ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
(Generate patch)

Comparing BasiliskII/src/Unix/sigsegv.cpp (file contents):
Revision 1.16 by gbeauche, 2002-05-20T16:03:37Z vs.
Revision 1.52 by gbeauche, 2005-01-30T21:42:14Z

# Line 4 | Line 4
4   *  Derived from Bruno Haible's work on his SIGSEGV library for clisp
5   *  <http://clisp.sourceforge.net/>
6   *
7 < *  Basilisk II (C) 1997-2002 Christian Bauer
7 > *  MacOS X support derived from the post by Timothy J. Wood to the
8 > *  omnigroup macosx-dev list:
9 > *    Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10 > *    tjw@omnigroup.com Sun, 4 Jun 2000
11 > *    www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12 > *
13 > *  Basilisk II (C) 1997-2005 Christian Bauer
14   *
15   *  This program is free software; you can redistribute it and/or modify
16   *  it under the terms of the GNU General Public License as published by
# Line 29 | Line 35
35   #include "config.h"
36   #endif
37  
38 + #include <list>
39 + #include <stdio.h>
40   #include <signal.h>
41   #include "sigsegv.h"
42  
43 + #ifndef NO_STD_NAMESPACE
44 + using std::list;
45 + #endif
46 +
47   // Return value type of a signal handler (standard type if not defined)
48   #ifndef RETSIGTYPE
49   #define RETSIGTYPE void
# Line 40 | Line 52
52   // Type of the system signal handler
53   typedef RETSIGTYPE (*signal_handler)(int);
54  
43 // Is the fault to be ignored?
44 static bool sigsegv_ignore_fault = false;
45
55   // User's SIGSEGV handler
56   static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
57  
# Line 57 | Line 66 | static bool sigsegv_do_install_handler(i
66   *  Instruction decoding aids
67   */
68  
60 // Transfer type
61 enum transfer_type_t {
62        TYPE_UNKNOWN,
63        TYPE_LOAD,
64        TYPE_STORE
65 };
66
69   // Transfer size
70   enum transfer_size_t {
71          SIZE_UNKNOWN,
72          SIZE_BYTE,
73 <        SIZE_WORD,
74 <        SIZE_LONG
73 >        SIZE_WORD, // 2 bytes
74 >        SIZE_LONG, // 4 bytes
75 >        SIZE_QUAD, // 8 bytes
76   };
77  
78 + // Transfer type
79 + typedef sigsegv_transfer_type_t transfer_type_t;
80 +
81   #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
82   // Addressing mode
83   enum addressing_mode_t {
# Line 91 | Line 97 | struct instruction_t {
97          char                            ra, rd;
98   };
99  
100 < static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned int * gpr)
100 > static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned long * gpr)
101   {
102          // Get opcode and divide into fields
103 <        unsigned int opcode = *((unsigned int *)nip);
103 >        unsigned int opcode = *((unsigned int *)(unsigned long)nip);
104          unsigned int primop = opcode >> 26;
105          unsigned int exop = (opcode >> 1) & 0x3ff;
106          unsigned int ra = (opcode >> 16) & 0x1f;
# Line 103 | Line 109 | static void powerpc_decode_instruction(i
109          signed int imm = (signed short)(opcode & 0xffff);
110          
111          // Analyze opcode
112 <        transfer_type_t transfer_type = TYPE_UNKNOWN;
112 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
113          transfer_size_t transfer_size = SIZE_UNKNOWN;
114          addressing_mode_t addr_mode = MODE_UNKNOWN;
115          switch (primop) {
116          case 31:
117                  switch (exop) {
118                  case 23:        // lwzx
119 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
119 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
120                  case 55:        // lwzux
121 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
121 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
122                  case 87:        // lbzx
123 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
123 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
124                  case 119:       // lbzux
125 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
125 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
126                  case 151:       // stwx
127 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
127 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
128                  case 183:       // stwux
129 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
129 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
130                  case 215:       // stbx
131 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
131 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
132                  case 247:       // stbux
133 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
133 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
134                  case 279:       // lhzx
135 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
135 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
136                  case 311:       // lhzux
137 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
137 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
138                  case 343:       // lhax
139 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
139 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
140                  case 375:       // lhaux
141 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
141 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
142                  case 407:       // sthx
143 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
143 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
144                  case 439:       // sthux
145 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
145 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
146                  }
147                  break;
148          
149          case 32:        // lwz
150 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
150 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
151          case 33:        // lwzu
152 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
152 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
153          case 34:        // lbz
154 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
154 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
155          case 35:        // lbzu
156 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
156 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
157          case 36:        // stw
158 <                transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
158 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
159          case 37:        // stwu
160 <                transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
160 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
161          case 38:        // stb
162 <                transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
162 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
163          case 39:        // stbu
164 <                transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
164 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
165          case 40:        // lhz
166 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
166 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
167          case 41:        // lhzu
168 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
168 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
169          case 42:        // lha
170 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
170 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
171          case 43:        // lhau
172 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
172 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
173          case 44:        // sth
174 <                transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
174 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
175          case 45:        // sthu
176 <                transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
176 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
177 >        case 58:        // ld, ldu, lwa
178 >                transfer_type = SIGSEGV_TRANSFER_LOAD;
179 >                transfer_size = SIZE_QUAD;
180 >                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
181 >                imm &= ~3;
182 >                break;
183 >        case 62:        // std, stdu, stq
184 >                transfer_type = SIGSEGV_TRANSFER_STORE;
185 >                transfer_size = SIZE_QUAD;
186 >                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
187 >                imm &= ~3;
188 >                break;
189          }
190          
191          // Calculate effective address
# Line 208 | Line 226 | static void powerpc_decode_instruction(i
226  
227   #if HAVE_SIGINFO_T
228   // Generic extended signal handler
229 < #if defined(__NetBSD__) || defined(__FreeBSD__)
229 > #if defined(__FreeBSD__)
230   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
231   #else
232   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
233   #endif
234   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, siginfo_t *sip, void *scp
235 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
236 + #define SIGSEGV_FAULT_HANDLER_ARGS              sip, scp
237   #define SIGSEGV_FAULT_ADDRESS                   sip->si_addr
238 + #if (defined(sgi) || defined(__sgi))
239 + #include <ucontext.h>
240 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
241 + #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)SIGSEGV_CONTEXT_REGS[CTX_EPC]
242 + #if (defined(mips) || defined(__mips))
243 + #define SIGSEGV_REGISTER_FILE                   SIGSEGV_CONTEXT_REGS
244 + #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
245 + #endif
246 + #endif
247 + #if defined(__sun__)
248 + #if (defined(sparc) || defined(__sparc__))
249 + #include <sys/stack.h>
250 + #include <sys/regset.h>
251 + #include <sys/ucontext.h>
252 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
253 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[REG_PC]
254 + #define SIGSEGV_SPARC_GWINDOWS                  (((ucontext_t *)scp)->uc_mcontext.gwins)
255 + #define SIGSEGV_SPARC_RWINDOW                   (struct rwindow *)((char *)SIGSEGV_CONTEXT_REGS[REG_SP] + STACK_BIAS)
256 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)SIGSEGV_CONTEXT_REGS), SIGSEGV_SPARC_GWINDOWS, SIGSEGV_SPARC_RWINDOW
257 + #define SIGSEGV_SKIP_INSTRUCTION                sparc_skip_instruction
258 + #endif
259 + #endif
260 + #if defined(__FreeBSD__)
261 + #if (defined(i386) || defined(__i386__))
262 + #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_eip)
263 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
264 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
265 + #endif
266 + #endif
267 + #if defined(__NetBSD__)
268 + #if (defined(i386) || defined(__i386__))
269 + #include <sys/ucontext.h>
270 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
271 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_EIP]
272 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
273 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
274 + #endif
275 + #endif
276   #if defined(__linux__)
277   #if (defined(i386) || defined(__i386__))
278   #include <sys/ucontext.h>
279   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
280   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
281 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)SIGSEGV_CONTEXT_REGS
281 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
282 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
283 > #endif
284 > #if (defined(x86_64) || defined(__x86_64__))
285 > #include <sys/ucontext.h>
286 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
287 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
288 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
289   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
290   #endif
291   #if (defined(ia64) || defined(__ia64__))
# Line 230 | Line 295 | static void powerpc_decode_instruction(i
295   #include <sys/ucontext.h>
296   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.regs)
297   #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS->nip)
298 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned int *)(SIGSEGV_CONTEXT_REGS->gpr)
298 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned long *)(SIGSEGV_CONTEXT_REGS->gpr)
299   #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
300   #endif
301 + #if (defined(hppa) || defined(__hppa__))
302 + #undef  SIGSEGV_FAULT_ADDRESS
303 + #define SIGSEGV_FAULT_ADDRESS                   sip->si_ptr
304 + #endif
305 + #if (defined(arm) || defined(__arm__))
306 + #include <asm/ucontext.h> /* use kernel structure, glibc may not be in sync */
307 + #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
308 + #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.arm_pc)
309 + #define SIGSEGV_REGISTER_FILE                   (&SIGSEGV_CONTEXT_REGS.arm_r0)
310 + #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
311 + #endif
312   #endif
313   #endif
314  
# Line 243 | Line 319 | static void powerpc_decode_instruction(i
319   #if (defined(i386) || defined(__i386__))
320   #include <asm/sigcontext.h>
321   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext scs
322 < #define SIGSEGV_FAULT_ADDRESS                   scs.cr2
323 < #define SIGSEGV_FAULT_INSTRUCTION               scs.eip
324 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)(&scs)
322 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
323 > #define SIGSEGV_FAULT_HANDLER_ARGS              &scs
324 > #define SIGSEGV_FAULT_ADDRESS                   scp->cr2
325 > #define SIGSEGV_FAULT_INSTRUCTION               scp->eip
326 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)scp
327   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
328   #endif
329   #if (defined(sparc) || defined(__sparc__))
330   #include <asm/sigcontext.h>
331   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
332 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
333   #define SIGSEGV_FAULT_ADDRESS                   addr
334   #endif
335   #if (defined(powerpc) || defined(__powerpc__))
336   #include <asm/sigcontext.h>
337   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext *scp
338 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, scp
339   #define SIGSEGV_FAULT_ADDRESS                   scp->regs->dar
340   #define SIGSEGV_FAULT_INSTRUCTION               scp->regs->nip
341 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&scp->regs->nip, (unsigned int *)(scp->regs->gpr)
341 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&scp->regs->nip, (unsigned long *)(scp->regs->gpr)
342   #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
343   #endif
344   #if (defined(alpha) || defined(__alpha__))
345   #include <asm/sigcontext.h>
346   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
347 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
348   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
349   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
350 <
351 < // From Boehm's GC 6.0alpha8
352 < static sigsegv_address_t get_fault_address(struct sigcontext *scp)
353 < {
354 <        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
355 <        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
356 <        fault_address += (signed long)(signed short)(instruction & 0xffff);
357 <        return (sigsegv_address_t)fault_address;
358 < }
350 > #endif
351 > #if (defined(arm) || defined(__arm__))
352 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int r1, int r2, int r3, struct sigcontext sc
353 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
354 > #define SIGSEGV_FAULT_HANDLER_ARGS              &sc
355 > #define SIGSEGV_FAULT_ADDRESS                   scp->fault_address
356 > #define SIGSEGV_FAULT_INSTRUCTION               scp->arm_pc
357 > #define SIGSEGV_REGISTER_FILE                   &scp->arm_r0
358 > #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
359   #endif
360   #endif
361  
362   // Irix 5 or 6 on MIPS
363 < #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
363 > #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(_SYSTYPE_SVR4))
364   #include <ucontext.h>
365   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
366 < #define SIGSEGV_FAULT_ADDRESS                   scp->sc_badvaddr
366 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
367 > #define SIGSEGV_FAULT_ADDRESS                   (unsigned long)scp->sc_badvaddr
368 > #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)scp->sc_pc
369   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
370   #endif
371  
372   // HP-UX
373   #if (defined(hpux) || defined(__hpux__))
374   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
375 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
376   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_sl.sl_ss.ss_narrow.ss_cr21
377   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
378   #endif
# Line 297 | Line 381 | static sigsegv_address_t get_fault_addre
381   #if defined(__osf__)
382   #include <ucontext.h>
383   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
384 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
385   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_traparg_a0
386   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
387   #endif
# Line 304 | Line 389 | static sigsegv_address_t get_fault_addre
389   // AIX
390   #if defined(_AIX)
391   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
392 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
393   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_jmpbuf.jmp_context.o_vaddr
394   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
395   #endif
396  
397 < // NetBSD or FreeBSD
398 < #if defined(__NetBSD__) || defined(__FreeBSD__)
397 > // NetBSD
398 > #if defined(__NetBSD__)
399   #if (defined(m68k) || defined(__m68k__))
400   #include <m68k/frame.h>
401   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
402 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
403   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
404   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
405  
# Line 336 | Line 423 | static sigsegv_address_t get_fault_addre
423          }
424          return (sigsegv_address_t)fault_addr;
425   }
426 < #else
427 < #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, void *scp, char *addr
428 < #define SIGSEGV_FAULT_ADDRESS                   addr
426 > #endif
427 > #if (defined(alpha) || defined(__alpha__))
428 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
429 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
430 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
431   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
432   #endif
433 + #if (defined(i386) || defined(__i386__))
434 + #error "FIXME: need to decode instruction and compute EA"
435 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
436 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
437 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
438 + #endif
439 + #endif
440 + #if defined(__FreeBSD__)
441 + #if (defined(i386) || defined(__i386__))
442 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
443 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
444 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
445 + #define SIGSEGV_FAULT_ADDRESS                   addr
446 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_eip
447 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&scp->sc_edi)
448 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
449 + #endif
450 + #if (defined(alpha) || defined(__alpha__))
451 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
452 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, char *addr, struct sigcontext *scp
453 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, addr, scp
454 + #define SIGSEGV_FAULT_ADDRESS                   addr
455 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
456 + #endif
457   #endif
458  
459 < // MacOS X
459 > // Extract fault address out of a sigcontext
460 > #if (defined(alpha) || defined(__alpha__))
461 > // From Boehm's GC 6.0alpha8
462 > static sigsegv_address_t get_fault_address(struct sigcontext *scp)
463 > {
464 >        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
465 >        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
466 >        fault_address += (signed long)(signed short)(instruction & 0xffff);
467 >        return (sigsegv_address_t)fault_address;
468 > }
469 > #endif
470 >
471 >
472 > // MacOS X, not sure which version this works in. Under 10.1
473 > // vm_protect does not appear to work from a signal handler. Under
474 > // 10.2 signal handlers get siginfo type arguments but the si_addr
475 > // field is the address of the faulting instruction and not the
476 > // address that caused the SIGBUS. Maybe this works in 10.0? In any
477 > // case with Mach exception handlers there is a way to do what this
478 > // was meant to do.
479 > #ifndef HAVE_MACH_EXCEPTIONS
480   #if defined(__APPLE__) && defined(__MACH__)
481   #if (defined(ppc) || defined(__ppc__))
482   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
483 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
484   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
485   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_ir
486   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
# Line 366 | Line 500 | static sigsegv_address_t get_fault_addre
500   #endif
501   #endif
502   #endif
503 + #endif
504 +
505 + #if HAVE_WIN32_EXCEPTIONS
506 + #define WIN32_LEAN_AND_MEAN /* avoid including junk */
507 + #include <windows.h>
508 + #include <winerror.h>
509 +
510 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   EXCEPTION_POINTERS *ExceptionInfo
511 + #define SIGSEGV_FAULT_HANDLER_ARGS              ExceptionInfo
512 + #define SIGSEGV_FAULT_ADDRESS                   ExceptionInfo->ExceptionRecord->ExceptionInformation[1]
513 + #define SIGSEGV_CONTEXT_REGS                    ExceptionInfo->ContextRecord
514 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS->Eip
515 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&SIGSEGV_CONTEXT_REGS->Edi)
516 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
517 + #endif
518 +
519 + #if HAVE_MACH_EXCEPTIONS
520 +
521 + // This can easily be extended to other Mach systems, but really who
522 + // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
523 + // Mach 2.5/3.0?
524 + #if defined(__APPLE__) && defined(__MACH__)
525 +
526 + #include <sys/types.h>
527 + #include <stdlib.h>
528 + #include <stdio.h>
529 + #include <pthread.h>
530 +
531 + /*
532 + * If you are familiar with MIG then you will understand the frustration
533 + * that was necessary to get these embedded into C++ code by hand.
534 + */
535 + extern "C" {
536 + #include <mach/mach.h>
537 + #include <mach/mach_error.h>
538 +
539 + extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
540 + extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
541 +        mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
542 + extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
543 +        exception_type_t, exception_data_t, mach_msg_type_number_t);
544 + extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
545 +        exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
546 +        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
547 + extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
548 +        exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
549 +        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
550 + }
551 +
552 + // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
553 + #define HANDLER_COUNT 64
554 +
555 + // structure to tuck away existing exception handlers
556 + typedef struct _ExceptionPorts {
557 +        mach_msg_type_number_t maskCount;
558 +        exception_mask_t masks[HANDLER_COUNT];
559 +        exception_handler_t handlers[HANDLER_COUNT];
560 +        exception_behavior_t behaviors[HANDLER_COUNT];
561 +        thread_state_flavor_t flavors[HANDLER_COUNT];
562 + } ExceptionPorts;
563 +
564 + // exception handler thread
565 + static pthread_t exc_thread;
566 +
567 + // place where old exception handler info is stored
568 + static ExceptionPorts ports;
569 +
570 + // our exception port
571 + static mach_port_t _exceptionPort = MACH_PORT_NULL;
572 +
573 + #define MACH_CHECK_ERROR(name,ret) \
574 + if (ret != KERN_SUCCESS) { \
575 +        mach_error(#name, ret); \
576 +        exit (1); \
577 + }
578 +
579 + #define SIGSEGV_FAULT_ADDRESS                   code[1]
580 + #define SIGSEGV_FAULT_INSTRUCTION               get_fault_instruction(thread, state)
581 + #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  ((code[0] == KERN_PROTECTION_FAILURE) ? sigsegv_fault_handler(ADDR, IP) : SIGSEGV_RETURN_FAILURE)
582 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   mach_port_t thread, exception_data_t code, ppc_thread_state_t *state
583 + #define SIGSEGV_FAULT_HANDLER_ARGS              thread, code, &state
584 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
585 + #define SIGSEGV_REGISTER_FILE                   &state->srr0, &state->r0
586 +
587 + // Given a suspended thread, stuff the current instruction and
588 + // registers into state.
589 + //
590 + // It would have been nice to have this be ppc/x86 independant which
591 + // could have been done easily with a thread_state_t instead of
592 + // ppc_thread_state_t, but because of the way this is called it is
593 + // easier to do it this way.
594 + #if (defined(ppc) || defined(__ppc__))
595 + static inline sigsegv_address_t get_fault_instruction(mach_port_t thread, ppc_thread_state_t *state)
596 + {
597 +        kern_return_t krc;
598 +        mach_msg_type_number_t count;
599 +
600 +        count = MACHINE_THREAD_STATE_COUNT;
601 +        krc = thread_get_state(thread, MACHINE_THREAD_STATE, (thread_state_t)state, &count);
602 +        MACH_CHECK_ERROR (thread_get_state, krc);
603 +
604 +        return (sigsegv_address_t)state->srr0;
605 + }
606 + #endif
607 +
608 + // Since there can only be one exception thread running at any time
609 + // this is not a problem.
610 + #define MSG_SIZE 512
611 + static char msgbuf[MSG_SIZE];
612 + static char replybuf[MSG_SIZE];
613 +
614 + /*
615 + * This is the entry point for the exception handler thread. The job
616 + * of this thread is to wait for exception messages on the exception
617 + * port that was setup beforehand and to pass them on to exc_server.
618 + * exc_server is a MIG generated function that is a part of Mach.
619 + * Its job is to decide what to do with the exception message. In our
620 + * case exc_server calls catch_exception_raise on our behalf. After
621 + * exc_server returns, it is our responsibility to send the reply.
622 + */
623 + static void *
624 + handleExceptions(void *priv)
625 + {
626 +        mach_msg_header_t *msg, *reply;
627 +        kern_return_t krc;
628 +
629 +        msg = (mach_msg_header_t *)msgbuf;
630 +        reply = (mach_msg_header_t *)replybuf;
631 +
632 +        for (;;) {
633 +                krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
634 +                                _exceptionPort, 0, MACH_PORT_NULL);
635 +                MACH_CHECK_ERROR(mach_msg, krc);
636 +
637 +                if (!exc_server(msg, reply)) {
638 +                        fprintf(stderr, "exc_server hated the message\n");
639 +                        exit(1);
640 +                }
641 +
642 +                krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
643 +                                 msg->msgh_local_port, 0, MACH_PORT_NULL);
644 +                if (krc != KERN_SUCCESS) {
645 +                        fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
646 +                                krc, mach_error_string(krc));
647 +                        exit(1);
648 +                }
649 +        }
650 + }
651 + #endif
652 + #endif
653  
654  
655   /*
# Line 374 | Line 658 | static sigsegv_address_t get_fault_addre
658  
659   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
660   // Decode and skip X86 instruction
661 < #if (defined(i386) || defined(__i386__))
661 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
662   #if defined(__linux__)
663   enum {
664 + #if (defined(i386) || defined(__i386__))
665          X86_REG_EIP = 14,
666          X86_REG_EAX = 11,
667          X86_REG_ECX = 10,
# Line 386 | Line 671 | enum {
671          X86_REG_EBP = 6,
672          X86_REG_ESI = 5,
673          X86_REG_EDI = 4
674 + #endif
675 + #if defined(__x86_64__)
676 +        X86_REG_R8  = 0,
677 +        X86_REG_R9  = 1,
678 +        X86_REG_R10 = 2,
679 +        X86_REG_R11 = 3,
680 +        X86_REG_R12 = 4,
681 +        X86_REG_R13 = 5,
682 +        X86_REG_R14 = 6,
683 +        X86_REG_R15 = 7,
684 +        X86_REG_EDI = 8,
685 +        X86_REG_ESI = 9,
686 +        X86_REG_EBP = 10,
687 +        X86_REG_EBX = 11,
688 +        X86_REG_EDX = 12,
689 +        X86_REG_EAX = 13,
690 +        X86_REG_ECX = 14,
691 +        X86_REG_ESP = 15,
692 +        X86_REG_EIP = 16
693 + #endif
694 + };
695 + #endif
696 + #if defined(__NetBSD__)
697 + enum {
698 + #if (defined(i386) || defined(__i386__))
699 +        X86_REG_EIP = _REG_EIP,
700 +        X86_REG_EAX = _REG_EAX,
701 +        X86_REG_ECX = _REG_ECX,
702 +        X86_REG_EDX = _REG_EDX,
703 +        X86_REG_EBX = _REG_EBX,
704 +        X86_REG_ESP = _REG_ESP,
705 +        X86_REG_EBP = _REG_EBP,
706 +        X86_REG_ESI = _REG_ESI,
707 +        X86_REG_EDI = _REG_EDI
708 + #endif
709 + };
710 + #endif
711 + #if defined(__FreeBSD__)
712 + enum {
713 + #if (defined(i386) || defined(__i386__))
714 +        X86_REG_EIP = 10,
715 +        X86_REG_EAX = 7,
716 +        X86_REG_ECX = 6,
717 +        X86_REG_EDX = 5,
718 +        X86_REG_EBX = 4,
719 +        X86_REG_ESP = 13,
720 +        X86_REG_EBP = 2,
721 +        X86_REG_ESI = 1,
722 +        X86_REG_EDI = 0
723 + #endif
724 + };
725 + #endif
726 + #if defined(_WIN32)
727 + enum {
728 + #if (defined(i386) || defined(__i386__))
729 +        X86_REG_EIP = 7,
730 +        X86_REG_EAX = 5,
731 +        X86_REG_ECX = 4,
732 +        X86_REG_EDX = 3,
733 +        X86_REG_EBX = 2,
734 +        X86_REG_ESP = 10,
735 +        X86_REG_EBP = 6,
736 +        X86_REG_ESI = 1,
737 +        X86_REG_EDI = 0
738 + #endif
739   };
740   #endif
741   // FIXME: this is partly redundant with the instruction decoding phase
# Line 422 | Line 772 | static inline int ix86_step_over_modrm(u
772          return offset;
773   }
774  
775 < static bool ix86_skip_instruction(unsigned int * regs)
775 > static bool ix86_skip_instruction(unsigned long * regs)
776   {
777          unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
778  
779          if (eip == 0)
780                  return false;
781 + #ifdef _WIN32
782 +        if (IsBadCodePtr((FARPROC)eip))
783 +                return false;
784 + #endif
785          
786 <        transfer_type_t transfer_type = TYPE_UNKNOWN;
786 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
787          transfer_size_t transfer_size = SIZE_LONG;
788          
789          int reg = -1;
790          int len = 0;
791 <        
791 >
792 > #if DEBUG
793 >        printf("IP: %p [%02x %02x %02x %02x...]\n",
794 >                   eip, eip[0], eip[1], eip[2], eip[3]);
795 > #endif
796 >
797          // Operand size prefix
798          if (*eip == 0x66) {
799                  eip++;
# Line 442 | Line 801 | static bool ix86_skip_instruction(unsign
801                  transfer_size = SIZE_WORD;
802          }
803  
804 +        // REX prefix
805 + #if defined(__x86_64__)
806 +        struct rex_t {
807 +                unsigned char W;
808 +                unsigned char R;
809 +                unsigned char X;
810 +                unsigned char B;
811 +        };
812 +        rex_t rex = { 0, 0, 0, 0 };
813 +        bool has_rex = false;
814 +        if ((*eip & 0xf0) == 0x40) {
815 +                has_rex = true;
816 +                const unsigned char b = *eip;
817 +                rex.W = b & (1 << 3);
818 +                rex.R = b & (1 << 2);
819 +                rex.X = b & (1 << 1);
820 +                rex.B = b & (1 << 0);
821 + #if DEBUG
822 +                printf("REX: %c,%c,%c,%c\n",
823 +                           rex.W ? 'W' : '_',
824 +                           rex.R ? 'R' : '_',
825 +                           rex.X ? 'X' : '_',
826 +                           rex.B ? 'B' : '_');
827 + #endif
828 +                eip++;
829 +                len++;
830 +                if (rex.W)
831 +                        transfer_size = SIZE_QUAD;
832 +        }
833 + #else
834 +        const bool has_rex = false;
835 + #endif
836 +
837          // Decode instruction
838 +        int target_size = SIZE_UNKNOWN;
839          switch (eip[0]) {
840 +        case 0x0f:
841 +                target_size = transfer_size;
842 +            switch (eip[1]) {
843 +                case 0xbe: // MOVSX r32, r/m8
844 +            case 0xb6: // MOVZX r32, r/m8
845 +                        transfer_size = SIZE_BYTE;
846 +                        goto do_mov_extend;
847 +                case 0xbf: // MOVSX r32, r/m16
848 +            case 0xb7: // MOVZX r32, r/m16
849 +                        transfer_size = SIZE_WORD;
850 +                        goto do_mov_extend;
851 +                  do_mov_extend:
852 +                        switch (eip[2] & 0xc0) {
853 +                        case 0x80:
854 +                                reg = (eip[2] >> 3) & 7;
855 +                                transfer_type = SIGSEGV_TRANSFER_LOAD;
856 +                                break;
857 +                        case 0x40:
858 +                                reg = (eip[2] >> 3) & 7;
859 +                                transfer_type = SIGSEGV_TRANSFER_LOAD;
860 +                                break;
861 +                        case 0x00:
862 +                                reg = (eip[2] >> 3) & 7;
863 +                                transfer_type = SIGSEGV_TRANSFER_LOAD;
864 +                                break;
865 +                        }
866 +                        len += 3 + ix86_step_over_modrm(eip + 2);
867 +                        break;
868 +            }
869 +          break;
870          case 0x8a: // MOV r8, r/m8
871                  transfer_size = SIZE_BYTE;
872          case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
873                  switch (eip[1] & 0xc0) {
874                  case 0x80:
875                          reg = (eip[1] >> 3) & 7;
876 <                        transfer_type = TYPE_LOAD;
876 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
877                          break;
878                  case 0x40:
879                          reg = (eip[1] >> 3) & 7;
880 <                        transfer_type = TYPE_LOAD;
880 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
881                          break;
882                  case 0x00:
883                          reg = (eip[1] >> 3) & 7;
884 <                        transfer_type = TYPE_LOAD;
884 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
885                          break;
886                  }
887                  len += 2 + ix86_step_over_modrm(eip + 1);
# Line 469 | Line 892 | static bool ix86_skip_instruction(unsign
892                  switch (eip[1] & 0xc0) {
893                  case 0x80:
894                          reg = (eip[1] >> 3) & 7;
895 <                        transfer_type = TYPE_STORE;
895 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
896                          break;
897                  case 0x40:
898                          reg = (eip[1] >> 3) & 7;
899 <                        transfer_type = TYPE_STORE;
899 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
900                          break;
901                  case 0x00:
902                          reg = (eip[1] >> 3) & 7;
903 <                        transfer_type = TYPE_STORE;
903 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
904                          break;
905                  }
906                  len += 2 + ix86_step_over_modrm(eip + 1);
907                  break;
908          }
909 +        if (target_size == SIZE_UNKNOWN)
910 +                target_size = transfer_size;
911  
912 <        if (transfer_type == TYPE_UNKNOWN) {
912 >        if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
913                  // Unknown machine code, let it crash. Then patch the decoder
914                  return false;
915          }
916  
917 <        if (transfer_type == TYPE_LOAD && reg != -1) {
918 <                static const int x86_reg_map[8] = {
917 > #if defined(__x86_64__)
918 >        if (rex.R)
919 >                reg += 8;
920 > #endif
921 >
922 >        if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
923 >                static const int x86_reg_map[] = {
924                          X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
925 <                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI
925 >                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI,
926 > #if defined(__x86_64__)
927 >                        X86_REG_R8,  X86_REG_R9,  X86_REG_R10, X86_REG_R11,
928 >                        X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15,
929 > #endif
930                  };
931                  
932 <                if (reg < 0 || reg >= 8)
932 >                if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1))
933                          return false;
934  
935 +                // Set 0 to the relevant register part
936 +                // NOTE: this is only valid for MOV alike instructions
937                  int rloc = x86_reg_map[reg];
938 <                switch (transfer_size) {
938 >                switch (target_size) {
939                  case SIZE_BYTE:
940 <                        regs[rloc] = (regs[rloc] & ~0xff);
940 >                        if (has_rex || reg < 4)
941 >                                regs[rloc] = (regs[rloc] & ~0x00ffL);
942 >                        else {
943 >                                rloc = x86_reg_map[reg - 4];
944 >                                regs[rloc] = (regs[rloc] & ~0xff00L);
945 >                        }
946                          break;
947                  case SIZE_WORD:
948 <                        regs[rloc] = (regs[rloc] & ~0xffff);
948 >                        regs[rloc] = (regs[rloc] & ~0xffffL);
949                          break;
950                  case SIZE_LONG:
951 +                case SIZE_QUAD: // zero-extension
952                          regs[rloc] = 0;
953                          break;
954                  }
# Line 514 | Line 956 | static bool ix86_skip_instruction(unsign
956  
957   #if DEBUG
958          printf("%08x: %s %s access", regs[X86_REG_EIP],
959 <                   transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : "long",
960 <                   transfer_type == TYPE_LOAD ? "read" : "write");
959 >                   transfer_size == SIZE_BYTE ? "byte" :
960 >                   transfer_size == SIZE_WORD ? "word" :
961 >                   transfer_size == SIZE_LONG ? "long" :
962 >                   transfer_size == SIZE_QUAD ? "quad" : "unknown",
963 >                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
964          
965          if (reg != -1) {
966 <                static const char * x86_reg_str_map[8] = {
967 <                        "eax", "ecx", "edx", "ebx",
968 <                        "esp", "ebp", "esi", "edi"
966 >                static const char * x86_byte_reg_str_map[] = {
967 >                        "al",   "cl",   "dl",   "bl",
968 >                        "spl",  "bpl",  "sil",  "dil",
969 >                        "r8b",  "r9b",  "r10b", "r11b",
970 >                        "r12b", "r13b", "r14b", "r15b",
971 >                        "ah",   "ch",   "dh",   "bh",
972 >                };
973 >                static const char * x86_word_reg_str_map[] = {
974 >                        "ax",   "cx",   "dx",   "bx",
975 >                        "sp",   "bp",   "si",   "di",
976 >                        "r8w",  "r9w",  "r10w", "r11w",
977 >                        "r12w", "r13w", "r14w", "r15w",
978                  };
979 <                printf(" %s register %%%s", transfer_type == TYPE_LOAD ? "to" : "from", x86_reg_str_map[reg]);
979 >                static const char *x86_long_reg_str_map[] = {
980 >                        "eax",  "ecx",  "edx",  "ebx",
981 >                        "esp",  "ebp",  "esi",  "edi",
982 >                        "r8d",  "r9d",  "r10d", "r11d",
983 >                        "r12d", "r13d", "r14d", "r15d",
984 >                };
985 >                static const char *x86_quad_reg_str_map[] = {
986 >                        "rax", "rcx", "rdx", "rbx",
987 >                        "rsp", "rbp", "rsi", "rdi",
988 >                        "r8",  "r9",  "r10", "r11",
989 >                        "r12", "r13", "r14", "r15",
990 >                };
991 >                const char * reg_str = NULL;
992 >                switch (target_size) {
993 >                case SIZE_BYTE:
994 >                        reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg];
995 >                        break;
996 >                case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break;
997 >                case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break;
998 >                case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break;
999 >                }
1000 >                if (reg_str)
1001 >                        printf(" %s register %%%s",
1002 >                                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from",
1003 >                                   reg_str);
1004          }
1005          printf(", %d bytes instruction\n", len);
1006   #endif
# Line 534 | Line 1012 | static bool ix86_skip_instruction(unsign
1012  
1013   // Decode and skip PPC instruction
1014   #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
1015 < static bool powerpc_skip_instruction(unsigned int * nip_p, unsigned int * regs)
1015 > static bool powerpc_skip_instruction(unsigned long * nip_p, unsigned long * regs)
1016   {
1017          instruction_t instr;
1018          powerpc_decode_instruction(&instr, *nip_p, regs);
1019          
1020 <        if (instr.transfer_type == TYPE_UNKNOWN) {
1020 >        if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1021                  // Unknown machine code, let it crash. Then patch the decoder
1022                  return false;
1023          }
1024  
1025   #if DEBUG
1026          printf("%08x: %s %s access", *nip_p,
1027 <                   instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : "long",
1028 <                   instr.transfer_type == TYPE_LOAD ? "read" : "write");
1027 >                   instr.transfer_size == SIZE_BYTE ? "byte" :
1028 >                   instr.transfer_size == SIZE_WORD ? "word" :
1029 >                   instr.transfer_size == SIZE_LONG ? "long" : "quad",
1030 >                   instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1031          
1032          if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
1033                  printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
1034 <        if (instr.transfer_type == TYPE_LOAD)
1034 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
1035                  printf(" r%d (rd = 0)\n", instr.rd);
1036   #endif
1037          
1038          if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
1039                  regs[instr.ra] = instr.addr;
1040 <        if (instr.transfer_type == TYPE_LOAD)
1040 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
1041                  regs[instr.rd] = 0;
1042          
1043          *nip_p += 4;
1044          return true;
1045   }
1046   #endif
1047 +
1048 + // Decode and skip MIPS instruction
1049 + #if (defined(mips) || defined(__mips))
1050 + enum {
1051 + #if (defined(sgi) || defined(__sgi))
1052 +  MIPS_REG_EPC = 35,
1053 + #endif
1054 + };
1055 + static bool mips_skip_instruction(greg_t * regs)
1056 + {
1057 +  unsigned int * epc = (unsigned int *)(unsigned long)regs[MIPS_REG_EPC];
1058 +
1059 +  if (epc == 0)
1060 +        return false;
1061 +
1062 + #if DEBUG
1063 +  printf("IP: %p [%08x]\n", epc, epc[0]);
1064 + #endif
1065 +
1066 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1067 +  transfer_size_t transfer_size = SIZE_LONG;
1068 +  int direction = 0;
1069 +
1070 +  const unsigned int opcode = epc[0];
1071 +  switch (opcode >> 26) {
1072 +  case 32: // Load Byte
1073 +  case 36: // Load Byte Unsigned
1074 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1075 +        transfer_size = SIZE_BYTE;
1076 +        break;
1077 +  case 33: // Load Halfword
1078 +  case 37: // Load Halfword Unsigned
1079 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1080 +        transfer_size = SIZE_WORD;
1081 +        break;
1082 +  case 35: // Load Word
1083 +  case 39: // Load Word Unsigned
1084 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1085 +        transfer_size = SIZE_LONG;
1086 +        break;
1087 +  case 34: // Load Word Left
1088 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1089 +        transfer_size = SIZE_LONG;
1090 +        direction = -1;
1091 +        break;
1092 +  case 38: // Load Word Right
1093 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1094 +        transfer_size = SIZE_LONG;
1095 +        direction = 1;
1096 +        break;
1097 +  case 55: // Load Doubleword
1098 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1099 +        transfer_size = SIZE_QUAD;
1100 +        break;
1101 +  case 26: // Load Doubleword Left
1102 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1103 +        transfer_size = SIZE_QUAD;
1104 +        direction = -1;
1105 +        break;
1106 +  case 27: // Load Doubleword Right
1107 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1108 +        transfer_size = SIZE_QUAD;
1109 +        direction = 1;
1110 +        break;
1111 +  case 40: // Store Byte
1112 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1113 +        transfer_size = SIZE_BYTE;
1114 +        break;
1115 +  case 41: // Store Halfword
1116 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1117 +        transfer_size = SIZE_WORD;
1118 +        break;
1119 +  case 43: // Store Word
1120 +  case 42: // Store Word Left
1121 +  case 46: // Store Word Right
1122 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1123 +        transfer_size = SIZE_LONG;
1124 +        break;
1125 +  case 63: // Store Doubleword
1126 +  case 44: // Store Doubleword Left
1127 +  case 45: // Store Doubleword Right
1128 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1129 +        transfer_size = SIZE_QUAD;
1130 +        break;
1131 +  /* Misc instructions unlikely to be used within CPU emulators */
1132 +  case 48: // Load Linked Word
1133 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1134 +        transfer_size = SIZE_LONG;
1135 +        break;
1136 +  case 52: // Load Linked Doubleword
1137 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1138 +        transfer_size = SIZE_QUAD;
1139 +        break;
1140 +  case 56: // Store Conditional Word
1141 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1142 +        transfer_size = SIZE_LONG;
1143 +        break;
1144 +  case 60: // Store Conditional Doubleword
1145 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1146 +        transfer_size = SIZE_QUAD;
1147 +        break;
1148 +  }
1149 +
1150 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1151 +        // Unknown machine code, let it crash. Then patch the decoder
1152 +        return false;
1153 +  }
1154 +
1155 +  // Zero target register in case of a load operation
1156 +  const int reg = (opcode >> 16) & 0x1f;
1157 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD) {
1158 +        if (direction == 0)
1159 +          regs[reg] = 0;
1160 +        else {
1161 +          // FIXME: untested code
1162 +          unsigned long ea = regs[(opcode >> 21) & 0x1f];
1163 +          ea += (signed long)(signed int)(signed short)(opcode & 0xffff);
1164 +          const int offset = ea & (transfer_size == SIZE_LONG ? 3 : 7);
1165 +          unsigned long value;
1166 +          if (direction > 0) {
1167 +                const unsigned long rmask = ~((1L << ((offset + 1) * 8)) - 1);
1168 +                value = regs[reg] & rmask;
1169 +          }
1170 +          else {
1171 +                const unsigned long lmask = (1L << (offset * 8)) - 1;
1172 +                value = regs[reg] & lmask;
1173 +          }
1174 +          // restore most significant bits
1175 +          if (transfer_size == SIZE_LONG)
1176 +                value = (signed long)(signed int)value;
1177 +          regs[reg] = value;
1178 +        }
1179 +  }
1180 +
1181 + #if DEBUG
1182 + #if (defined(_ABIN32) || defined(_ABI64))
1183 +  static const char * mips_gpr_names[32] = {
1184 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1185 +        "t0",   "t1",   "t2",   "t3",   "t4",   "t5",   "t6",   "t7",
1186 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1187 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1188 +  };
1189 + #else
1190 +  static const char * mips_gpr_names[32] = {
1191 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1192 +        "a4",   "a5",   "a6",   "a7",   "t0",   "t1",   "t2",   "t3",
1193 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1194 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1195 +  };
1196 + #endif
1197 +  printf("%s %s register %s\n",
1198 +                 transfer_size == SIZE_BYTE ? "byte" :
1199 +                 transfer_size == SIZE_WORD ? "word" :
1200 +                 transfer_size == SIZE_LONG ? "long" :
1201 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1202 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1203 +                 mips_gpr_names[reg]);
1204 + #endif
1205 +
1206 +  regs[MIPS_REG_EPC] += 4;
1207 +  return true;
1208 + }
1209 + #endif
1210 +
1211 + // Decode and skip SPARC instruction
1212 + #if (defined(sparc) || defined(__sparc__))
1213 + enum {
1214 + #if (defined(__sun__))
1215 +  SPARC_REG_G1 = REG_G1,
1216 +  SPARC_REG_O0 = REG_O0,
1217 +  SPARC_REG_PC = REG_PC,
1218 + #endif
1219 + };
1220 + static bool sparc_skip_instruction(unsigned long * regs, gwindows_t * gwins, struct rwindow * rwin)
1221 + {
1222 +  unsigned int * pc = (unsigned int *)regs[SPARC_REG_PC];
1223 +
1224 +  if (pc == 0)
1225 +        return false;
1226 +
1227 + #if DEBUG
1228 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1229 + #endif
1230 +
1231 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1232 +  transfer_size_t transfer_size = SIZE_LONG;
1233 +  bool register_pair = false;
1234 +
1235 +  const unsigned int opcode = pc[0];
1236 +  if ((opcode >> 30) != 3)
1237 +        return false;
1238 +  switch ((opcode >> 19) & 0x3f) {
1239 +  case 9: // Load Signed Byte
1240 +  case 1: // Load Unsigned Byte
1241 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1242 +        transfer_size = SIZE_BYTE;
1243 +        break;
1244 +  case 10:// Load Signed Halfword
1245 +  case 2: // Load Unsigned Word
1246 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1247 +        transfer_size = SIZE_WORD;
1248 +        break;
1249 +  case 8: // Load Word
1250 +  case 0: // Load Unsigned Word
1251 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1252 +        transfer_size = SIZE_LONG;
1253 +        break;
1254 +  case 11:// Load Extended Word
1255 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1256 +        transfer_size = SIZE_QUAD;
1257 +        break;
1258 +  case 3: // Load Doubleword
1259 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1260 +        transfer_size = SIZE_LONG;
1261 +        register_pair = true;
1262 +        break;
1263 +  case 5: // Store Byte
1264 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1265 +        transfer_size = SIZE_BYTE;
1266 +        break;
1267 +  case 6: // Store Halfword
1268 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1269 +        transfer_size = SIZE_WORD;
1270 +        break;
1271 +  case 4: // Store Word
1272 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1273 +        transfer_size = SIZE_LONG;
1274 +        break;
1275 +  case 14:// Store Extended Word
1276 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1277 +        transfer_size = SIZE_QUAD;
1278 +        break;
1279 +  case 7: // Store Doubleword
1280 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1281 +        transfer_size = SIZE_WORD;
1282 +        register_pair = true;
1283 +        break;
1284 +  }
1285 +
1286 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1287 +        // Unknown machine code, let it crash. Then patch the decoder
1288 +        return false;
1289 +  }
1290 +
1291 +  // Zero target register in case of a load operation
1292 +  const int reg = (opcode >> 25) & 0x1f;
1293 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != 0) {
1294 +        // FIXME: code to handle local & input registers is not tested
1295 +        if (reg >= 1 && reg <= 7) {
1296 +          // global registers
1297 +          regs[reg - 1 + SPARC_REG_G1] = 0;
1298 +        }
1299 +        else if (reg >= 8 && reg <= 15) {
1300 +          // output registers
1301 +          regs[reg - 8 + SPARC_REG_O0] = 0;
1302 +        }
1303 +        else if (reg >= 16 && reg <= 23) {
1304 +          // local registers (in register windows)
1305 +          if (gwins)
1306 +                gwins->wbuf->rw_local[reg - 16] = 0;
1307 +          else
1308 +                rwin->rw_local[reg - 16] = 0;
1309 +        }
1310 +        else {
1311 +          // input registers (in register windows)
1312 +          if (gwins)
1313 +                gwins->wbuf->rw_in[reg - 24] = 0;
1314 +          else
1315 +                rwin->rw_in[reg - 24] = 0;
1316 +        }
1317 +  }
1318 +
1319 + #if DEBUG
1320 +  static const char * reg_names[] = {
1321 +        "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
1322 +        "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
1323 +        "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
1324 +        "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7"
1325 +  };
1326 +  printf("%s %s register %s\n",
1327 +                 transfer_size == SIZE_BYTE ? "byte" :
1328 +                 transfer_size == SIZE_WORD ? "word" :
1329 +                 transfer_size == SIZE_LONG ? "long" :
1330 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1331 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1332 +                 reg_names[reg]);
1333 + #endif
1334 +
1335 +  regs[SPARC_REG_PC] += 4;
1336 +  return true;
1337 + }
1338 + #endif
1339 + #endif
1340 +
1341 + // Decode and skip ARM instruction
1342 + #if (defined(arm) || defined(__arm__))
1343 + enum {
1344 + #if (defined(__linux__))
1345 +  ARM_REG_PC = 15,
1346 +  ARM_REG_CPSR = 16
1347 + #endif
1348 + };
1349 + static bool arm_skip_instruction(unsigned long * regs)
1350 + {
1351 +  unsigned int * pc = (unsigned int *)regs[ARM_REG_PC];
1352 +
1353 +  if (pc == 0)
1354 +        return false;
1355 +
1356 + #if DEBUG
1357 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1358   #endif
1359  
1360 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1361 +  transfer_size_t transfer_size = SIZE_UNKNOWN;
1362 +  enum { op_sdt = 1, op_sdth = 2 };
1363 +  int op = 0;
1364 +
1365 +  // Handle load/store instructions only
1366 +  const unsigned int opcode = pc[0];
1367 +  switch ((opcode >> 25) & 7) {
1368 +  case 0: // Halfword and Signed Data Transfer (LDRH, STRH, LDRSB, LDRSH)
1369 +        op = op_sdth;
1370 +        // Determine transfer size (S/H bits)
1371 +        switch ((opcode >> 5) & 3) {
1372 +        case 0: // SWP instruction
1373 +          break;
1374 +        case 1: // Unsigned halfwords
1375 +        case 3: // Signed halfwords
1376 +          transfer_size = SIZE_WORD;
1377 +          break;
1378 +        case 2: // Signed byte
1379 +          transfer_size = SIZE_BYTE;
1380 +          break;
1381 +        }
1382 +        break;
1383 +  case 2:
1384 +  case 3: // Single Data Transfer (LDR, STR)
1385 +        op = op_sdt;
1386 +        // Determine transfer size (B bit)
1387 +        if (((opcode >> 22) & 1) == 1)
1388 +          transfer_size = SIZE_BYTE;
1389 +        else
1390 +          transfer_size = SIZE_LONG;
1391 +        break;
1392 +  default:
1393 +        // FIXME: support load/store mutliple?
1394 +        return false;
1395 +  }
1396 +
1397 +  // Check for invalid transfer size (SWP instruction?)
1398 +  if (transfer_size == SIZE_UNKNOWN)
1399 +        return false;
1400 +
1401 +  // Determine transfer type (L bit)
1402 +  if (((opcode >> 20) & 1) == 1)
1403 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1404 +  else
1405 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1406 +
1407 +  // Compute offset
1408 +  int offset;
1409 +  if (((opcode >> 25) & 1) == 0) {
1410 +        if (op == op_sdt)
1411 +          offset = opcode & 0xfff;
1412 +        else if (op == op_sdth) {
1413 +          int rm = opcode & 0xf;
1414 +          if (((opcode >> 22) & 1) == 0) {
1415 +                // register offset
1416 +                offset = regs[rm];
1417 +          }
1418 +          else {
1419 +                // immediate offset
1420 +                offset = ((opcode >> 4) & 0xf0) | (opcode & 0x0f);
1421 +          }
1422 +        }
1423 +  }
1424 +  else {
1425 +        const int rm = opcode & 0xf;
1426 +        const int sh = (opcode >> 7) & 0x1f;
1427 +        if (((opcode >> 4) & 1) == 1) {
1428 +          // we expect only legal load/store instructions
1429 +          printf("FATAL: invalid shift operand\n");
1430 +          return false;
1431 +        }
1432 +        const unsigned int v = regs[rm];
1433 +        switch ((opcode >> 5) & 3) {
1434 +        case 0: // logical shift left
1435 +          offset = sh ? v << sh : v;
1436 +          break;
1437 +        case 1: // logical shift right
1438 +          offset = sh ? v >> sh : 0;
1439 +          break;
1440 +        case 2: // arithmetic shift right
1441 +          if (sh)
1442 +                offset = ((signed int)v) >> sh;
1443 +          else
1444 +                offset = (v & 0x80000000) ? 0xffffffff : 0;
1445 +          break;
1446 +        case 3: // rotate right
1447 +          if (sh)
1448 +                offset = (v >> sh) | (v << (32 - sh));
1449 +          else
1450 +                offset = (v >> 1) | ((regs[ARM_REG_CPSR] << 2) & 0x80000000);
1451 +          break;
1452 +        }
1453 +  }
1454 +  if (((opcode >> 23) & 1) == 0)
1455 +        offset = -offset;
1456 +
1457 +  int rd = (opcode >> 12) & 0xf;
1458 +  int rn = (opcode >> 16) & 0xf;
1459 + #if DEBUG
1460 +  static const char * reg_names[] = {
1461 +        "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1462 +        "r9", "r9", "sl", "fp", "ip", "sp", "lr", "pc"
1463 +  };
1464 +  printf("%s %s register %s\n",
1465 +                 transfer_size == SIZE_BYTE ? "byte" :
1466 +                 transfer_size == SIZE_WORD ? "word" :
1467 +                 transfer_size == SIZE_LONG ? "long" : "unknown",
1468 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1469 +                 reg_names[rd]);
1470 + #endif
1471 +
1472 +  unsigned int base = regs[rn];
1473 +  if (((opcode >> 24) & 1) == 1)
1474 +        base += offset;
1475 +
1476 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD)
1477 +        regs[rd] = 0;
1478 +
1479 +  if (((opcode >> 24) & 1) == 0)                // post-index addressing
1480 +        regs[rn] += offset;
1481 +  else if (((opcode >> 21) & 1) == 1)   // write-back address into base
1482 +        regs[rn] = base;
1483 +
1484 +  regs[ARM_REG_PC] += 4;
1485 +  return true;
1486 + }
1487 + #endif
1488 +
1489 +
1490   // Fallbacks
1491   #ifndef SIGSEGV_FAULT_INSTRUCTION
1492   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_PC
1493   #endif
1494 + #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
1495 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
1496 + #endif
1497 + #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
1498 + #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  sigsegv_fault_handler(ADDR, IP)
1499 + #endif
1500  
1501   // SIGSEGV recovery supported ?
1502   #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
# Line 581 | Line 1508 | static bool powerpc_skip_instruction(uns
1508   *  SIGSEGV global handler
1509   */
1510  
1511 < #ifdef HAVE_SIGSEGV_RECOVERY
1512 < static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1511 > // This function handles the badaccess to memory.
1512 > // It is called from the signal handler or the exception handler.
1513 > static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
1514   {
1515          sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
1516          sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
589        bool fault_recovered = false;
1517          
1518          // Call user's handler and reinstall the global handler, if required
1519 <        if (sigsegv_fault_handler(fault_address, fault_instruction)) {
1520 < #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1521 <                sigsegv_do_install_handler(sig);
1519 >        switch (SIGSEGV_FAULT_HANDLER_INVOKE(fault_address, fault_instruction)) {
1520 >        case SIGSEGV_RETURN_SUCCESS:
1521 >                return true;
1522 >
1523 > #if HAVE_SIGSEGV_SKIP_INSTRUCTION
1524 >        case SIGSEGV_RETURN_SKIP_INSTRUCTION:
1525 >                // Call the instruction skipper with the register file
1526 >                // available
1527 >                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
1528 > #ifdef HAVE_MACH_EXCEPTIONS
1529 >                        // Unlike UNIX signals where the thread state
1530 >                        // is modified off of the stack, in Mach we
1531 >                        // need to actually call thread_set_state to
1532 >                        // have the register values updated.
1533 >                        kern_return_t krc;
1534 >
1535 >                        krc = thread_set_state(thread,
1536 >                                                                   MACHINE_THREAD_STATE, (thread_state_t)state,
1537 >                                                                   MACHINE_THREAD_STATE_COUNT);
1538 >                        MACH_CHECK_ERROR (thread_get_state, krc);
1539 > #endif
1540 >                        return true;
1541 >                }
1542 >                break;
1543   #endif
1544 <                fault_recovered = true;
1544 >        case SIGSEGV_RETURN_FAILURE:
1545 >                // We can't do anything with the fault_address, dump state?
1546 >                if (sigsegv_state_dumper != 0)
1547 >                        sigsegv_state_dumper(fault_address, fault_instruction);
1548 >                break;
1549          }
1550 < #if HAVE_SIGSEGV_SKIP_INSTRUCTION
1551 <        else if (sigsegv_ignore_fault) {
1552 <                // Call the instruction skipper with the register file available
1553 <                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE))
1554 <                        fault_recovered = true;
1550 >
1551 >        return false;
1552 > }
1553 >
1554 >
1555 > /*
1556 > * There are two mechanisms for handling a bad memory access,
1557 > * Mach exceptions and UNIX signals. The implementation specific
1558 > * code appears below. Its reponsibility is to call handle_badaccess
1559 > * which is the routine that handles the fault in an implementation
1560 > * agnostic manner. The implementation specific code below is then
1561 > * reponsible for checking whether handle_badaccess was able
1562 > * to handle the memory access error and perform any implementation
1563 > * specific tasks necessary afterwards.
1564 > */
1565 >
1566 > #ifdef HAVE_MACH_EXCEPTIONS
1567 > /*
1568 > * We need to forward all exceptions that we do not handle.
1569 > * This is important, there are many exceptions that may be
1570 > * handled by other exception handlers. For example debuggers
1571 > * use exceptions and the exception hander is in another
1572 > * process in such a case. (Timothy J. Wood states in his
1573 > * message to the list that he based this code on that from
1574 > * gdb for Darwin.)
1575 > */
1576 > static inline kern_return_t
1577 > forward_exception(mach_port_t thread_port,
1578 >                                  mach_port_t task_port,
1579 >                                  exception_type_t exception_type,
1580 >                                  exception_data_t exception_data,
1581 >                                  mach_msg_type_number_t data_count,
1582 >                                  ExceptionPorts *oldExceptionPorts)
1583 > {
1584 >        kern_return_t kret;
1585 >        unsigned int portIndex;
1586 >        mach_port_t port;
1587 >        exception_behavior_t behavior;
1588 >        thread_state_flavor_t flavor;
1589 >        thread_state_t thread_state;
1590 >        mach_msg_type_number_t thread_state_count;
1591 >
1592 >        for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
1593 >                if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
1594 >                        // This handler wants the exception
1595 >                        break;
1596 >                }
1597          }
1598 +
1599 +        if (portIndex >= oldExceptionPorts->maskCount) {
1600 +                fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
1601 +                return KERN_FAILURE;
1602 +        }
1603 +
1604 +        port = oldExceptionPorts->handlers[portIndex];
1605 +        behavior = oldExceptionPorts->behaviors[portIndex];
1606 +        flavor = oldExceptionPorts->flavors[portIndex];
1607 +
1608 +        /*
1609 +         fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
1610 +         */
1611 +
1612 +        if (behavior != EXCEPTION_DEFAULT) {
1613 +                thread_state_count = THREAD_STATE_MAX;
1614 +                kret = thread_get_state (thread_port, flavor, thread_state,
1615 +                                                                 &thread_state_count);
1616 +                MACH_CHECK_ERROR (thread_get_state, kret);
1617 +        }
1618 +
1619 +        switch (behavior) {
1620 +        case EXCEPTION_DEFAULT:
1621 +          // fprintf(stderr, "forwarding to exception_raise\n");
1622 +          kret = exception_raise(port, thread_port, task_port, exception_type,
1623 +                                                         exception_data, data_count);
1624 +          MACH_CHECK_ERROR (exception_raise, kret);
1625 +          break;
1626 +        case EXCEPTION_STATE:
1627 +          // fprintf(stderr, "forwarding to exception_raise_state\n");
1628 +          kret = exception_raise_state(port, exception_type, exception_data,
1629 +                                                                   data_count, &flavor,
1630 +                                                                   thread_state, thread_state_count,
1631 +                                                                   thread_state, &thread_state_count);
1632 +          MACH_CHECK_ERROR (exception_raise_state, kret);
1633 +          break;
1634 +        case EXCEPTION_STATE_IDENTITY:
1635 +          // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
1636 +          kret = exception_raise_state_identity(port, thread_port, task_port,
1637 +                                                                                        exception_type, exception_data,
1638 +                                                                                        data_count, &flavor,
1639 +                                                                                        thread_state, thread_state_count,
1640 +                                                                                        thread_state, &thread_state_count);
1641 +          MACH_CHECK_ERROR (exception_raise_state_identity, kret);
1642 +          break;
1643 +        default:
1644 +          fprintf(stderr, "forward_exception got unknown behavior\n");
1645 +          break;
1646 +        }
1647 +
1648 +        if (behavior != EXCEPTION_DEFAULT) {
1649 +                kret = thread_set_state (thread_port, flavor, thread_state,
1650 +                                                                 thread_state_count);
1651 +                MACH_CHECK_ERROR (thread_set_state, kret);
1652 +        }
1653 +
1654 +        return KERN_SUCCESS;
1655 + }
1656 +
1657 + /*
1658 + * This is the code that actually handles the exception.
1659 + * It is called by exc_server. For Darwin 5 Apple changed
1660 + * this a bit from how this family of functions worked in
1661 + * Mach. If you are familiar with that it is a little
1662 + * different. The main variation that concerns us here is
1663 + * that code is an array of exception specific codes and
1664 + * codeCount is a count of the number of codes in the code
1665 + * array. In typical Mach all exceptions have a code
1666 + * and sub-code. It happens to be the case that for a
1667 + * EXC_BAD_ACCESS exception the first entry is the type of
1668 + * bad access that occurred and the second entry is the
1669 + * faulting address so these entries correspond exactly to
1670 + * how the code and sub-code are used on Mach.
1671 + *
1672 + * This is a MIG interface. No code in Basilisk II should
1673 + * call this directley. This has to have external C
1674 + * linkage because that is what exc_server expects.
1675 + */
1676 + kern_return_t
1677 + catch_exception_raise(mach_port_t exception_port,
1678 +                                          mach_port_t thread,
1679 +                                          mach_port_t task,
1680 +                                          exception_type_t exception,
1681 +                                          exception_data_t code,
1682 +                                          mach_msg_type_number_t codeCount)
1683 + {
1684 +        ppc_thread_state_t state;
1685 +        kern_return_t krc;
1686 +
1687 +        if ((exception == EXC_BAD_ACCESS)  && (codeCount >= 2)) {
1688 +                if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
1689 +                        return KERN_SUCCESS;
1690 +        }
1691 +
1692 +        // In Mach we do not need to remove the exception handler.
1693 +        // If we forward the exception, eventually some exception handler
1694 +        // will take care of this exception.
1695 +        krc = forward_exception(thread, task, exception, code, codeCount, &ports);
1696 +
1697 +        return krc;
1698 + }
1699   #endif
1700  
1701 <        if (!fault_recovered) {
1702 <                // FAIL: reinstall default handler for "safe" crash
1701 > #ifdef HAVE_SIGSEGV_RECOVERY
1702 > // Handle bad memory accesses with signal handler
1703 > static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1704 > {
1705 >        // Call handler and reinstall the global handler, if required
1706 >        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
1707 > #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1708 >                sigsegv_do_install_handler(sig);
1709 > #endif
1710 >                return;
1711 >        }
1712 >
1713 >        // Failure: reinstall default handler for "safe" crash
1714   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1715 <                SIGSEGV_ALL_SIGNALS
1715 >        SIGSEGV_ALL_SIGNALS
1716   #undef FAULT_HANDLER
611                
612                // We can't do anything with the fault_address, dump state?
613                if (sigsegv_state_dumper != 0)
614                        sigsegv_state_dumper(fault_address, fault_instruction);
615        }
1717   }
1718   #endif
1719  
# Line 626 | Line 1727 | static bool sigsegv_do_install_handler(i
1727   {
1728          // Setup SIGSEGV handler to process writes to frame buffer
1729   #ifdef HAVE_SIGACTION
1730 <        struct sigaction vosf_sa;
1731 <        sigemptyset(&vosf_sa.sa_mask);
1732 <        vosf_sa.sa_sigaction = sigsegv_handler;
1733 <        vosf_sa.sa_flags = SA_SIGINFO;
1734 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1730 >        struct sigaction sigsegv_sa;
1731 >        sigemptyset(&sigsegv_sa.sa_mask);
1732 >        sigsegv_sa.sa_sigaction = sigsegv_handler;
1733 >        sigsegv_sa.sa_flags = SA_SIGINFO;
1734 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1735   #else
1736          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1737   #endif
# Line 642 | Line 1743 | static bool sigsegv_do_install_handler(i
1743   {
1744          // Setup SIGSEGV handler to process writes to frame buffer
1745   #ifdef HAVE_SIGACTION
1746 <        struct sigaction vosf_sa;
1747 <        sigemptyset(&vosf_sa.sa_mask);
1748 <        vosf_sa.sa_handler = (signal_handler)sigsegv_handler;
1746 >        struct sigaction sigsegv_sa;
1747 >        sigemptyset(&sigsegv_sa.sa_mask);
1748 >        sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
1749 >        sigsegv_sa.sa_flags = 0;
1750   #if !EMULATED_68K && defined(__NetBSD__)
1751 <        sigaddset(&vosf_sa.sa_mask, SIGALRM);
1752 <        vosf_sa.sa_flags = SA_ONSTACK;
651 < #else
652 <        vosf_sa.sa_flags = 0;
1751 >        sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
1752 >        sigsegv_sa.sa_flags |= SA_ONSTACK;
1753   #endif
1754 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1754 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1755   #else
1756          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1757   #endif
1758   }
1759   #endif
1760  
1761 < bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1761 > #if defined(HAVE_MACH_EXCEPTIONS)
1762 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1763   {
1764 < #ifdef HAVE_SIGSEGV_RECOVERY
1764 >        /*
1765 >         * Except for the exception port functions, this should be
1766 >         * pretty much stock Mach. If later you choose to support
1767 >         * other Mach's besides Darwin, just check for __MACH__
1768 >         * here and __APPLE__ where the actual differences are.
1769 >         */
1770 > #if defined(__APPLE__) && defined(__MACH__)
1771 >        if (sigsegv_fault_handler != NULL) {
1772 >                sigsegv_fault_handler = handler;
1773 >                return true;
1774 >        }
1775 >
1776 >        kern_return_t krc;
1777 >
1778 >        // create the the exception port
1779 >        krc = mach_port_allocate(mach_task_self(),
1780 >                          MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
1781 >        if (krc != KERN_SUCCESS) {
1782 >                mach_error("mach_port_allocate", krc);
1783 >                return false;
1784 >        }
1785 >
1786 >        // add a port send right
1787 >        krc = mach_port_insert_right(mach_task_self(),
1788 >                              _exceptionPort, _exceptionPort,
1789 >                              MACH_MSG_TYPE_MAKE_SEND);
1790 >        if (krc != KERN_SUCCESS) {
1791 >                mach_error("mach_port_insert_right", krc);
1792 >                return false;
1793 >        }
1794 >
1795 >        // get the old exception ports
1796 >        ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
1797 >        krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
1798 >                                &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
1799 >        if (krc != KERN_SUCCESS) {
1800 >                mach_error("thread_get_exception_ports", krc);
1801 >                return false;
1802 >        }
1803 >
1804 >        // set the new exception port
1805 >        //
1806 >        // We could have used EXCEPTION_STATE_IDENTITY instead of
1807 >        // EXCEPTION_DEFAULT to get the thread state in the initial
1808 >        // message, but it turns out that in the common case this is not
1809 >        // neccessary. If we need it we can later ask for it from the
1810 >        // suspended thread.
1811 >        //
1812 >        // Even with THREAD_STATE_NONE, Darwin provides the program
1813 >        // counter in the thread state.  The comments in the header file
1814 >        // seem to imply that you can count on the GPR's on an exception
1815 >        // as well but just to be safe I use MACHINE_THREAD_STATE because
1816 >        // you have to ask for all of the GPR's anyway just to get the
1817 >        // program counter. In any case because of update effective
1818 >        // address from immediate and update address from effective
1819 >        // addresses of ra and rb modes (as good an name as any for these
1820 >        // addressing modes) used in PPC instructions, you will need the
1821 >        // GPR state anyway.
1822 >        krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
1823 >                                EXCEPTION_DEFAULT, MACHINE_THREAD_STATE);
1824 >        if (krc != KERN_SUCCESS) {
1825 >                mach_error("thread_set_exception_ports", krc);
1826 >                return false;
1827 >        }
1828 >
1829 >        // create the exception handler thread
1830 >        if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
1831 >                (void)fprintf(stderr, "creation of exception thread failed\n");
1832 >                return false;
1833 >        }
1834 >
1835 >        // do not care about the exception thread any longer, let is run standalone
1836 >        (void)pthread_detach(exc_thread);
1837 >
1838 >        sigsegv_fault_handler = handler;
1839 >        return true;
1840 > #else
1841 >        return false;
1842 > #endif
1843 > }
1844 > #endif
1845 >
1846 > #ifdef HAVE_WIN32_EXCEPTIONS
1847 > static LONG WINAPI main_exception_filter(EXCEPTION_POINTERS *ExceptionInfo)
1848 > {
1849 >        if (sigsegv_fault_handler != NULL
1850 >                && ExceptionInfo->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION
1851 >                && ExceptionInfo->ExceptionRecord->NumberParameters == 2
1852 >                && handle_badaccess(ExceptionInfo))
1853 >                return EXCEPTION_CONTINUE_EXECUTION;
1854 >
1855 >        return EXCEPTION_CONTINUE_SEARCH;
1856 > }
1857 >
1858 > #if defined __CYGWIN__ && defined __i386__
1859 > /* In Cygwin programs, SetUnhandledExceptionFilter has no effect because Cygwin
1860 >   installs a global exception handler.  We have to dig deep in order to install
1861 >   our main_exception_filter.  */
1862 >
1863 > /* Data structures for the current thread's exception handler chain.
1864 >   On the x86 Windows uses register fs, offset 0 to point to the current
1865 >   exception handler; Cygwin mucks with it, so we must do the same... :-/ */
1866 >
1867 > /* Magic taken from winsup/cygwin/include/exceptions.h.  */
1868 >
1869 > struct exception_list {
1870 >    struct exception_list *prev;
1871 >    int (*handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
1872 > };
1873 > typedef struct exception_list exception_list;
1874 >
1875 > /* Magic taken from winsup/cygwin/exceptions.cc.  */
1876 >
1877 > __asm__ (".equ __except_list,0");
1878 >
1879 > extern exception_list *_except_list __asm__ ("%fs:__except_list");
1880 >
1881 > /* For debugging.  _except_list is not otherwise accessible from gdb.  */
1882 > static exception_list *
1883 > debug_get_except_list ()
1884 > {
1885 >  return _except_list;
1886 > }
1887 >
1888 > /* Cygwin's original exception handler.  */
1889 > static int (*cygwin_exception_handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
1890 >
1891 > /* Our exception handler.  */
1892 > static int
1893 > libsigsegv_exception_handler (EXCEPTION_RECORD *exception, void *frame, CONTEXT *context, void *dispatch)
1894 > {
1895 >  EXCEPTION_POINTERS ExceptionInfo;
1896 >  ExceptionInfo.ExceptionRecord = exception;
1897 >  ExceptionInfo.ContextRecord = context;
1898 >  if (main_exception_filter (&ExceptionInfo) == EXCEPTION_CONTINUE_SEARCH)
1899 >    return cygwin_exception_handler (exception, frame, context, dispatch);
1900 >  else
1901 >    return 0;
1902 > }
1903 >
1904 > static void
1905 > do_install_main_exception_filter ()
1906 > {
1907 >  /* We cannot insert any handler into the chain, because such handlers
1908 >     must lie on the stack (?).  Instead, we have to replace(!) Cygwin's
1909 >     global exception handler.  */
1910 >  cygwin_exception_handler = _except_list->handler;
1911 >  _except_list->handler = libsigsegv_exception_handler;
1912 > }
1913 >
1914 > #else
1915 >
1916 > static void
1917 > do_install_main_exception_filter ()
1918 > {
1919 >  SetUnhandledExceptionFilter ((LPTOP_LEVEL_EXCEPTION_FILTER) &main_exception_filter);
1920 > }
1921 > #endif
1922 >
1923 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1924 > {
1925 >        static bool main_exception_filter_installed = false;
1926 >        if (!main_exception_filter_installed) {
1927 >                do_install_main_exception_filter();
1928 >                main_exception_filter_installed = true;
1929 >        }
1930          sigsegv_fault_handler = handler;
1931 +        return true;
1932 + }
1933 + #endif
1934 +
1935 + bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1936 + {
1937 + #if defined(HAVE_SIGSEGV_RECOVERY)
1938          bool success = true;
1939   #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
1940          SIGSEGV_ALL_SIGNALS
1941   #undef FAULT_HANDLER
1942 +        if (success)
1943 +            sigsegv_fault_handler = handler;
1944          return success;
1945 + #elif defined(HAVE_MACH_EXCEPTIONS) || defined(HAVE_WIN32_EXCEPTIONS)
1946 +        return sigsegv_do_install_handler(handler);
1947   #else
1948          // FAIL: no siginfo_t nor sigcontext subterfuge is available
1949          return false;
# Line 680 | Line 1957 | bool sigsegv_install_handler(sigsegv_fau
1957  
1958   void sigsegv_deinstall_handler(void)
1959   {
1960 +  // We do nothing for Mach exceptions, the thread would need to be
1961 +  // suspended if not already so, and we might mess with other
1962 +  // exception handlers that came after we registered ours. There is
1963 +  // no need to remove the exception handler, in fact this function is
1964 +  // not called anywhere in Basilisk II.
1965   #ifdef HAVE_SIGSEGV_RECOVERY
1966          sigsegv_fault_handler = 0;
1967   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1968          SIGSEGV_ALL_SIGNALS
1969   #undef FAULT_HANDLER
1970   #endif
1971 < }
1972 <
1973 <
692 < /*
693 < *  SIGSEGV ignore state modifier
694 < */
695 <
696 < void sigsegv_set_ignore_state(bool ignore_fault)
697 < {
698 <        sigsegv_ignore_fault = ignore_fault;
1971 > #ifdef HAVE_WIN32_EXCEPTIONS
1972 >        sigsegv_fault_handler = NULL;
1973 > #endif
1974   }
1975  
1976  
# Line 717 | Line 1992 | void sigsegv_set_dump_state(sigsegv_stat
1992   #include <stdio.h>
1993   #include <stdlib.h>
1994   #include <fcntl.h>
1995 + #ifdef HAVE_SYS_MMAN_H
1996   #include <sys/mman.h>
1997 + #endif
1998   #include "vm_alloc.h"
1999  
2000 + const int REF_INDEX = 123;
2001 + const int REF_VALUE = 45;
2002 +
2003   static int page_size;
2004   static volatile char * page = 0;
2005   static volatile int handler_called = 0;
2006  
2007 < static bool sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2007 > #ifdef __GNUC__
2008 > // Code range where we expect the fault to come from
2009 > static void *b_region, *e_region;
2010 > #endif
2011 >
2012 > static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2013   {
2014 + #if DEBUG
2015 +        printf("sigsegv_test_handler(%p, %p)\n", fault_address, instruction_address);
2016 +        printf("expected fault at %p\n", page + REF_INDEX);
2017 + #ifdef __GNUC__
2018 +        printf("expected instruction address range: %p-%p\n", b_region, e_region);
2019 + #endif
2020 + #endif
2021          handler_called++;
2022 <        if ((fault_address - 123) != page)
2023 <                exit(1);
2022 >        if ((fault_address - REF_INDEX) != page)
2023 >                exit(10);
2024 > #ifdef __GNUC__
2025 >        // Make sure reported fault instruction address falls into
2026 >        // expected code range
2027 >        if (instruction_address != SIGSEGV_INVALID_PC
2028 >                && ((instruction_address <  (sigsegv_address_t)b_region) ||
2029 >                        (instruction_address >= (sigsegv_address_t)e_region)))
2030 >                exit(11);
2031 > #endif
2032          if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
2033 <                exit(1);
2034 <        return true;
2033 >                exit(12);
2034 >        return SIGSEGV_RETURN_SUCCESS;
2035   }
2036  
2037   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
2038 < static bool sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2038 > static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2039   {
2040 <        return false;
2040 > #if DEBUG
2041 >        printf("sigsegv_insn_handler(%p, %p)\n", fault_address, instruction_address);
2042 > #endif
2043 >        if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
2044 > #ifdef __GNUC__
2045 >                // Make sure reported fault instruction address falls into
2046 >                // expected code range
2047 >                if (instruction_address != SIGSEGV_INVALID_PC
2048 >                        && ((instruction_address <  (sigsegv_address_t)b_region) ||
2049 >                                (instruction_address >= (sigsegv_address_t)e_region)))
2050 >                        return SIGSEGV_RETURN_FAILURE;
2051 > #endif
2052 >                return SIGSEGV_RETURN_SKIP_INSTRUCTION;
2053 >        }
2054 >
2055 >        return SIGSEGV_RETURN_FAILURE;
2056 > }
2057 >
2058 > // More sophisticated tests for instruction skipper
2059 > static bool arch_insn_skipper_tests()
2060 > {
2061 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
2062 >        static const unsigned char code[] = {
2063 >                0x8a, 0x00,                    // mov    (%eax),%al
2064 >                0x8a, 0x2c, 0x18,              // mov    (%eax,%ebx,1),%ch
2065 >                0x88, 0x20,                    // mov    %ah,(%eax)
2066 >                0x88, 0x08,                    // mov    %cl,(%eax)
2067 >                0x66, 0x8b, 0x00,              // mov    (%eax),%ax
2068 >                0x66, 0x8b, 0x0c, 0x18,        // mov    (%eax,%ebx,1),%cx
2069 >                0x66, 0x89, 0x00,              // mov    %ax,(%eax)
2070 >                0x66, 0x89, 0x0c, 0x18,        // mov    %cx,(%eax,%ebx,1)
2071 >                0x8b, 0x00,                    // mov    (%eax),%eax
2072 >                0x8b, 0x0c, 0x18,              // mov    (%eax,%ebx,1),%ecx
2073 >                0x89, 0x00,                    // mov    %eax,(%eax)
2074 >                0x89, 0x0c, 0x18,              // mov    %ecx,(%eax,%ebx,1)
2075 > #if defined(__x86_64__)
2076 >                0x44, 0x8a, 0x00,              // mov    (%rax),%r8b
2077 >                0x44, 0x8a, 0x20,              // mov    (%rax),%r12b
2078 >                0x42, 0x8a, 0x3c, 0x10,        // mov    (%rax,%r10,1),%dil
2079 >                0x44, 0x88, 0x00,              // mov    %r8b,(%rax)
2080 >                0x44, 0x88, 0x20,              // mov    %r12b,(%rax)
2081 >                0x42, 0x88, 0x3c, 0x10,        // mov    %dil,(%rax,%r10,1)
2082 >                0x66, 0x44, 0x8b, 0x00,        // mov    (%rax),%r8w
2083 >                0x66, 0x42, 0x8b, 0x0c, 0x10,  // mov    (%rax,%r10,1),%cx
2084 >                0x66, 0x44, 0x89, 0x00,        // mov    %r8w,(%rax)
2085 >                0x66, 0x42, 0x89, 0x0c, 0x10,  // mov    %cx,(%rax,%r10,1)
2086 >                0x44, 0x8b, 0x00,              // mov    (%rax),%r8d
2087 >                0x42, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%ecx
2088 >                0x44, 0x89, 0x00,              // mov    %r8d,(%rax)
2089 >                0x42, 0x89, 0x0c, 0x10,        // mov    %ecx,(%rax,%r10,1)
2090 >                0x48, 0x8b, 0x08,              // mov    (%rax),%rcx
2091 >                0x4c, 0x8b, 0x18,              // mov    (%rax),%r11
2092 >                0x4a, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%rcx
2093 >                0x4e, 0x8b, 0x1c, 0x10,        // mov    (%rax,%r10,1),%r11
2094 >                0x48, 0x89, 0x08,              // mov    %rcx,(%rax)
2095 >                0x4c, 0x89, 0x18,              // mov    %r11,(%rax)
2096 >                0x4a, 0x89, 0x0c, 0x10,        // mov    %rcx,(%rax,%r10,1)
2097 >                0x4e, 0x89, 0x1c, 0x10,        // mov    %r11,(%rax,%r10,1)
2098 > #endif
2099 >                0                              // end
2100 >        };
2101 >        const int N_REGS = 20;
2102 >        unsigned long regs[N_REGS];
2103 >        for (int i = 0; i < N_REGS; i++)
2104 >                regs[i] = i;
2105 >        const unsigned long start_code = (unsigned long)&code;
2106 >        regs[X86_REG_EIP] = start_code;
2107 >        while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1)
2108 >                   && ix86_skip_instruction(regs))
2109 >                ; /* simply iterate */
2110 >        return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1);
2111 > #endif
2112 >        return true;
2113   }
2114   #endif
2115  
# Line 746 | Line 2118 | int main(void)
2118          if (vm_init() < 0)
2119                  return 1;
2120  
2121 + #ifdef _WIN32
2122 +        page_size = 4096;
2123 + #else
2124          page_size = getpagesize();
2125 + #endif
2126          if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
2127 <                return 1;
2127 >                return 2;
2128          
2129 +        memset((void *)page, 0, page_size);
2130          if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
2131 <                return 1;
2131 >                return 3;
2132          
2133          if (!sigsegv_install_handler(sigsegv_test_handler))
2134 <                return 1;
758 <        
759 <        page[123] = 45;
760 <        page[123] = 45;
2134 >                return 4;
2135          
2136 + #ifdef __GNUC__
2137 +        b_region = &&L_b_region1;
2138 +        e_region = &&L_e_region1;
2139 + #endif
2140 + L_b_region1:
2141 +        page[REF_INDEX] = REF_VALUE;
2142 +        if (page[REF_INDEX] != REF_VALUE)
2143 +          exit(20);
2144 +        page[REF_INDEX] = REF_VALUE;
2145 + L_e_region1:
2146 +
2147          if (handler_called != 1)
2148 <                return 1;
2148 >                return 5;
2149  
2150   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
2151          if (!sigsegv_install_handler(sigsegv_insn_handler))
2152 <                return 1;
2152 >                return 6;
2153          
2154 <        if (vm_protect((char *)page, page_size, VM_PAGE_WRITE) < 0)
2155 <                return 1;
2154 >        if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
2155 >                return 7;
2156          
2157          for (int i = 0; i < page_size; i++)
2158                  page[i] = (i + 1) % page_size;
2159          
2160          if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
2161 <                return 1;
2161 >                return 8;
2162          
778        sigsegv_set_ignore_state(true);
779
2163   #define TEST_SKIP_INSTRUCTION(TYPE) do {                                \
2164 <                const unsigned int TAG = 0x12345678;                    \
2164 >                const unsigned long TAG = 0x12345678 |                  \
2165 >                (sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0);   \
2166                  TYPE data = *((TYPE *)(page + sizeof(TYPE)));   \
2167 <                volatile unsigned int effect = data + TAG;              \
2167 >                volatile unsigned long effect = data + TAG;             \
2168                  if (effect != TAG)                                                              \
2169 <                        return 1;                                                                       \
2169 >                        return 9;                                                                       \
2170          } while (0)
2171          
2172 + #ifdef __GNUC__
2173 +        b_region = &&L_b_region2;
2174 +        e_region = &&L_e_region2;
2175 + #endif
2176 + L_b_region2:
2177          TEST_SKIP_INSTRUCTION(unsigned char);
2178          TEST_SKIP_INSTRUCTION(unsigned short);
2179          TEST_SKIP_INSTRUCTION(unsigned int);
2180 +        TEST_SKIP_INSTRUCTION(unsigned long);
2181 +        TEST_SKIP_INSTRUCTION(signed char);
2182 +        TEST_SKIP_INSTRUCTION(signed short);
2183 +        TEST_SKIP_INSTRUCTION(signed int);
2184 +        TEST_SKIP_INSTRUCTION(signed long);
2185 + L_e_region2:
2186 +
2187 +        if (!arch_insn_skipper_tests())
2188 +                return 20;
2189   #endif
2190  
2191          vm_exit();

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines