ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
(Generate patch)

Comparing BasiliskII/src/Unix/sigsegv.cpp (file contents):
Revision 1.5 by gbeauche, 2001-07-07T09:12:15Z vs.
Revision 1.52 by gbeauche, 2005-01-30T21:42:14Z

# Line 4 | Line 4
4   *  Derived from Bruno Haible's work on his SIGSEGV library for clisp
5   *  <http://clisp.sourceforge.net/>
6   *
7 < *  Basilisk II (C) 1997-2001 Christian Bauer
7 > *  MacOS X support derived from the post by Timothy J. Wood to the
8 > *  omnigroup macosx-dev list:
9 > *    Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10 > *    tjw@omnigroup.com Sun, 4 Jun 2000
11 > *    www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12 > *
13 > *  Basilisk II (C) 1997-2005 Christian Bauer
14   *
15   *  This program is free software; you can redistribute it and/or modify
16   *  it under the terms of the GNU General Public License as published by
# Line 29 | Line 35
35   #include "config.h"
36   #endif
37  
38 + #include <list>
39 + #include <stdio.h>
40   #include <signal.h>
41   #include "sigsegv.h"
42  
43 + #ifndef NO_STD_NAMESPACE
44 + using std::list;
45 + #endif
46 +
47   // Return value type of a signal handler (standard type if not defined)
48   #ifndef RETSIGTYPE
49   #define RETSIGTYPE void
# Line 41 | Line 53
53   typedef RETSIGTYPE (*signal_handler)(int);
54  
55   // User's SIGSEGV handler
56 < static sigsegv_handler_t sigsegv_user_handler = 0;
56 > static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
57 >
58 > // Function called to dump state if we can't handle the fault
59 > static sigsegv_state_dumper_t sigsegv_state_dumper = 0;
60  
61   // Actual SIGSEGV handler installer
62   static bool sigsegv_do_install_handler(int sig);
63  
64  
65   /*
66 + *  Instruction decoding aids
67 + */
68 +
69 + // Transfer size
70 + enum transfer_size_t {
71 +        SIZE_UNKNOWN,
72 +        SIZE_BYTE,
73 +        SIZE_WORD, // 2 bytes
74 +        SIZE_LONG, // 4 bytes
75 +        SIZE_QUAD, // 8 bytes
76 + };
77 +
78 + // Transfer type
79 + typedef sigsegv_transfer_type_t transfer_type_t;
80 +
81 + #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
82 + // Addressing mode
83 + enum addressing_mode_t {
84 +        MODE_UNKNOWN,
85 +        MODE_NORM,
86 +        MODE_U,
87 +        MODE_X,
88 +        MODE_UX
89 + };
90 +
91 + // Decoded instruction
92 + struct instruction_t {
93 +        transfer_type_t         transfer_type;
94 +        transfer_size_t         transfer_size;
95 +        addressing_mode_t       addr_mode;
96 +        unsigned int            addr;
97 +        char                            ra, rd;
98 + };
99 +
100 + static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned long * gpr)
101 + {
102 +        // Get opcode and divide into fields
103 +        unsigned int opcode = *((unsigned int *)(unsigned long)nip);
104 +        unsigned int primop = opcode >> 26;
105 +        unsigned int exop = (opcode >> 1) & 0x3ff;
106 +        unsigned int ra = (opcode >> 16) & 0x1f;
107 +        unsigned int rb = (opcode >> 11) & 0x1f;
108 +        unsigned int rd = (opcode >> 21) & 0x1f;
109 +        signed int imm = (signed short)(opcode & 0xffff);
110 +        
111 +        // Analyze opcode
112 +        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
113 +        transfer_size_t transfer_size = SIZE_UNKNOWN;
114 +        addressing_mode_t addr_mode = MODE_UNKNOWN;
115 +        switch (primop) {
116 +        case 31:
117 +                switch (exop) {
118 +                case 23:        // lwzx
119 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
120 +                case 55:        // lwzux
121 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
122 +                case 87:        // lbzx
123 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
124 +                case 119:       // lbzux
125 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
126 +                case 151:       // stwx
127 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
128 +                case 183:       // stwux
129 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
130 +                case 215:       // stbx
131 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
132 +                case 247:       // stbux
133 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
134 +                case 279:       // lhzx
135 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
136 +                case 311:       // lhzux
137 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
138 +                case 343:       // lhax
139 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
140 +                case 375:       // lhaux
141 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
142 +                case 407:       // sthx
143 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
144 +                case 439:       // sthux
145 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
146 +                }
147 +                break;
148 +        
149 +        case 32:        // lwz
150 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
151 +        case 33:        // lwzu
152 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
153 +        case 34:        // lbz
154 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
155 +        case 35:        // lbzu
156 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
157 +        case 36:        // stw
158 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
159 +        case 37:        // stwu
160 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
161 +        case 38:        // stb
162 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
163 +        case 39:        // stbu
164 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
165 +        case 40:        // lhz
166 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
167 +        case 41:        // lhzu
168 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
169 +        case 42:        // lha
170 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
171 +        case 43:        // lhau
172 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
173 +        case 44:        // sth
174 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
175 +        case 45:        // sthu
176 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
177 +        case 58:        // ld, ldu, lwa
178 +                transfer_type = SIGSEGV_TRANSFER_LOAD;
179 +                transfer_size = SIZE_QUAD;
180 +                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
181 +                imm &= ~3;
182 +                break;
183 +        case 62:        // std, stdu, stq
184 +                transfer_type = SIGSEGV_TRANSFER_STORE;
185 +                transfer_size = SIZE_QUAD;
186 +                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
187 +                imm &= ~3;
188 +                break;
189 +        }
190 +        
191 +        // Calculate effective address
192 +        unsigned int addr = 0;
193 +        switch (addr_mode) {
194 +        case MODE_X:
195 +        case MODE_UX:
196 +                if (ra == 0)
197 +                        addr = gpr[rb];
198 +                else
199 +                        addr = gpr[ra] + gpr[rb];
200 +                break;
201 +        case MODE_NORM:
202 +        case MODE_U:
203 +                if (ra == 0)
204 +                        addr = (signed int)(signed short)imm;
205 +                else
206 +                        addr = gpr[ra] + (signed int)(signed short)imm;
207 +                break;
208 +        default:
209 +                break;
210 +        }
211 +        
212 +        // Commit decoded instruction
213 +        instruction->addr = addr;
214 +        instruction->addr_mode = addr_mode;
215 +        instruction->transfer_type = transfer_type;
216 +        instruction->transfer_size = transfer_size;
217 +        instruction->ra = ra;
218 +        instruction->rd = rd;
219 + }
220 + #endif
221 +
222 +
223 + /*
224   *  OS-dependant SIGSEGV signals support section
225   */
226  
227   #if HAVE_SIGINFO_T
228   // Generic extended signal handler
229 + #if defined(__FreeBSD__)
230 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
231 + #else
232   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
233 + #endif
234   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, siginfo_t *sip, void *scp
235 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
236 + #define SIGSEGV_FAULT_HANDLER_ARGS              sip, scp
237   #define SIGSEGV_FAULT_ADDRESS                   sip->si_addr
238 + #if (defined(sgi) || defined(__sgi))
239 + #include <ucontext.h>
240 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
241 + #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)SIGSEGV_CONTEXT_REGS[CTX_EPC]
242 + #if (defined(mips) || defined(__mips))
243 + #define SIGSEGV_REGISTER_FILE                   SIGSEGV_CONTEXT_REGS
244 + #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
245 + #endif
246 + #endif
247 + #if defined(__sun__)
248 + #if (defined(sparc) || defined(__sparc__))
249 + #include <sys/stack.h>
250 + #include <sys/regset.h>
251 + #include <sys/ucontext.h>
252 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
253 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[REG_PC]
254 + #define SIGSEGV_SPARC_GWINDOWS                  (((ucontext_t *)scp)->uc_mcontext.gwins)
255 + #define SIGSEGV_SPARC_RWINDOW                   (struct rwindow *)((char *)SIGSEGV_CONTEXT_REGS[REG_SP] + STACK_BIAS)
256 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)SIGSEGV_CONTEXT_REGS), SIGSEGV_SPARC_GWINDOWS, SIGSEGV_SPARC_RWINDOW
257 + #define SIGSEGV_SKIP_INSTRUCTION                sparc_skip_instruction
258 + #endif
259 + #endif
260 + #if defined(__FreeBSD__)
261 + #if (defined(i386) || defined(__i386__))
262 + #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_eip)
263 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
264 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
265 + #endif
266 + #endif
267 + #if defined(__NetBSD__)
268 + #if (defined(i386) || defined(__i386__))
269 + #include <sys/ucontext.h>
270 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
271 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_EIP]
272 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
273 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
274 + #endif
275 + #endif
276   #if defined(__linux__)
277 + #if (defined(i386) || defined(__i386__))
278 + #include <sys/ucontext.h>
279 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
280 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
281 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
282 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
283 + #endif
284 + #if (defined(x86_64) || defined(__x86_64__))
285 + #include <sys/ucontext.h>
286 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
287 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
288 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
289 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
290 + #endif
291   #if (defined(ia64) || defined(__ia64__))
292   #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
293   #endif
294 + #if (defined(powerpc) || defined(__powerpc__))
295 + #include <sys/ucontext.h>
296 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.regs)
297 + #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS->nip)
298 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned long *)(SIGSEGV_CONTEXT_REGS->gpr)
299 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
300 + #endif
301 + #if (defined(hppa) || defined(__hppa__))
302 + #undef  SIGSEGV_FAULT_ADDRESS
303 + #define SIGSEGV_FAULT_ADDRESS                   sip->si_ptr
304 + #endif
305 + #if (defined(arm) || defined(__arm__))
306 + #include <asm/ucontext.h> /* use kernel structure, glibc may not be in sync */
307 + #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
308 + #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.arm_pc)
309 + #define SIGSEGV_REGISTER_FILE                   (&SIGSEGV_CONTEXT_REGS.arm_r0)
310 + #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
311 + #endif
312   #endif
313   #endif
314  
# Line 70 | Line 319 | static bool sigsegv_do_install_handler(i
319   #if (defined(i386) || defined(__i386__))
320   #include <asm/sigcontext.h>
321   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext scs
322 < #define SIGSEGV_FAULT_ADDRESS                   scs.cr2
323 < #define SIGSEGV_FAULT_INSTRUCTION               scs.eip
322 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
323 > #define SIGSEGV_FAULT_HANDLER_ARGS              &scs
324 > #define SIGSEGV_FAULT_ADDRESS                   scp->cr2
325 > #define SIGSEGV_FAULT_INSTRUCTION               scp->eip
326 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)scp
327 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
328   #endif
329   #if (defined(sparc) || defined(__sparc__))
330   #include <asm/sigcontext.h>
331   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
332 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
333   #define SIGSEGV_FAULT_ADDRESS                   addr
334   #endif
335   #if (defined(powerpc) || defined(__powerpc__))
336   #include <asm/sigcontext.h>
337   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext *scp
338 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, scp
339   #define SIGSEGV_FAULT_ADDRESS                   scp->regs->dar
340   #define SIGSEGV_FAULT_INSTRUCTION               scp->regs->nip
341 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&scp->regs->nip, (unsigned long *)(scp->regs->gpr)
342 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
343   #endif
344   #if (defined(alpha) || defined(__alpha__))
345   #include <asm/sigcontext.h>
346   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
347 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
348   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
349   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
350 <
351 < // From Boehm's GC 6.0alpha8
352 < static sigsegv_address_t get_fault_address(struct sigcontext *scp)
353 < {
354 <        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
355 <        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
356 <        fault_address += (signed long)(signed short)(instruction & 0xffff);
357 <        return (sigsegv_address_t)fault_address;
358 < }
350 > #endif
351 > #if (defined(arm) || defined(__arm__))
352 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int r1, int r2, int r3, struct sigcontext sc
353 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
354 > #define SIGSEGV_FAULT_HANDLER_ARGS              &sc
355 > #define SIGSEGV_FAULT_ADDRESS                   scp->fault_address
356 > #define SIGSEGV_FAULT_INSTRUCTION               scp->arm_pc
357 > #define SIGSEGV_REGISTER_FILE                   &scp->arm_r0
358 > #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
359   #endif
360   #endif
361  
362   // Irix 5 or 6 on MIPS
363 < #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
363 > #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(_SYSTYPE_SVR4))
364 > #include <ucontext.h>
365   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
366 < #define SIGSEGV_FAULT_ADDRESS                   scp->sc_badvaddr
366 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
367 > #define SIGSEGV_FAULT_ADDRESS                   (unsigned long)scp->sc_badvaddr
368 > #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)scp->sc_pc
369   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
370   #endif
371  
372 + // HP-UX
373 + #if (defined(hpux) || defined(__hpux__))
374 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
375 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
376 + #define SIGSEGV_FAULT_ADDRESS                   scp->sc_sl.sl_ss.ss_narrow.ss_cr21
377 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
378 + #endif
379 +
380   // OSF/1 on Alpha
381   #if defined(__osf__)
382 + #include <ucontext.h>
383   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
384 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
385   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_traparg_a0
386   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
387   #endif
# Line 118 | Line 389 | static sigsegv_address_t get_fault_addre
389   // AIX
390   #if defined(_AIX)
391   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
392 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
393   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_jmpbuf.jmp_context.o_vaddr
394   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
395   #endif
396  
397 < // NetBSD or FreeBSD
398 < #if defined(__NetBSD__) || defined(__FreeBSD__)
397 > // NetBSD
398 > #if defined(__NetBSD__)
399   #if (defined(m68k) || defined(__m68k__))
400   #include <m68k/frame.h>
401   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
402 < #define SIGSEGV_FAULT_ADDRESS                   ({                                                                                                                              \
403 <        struct sigstate {                                                                                                                                                                       \
132 <                int ss_flags;                                                                                                                                                                   \
133 <                struct frame ss_frame;                                                                                                                                                  \
134 <        };                                                                                                                                                                                                      \
135 <        struct sigstate *state = (struct sigstate *)scp->sc_ap;                                                                                         \
136 <        char *fault_addr;                                                                                                                                                                       \
137 <        switch (state->ss_frame.f_format) {                                                                                                                                     \
138 <        case 7:         /* 68040 access error */                                                                                                                                \
139 <                /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */    \
140 <                fault_addr = state->ss_frame.f_fmt7.f_fa;                                                                                                               \
141 <                break;                                                                                                                                                                                  \
142 <        default:                                                                                                                                                                                        \
143 <                fault_addr = (char *)code;                                                                                                                                              \
144 <                break;                                                                                                                                                                                  \
145 <        }                                                                                                                                                                                                       \
146 <        fault_addr;                                                                                                                                                                                     \
147 < })
402 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
403 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
404   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
405 < #else
406 < #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, void *scp, char *addr
407 < #define SIGSEGV_FAULT_ADDRESS                   addr
405 >
406 > // Use decoding scheme from BasiliskII/m68k native
407 > static sigsegv_address_t get_fault_address(struct sigcontext *scp)
408 > {
409 >        struct sigstate {
410 >                int ss_flags;
411 >                struct frame ss_frame;
412 >        };
413 >        struct sigstate *state = (struct sigstate *)scp->sc_ap;
414 >        char *fault_addr;
415 >        switch (state->ss_frame.f_format) {
416 >        case 7:         /* 68040 access error */
417 >                /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */
418 >                fault_addr = state->ss_frame.f_fmt7.f_fa;
419 >                break;
420 >        default:
421 >                fault_addr = (char *)code;
422 >                break;
423 >        }
424 >        return (sigsegv_address_t)fault_addr;
425 > }
426 > #endif
427 > #if (defined(alpha) || defined(__alpha__))
428 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
429 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
430 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
431   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
432   #endif
433 + #if (defined(i386) || defined(__i386__))
434 + #error "FIXME: need to decode instruction and compute EA"
435 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
436 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
437 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
438 + #endif
439 + #endif
440 + #if defined(__FreeBSD__)
441 + #if (defined(i386) || defined(__i386__))
442 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
443 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
444 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
445 + #define SIGSEGV_FAULT_ADDRESS                   addr
446 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_eip
447 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&scp->sc_edi)
448 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
449 + #endif
450 + #if (defined(alpha) || defined(__alpha__))
451 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
452 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, char *addr, struct sigcontext *scp
453 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, addr, scp
454 + #define SIGSEGV_FAULT_ADDRESS                   addr
455 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
456 + #endif
457   #endif
458  
459 < // MacOS X
459 > // Extract fault address out of a sigcontext
460 > #if (defined(alpha) || defined(__alpha__))
461 > // From Boehm's GC 6.0alpha8
462 > static sigsegv_address_t get_fault_address(struct sigcontext *scp)
463 > {
464 >        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
465 >        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
466 >        fault_address += (signed long)(signed short)(instruction & 0xffff);
467 >        return (sigsegv_address_t)fault_address;
468 > }
469 > #endif
470 >
471 >
472 > // MacOS X, not sure which version this works in. Under 10.1
473 > // vm_protect does not appear to work from a signal handler. Under
474 > // 10.2 signal handlers get siginfo type arguments but the si_addr
475 > // field is the address of the faulting instruction and not the
476 > // address that caused the SIGBUS. Maybe this works in 10.0? In any
477 > // case with Mach exception handlers there is a way to do what this
478 > // was meant to do.
479 > #ifndef HAVE_MACH_EXCEPTIONS
480   #if defined(__APPLE__) && defined(__MACH__)
481   #if (defined(ppc) || defined(__ppc__))
482   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
483 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
484   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
485   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_ir
486   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
487 + #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&scp->sc_ir, &((unsigned int *) scp->sc_regs)[2]
488 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
489  
490 < // From Boehm's GC 6.0alpha8
165 < #define EXTRACT_OP1(iw)     (((iw) & 0xFC000000) >> 26)
166 < #define EXTRACT_OP2(iw)     (((iw) & 0x000007FE) >> 1)
167 < #define EXTRACT_REGA(iw)    (((iw) & 0x001F0000) >> 16)
168 < #define EXTRACT_REGB(iw)    (((iw) & 0x03E00000) >> 21)
169 < #define EXTRACT_REGC(iw)    (((iw) & 0x0000F800) >> 11)
170 < #define EXTRACT_DISP(iw)    ((short *) &(iw))[1]
171 <
490 > // Use decoding scheme from SheepShaver
491   static sigsegv_address_t get_fault_address(struct sigcontext *scp)
492   {
493 <        unsigned int   instr = *((unsigned int *) scp->sc_ir);
494 <        unsigned int * regs = &((unsigned int *) scp->sc_regs)[2];
495 <        int            disp = 0, tmp;
496 <        unsigned int   baseA = 0, baseB = 0;
497 <        unsigned int   addr, alignmask = 0xFFFFFFFF;
498 <
499 <        switch(EXTRACT_OP1(instr)) {
500 <        case 38:   /* stb */
501 <        case 39:   /* stbu */
502 <        case 54:   /* stfd */
503 <        case 55:   /* stfdu */
504 <        case 52:   /* stfs */
505 <        case 53:   /* stfsu */
506 <        case 44:   /* sth */
507 <        case 45:   /* sthu */
508 <        case 47:   /* stmw */
509 <        case 36:   /* stw */
510 <        case 37:   /* stwu */
511 <                tmp = EXTRACT_REGA(instr);
512 <                if(tmp > 0)
513 <                        baseA = regs[tmp];
514 <                disp = EXTRACT_DISP(instr);
493 >        unsigned int   nip = (unsigned int) scp->sc_ir;
494 >        unsigned int * gpr = &((unsigned int *) scp->sc_regs)[2];
495 >        instruction_t  instr;
496 >
497 >        powerpc_decode_instruction(&instr, nip, gpr);
498 >        return (sigsegv_address_t)instr.addr;
499 > }
500 > #endif
501 > #endif
502 > #endif
503 > #endif
504 >
505 > #if HAVE_WIN32_EXCEPTIONS
506 > #define WIN32_LEAN_AND_MEAN /* avoid including junk */
507 > #include <windows.h>
508 > #include <winerror.h>
509 >
510 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   EXCEPTION_POINTERS *ExceptionInfo
511 > #define SIGSEGV_FAULT_HANDLER_ARGS              ExceptionInfo
512 > #define SIGSEGV_FAULT_ADDRESS                   ExceptionInfo->ExceptionRecord->ExceptionInformation[1]
513 > #define SIGSEGV_CONTEXT_REGS                    ExceptionInfo->ContextRecord
514 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS->Eip
515 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&SIGSEGV_CONTEXT_REGS->Edi)
516 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
517 > #endif
518 >
519 > #if HAVE_MACH_EXCEPTIONS
520 >
521 > // This can easily be extended to other Mach systems, but really who
522 > // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
523 > // Mach 2.5/3.0?
524 > #if defined(__APPLE__) && defined(__MACH__)
525 >
526 > #include <sys/types.h>
527 > #include <stdlib.h>
528 > #include <stdio.h>
529 > #include <pthread.h>
530 >
531 > /*
532 > * If you are familiar with MIG then you will understand the frustration
533 > * that was necessary to get these embedded into C++ code by hand.
534 > */
535 > extern "C" {
536 > #include <mach/mach.h>
537 > #include <mach/mach_error.h>
538 >
539 > extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
540 > extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
541 >        mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
542 > extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
543 >        exception_type_t, exception_data_t, mach_msg_type_number_t);
544 > extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
545 >        exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
546 >        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
547 > extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
548 >        exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
549 >        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
550 > }
551 >
552 > // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
553 > #define HANDLER_COUNT 64
554 >
555 > // structure to tuck away existing exception handlers
556 > typedef struct _ExceptionPorts {
557 >        mach_msg_type_number_t maskCount;
558 >        exception_mask_t masks[HANDLER_COUNT];
559 >        exception_handler_t handlers[HANDLER_COUNT];
560 >        exception_behavior_t behaviors[HANDLER_COUNT];
561 >        thread_state_flavor_t flavors[HANDLER_COUNT];
562 > } ExceptionPorts;
563 >
564 > // exception handler thread
565 > static pthread_t exc_thread;
566 >
567 > // place where old exception handler info is stored
568 > static ExceptionPorts ports;
569 >
570 > // our exception port
571 > static mach_port_t _exceptionPort = MACH_PORT_NULL;
572 >
573 > #define MACH_CHECK_ERROR(name,ret) \
574 > if (ret != KERN_SUCCESS) { \
575 >        mach_error(#name, ret); \
576 >        exit (1); \
577 > }
578 >
579 > #define SIGSEGV_FAULT_ADDRESS                   code[1]
580 > #define SIGSEGV_FAULT_INSTRUCTION               get_fault_instruction(thread, state)
581 > #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  ((code[0] == KERN_PROTECTION_FAILURE) ? sigsegv_fault_handler(ADDR, IP) : SIGSEGV_RETURN_FAILURE)
582 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   mach_port_t thread, exception_data_t code, ppc_thread_state_t *state
583 > #define SIGSEGV_FAULT_HANDLER_ARGS              thread, code, &state
584 > #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
585 > #define SIGSEGV_REGISTER_FILE                   &state->srr0, &state->r0
586 >
587 > // Given a suspended thread, stuff the current instruction and
588 > // registers into state.
589 > //
590 > // It would have been nice to have this be ppc/x86 independant which
591 > // could have been done easily with a thread_state_t instead of
592 > // ppc_thread_state_t, but because of the way this is called it is
593 > // easier to do it this way.
594 > #if (defined(ppc) || defined(__ppc__))
595 > static inline sigsegv_address_t get_fault_instruction(mach_port_t thread, ppc_thread_state_t *state)
596 > {
597 >        kern_return_t krc;
598 >        mach_msg_type_number_t count;
599 >
600 >        count = MACHINE_THREAD_STATE_COUNT;
601 >        krc = thread_get_state(thread, MACHINE_THREAD_STATE, (thread_state_t)state, &count);
602 >        MACH_CHECK_ERROR (thread_get_state, krc);
603 >
604 >        return (sigsegv_address_t)state->srr0;
605 > }
606 > #endif
607 >
608 > // Since there can only be one exception thread running at any time
609 > // this is not a problem.
610 > #define MSG_SIZE 512
611 > static char msgbuf[MSG_SIZE];
612 > static char replybuf[MSG_SIZE];
613 >
614 > /*
615 > * This is the entry point for the exception handler thread. The job
616 > * of this thread is to wait for exception messages on the exception
617 > * port that was setup beforehand and to pass them on to exc_server.
618 > * exc_server is a MIG generated function that is a part of Mach.
619 > * Its job is to decide what to do with the exception message. In our
620 > * case exc_server calls catch_exception_raise on our behalf. After
621 > * exc_server returns, it is our responsibility to send the reply.
622 > */
623 > static void *
624 > handleExceptions(void *priv)
625 > {
626 >        mach_msg_header_t *msg, *reply;
627 >        kern_return_t krc;
628 >
629 >        msg = (mach_msg_header_t *)msgbuf;
630 >        reply = (mach_msg_header_t *)replybuf;
631 >
632 >        for (;;) {
633 >                krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
634 >                                _exceptionPort, 0, MACH_PORT_NULL);
635 >                MACH_CHECK_ERROR(mach_msg, krc);
636 >
637 >                if (!exc_server(msg, reply)) {
638 >                        fprintf(stderr, "exc_server hated the message\n");
639 >                        exit(1);
640 >                }
641 >
642 >                krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
643 >                                 msg->msgh_local_port, 0, MACH_PORT_NULL);
644 >                if (krc != KERN_SUCCESS) {
645 >                        fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
646 >                                krc, mach_error_string(krc));
647 >                        exit(1);
648 >                }
649 >        }
650 > }
651 > #endif
652 > #endif
653 >
654 >
655 > /*
656 > *  Instruction skipping
657 > */
658 >
659 > #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
660 > // Decode and skip X86 instruction
661 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
662 > #if defined(__linux__)
663 > enum {
664 > #if (defined(i386) || defined(__i386__))
665 >        X86_REG_EIP = 14,
666 >        X86_REG_EAX = 11,
667 >        X86_REG_ECX = 10,
668 >        X86_REG_EDX = 9,
669 >        X86_REG_EBX = 8,
670 >        X86_REG_ESP = 7,
671 >        X86_REG_EBP = 6,
672 >        X86_REG_ESI = 5,
673 >        X86_REG_EDI = 4
674 > #endif
675 > #if defined(__x86_64__)
676 >        X86_REG_R8  = 0,
677 >        X86_REG_R9  = 1,
678 >        X86_REG_R10 = 2,
679 >        X86_REG_R11 = 3,
680 >        X86_REG_R12 = 4,
681 >        X86_REG_R13 = 5,
682 >        X86_REG_R14 = 6,
683 >        X86_REG_R15 = 7,
684 >        X86_REG_EDI = 8,
685 >        X86_REG_ESI = 9,
686 >        X86_REG_EBP = 10,
687 >        X86_REG_EBX = 11,
688 >        X86_REG_EDX = 12,
689 >        X86_REG_EAX = 13,
690 >        X86_REG_ECX = 14,
691 >        X86_REG_ESP = 15,
692 >        X86_REG_EIP = 16
693 > #endif
694 > };
695 > #endif
696 > #if defined(__NetBSD__)
697 > enum {
698 > #if (defined(i386) || defined(__i386__))
699 >        X86_REG_EIP = _REG_EIP,
700 >        X86_REG_EAX = _REG_EAX,
701 >        X86_REG_ECX = _REG_ECX,
702 >        X86_REG_EDX = _REG_EDX,
703 >        X86_REG_EBX = _REG_EBX,
704 >        X86_REG_ESP = _REG_ESP,
705 >        X86_REG_EBP = _REG_EBP,
706 >        X86_REG_ESI = _REG_ESI,
707 >        X86_REG_EDI = _REG_EDI
708 > #endif
709 > };
710 > #endif
711 > #if defined(__FreeBSD__)
712 > enum {
713 > #if (defined(i386) || defined(__i386__))
714 >        X86_REG_EIP = 10,
715 >        X86_REG_EAX = 7,
716 >        X86_REG_ECX = 6,
717 >        X86_REG_EDX = 5,
718 >        X86_REG_EBX = 4,
719 >        X86_REG_ESP = 13,
720 >        X86_REG_EBP = 2,
721 >        X86_REG_ESI = 1,
722 >        X86_REG_EDI = 0
723 > #endif
724 > };
725 > #endif
726 > #if defined(_WIN32)
727 > enum {
728 > #if (defined(i386) || defined(__i386__))
729 >        X86_REG_EIP = 7,
730 >        X86_REG_EAX = 5,
731 >        X86_REG_ECX = 4,
732 >        X86_REG_EDX = 3,
733 >        X86_REG_EBX = 2,
734 >        X86_REG_ESP = 10,
735 >        X86_REG_EBP = 6,
736 >        X86_REG_ESI = 1,
737 >        X86_REG_EDI = 0
738 > #endif
739 > };
740 > #endif
741 > // FIXME: this is partly redundant with the instruction decoding phase
742 > // to discover transfer type and register number
743 > static inline int ix86_step_over_modrm(unsigned char * p)
744 > {
745 >        int mod = (p[0] >> 6) & 3;
746 >        int rm = p[0] & 7;
747 >        int offset = 0;
748 >
749 >        // ModR/M Byte
750 >        switch (mod) {
751 >        case 0: // [reg]
752 >                if (rm == 5) return 4; // disp32
753                  break;
754 <        case 31:
755 <                switch(EXTRACT_OP2(instr)) {
756 <                case 86:    /* dcbf */
757 <                case 54:    /* dcbst */
758 <                case 1014:  /* dcbz */
759 <                case 247:   /* stbux */
760 <                case 215:   /* stbx */
761 <                case 759:   /* stfdux */
762 <                case 727:   /* stfdx */
763 <                case 983:   /* stfiwx */
764 <                case 695:   /* stfsux */
765 <                case 663:   /* stfsx */
766 <                case 918:   /* sthbrx */
767 <                case 439:   /* sthux */
768 <                case 407:   /* sthx */
769 <                case 661:   /* stswx */
770 <                case 662:   /* stwbrx */
771 <                case 150:   /* stwcx. */
772 <                case 183:   /* stwux */
773 <                case 151:   /* stwx */
774 <                case 135:   /* stvebx */
775 <                case 167:   /* stvehx */
776 <                case 199:   /* stvewx */
777 <                case 231:   /* stvx */
778 <                case 487:   /* stvxl */
779 <                        tmp = EXTRACT_REGA(instr);
780 <                        if(tmp > 0)
781 <                                baseA = regs[tmp];
782 <                        baseB = regs[EXTRACT_REGC(instr)];
783 <                        /* determine Altivec alignment mask */
784 <                        switch(EXTRACT_OP2(instr)) {
785 <                        case 167:   /* stvehx */
786 <                                alignmask = 0xFFFFFFFE;
787 <                                break;
788 <                        case 199:   /* stvewx */
789 <                                alignmask = 0xFFFFFFFC;
754 >        case 1: // disp8[reg]
755 >                offset = 1;
756 >                break;
757 >        case 2: // disp32[reg]
758 >                offset = 4;
759 >                break;
760 >        case 3: // register
761 >                return 0;
762 >        }
763 >        
764 >        // SIB Byte
765 >        if (rm == 4) {
766 >                if (mod == 0 && (p[1] & 7) == 5)
767 >                        offset = 5; // disp32[index]
768 >                else
769 >                        offset++;
770 >        }
771 >
772 >        return offset;
773 > }
774 >
775 > static bool ix86_skip_instruction(unsigned long * regs)
776 > {
777 >        unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
778 >
779 >        if (eip == 0)
780 >                return false;
781 > #ifdef _WIN32
782 >        if (IsBadCodePtr((FARPROC)eip))
783 >                return false;
784 > #endif
785 >        
786 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
787 >        transfer_size_t transfer_size = SIZE_LONG;
788 >        
789 >        int reg = -1;
790 >        int len = 0;
791 >
792 > #if DEBUG
793 >        printf("IP: %p [%02x %02x %02x %02x...]\n",
794 >                   eip, eip[0], eip[1], eip[2], eip[3]);
795 > #endif
796 >
797 >        // Operand size prefix
798 >        if (*eip == 0x66) {
799 >                eip++;
800 >                len++;
801 >                transfer_size = SIZE_WORD;
802 >        }
803 >
804 >        // REX prefix
805 > #if defined(__x86_64__)
806 >        struct rex_t {
807 >                unsigned char W;
808 >                unsigned char R;
809 >                unsigned char X;
810 >                unsigned char B;
811 >        };
812 >        rex_t rex = { 0, 0, 0, 0 };
813 >        bool has_rex = false;
814 >        if ((*eip & 0xf0) == 0x40) {
815 >                has_rex = true;
816 >                const unsigned char b = *eip;
817 >                rex.W = b & (1 << 3);
818 >                rex.R = b & (1 << 2);
819 >                rex.X = b & (1 << 1);
820 >                rex.B = b & (1 << 0);
821 > #if DEBUG
822 >                printf("REX: %c,%c,%c,%c\n",
823 >                           rex.W ? 'W' : '_',
824 >                           rex.R ? 'R' : '_',
825 >                           rex.X ? 'X' : '_',
826 >                           rex.B ? 'B' : '_');
827 > #endif
828 >                eip++;
829 >                len++;
830 >                if (rex.W)
831 >                        transfer_size = SIZE_QUAD;
832 >        }
833 > #else
834 >        const bool has_rex = false;
835 > #endif
836 >
837 >        // Decode instruction
838 >        int target_size = SIZE_UNKNOWN;
839 >        switch (eip[0]) {
840 >        case 0x0f:
841 >                target_size = transfer_size;
842 >            switch (eip[1]) {
843 >                case 0xbe: // MOVSX r32, r/m8
844 >            case 0xb6: // MOVZX r32, r/m8
845 >                        transfer_size = SIZE_BYTE;
846 >                        goto do_mov_extend;
847 >                case 0xbf: // MOVSX r32, r/m16
848 >            case 0xb7: // MOVZX r32, r/m16
849 >                        transfer_size = SIZE_WORD;
850 >                        goto do_mov_extend;
851 >                  do_mov_extend:
852 >                        switch (eip[2] & 0xc0) {
853 >                        case 0x80:
854 >                                reg = (eip[2] >> 3) & 7;
855 >                                transfer_type = SIGSEGV_TRANSFER_LOAD;
856                                  break;
857 <                        case 231:   /* stvx */
858 <                                alignmask = 0xFFFFFFF0;
857 >                        case 0x40:
858 >                                reg = (eip[2] >> 3) & 7;
859 >                                transfer_type = SIGSEGV_TRANSFER_LOAD;
860                                  break;
861 <                        case 487:  /* stvxl */
862 <                                alignmask = 0xFFFFFFF0;
861 >                        case 0x00:
862 >                                reg = (eip[2] >> 3) & 7;
863 >                                transfer_type = SIGSEGV_TRANSFER_LOAD;
864                                  break;
865                          }
866 +                        len += 3 + ix86_step_over_modrm(eip + 2);
867 +                        break;
868 +            }
869 +          break;
870 +        case 0x8a: // MOV r8, r/m8
871 +                transfer_size = SIZE_BYTE;
872 +        case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
873 +                switch (eip[1] & 0xc0) {
874 +                case 0x80:
875 +                        reg = (eip[1] >> 3) & 7;
876 +                        transfer_type = SIGSEGV_TRANSFER_LOAD;
877                          break;
878 <                case 725:   /* stswi */
879 <                        tmp = EXTRACT_REGA(instr);
880 <                        if(tmp > 0)
245 <                                baseA = regs[tmp];
878 >                case 0x40:
879 >                        reg = (eip[1] >> 3) & 7;
880 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
881                          break;
882 <                default:   /* ignore instruction */
883 <                        return 0;
882 >                case 0x00:
883 >                        reg = (eip[1] >> 3) & 7;
884 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
885                          break;
886                  }
887 +                len += 2 + ix86_step_over_modrm(eip + 1);
888                  break;
889 <        default:   /* ignore instruction */
890 <                return 0;
889 >        case 0x88: // MOV r/m8, r8
890 >                transfer_size = SIZE_BYTE;
891 >        case 0x89: // MOV r/m32, r32 (or 16-bit operation)
892 >                switch (eip[1] & 0xc0) {
893 >                case 0x80:
894 >                        reg = (eip[1] >> 3) & 7;
895 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
896 >                        break;
897 >                case 0x40:
898 >                        reg = (eip[1] >> 3) & 7;
899 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
900 >                        break;
901 >                case 0x00:
902 >                        reg = (eip[1] >> 3) & 7;
903 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
904 >                        break;
905 >                }
906 >                len += 2 + ix86_step_over_modrm(eip + 1);
907                  break;
908          }
909 +        if (target_size == SIZE_UNKNOWN)
910 +                target_size = transfer_size;
911 +
912 +        if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
913 +                // Unknown machine code, let it crash. Then patch the decoder
914 +                return false;
915 +        }
916 +
917 + #if defined(__x86_64__)
918 +        if (rex.R)
919 +                reg += 8;
920 + #endif
921 +
922 +        if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
923 +                static const int x86_reg_map[] = {
924 +                        X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
925 +                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI,
926 + #if defined(__x86_64__)
927 +                        X86_REG_R8,  X86_REG_R9,  X86_REG_R10, X86_REG_R11,
928 +                        X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15,
929 + #endif
930 +                };
931 +                
932 +                if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1))
933 +                        return false;
934 +
935 +                // Set 0 to the relevant register part
936 +                // NOTE: this is only valid for MOV alike instructions
937 +                int rloc = x86_reg_map[reg];
938 +                switch (target_size) {
939 +                case SIZE_BYTE:
940 +                        if (has_rex || reg < 4)
941 +                                regs[rloc] = (regs[rloc] & ~0x00ffL);
942 +                        else {
943 +                                rloc = x86_reg_map[reg - 4];
944 +                                regs[rloc] = (regs[rloc] & ~0xff00L);
945 +                        }
946 +                        break;
947 +                case SIZE_WORD:
948 +                        regs[rloc] = (regs[rloc] & ~0xffffL);
949 +                        break;
950 +                case SIZE_LONG:
951 +                case SIZE_QUAD: // zero-extension
952 +                        regs[rloc] = 0;
953 +                        break;
954 +                }
955 +        }
956 +
957 + #if DEBUG
958 +        printf("%08x: %s %s access", regs[X86_REG_EIP],
959 +                   transfer_size == SIZE_BYTE ? "byte" :
960 +                   transfer_size == SIZE_WORD ? "word" :
961 +                   transfer_size == SIZE_LONG ? "long" :
962 +                   transfer_size == SIZE_QUAD ? "quad" : "unknown",
963 +                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
964 +        
965 +        if (reg != -1) {
966 +                static const char * x86_byte_reg_str_map[] = {
967 +                        "al",   "cl",   "dl",   "bl",
968 +                        "spl",  "bpl",  "sil",  "dil",
969 +                        "r8b",  "r9b",  "r10b", "r11b",
970 +                        "r12b", "r13b", "r14b", "r15b",
971 +                        "ah",   "ch",   "dh",   "bh",
972 +                };
973 +                static const char * x86_word_reg_str_map[] = {
974 +                        "ax",   "cx",   "dx",   "bx",
975 +                        "sp",   "bp",   "si",   "di",
976 +                        "r8w",  "r9w",  "r10w", "r11w",
977 +                        "r12w", "r13w", "r14w", "r15w",
978 +                };
979 +                static const char *x86_long_reg_str_map[] = {
980 +                        "eax",  "ecx",  "edx",  "ebx",
981 +                        "esp",  "ebp",  "esi",  "edi",
982 +                        "r8d",  "r9d",  "r10d", "r11d",
983 +                        "r12d", "r13d", "r14d", "r15d",
984 +                };
985 +                static const char *x86_quad_reg_str_map[] = {
986 +                        "rax", "rcx", "rdx", "rbx",
987 +                        "rsp", "rbp", "rsi", "rdi",
988 +                        "r8",  "r9",  "r10", "r11",
989 +                        "r12", "r13", "r14", "r15",
990 +                };
991 +                const char * reg_str = NULL;
992 +                switch (target_size) {
993 +                case SIZE_BYTE:
994 +                        reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg];
995 +                        break;
996 +                case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break;
997 +                case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break;
998 +                case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break;
999 +                }
1000 +                if (reg_str)
1001 +                        printf(" %s register %%%s",
1002 +                                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from",
1003 +                                   reg_str);
1004 +        }
1005 +        printf(", %d bytes instruction\n", len);
1006 + #endif
1007 +        
1008 +        regs[X86_REG_EIP] += len;
1009 +        return true;
1010 + }
1011 + #endif
1012 +
1013 + // Decode and skip PPC instruction
1014 + #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
1015 + static bool powerpc_skip_instruction(unsigned long * nip_p, unsigned long * regs)
1016 + {
1017 +        instruction_t instr;
1018 +        powerpc_decode_instruction(&instr, *nip_p, regs);
1019 +        
1020 +        if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1021 +                // Unknown machine code, let it crash. Then patch the decoder
1022 +                return false;
1023 +        }
1024 +
1025 + #if DEBUG
1026 +        printf("%08x: %s %s access", *nip_p,
1027 +                   instr.transfer_size == SIZE_BYTE ? "byte" :
1028 +                   instr.transfer_size == SIZE_WORD ? "word" :
1029 +                   instr.transfer_size == SIZE_LONG ? "long" : "quad",
1030 +                   instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1031 +        
1032 +        if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
1033 +                printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
1034 +        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
1035 +                printf(" r%d (rd = 0)\n", instr.rd);
1036 + #endif
1037 +        
1038 +        if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
1039 +                regs[instr.ra] = instr.addr;
1040 +        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
1041 +                regs[instr.rd] = 0;
1042          
1043 <        addr = (baseA + baseB) + disp;
1044 <        addr &= alignmask;
1045 <        return (sigsegv_address_t)addr;
1043 >        *nip_p += 4;
1044 >        return true;
1045 > }
1046 > #endif
1047 >
1048 > // Decode and skip MIPS instruction
1049 > #if (defined(mips) || defined(__mips))
1050 > enum {
1051 > #if (defined(sgi) || defined(__sgi))
1052 >  MIPS_REG_EPC = 35,
1053 > #endif
1054 > };
1055 > static bool mips_skip_instruction(greg_t * regs)
1056 > {
1057 >  unsigned int * epc = (unsigned int *)(unsigned long)regs[MIPS_REG_EPC];
1058 >
1059 >  if (epc == 0)
1060 >        return false;
1061 >
1062 > #if DEBUG
1063 >  printf("IP: %p [%08x]\n", epc, epc[0]);
1064 > #endif
1065 >
1066 >  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1067 >  transfer_size_t transfer_size = SIZE_LONG;
1068 >  int direction = 0;
1069 >
1070 >  const unsigned int opcode = epc[0];
1071 >  switch (opcode >> 26) {
1072 >  case 32: // Load Byte
1073 >  case 36: // Load Byte Unsigned
1074 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1075 >        transfer_size = SIZE_BYTE;
1076 >        break;
1077 >  case 33: // Load Halfword
1078 >  case 37: // Load Halfword Unsigned
1079 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1080 >        transfer_size = SIZE_WORD;
1081 >        break;
1082 >  case 35: // Load Word
1083 >  case 39: // Load Word Unsigned
1084 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1085 >        transfer_size = SIZE_LONG;
1086 >        break;
1087 >  case 34: // Load Word Left
1088 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1089 >        transfer_size = SIZE_LONG;
1090 >        direction = -1;
1091 >        break;
1092 >  case 38: // Load Word Right
1093 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1094 >        transfer_size = SIZE_LONG;
1095 >        direction = 1;
1096 >        break;
1097 >  case 55: // Load Doubleword
1098 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1099 >        transfer_size = SIZE_QUAD;
1100 >        break;
1101 >  case 26: // Load Doubleword Left
1102 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1103 >        transfer_size = SIZE_QUAD;
1104 >        direction = -1;
1105 >        break;
1106 >  case 27: // Load Doubleword Right
1107 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1108 >        transfer_size = SIZE_QUAD;
1109 >        direction = 1;
1110 >        break;
1111 >  case 40: // Store Byte
1112 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1113 >        transfer_size = SIZE_BYTE;
1114 >        break;
1115 >  case 41: // Store Halfword
1116 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1117 >        transfer_size = SIZE_WORD;
1118 >        break;
1119 >  case 43: // Store Word
1120 >  case 42: // Store Word Left
1121 >  case 46: // Store Word Right
1122 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1123 >        transfer_size = SIZE_LONG;
1124 >        break;
1125 >  case 63: // Store Doubleword
1126 >  case 44: // Store Doubleword Left
1127 >  case 45: // Store Doubleword Right
1128 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1129 >        transfer_size = SIZE_QUAD;
1130 >        break;
1131 >  /* Misc instructions unlikely to be used within CPU emulators */
1132 >  case 48: // Load Linked Word
1133 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1134 >        transfer_size = SIZE_LONG;
1135 >        break;
1136 >  case 52: // Load Linked Doubleword
1137 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1138 >        transfer_size = SIZE_QUAD;
1139 >        break;
1140 >  case 56: // Store Conditional Word
1141 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1142 >        transfer_size = SIZE_LONG;
1143 >        break;
1144 >  case 60: // Store Conditional Doubleword
1145 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1146 >        transfer_size = SIZE_QUAD;
1147 >        break;
1148 >  }
1149 >
1150 >  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1151 >        // Unknown machine code, let it crash. Then patch the decoder
1152 >        return false;
1153 >  }
1154 >
1155 >  // Zero target register in case of a load operation
1156 >  const int reg = (opcode >> 16) & 0x1f;
1157 >  if (transfer_type == SIGSEGV_TRANSFER_LOAD) {
1158 >        if (direction == 0)
1159 >          regs[reg] = 0;
1160 >        else {
1161 >          // FIXME: untested code
1162 >          unsigned long ea = regs[(opcode >> 21) & 0x1f];
1163 >          ea += (signed long)(signed int)(signed short)(opcode & 0xffff);
1164 >          const int offset = ea & (transfer_size == SIZE_LONG ? 3 : 7);
1165 >          unsigned long value;
1166 >          if (direction > 0) {
1167 >                const unsigned long rmask = ~((1L << ((offset + 1) * 8)) - 1);
1168 >                value = regs[reg] & rmask;
1169 >          }
1170 >          else {
1171 >                const unsigned long lmask = (1L << (offset * 8)) - 1;
1172 >                value = regs[reg] & lmask;
1173 >          }
1174 >          // restore most significant bits
1175 >          if (transfer_size == SIZE_LONG)
1176 >                value = (signed long)(signed int)value;
1177 >          regs[reg] = value;
1178 >        }
1179 >  }
1180 >
1181 > #if DEBUG
1182 > #if (defined(_ABIN32) || defined(_ABI64))
1183 >  static const char * mips_gpr_names[32] = {
1184 >        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1185 >        "t0",   "t1",   "t2",   "t3",   "t4",   "t5",   "t6",   "t7",
1186 >        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1187 >        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1188 >  };
1189 > #else
1190 >  static const char * mips_gpr_names[32] = {
1191 >        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1192 >        "a4",   "a5",   "a6",   "a7",   "t0",   "t1",   "t2",   "t3",
1193 >        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1194 >        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1195 >  };
1196 > #endif
1197 >  printf("%s %s register %s\n",
1198 >                 transfer_size == SIZE_BYTE ? "byte" :
1199 >                 transfer_size == SIZE_WORD ? "word" :
1200 >                 transfer_size == SIZE_LONG ? "long" :
1201 >                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1202 >                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1203 >                 mips_gpr_names[reg]);
1204 > #endif
1205 >
1206 >  regs[MIPS_REG_EPC] += 4;
1207 >  return true;
1208 > }
1209 > #endif
1210 >
1211 > // Decode and skip SPARC instruction
1212 > #if (defined(sparc) || defined(__sparc__))
1213 > enum {
1214 > #if (defined(__sun__))
1215 >  SPARC_REG_G1 = REG_G1,
1216 >  SPARC_REG_O0 = REG_O0,
1217 >  SPARC_REG_PC = REG_PC,
1218 > #endif
1219 > };
1220 > static bool sparc_skip_instruction(unsigned long * regs, gwindows_t * gwins, struct rwindow * rwin)
1221 > {
1222 >  unsigned int * pc = (unsigned int *)regs[SPARC_REG_PC];
1223 >
1224 >  if (pc == 0)
1225 >        return false;
1226 >
1227 > #if DEBUG
1228 >  printf("IP: %p [%08x]\n", pc, pc[0]);
1229 > #endif
1230 >
1231 >  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1232 >  transfer_size_t transfer_size = SIZE_LONG;
1233 >  bool register_pair = false;
1234 >
1235 >  const unsigned int opcode = pc[0];
1236 >  if ((opcode >> 30) != 3)
1237 >        return false;
1238 >  switch ((opcode >> 19) & 0x3f) {
1239 >  case 9: // Load Signed Byte
1240 >  case 1: // Load Unsigned Byte
1241 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1242 >        transfer_size = SIZE_BYTE;
1243 >        break;
1244 >  case 10:// Load Signed Halfword
1245 >  case 2: // Load Unsigned Word
1246 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1247 >        transfer_size = SIZE_WORD;
1248 >        break;
1249 >  case 8: // Load Word
1250 >  case 0: // Load Unsigned Word
1251 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1252 >        transfer_size = SIZE_LONG;
1253 >        break;
1254 >  case 11:// Load Extended Word
1255 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1256 >        transfer_size = SIZE_QUAD;
1257 >        break;
1258 >  case 3: // Load Doubleword
1259 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1260 >        transfer_size = SIZE_LONG;
1261 >        register_pair = true;
1262 >        break;
1263 >  case 5: // Store Byte
1264 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1265 >        transfer_size = SIZE_BYTE;
1266 >        break;
1267 >  case 6: // Store Halfword
1268 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1269 >        transfer_size = SIZE_WORD;
1270 >        break;
1271 >  case 4: // Store Word
1272 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1273 >        transfer_size = SIZE_LONG;
1274 >        break;
1275 >  case 14:// Store Extended Word
1276 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1277 >        transfer_size = SIZE_QUAD;
1278 >        break;
1279 >  case 7: // Store Doubleword
1280 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1281 >        transfer_size = SIZE_WORD;
1282 >        register_pair = true;
1283 >        break;
1284 >  }
1285 >
1286 >  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1287 >        // Unknown machine code, let it crash. Then patch the decoder
1288 >        return false;
1289 >  }
1290 >
1291 >  // Zero target register in case of a load operation
1292 >  const int reg = (opcode >> 25) & 0x1f;
1293 >  if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != 0) {
1294 >        // FIXME: code to handle local & input registers is not tested
1295 >        if (reg >= 1 && reg <= 7) {
1296 >          // global registers
1297 >          regs[reg - 1 + SPARC_REG_G1] = 0;
1298 >        }
1299 >        else if (reg >= 8 && reg <= 15) {
1300 >          // output registers
1301 >          regs[reg - 8 + SPARC_REG_O0] = 0;
1302 >        }
1303 >        else if (reg >= 16 && reg <= 23) {
1304 >          // local registers (in register windows)
1305 >          if (gwins)
1306 >                gwins->wbuf->rw_local[reg - 16] = 0;
1307 >          else
1308 >                rwin->rw_local[reg - 16] = 0;
1309 >        }
1310 >        else {
1311 >          // input registers (in register windows)
1312 >          if (gwins)
1313 >                gwins->wbuf->rw_in[reg - 24] = 0;
1314 >          else
1315 >                rwin->rw_in[reg - 24] = 0;
1316 >        }
1317 >  }
1318 >
1319 > #if DEBUG
1320 >  static const char * reg_names[] = {
1321 >        "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
1322 >        "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
1323 >        "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
1324 >        "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7"
1325 >  };
1326 >  printf("%s %s register %s\n",
1327 >                 transfer_size == SIZE_BYTE ? "byte" :
1328 >                 transfer_size == SIZE_WORD ? "word" :
1329 >                 transfer_size == SIZE_LONG ? "long" :
1330 >                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1331 >                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1332 >                 reg_names[reg]);
1333 > #endif
1334 >
1335 >  regs[SPARC_REG_PC] += 4;
1336 >  return true;
1337   }
1338   #endif
1339   #endif
1340 +
1341 + // Decode and skip ARM instruction
1342 + #if (defined(arm) || defined(__arm__))
1343 + enum {
1344 + #if (defined(__linux__))
1345 +  ARM_REG_PC = 15,
1346 +  ARM_REG_CPSR = 16
1347 + #endif
1348 + };
1349 + static bool arm_skip_instruction(unsigned long * regs)
1350 + {
1351 +  unsigned int * pc = (unsigned int *)regs[ARM_REG_PC];
1352 +
1353 +  if (pc == 0)
1354 +        return false;
1355 +
1356 + #if DEBUG
1357 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1358 + #endif
1359 +
1360 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1361 +  transfer_size_t transfer_size = SIZE_UNKNOWN;
1362 +  enum { op_sdt = 1, op_sdth = 2 };
1363 +  int op = 0;
1364 +
1365 +  // Handle load/store instructions only
1366 +  const unsigned int opcode = pc[0];
1367 +  switch ((opcode >> 25) & 7) {
1368 +  case 0: // Halfword and Signed Data Transfer (LDRH, STRH, LDRSB, LDRSH)
1369 +        op = op_sdth;
1370 +        // Determine transfer size (S/H bits)
1371 +        switch ((opcode >> 5) & 3) {
1372 +        case 0: // SWP instruction
1373 +          break;
1374 +        case 1: // Unsigned halfwords
1375 +        case 3: // Signed halfwords
1376 +          transfer_size = SIZE_WORD;
1377 +          break;
1378 +        case 2: // Signed byte
1379 +          transfer_size = SIZE_BYTE;
1380 +          break;
1381 +        }
1382 +        break;
1383 +  case 2:
1384 +  case 3: // Single Data Transfer (LDR, STR)
1385 +        op = op_sdt;
1386 +        // Determine transfer size (B bit)
1387 +        if (((opcode >> 22) & 1) == 1)
1388 +          transfer_size = SIZE_BYTE;
1389 +        else
1390 +          transfer_size = SIZE_LONG;
1391 +        break;
1392 +  default:
1393 +        // FIXME: support load/store mutliple?
1394 +        return false;
1395 +  }
1396 +
1397 +  // Check for invalid transfer size (SWP instruction?)
1398 +  if (transfer_size == SIZE_UNKNOWN)
1399 +        return false;
1400 +
1401 +  // Determine transfer type (L bit)
1402 +  if (((opcode >> 20) & 1) == 1)
1403 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1404 +  else
1405 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1406 +
1407 +  // Compute offset
1408 +  int offset;
1409 +  if (((opcode >> 25) & 1) == 0) {
1410 +        if (op == op_sdt)
1411 +          offset = opcode & 0xfff;
1412 +        else if (op == op_sdth) {
1413 +          int rm = opcode & 0xf;
1414 +          if (((opcode >> 22) & 1) == 0) {
1415 +                // register offset
1416 +                offset = regs[rm];
1417 +          }
1418 +          else {
1419 +                // immediate offset
1420 +                offset = ((opcode >> 4) & 0xf0) | (opcode & 0x0f);
1421 +          }
1422 +        }
1423 +  }
1424 +  else {
1425 +        const int rm = opcode & 0xf;
1426 +        const int sh = (opcode >> 7) & 0x1f;
1427 +        if (((opcode >> 4) & 1) == 1) {
1428 +          // we expect only legal load/store instructions
1429 +          printf("FATAL: invalid shift operand\n");
1430 +          return false;
1431 +        }
1432 +        const unsigned int v = regs[rm];
1433 +        switch ((opcode >> 5) & 3) {
1434 +        case 0: // logical shift left
1435 +          offset = sh ? v << sh : v;
1436 +          break;
1437 +        case 1: // logical shift right
1438 +          offset = sh ? v >> sh : 0;
1439 +          break;
1440 +        case 2: // arithmetic shift right
1441 +          if (sh)
1442 +                offset = ((signed int)v) >> sh;
1443 +          else
1444 +                offset = (v & 0x80000000) ? 0xffffffff : 0;
1445 +          break;
1446 +        case 3: // rotate right
1447 +          if (sh)
1448 +                offset = (v >> sh) | (v << (32 - sh));
1449 +          else
1450 +                offset = (v >> 1) | ((regs[ARM_REG_CPSR] << 2) & 0x80000000);
1451 +          break;
1452 +        }
1453 +  }
1454 +  if (((opcode >> 23) & 1) == 0)
1455 +        offset = -offset;
1456 +
1457 +  int rd = (opcode >> 12) & 0xf;
1458 +  int rn = (opcode >> 16) & 0xf;
1459 + #if DEBUG
1460 +  static const char * reg_names[] = {
1461 +        "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1462 +        "r9", "r9", "sl", "fp", "ip", "sp", "lr", "pc"
1463 +  };
1464 +  printf("%s %s register %s\n",
1465 +                 transfer_size == SIZE_BYTE ? "byte" :
1466 +                 transfer_size == SIZE_WORD ? "word" :
1467 +                 transfer_size == SIZE_LONG ? "long" : "unknown",
1468 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1469 +                 reg_names[rd]);
1470 + #endif
1471 +
1472 +  unsigned int base = regs[rn];
1473 +  if (((opcode >> 24) & 1) == 1)
1474 +        base += offset;
1475 +
1476 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD)
1477 +        regs[rd] = 0;
1478 +
1479 +  if (((opcode >> 24) & 1) == 0)                // post-index addressing
1480 +        regs[rn] += offset;
1481 +  else if (((opcode >> 21) & 1) == 1)   // write-back address into base
1482 +        regs[rn] = base;
1483 +
1484 +  regs[ARM_REG_PC] += 4;
1485 +  return true;
1486 + }
1487   #endif
1488  
1489 +
1490   // Fallbacks
1491   #ifndef SIGSEGV_FAULT_INSTRUCTION
1492   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_PC
1493   #endif
1494 + #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
1495 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
1496 + #endif
1497 + #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
1498 + #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  sigsegv_fault_handler(ADDR, IP)
1499 + #endif
1500  
1501   // SIGSEGV recovery supported ?
1502   #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
# Line 277 | Line 1508 | static sigsegv_address_t get_fault_addre
1508   *  SIGSEGV global handler
1509   */
1510  
1511 + // This function handles the badaccess to memory.
1512 + // It is called from the signal handler or the exception handler.
1513 + static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
1514 + {
1515 +        sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
1516 +        sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
1517 +        
1518 +        // Call user's handler and reinstall the global handler, if required
1519 +        switch (SIGSEGV_FAULT_HANDLER_INVOKE(fault_address, fault_instruction)) {
1520 +        case SIGSEGV_RETURN_SUCCESS:
1521 +                return true;
1522 +
1523 + #if HAVE_SIGSEGV_SKIP_INSTRUCTION
1524 +        case SIGSEGV_RETURN_SKIP_INSTRUCTION:
1525 +                // Call the instruction skipper with the register file
1526 +                // available
1527 +                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
1528 + #ifdef HAVE_MACH_EXCEPTIONS
1529 +                        // Unlike UNIX signals where the thread state
1530 +                        // is modified off of the stack, in Mach we
1531 +                        // need to actually call thread_set_state to
1532 +                        // have the register values updated.
1533 +                        kern_return_t krc;
1534 +
1535 +                        krc = thread_set_state(thread,
1536 +                                                                   MACHINE_THREAD_STATE, (thread_state_t)state,
1537 +                                                                   MACHINE_THREAD_STATE_COUNT);
1538 +                        MACH_CHECK_ERROR (thread_get_state, krc);
1539 + #endif
1540 +                        return true;
1541 +                }
1542 +                break;
1543 + #endif
1544 +        case SIGSEGV_RETURN_FAILURE:
1545 +                // We can't do anything with the fault_address, dump state?
1546 +                if (sigsegv_state_dumper != 0)
1547 +                        sigsegv_state_dumper(fault_address, fault_instruction);
1548 +                break;
1549 +        }
1550 +
1551 +        return false;
1552 + }
1553 +
1554 +
1555 + /*
1556 + * There are two mechanisms for handling a bad memory access,
1557 + * Mach exceptions and UNIX signals. The implementation specific
1558 + * code appears below. Its reponsibility is to call handle_badaccess
1559 + * which is the routine that handles the fault in an implementation
1560 + * agnostic manner. The implementation specific code below is then
1561 + * reponsible for checking whether handle_badaccess was able
1562 + * to handle the memory access error and perform any implementation
1563 + * specific tasks necessary afterwards.
1564 + */
1565 +
1566 + #ifdef HAVE_MACH_EXCEPTIONS
1567 + /*
1568 + * We need to forward all exceptions that we do not handle.
1569 + * This is important, there are many exceptions that may be
1570 + * handled by other exception handlers. For example debuggers
1571 + * use exceptions and the exception hander is in another
1572 + * process in such a case. (Timothy J. Wood states in his
1573 + * message to the list that he based this code on that from
1574 + * gdb for Darwin.)
1575 + */
1576 + static inline kern_return_t
1577 + forward_exception(mach_port_t thread_port,
1578 +                                  mach_port_t task_port,
1579 +                                  exception_type_t exception_type,
1580 +                                  exception_data_t exception_data,
1581 +                                  mach_msg_type_number_t data_count,
1582 +                                  ExceptionPorts *oldExceptionPorts)
1583 + {
1584 +        kern_return_t kret;
1585 +        unsigned int portIndex;
1586 +        mach_port_t port;
1587 +        exception_behavior_t behavior;
1588 +        thread_state_flavor_t flavor;
1589 +        thread_state_t thread_state;
1590 +        mach_msg_type_number_t thread_state_count;
1591 +
1592 +        for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
1593 +                if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
1594 +                        // This handler wants the exception
1595 +                        break;
1596 +                }
1597 +        }
1598 +
1599 +        if (portIndex >= oldExceptionPorts->maskCount) {
1600 +                fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
1601 +                return KERN_FAILURE;
1602 +        }
1603 +
1604 +        port = oldExceptionPorts->handlers[portIndex];
1605 +        behavior = oldExceptionPorts->behaviors[portIndex];
1606 +        flavor = oldExceptionPorts->flavors[portIndex];
1607 +
1608 +        /*
1609 +         fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
1610 +         */
1611 +
1612 +        if (behavior != EXCEPTION_DEFAULT) {
1613 +                thread_state_count = THREAD_STATE_MAX;
1614 +                kret = thread_get_state (thread_port, flavor, thread_state,
1615 +                                                                 &thread_state_count);
1616 +                MACH_CHECK_ERROR (thread_get_state, kret);
1617 +        }
1618 +
1619 +        switch (behavior) {
1620 +        case EXCEPTION_DEFAULT:
1621 +          // fprintf(stderr, "forwarding to exception_raise\n");
1622 +          kret = exception_raise(port, thread_port, task_port, exception_type,
1623 +                                                         exception_data, data_count);
1624 +          MACH_CHECK_ERROR (exception_raise, kret);
1625 +          break;
1626 +        case EXCEPTION_STATE:
1627 +          // fprintf(stderr, "forwarding to exception_raise_state\n");
1628 +          kret = exception_raise_state(port, exception_type, exception_data,
1629 +                                                                   data_count, &flavor,
1630 +                                                                   thread_state, thread_state_count,
1631 +                                                                   thread_state, &thread_state_count);
1632 +          MACH_CHECK_ERROR (exception_raise_state, kret);
1633 +          break;
1634 +        case EXCEPTION_STATE_IDENTITY:
1635 +          // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
1636 +          kret = exception_raise_state_identity(port, thread_port, task_port,
1637 +                                                                                        exception_type, exception_data,
1638 +                                                                                        data_count, &flavor,
1639 +                                                                                        thread_state, thread_state_count,
1640 +                                                                                        thread_state, &thread_state_count);
1641 +          MACH_CHECK_ERROR (exception_raise_state_identity, kret);
1642 +          break;
1643 +        default:
1644 +          fprintf(stderr, "forward_exception got unknown behavior\n");
1645 +          break;
1646 +        }
1647 +
1648 +        if (behavior != EXCEPTION_DEFAULT) {
1649 +                kret = thread_set_state (thread_port, flavor, thread_state,
1650 +                                                                 thread_state_count);
1651 +                MACH_CHECK_ERROR (thread_set_state, kret);
1652 +        }
1653 +
1654 +        return KERN_SUCCESS;
1655 + }
1656 +
1657 + /*
1658 + * This is the code that actually handles the exception.
1659 + * It is called by exc_server. For Darwin 5 Apple changed
1660 + * this a bit from how this family of functions worked in
1661 + * Mach. If you are familiar with that it is a little
1662 + * different. The main variation that concerns us here is
1663 + * that code is an array of exception specific codes and
1664 + * codeCount is a count of the number of codes in the code
1665 + * array. In typical Mach all exceptions have a code
1666 + * and sub-code. It happens to be the case that for a
1667 + * EXC_BAD_ACCESS exception the first entry is the type of
1668 + * bad access that occurred and the second entry is the
1669 + * faulting address so these entries correspond exactly to
1670 + * how the code and sub-code are used on Mach.
1671 + *
1672 + * This is a MIG interface. No code in Basilisk II should
1673 + * call this directley. This has to have external C
1674 + * linkage because that is what exc_server expects.
1675 + */
1676 + kern_return_t
1677 + catch_exception_raise(mach_port_t exception_port,
1678 +                                          mach_port_t thread,
1679 +                                          mach_port_t task,
1680 +                                          exception_type_t exception,
1681 +                                          exception_data_t code,
1682 +                                          mach_msg_type_number_t codeCount)
1683 + {
1684 +        ppc_thread_state_t state;
1685 +        kern_return_t krc;
1686 +
1687 +        if ((exception == EXC_BAD_ACCESS)  && (codeCount >= 2)) {
1688 +                if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
1689 +                        return KERN_SUCCESS;
1690 +        }
1691 +
1692 +        // In Mach we do not need to remove the exception handler.
1693 +        // If we forward the exception, eventually some exception handler
1694 +        // will take care of this exception.
1695 +        krc = forward_exception(thread, task, exception, code, codeCount, &ports);
1696 +
1697 +        return krc;
1698 + }
1699 + #endif
1700 +
1701   #ifdef HAVE_SIGSEGV_RECOVERY
1702 + // Handle bad memory accesses with signal handler
1703   static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1704   {
1705 <        // Call user's handler and reinstall the global handler, if required
1706 <        if (sigsegv_user_handler((sigsegv_address_t)SIGSEGV_FAULT_ADDRESS, (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION)) {
1705 >        // Call handler and reinstall the global handler, if required
1706 >        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
1707   #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1708                  sigsegv_do_install_handler(sig);
1709   #endif
1710 +                return;
1711          }
1712 <        else {
1713 <                // FAIL: reinstall default handler for "safe" crash
1712 >
1713 >        // Failure: reinstall default handler for "safe" crash
1714   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1715 <                SIGSEGV_ALL_SIGNALS
1715 >        SIGSEGV_ALL_SIGNALS
1716   #undef FAULT_HANDLER
294        }
1717   }
1718   #endif
1719  
# Line 305 | Line 1727 | static bool sigsegv_do_install_handler(i
1727   {
1728          // Setup SIGSEGV handler to process writes to frame buffer
1729   #ifdef HAVE_SIGACTION
1730 <        struct sigaction vosf_sa;
1731 <        sigemptyset(&vosf_sa.sa_mask);
1732 <        vosf_sa.sa_sigaction = sigsegv_handler;
1733 <        vosf_sa.sa_flags = SA_SIGINFO;
1734 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1730 >        struct sigaction sigsegv_sa;
1731 >        sigemptyset(&sigsegv_sa.sa_mask);
1732 >        sigsegv_sa.sa_sigaction = sigsegv_handler;
1733 >        sigsegv_sa.sa_flags = SA_SIGINFO;
1734 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1735   #else
1736          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1737   #endif
# Line 321 | Line 1743 | static bool sigsegv_do_install_handler(i
1743   {
1744          // Setup SIGSEGV handler to process writes to frame buffer
1745   #ifdef HAVE_SIGACTION
1746 <        struct sigaction vosf_sa;
1747 <        sigemptyset(&vosf_sa.sa_mask);
1748 <        vosf_sa.sa_handler = (signal_handler)sigsegv_handler;
1746 >        struct sigaction sigsegv_sa;
1747 >        sigemptyset(&sigsegv_sa.sa_mask);
1748 >        sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
1749 >        sigsegv_sa.sa_flags = 0;
1750   #if !EMULATED_68K && defined(__NetBSD__)
1751 <        sigaddset(&vosf_sa.sa_mask, SIGALRM);
1752 <        vosf_sa.sa_flags = SA_ONSTACK;
330 < #else
331 <        vosf_sa.sa_flags = 0;
1751 >        sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
1752 >        sigsegv_sa.sa_flags |= SA_ONSTACK;
1753   #endif
1754 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1754 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1755   #else
1756          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1757   #endif
1758   }
1759   #endif
1760  
1761 < bool sigsegv_install_handler(sigsegv_handler_t handler)
1761 > #if defined(HAVE_MACH_EXCEPTIONS)
1762 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1763   {
1764 < #ifdef HAVE_SIGSEGV_RECOVERY
1765 <        sigsegv_user_handler = handler;
1764 >        /*
1765 >         * Except for the exception port functions, this should be
1766 >         * pretty much stock Mach. If later you choose to support
1767 >         * other Mach's besides Darwin, just check for __MACH__
1768 >         * here and __APPLE__ where the actual differences are.
1769 >         */
1770 > #if defined(__APPLE__) && defined(__MACH__)
1771 >        if (sigsegv_fault_handler != NULL) {
1772 >                sigsegv_fault_handler = handler;
1773 >                return true;
1774 >        }
1775 >
1776 >        kern_return_t krc;
1777 >
1778 >        // create the the exception port
1779 >        krc = mach_port_allocate(mach_task_self(),
1780 >                          MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
1781 >        if (krc != KERN_SUCCESS) {
1782 >                mach_error("mach_port_allocate", krc);
1783 >                return false;
1784 >        }
1785 >
1786 >        // add a port send right
1787 >        krc = mach_port_insert_right(mach_task_self(),
1788 >                              _exceptionPort, _exceptionPort,
1789 >                              MACH_MSG_TYPE_MAKE_SEND);
1790 >        if (krc != KERN_SUCCESS) {
1791 >                mach_error("mach_port_insert_right", krc);
1792 >                return false;
1793 >        }
1794 >
1795 >        // get the old exception ports
1796 >        ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
1797 >        krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
1798 >                                &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
1799 >        if (krc != KERN_SUCCESS) {
1800 >                mach_error("thread_get_exception_ports", krc);
1801 >                return false;
1802 >        }
1803 >
1804 >        // set the new exception port
1805 >        //
1806 >        // We could have used EXCEPTION_STATE_IDENTITY instead of
1807 >        // EXCEPTION_DEFAULT to get the thread state in the initial
1808 >        // message, but it turns out that in the common case this is not
1809 >        // neccessary. If we need it we can later ask for it from the
1810 >        // suspended thread.
1811 >        //
1812 >        // Even with THREAD_STATE_NONE, Darwin provides the program
1813 >        // counter in the thread state.  The comments in the header file
1814 >        // seem to imply that you can count on the GPR's on an exception
1815 >        // as well but just to be safe I use MACHINE_THREAD_STATE because
1816 >        // you have to ask for all of the GPR's anyway just to get the
1817 >        // program counter. In any case because of update effective
1818 >        // address from immediate and update address from effective
1819 >        // addresses of ra and rb modes (as good an name as any for these
1820 >        // addressing modes) used in PPC instructions, you will need the
1821 >        // GPR state anyway.
1822 >        krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
1823 >                                EXCEPTION_DEFAULT, MACHINE_THREAD_STATE);
1824 >        if (krc != KERN_SUCCESS) {
1825 >                mach_error("thread_set_exception_ports", krc);
1826 >                return false;
1827 >        }
1828 >
1829 >        // create the exception handler thread
1830 >        if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
1831 >                (void)fprintf(stderr, "creation of exception thread failed\n");
1832 >                return false;
1833 >        }
1834 >
1835 >        // do not care about the exception thread any longer, let is run standalone
1836 >        (void)pthread_detach(exc_thread);
1837 >
1838 >        sigsegv_fault_handler = handler;
1839 >        return true;
1840 > #else
1841 >        return false;
1842 > #endif
1843 > }
1844 > #endif
1845 >
1846 > #ifdef HAVE_WIN32_EXCEPTIONS
1847 > static LONG WINAPI main_exception_filter(EXCEPTION_POINTERS *ExceptionInfo)
1848 > {
1849 >        if (sigsegv_fault_handler != NULL
1850 >                && ExceptionInfo->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION
1851 >                && ExceptionInfo->ExceptionRecord->NumberParameters == 2
1852 >                && handle_badaccess(ExceptionInfo))
1853 >                return EXCEPTION_CONTINUE_EXECUTION;
1854 >
1855 >        return EXCEPTION_CONTINUE_SEARCH;
1856 > }
1857 >
1858 > #if defined __CYGWIN__ && defined __i386__
1859 > /* In Cygwin programs, SetUnhandledExceptionFilter has no effect because Cygwin
1860 >   installs a global exception handler.  We have to dig deep in order to install
1861 >   our main_exception_filter.  */
1862 >
1863 > /* Data structures for the current thread's exception handler chain.
1864 >   On the x86 Windows uses register fs, offset 0 to point to the current
1865 >   exception handler; Cygwin mucks with it, so we must do the same... :-/ */
1866 >
1867 > /* Magic taken from winsup/cygwin/include/exceptions.h.  */
1868 >
1869 > struct exception_list {
1870 >    struct exception_list *prev;
1871 >    int (*handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
1872 > };
1873 > typedef struct exception_list exception_list;
1874 >
1875 > /* Magic taken from winsup/cygwin/exceptions.cc.  */
1876 >
1877 > __asm__ (".equ __except_list,0");
1878 >
1879 > extern exception_list *_except_list __asm__ ("%fs:__except_list");
1880 >
1881 > /* For debugging.  _except_list is not otherwise accessible from gdb.  */
1882 > static exception_list *
1883 > debug_get_except_list ()
1884 > {
1885 >  return _except_list;
1886 > }
1887 >
1888 > /* Cygwin's original exception handler.  */
1889 > static int (*cygwin_exception_handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
1890 >
1891 > /* Our exception handler.  */
1892 > static int
1893 > libsigsegv_exception_handler (EXCEPTION_RECORD *exception, void *frame, CONTEXT *context, void *dispatch)
1894 > {
1895 >  EXCEPTION_POINTERS ExceptionInfo;
1896 >  ExceptionInfo.ExceptionRecord = exception;
1897 >  ExceptionInfo.ContextRecord = context;
1898 >  if (main_exception_filter (&ExceptionInfo) == EXCEPTION_CONTINUE_SEARCH)
1899 >    return cygwin_exception_handler (exception, frame, context, dispatch);
1900 >  else
1901 >    return 0;
1902 > }
1903 >
1904 > static void
1905 > do_install_main_exception_filter ()
1906 > {
1907 >  /* We cannot insert any handler into the chain, because such handlers
1908 >     must lie on the stack (?).  Instead, we have to replace(!) Cygwin's
1909 >     global exception handler.  */
1910 >  cygwin_exception_handler = _except_list->handler;
1911 >  _except_list->handler = libsigsegv_exception_handler;
1912 > }
1913 >
1914 > #else
1915 >
1916 > static void
1917 > do_install_main_exception_filter ()
1918 > {
1919 >  SetUnhandledExceptionFilter ((LPTOP_LEVEL_EXCEPTION_FILTER) &main_exception_filter);
1920 > }
1921 > #endif
1922 >
1923 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1924 > {
1925 >        static bool main_exception_filter_installed = false;
1926 >        if (!main_exception_filter_installed) {
1927 >                do_install_main_exception_filter();
1928 >                main_exception_filter_installed = true;
1929 >        }
1930 >        sigsegv_fault_handler = handler;
1931 >        return true;
1932 > }
1933 > #endif
1934 >
1935 > bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1936 > {
1937 > #if defined(HAVE_SIGSEGV_RECOVERY)
1938          bool success = true;
1939   #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
1940          SIGSEGV_ALL_SIGNALS
1941   #undef FAULT_HANDLER
1942 +        if (success)
1943 +            sigsegv_fault_handler = handler;
1944          return success;
1945 + #elif defined(HAVE_MACH_EXCEPTIONS) || defined(HAVE_WIN32_EXCEPTIONS)
1946 +        return sigsegv_do_install_handler(handler);
1947   #else
1948          // FAIL: no siginfo_t nor sigcontext subterfuge is available
1949          return false;
# Line 359 | Line 1957 | bool sigsegv_install_handler(sigsegv_han
1957  
1958   void sigsegv_deinstall_handler(void)
1959   {
1960 +  // We do nothing for Mach exceptions, the thread would need to be
1961 +  // suspended if not already so, and we might mess with other
1962 +  // exception handlers that came after we registered ours. There is
1963 +  // no need to remove the exception handler, in fact this function is
1964 +  // not called anywhere in Basilisk II.
1965   #ifdef HAVE_SIGSEGV_RECOVERY
1966 <        sigsegv_user_handler = 0;
1966 >        sigsegv_fault_handler = 0;
1967   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1968          SIGSEGV_ALL_SIGNALS
1969   #undef FAULT_HANDLER
1970   #endif
1971 + #ifdef HAVE_WIN32_EXCEPTIONS
1972 +        sigsegv_fault_handler = NULL;
1973 + #endif
1974   }
1975  
1976 +
1977 + /*
1978 + *  Set callback function when we cannot handle the fault
1979 + */
1980 +
1981 + void sigsegv_set_dump_state(sigsegv_state_dumper_t handler)
1982 + {
1983 +        sigsegv_state_dumper = handler;
1984 + }
1985 +
1986 +
1987   /*
1988   *  Test program used for configure/test
1989   */
# Line 375 | Line 1992 | void sigsegv_deinstall_handler(void)
1992   #include <stdio.h>
1993   #include <stdlib.h>
1994   #include <fcntl.h>
1995 + #ifdef HAVE_SYS_MMAN_H
1996   #include <sys/mman.h>
1997 + #endif
1998   #include "vm_alloc.h"
1999  
2000 + const int REF_INDEX = 123;
2001 + const int REF_VALUE = 45;
2002 +
2003   static int page_size;
2004   static volatile char * page = 0;
2005   static volatile int handler_called = 0;
2006  
2007 < static bool sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2007 > #ifdef __GNUC__
2008 > // Code range where we expect the fault to come from
2009 > static void *b_region, *e_region;
2010 > #endif
2011 >
2012 > static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2013   {
2014 + #if DEBUG
2015 +        printf("sigsegv_test_handler(%p, %p)\n", fault_address, instruction_address);
2016 +        printf("expected fault at %p\n", page + REF_INDEX);
2017 + #ifdef __GNUC__
2018 +        printf("expected instruction address range: %p-%p\n", b_region, e_region);
2019 + #endif
2020 + #endif
2021          handler_called++;
2022 <        if ((fault_address - 123) != page)
2023 <                exit(1);
2022 >        if ((fault_address - REF_INDEX) != page)
2023 >                exit(10);
2024 > #ifdef __GNUC__
2025 >        // Make sure reported fault instruction address falls into
2026 >        // expected code range
2027 >        if (instruction_address != SIGSEGV_INVALID_PC
2028 >                && ((instruction_address <  (sigsegv_address_t)b_region) ||
2029 >                        (instruction_address >= (sigsegv_address_t)e_region)))
2030 >                exit(11);
2031 > #endif
2032          if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
2033 <                exit(1);
2033 >                exit(12);
2034 >        return SIGSEGV_RETURN_SUCCESS;
2035 > }
2036 >
2037 > #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
2038 > static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2039 > {
2040 > #if DEBUG
2041 >        printf("sigsegv_insn_handler(%p, %p)\n", fault_address, instruction_address);
2042 > #endif
2043 >        if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
2044 > #ifdef __GNUC__
2045 >                // Make sure reported fault instruction address falls into
2046 >                // expected code range
2047 >                if (instruction_address != SIGSEGV_INVALID_PC
2048 >                        && ((instruction_address <  (sigsegv_address_t)b_region) ||
2049 >                                (instruction_address >= (sigsegv_address_t)e_region)))
2050 >                        return SIGSEGV_RETURN_FAILURE;
2051 > #endif
2052 >                return SIGSEGV_RETURN_SKIP_INSTRUCTION;
2053 >        }
2054 >
2055 >        return SIGSEGV_RETURN_FAILURE;
2056 > }
2057 >
2058 > // More sophisticated tests for instruction skipper
2059 > static bool arch_insn_skipper_tests()
2060 > {
2061 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
2062 >        static const unsigned char code[] = {
2063 >                0x8a, 0x00,                    // mov    (%eax),%al
2064 >                0x8a, 0x2c, 0x18,              // mov    (%eax,%ebx,1),%ch
2065 >                0x88, 0x20,                    // mov    %ah,(%eax)
2066 >                0x88, 0x08,                    // mov    %cl,(%eax)
2067 >                0x66, 0x8b, 0x00,              // mov    (%eax),%ax
2068 >                0x66, 0x8b, 0x0c, 0x18,        // mov    (%eax,%ebx,1),%cx
2069 >                0x66, 0x89, 0x00,              // mov    %ax,(%eax)
2070 >                0x66, 0x89, 0x0c, 0x18,        // mov    %cx,(%eax,%ebx,1)
2071 >                0x8b, 0x00,                    // mov    (%eax),%eax
2072 >                0x8b, 0x0c, 0x18,              // mov    (%eax,%ebx,1),%ecx
2073 >                0x89, 0x00,                    // mov    %eax,(%eax)
2074 >                0x89, 0x0c, 0x18,              // mov    %ecx,(%eax,%ebx,1)
2075 > #if defined(__x86_64__)
2076 >                0x44, 0x8a, 0x00,              // mov    (%rax),%r8b
2077 >                0x44, 0x8a, 0x20,              // mov    (%rax),%r12b
2078 >                0x42, 0x8a, 0x3c, 0x10,        // mov    (%rax,%r10,1),%dil
2079 >                0x44, 0x88, 0x00,              // mov    %r8b,(%rax)
2080 >                0x44, 0x88, 0x20,              // mov    %r12b,(%rax)
2081 >                0x42, 0x88, 0x3c, 0x10,        // mov    %dil,(%rax,%r10,1)
2082 >                0x66, 0x44, 0x8b, 0x00,        // mov    (%rax),%r8w
2083 >                0x66, 0x42, 0x8b, 0x0c, 0x10,  // mov    (%rax,%r10,1),%cx
2084 >                0x66, 0x44, 0x89, 0x00,        // mov    %r8w,(%rax)
2085 >                0x66, 0x42, 0x89, 0x0c, 0x10,  // mov    %cx,(%rax,%r10,1)
2086 >                0x44, 0x8b, 0x00,              // mov    (%rax),%r8d
2087 >                0x42, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%ecx
2088 >                0x44, 0x89, 0x00,              // mov    %r8d,(%rax)
2089 >                0x42, 0x89, 0x0c, 0x10,        // mov    %ecx,(%rax,%r10,1)
2090 >                0x48, 0x8b, 0x08,              // mov    (%rax),%rcx
2091 >                0x4c, 0x8b, 0x18,              // mov    (%rax),%r11
2092 >                0x4a, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%rcx
2093 >                0x4e, 0x8b, 0x1c, 0x10,        // mov    (%rax,%r10,1),%r11
2094 >                0x48, 0x89, 0x08,              // mov    %rcx,(%rax)
2095 >                0x4c, 0x89, 0x18,              // mov    %r11,(%rax)
2096 >                0x4a, 0x89, 0x0c, 0x10,        // mov    %rcx,(%rax,%r10,1)
2097 >                0x4e, 0x89, 0x1c, 0x10,        // mov    %r11,(%rax,%r10,1)
2098 > #endif
2099 >                0                              // end
2100 >        };
2101 >        const int N_REGS = 20;
2102 >        unsigned long regs[N_REGS];
2103 >        for (int i = 0; i < N_REGS; i++)
2104 >                regs[i] = i;
2105 >        const unsigned long start_code = (unsigned long)&code;
2106 >        regs[X86_REG_EIP] = start_code;
2107 >        while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1)
2108 >                   && ix86_skip_instruction(regs))
2109 >                ; /* simply iterate */
2110 >        return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1);
2111 > #endif
2112          return true;
2113   }
2114 + #endif
2115  
2116   int main(void)
2117   {
2118          if (vm_init() < 0)
2119                  return 1;
2120  
2121 + #ifdef _WIN32
2122 +        page_size = 4096;
2123 + #else
2124          page_size = getpagesize();
2125 + #endif
2126          if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
2127 <                return 1;
2127 >                return 2;
2128          
2129 +        memset((void *)page, 0, page_size);
2130          if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
2131 <                return 1;
2131 >                return 3;
2132          
2133          if (!sigsegv_install_handler(sigsegv_test_handler))
2134 <                return 1;
409 <        
410 <        page[123] = 45;
411 <        page[123] = 45;
2134 >                return 4;
2135          
2136 + #ifdef __GNUC__
2137 +        b_region = &&L_b_region1;
2138 +        e_region = &&L_e_region1;
2139 + #endif
2140 + L_b_region1:
2141 +        page[REF_INDEX] = REF_VALUE;
2142 +        if (page[REF_INDEX] != REF_VALUE)
2143 +          exit(20);
2144 +        page[REF_INDEX] = REF_VALUE;
2145 + L_e_region1:
2146 +
2147          if (handler_called != 1)
2148 <                return 1;
2148 >                return 5;
2149 >
2150 > #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
2151 >        if (!sigsegv_install_handler(sigsegv_insn_handler))
2152 >                return 6;
2153 >        
2154 >        if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
2155 >                return 7;
2156 >        
2157 >        for (int i = 0; i < page_size; i++)
2158 >                page[i] = (i + 1) % page_size;
2159 >        
2160 >        if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
2161 >                return 8;
2162 >        
2163 > #define TEST_SKIP_INSTRUCTION(TYPE) do {                                \
2164 >                const unsigned long TAG = 0x12345678 |                  \
2165 >                (sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0);   \
2166 >                TYPE data = *((TYPE *)(page + sizeof(TYPE)));   \
2167 >                volatile unsigned long effect = data + TAG;             \
2168 >                if (effect != TAG)                                                              \
2169 >                        return 9;                                                                       \
2170 >        } while (0)
2171 >        
2172 > #ifdef __GNUC__
2173 >        b_region = &&L_b_region2;
2174 >        e_region = &&L_e_region2;
2175 > #endif
2176 > L_b_region2:
2177 >        TEST_SKIP_INSTRUCTION(unsigned char);
2178 >        TEST_SKIP_INSTRUCTION(unsigned short);
2179 >        TEST_SKIP_INSTRUCTION(unsigned int);
2180 >        TEST_SKIP_INSTRUCTION(unsigned long);
2181 >        TEST_SKIP_INSTRUCTION(signed char);
2182 >        TEST_SKIP_INSTRUCTION(signed short);
2183 >        TEST_SKIP_INSTRUCTION(signed int);
2184 >        TEST_SKIP_INSTRUCTION(signed long);
2185 > L_e_region2:
2186 >
2187 >        if (!arch_insn_skipper_tests())
2188 >                return 20;
2189 > #endif
2190  
2191          vm_exit();
2192          return 0;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines