILTER) &main_exception_filter);
2034 > }
2035 > #endif
2036 >
2037 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
2038 > {
2039 >        static bool main_exception_filter_installed = false;
2040 >        if (!main_exception_filter_installed) {
2041 >                do_install_main_exception_filter();
2042 >                main_exception_filter_installed = true;
2043 >        }
2044 >        sigsegv_fault_handler = handler;
2045 >        return true;
2046 > }
2047 > #endif
2048 >
2049 > bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
2050 > {
2051 > #if defined(HAVE_SIGSEGV_RECOVERY)
2052          bool success = true;
2053   #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
2054          SIGSEGV_ALL_SIGNALS
2055   #undef FAULT_HANDLER
2056 +        if (success)
2057 +            sigsegv_fault_handler = handler;
2058          return success;
2059 + #elif defined(HAVE_MACH_EXCEPTIONS) || defined(HAVE_WIN32_EXCEPTIONS)
2060 +        return sigsegv_do_install_handler(handler);
2061   #else
2062          // FAIL: no siginfo_t nor sigcontext subterfuge is available
2063          return false;
# Line 367 | Line 2071 | bool sigsegv_install_handler(sigsegv_han
2071  
2072   void sigsegv_deinstall_handler(void)
2073   {
2074 +  // We do nothing for Mach exceptions, the thread would need to be
2075 +  // suspended if not already so, and we might mess with other
2076 +  // exception handlers that came after we registered ours. There is
2077 +  // no need to remove the exception handler, in fact this function is
2078 +  // not called anywhere in Basilisk II.
2079   #ifdef HAVE_SIGSEGV_RECOVERY
2080 <        sigsegv_user_handler = 0;
2080 >        sigsegv_fault_handler = 0;
2081   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
2082          SIGSEGV_ALL_SIGNALS
2083   #undef FAULT_HANDLER
2084   #endif
2085 + #ifdef HAVE_WIN32_EXCEPTIONS
2086 +        sigsegv_fault_handler = NULL;
2087 + #endif
2088 + }
2089 +
2090 +
2091 + /*
2092 + *  Set callback function when we cannot handle the fault
2093 + */
2094 +
2095 + void sigsegv_set_dump_state(sigsegv_state_dumper_t handler)
2096 + {
2097 +        sigsegv_state_dumper = handler;
2098   }
2099  
2100 +
2101   /*
2102   *  Test program used for configure/test
2103   */
# Line 383 | Line 2106 | void sigsegv_deinstall_handler(void)
2106   #include <stdio.h>
2107   #include <stdlib.h>
2108   #include <fcntl.h>
2109 + #ifdef HAVE_SYS_MMAN_H
2110   #include <sys/mman.h>
2111 + #endif
2112   #include "vm_alloc.h"
2113  
2114 + const int REF_INDEX = 123;
2115 + const int REF_VALUE = 45;
2116 +
2117   static int page_size;
2118   static volatile char * page = 0;
2119   static volatile int handler_called = 0;
2120  
2121 < static bool sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2121 > /* Barriers */
2122 > #ifdef __GNUC__
2123 > #define BARRIER() asm volatile ("" : : : "memory")
2124 > #else
2125 > #define BARRIER() /* nothing */
2126 > #endif
2127 >
2128 > #ifdef __GNUC__
2129 > // Code range where we expect the fault to come from
2130 > static void *b_region, *e_region;
2131 > #endif
2132 >
2133 > static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2134   {
2135 + #if DEBUG
2136 +        printf("sigsegv_test_handler(%p, %p)\n", fault_address, instruction_address);
2137 +        printf("expected fault at %p\n", page + REF_INDEX);
2138 + #ifdef __GNUC__
2139 +        printf("expected instruction address range: %p-%p\n", b_region, e_region);
2140 + #endif
2141 + #endif
2142          handler_called++;
2143 <        if ((fault_address - 123) != page)
2144 <                exit(1);
2143 >        if ((fault_address - REF_INDEX) != page)
2144 >                exit(10);
2145 > #ifdef __GNUC__
2146 >        // Make sure reported fault instruction address falls into
2147 >        // expected code range
2148 >        if (instruction_address != SIGSEGV_INVALID_PC
2149 >                && ((instruction_address <  (sigsegv_address_t)b_region) ||
2150 >                        (instruction_address >= (sigsegv_address_t)e_region)))
2151 >                exit(11);
2152 > #endif
2153          if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
2154 <                exit(1);
2154 >                exit(12);
2155 >        return SIGSEGV_RETURN_SUCCESS;
2156 > }
2157 >
2158 > #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
2159 > static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2160 > {
2161 > #if DEBUG
2162 >        printf("sigsegv_insn_handler(%p, %p)\n", fault_address, instruction_address);
2163 > #endif
2164 >        if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
2165 > #ifdef __GNUC__
2166 >                // Make sure reported fault instruction address falls into
2167 >                // expected code range
2168 >                if (instruction_address != SIGSEGV_INVALID_PC
2169 >                        && ((instruction_address <  (sigsegv_address_t)b_region) ||
2170 >                                (instruction_address >= (sigsegv_address_t)e_region)))
2171 >                        return SIGSEGV_RETURN_FAILURE;
2172 > #endif
2173 >                return SIGSEGV_RETURN_SKIP_INSTRUCTION;
2174 >        }
2175 >
2176 >        return SIGSEGV_RETURN_FAILURE;
2177 > }
2178 >
2179 > // More sophisticated tests for instruction skipper
2180 > static bool arch_insn_skipper_tests()
2181 > {
2182 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
2183 >        static const unsigned char code[] = {
2184 >                0x8a, 0x00,                    // mov    (%eax),%al
2185 >                0x8a, 0x2c, 0x18,              // mov    (%eax,%ebx,1),%ch
2186 >                0x88, 0x20,                    // mov    %ah,(%eax)
2187 >                0x88, 0x08,                    // mov    %cl,(%eax)
2188 >                0x66, 0x8b, 0x00,              // mov    (%eax),%ax
2189 >                0x66, 0x8b, 0x0c, 0x18,        // mov    (%eax,%ebx,1),%cx
2190 >                0x66, 0x89, 0x00,              // mov    %ax,(%eax)
2191 >                0x66, 0x89, 0x0c, 0x18,        // mov    %cx,(%eax,%ebx,1)
2192 >                0x8b, 0x00,                    // mov    (%eax),%eax
2193 >                0x8b, 0x0c, 0x18,              // mov    (%eax,%ebx,1),%ecx
2194 >                0x89, 0x00,                    // mov    %eax,(%eax)
2195 >                0x89, 0x0c, 0x18,              // mov    %ecx,(%eax,%ebx,1)
2196 > #if defined(__x86_64__)
2197 >                0x44, 0x8a, 0x00,              // mov    (%rax),%r8b
2198 >                0x44, 0x8a, 0x20,              // mov    (%rax),%r12b
2199 >                0x42, 0x8a, 0x3c, 0x10,        // mov    (%rax,%r10,1),%dil
2200 >                0x44, 0x88, 0x00,              // mov    %r8b,(%rax)
2201 >                0x44, 0x88, 0x20,              // mov    %r12b,(%rax)
2202 >                0x42, 0x88, 0x3c, 0x10,        // mov    %dil,(%rax,%r10,1)
2203 >                0x66, 0x44, 0x8b, 0x00,        // mov    (%rax),%r8w
2204 >                0x66, 0x42, 0x8b, 0x0c, 0x10,  // mov    (%rax,%r10,1),%cx
2205 >                0x66, 0x44, 0x89, 0x00,        // mov    %r8w,(%rax)
2206 >                0x66, 0x42, 0x89, 0x0c, 0x10,  // mov    %cx,(%rax,%r10,1)
2207 >                0x44, 0x8b, 0x00,              // mov    (%rax),%r8d
2208 >                0x42, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%ecx
2209 >                0x44, 0x89, 0x00,              // mov    %r8d,(%rax)
2210 >                0x42, 0x89, 0x0c, 0x10,        // mov    %ecx,(%rax,%r10,1)
2211 >                0x48, 0x8b, 0x08,              // mov    (%rax),%rcx
2212 >                0x4c, 0x8b, 0x18,              // mov    (%rax),%r11
2213 >                0x4a, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%rcx
2214 >                0x4e, 0x8b, 0x1c, 0x10,        // mov    (%rax,%r10,1),%r11
2215 >                0x48, 0x89, 0x08,              // mov    %rcx,(%rax)
2216 >                0x4c, 0x89, 0x18,              // mov    %r11,(%rax)
2217 >                0x4a, 0x89, 0x0c, 0x10,        // mov    %rcx,(%rax,%r10,1)
2218 >                0x4e, 0x89, 0x1c, 0x10,        // mov    %r11,(%rax,%r10,1)
2219 >                0x63, 0x47, 0x04,              // movslq 4(%rdi),%eax
2220 >                0x48, 0x63, 0x47, 0x04,        // movslq 4(%rdi),%rax
2221 > #endif
2222 >                0                              // end
2223 >        };
2224 >        const int N_REGS = 20;
2225 >        unsigned long regs[N_REGS];
2226 >        for (int i = 0; i < N_REGS; i++)
2227 >                regs[i] = i;
2228 >        const unsigned long start_code = (unsigned long)&code;
2229 >        regs[X86_REG_EIP] = start_code;
2230 >        while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1)
2231 >                   && ix86_skip_instruction(regs))
2232 >                ; /* simply iterate */
2233 >        return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1);
2234 > #endif
2235          return true;
2236   }
2237 + #endif
2238  
2239   int main(void)
2240   {
2241          if (vm_init() < 0)
2242                  return 1;
2243  
2244 <        page_size = getpagesize();
2244 >        page_size = vm_get_page_size();
2245          if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
2246 <                return 1;
2246 >                return 2;
2247          
2248 +        memset((void *)page, 0, page_size);
2249          if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
2250 <                return 1;
2250 >                return 3;
2251          
2252          if (!sigsegv_install_handler(sigsegv_test_handler))
2253 <                return 1;
417 <        
418 <        page[123] = 45;
419 <        page[123] = 45;
2253 >                return 4;
2254          
2255 + #ifdef __GNUC__
2256 +        b_region = &&L_b_region1;
2257 +        e_region = &&L_e_region1;
2258 + #endif
2259 + L_b_region1:
2260 +        page[REF_INDEX] = REF_VALUE;
2261 +        if (page[REF_INDEX] != REF_VALUE)
2262 +          exit(20);
2263 +        page[REF_INDEX] = REF_VALUE;
2264 +        BARRIER();
2265 + L_e_region1:
2266 +
2267          if (handler_called != 1)
2268 <                return 1;
2268 >                return 5;
2269 >
2270 > #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
2271 >        if (!sigsegv_install_handler(sigsegv_insn_handler))
2272 >                return 6;
2273 >        
2274 >        if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
2275 >                return 7;
2276 >        
2277 >        for (int i = 0; i < page_size; i++)
2278 >                page[i] = (i + 1) % page_size;
2279 >        
2280 >        if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
2281 >                return 8;
2282 >        
2283 > #define TEST_SKIP_INSTRUCTION(TYPE) do {                                \
2284 >                const unsigned long TAG = 0x12345678 |                  \
2285 >                (sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0);   \
2286 >                TYPE data = *((TYPE *)(page + sizeof(TYPE)));   \
2287 >                volatile unsigned long effect = data + TAG;             \
2288 >                if (effect != TAG)                                                              \
2289 >                        return 9;                                                                       \
2290 >        } while (0)
2291 >        
2292 > #ifdef __GNUC__
2293 >        b_region = &&L_b_region2;
2294 >        e_region = &&L_e_region2;
2295 > #endif
2296 > L_b_region2:
2297 >        TEST_SKIP_INSTRUCTION(unsigned char);
2298 >        TEST_SKIP_INSTRUCTION(unsigned short);
2299 >        TEST_SKIP_INSTRUCTION(unsigned int);
2300 >        TEST_SKIP_INSTRUCTION(unsigned long);
2301 >        TEST_SKIP_INSTRUCTION(signed char);
2302 >        TEST_SKIP_INSTRUCTION(signed short);
2303 >        TEST_SKIP_INSTRUCTION(signed int);
2304 >        TEST_SKIP_INSTRUCTION(signed long);
2305 >        BARRIER();
2306 > L_e_region2:
2307 >
2308 >        if (!arch_insn_skipper_tests())
2309 >                return 20;
2310 > #endif
2311  
2312          vm_exit();
2313          return 0;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines