ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
(Generate patch)

Comparing BasiliskII/src/Unix/sigsegv.cpp (file contents):
Revision 1.30 by gbeauche, 2003-10-13T19:56:17Z vs.
Revision 1.81 by gbeauche, 2008-01-19T22:25:27Z

# Line 10 | Line 10
10   *    tjw@omnigroup.com Sun, 4 Jun 2000
11   *    www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12   *
13 < *  Basilisk II (C) 1997-2002 Christian Bauer
13 > *  Basilisk II (C) 1997-2008 Christian Bauer
14   *
15   *  This program is free software; you can redistribute it and/or modify
16   *  it under the terms of the GNU General Public License as published by
# Line 36 | Line 36
36   #endif
37  
38   #include <list>
39 + #include <stdio.h>
40   #include <signal.h>
41   #include "sigsegv.h"
42  
# Line 48 | Line 49 | using std::list;
49   #define RETSIGTYPE void
50   #endif
51  
52 + // Size of an unsigned integer large enough to hold all bits of a pointer
53 + // NOTE: this can be different than SIGSEGV_REGISTER_TYPE. In
54 + // particular, on ILP32 systems with a 64-bit kernel (HP-UX/ia64?)
55 + #ifdef HAVE_WIN32_VM
56 + // Windows is either ILP32 or LLP64
57 + typedef UINT_PTR sigsegv_uintptr_t;
58 + #else
59 + // Other systems are sane enough to follow ILP32 or LP64 models
60 + typedef unsigned long sigsegv_uintptr_t;
61 + #endif
62 +
63   // Type of the system signal handler
64   typedef RETSIGTYPE (*signal_handler)(int);
65  
# Line 65 | Line 77 | static bool sigsegv_do_install_handler(i
77   *  Instruction decoding aids
78   */
79  
80 + // Transfer type
81 + enum transfer_type_t {
82 +        SIGSEGV_TRANSFER_UNKNOWN        = 0,
83 +        SIGSEGV_TRANSFER_LOAD           = 1,
84 +        SIGSEGV_TRANSFER_STORE          = 2
85 + };
86 +
87   // Transfer size
88   enum transfer_size_t {
89          SIZE_UNKNOWN,
90          SIZE_BYTE,
91 <        SIZE_WORD,
92 <        SIZE_LONG
91 >        SIZE_WORD, // 2 bytes
92 >        SIZE_LONG, // 4 bytes
93 >        SIZE_QUAD  // 8 bytes
94   };
95  
96 < // Transfer type
77 < typedef sigsegv_transfer_type_t transfer_type_t;
78 <
79 < #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
96 > #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__))
97   // Addressing mode
98   enum addressing_mode_t {
99          MODE_UNKNOWN,
# Line 95 | Line 112 | struct instruction_t {
112          char                            ra, rd;
113   };
114  
115 < static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned int * gpr)
115 > static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned long * gpr)
116   {
117          // Get opcode and divide into fields
118 <        unsigned int opcode = *((unsigned int *)nip);
118 >        unsigned int opcode = *((unsigned int *)(unsigned long)nip);
119          unsigned int primop = opcode >> 26;
120          unsigned int exop = (opcode >> 1) & 0x3ff;
121          unsigned int ra = (opcode >> 16) & 0x1f;
# Line 172 | Line 189 | static void powerpc_decode_instruction(i
189                  transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
190          case 45:        // sthu
191                  transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
192 +        case 58:        // ld, ldu, lwa
193 +                transfer_type = SIGSEGV_TRANSFER_LOAD;
194 +                transfer_size = SIZE_QUAD;
195 +                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
196 +                imm &= ~3;
197 +                break;
198 +        case 62:        // std, stdu, stq
199 +                transfer_type = SIGSEGV_TRANSFER_STORE;
200 +                transfer_size = SIZE_QUAD;
201 +                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
202 +                imm &= ~3;
203 +                break;
204          }
205          
206          // Calculate effective address
# Line 212 | Line 241 | static void powerpc_decode_instruction(i
241  
242   #if HAVE_SIGINFO_T
243   // Generic extended signal handler
244 < #define SIGSEGV_FAULT_HANDLER                   sigsegv_fault_handler
216 < #if defined(__NetBSD__) || defined(__FreeBSD__)
244 > #if defined(__FreeBSD__)
245   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
246   #else
247   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
# Line 222 | Line 250 | static void powerpc_decode_instruction(i
250   #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
251   #define SIGSEGV_FAULT_HANDLER_ARGS              sip, scp
252   #define SIGSEGV_FAULT_ADDRESS                   sip->si_addr
253 < #if defined(__NetBSD__) || defined(__FreeBSD__)
253 > #if (defined(sgi) || defined(__sgi))
254 > #include <ucontext.h>
255 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
256 > #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)SIGSEGV_CONTEXT_REGS[CTX_EPC]
257 > #if (defined(mips) || defined(__mips))
258 > #define SIGSEGV_REGISTER_FILE                   &SIGSEGV_CONTEXT_REGS[CTX_EPC], &SIGSEGV_CONTEXT_REGS[CTX_R0]
259 > #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
260 > #endif
261 > #endif
262 > #if defined(__sun__)
263 > #if (defined(sparc) || defined(__sparc__))
264 > #include <sys/stack.h>
265 > #include <sys/regset.h>
266 > #include <sys/ucontext.h>
267 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
268 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[REG_PC]
269 > #define SIGSEGV_SPARC_GWINDOWS                  (((ucontext_t *)scp)->uc_mcontext.gwins)
270 > #define SIGSEGV_SPARC_RWINDOW                   (struct rwindow *)((char *)SIGSEGV_CONTEXT_REGS[REG_SP] + STACK_BIAS)
271 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)SIGSEGV_CONTEXT_REGS), SIGSEGV_SPARC_GWINDOWS, SIGSEGV_SPARC_RWINDOW
272 > #define SIGSEGV_SKIP_INSTRUCTION                sparc_skip_instruction
273 > #endif
274 > #if defined(__i386__)
275 > #include <sys/regset.h>
276 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
277 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[EIP]
278 > #define SIGSEGV_REGISTER_FILE                   (SIGSEGV_REGISTER_TYPE *)SIGSEGV_CONTEXT_REGS
279 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
280 > #endif
281 > #endif
282 > #if defined(__FreeBSD__) || defined(__OpenBSD__)
283   #if (defined(i386) || defined(__i386__))
284   #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_eip)
285 < #define SIGSEGV_REGISTER_FILE                   ((unsigned int *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
285 > #define SIGSEGV_REGISTER_FILE                   ((SIGSEGV_REGISTER_TYPE *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
286 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
287 > #endif
288 > #endif
289 > #if defined(__NetBSD__)
290 > #if (defined(i386) || defined(__i386__))
291 > #include <sys/ucontext.h>
292 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
293 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_EIP]
294 > #define SIGSEGV_REGISTER_FILE                   (SIGSEGV_REGISTER_TYPE *)SIGSEGV_CONTEXT_REGS
295   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
296   #endif
297 + #if (defined(powerpc) || defined(__powerpc__))
298 + #include <sys/ucontext.h>
299 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
300 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_PC]
301 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_PC], (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_R0]
302 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
303 + #endif
304   #endif
305   #if defined(__linux__)
306   #if (defined(i386) || defined(__i386__))
307   #include <sys/ucontext.h>
308   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
309   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
310 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)SIGSEGV_CONTEXT_REGS
310 > #define SIGSEGV_REGISTER_FILE                   (SIGSEGV_REGISTER_TYPE *)SIGSEGV_CONTEXT_REGS
311   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
312   #endif
313   #if (defined(x86_64) || defined(__x86_64__))
314   #include <sys/ucontext.h>
315   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
316   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
317 < #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
317 > #define SIGSEGV_REGISTER_FILE                   (SIGSEGV_REGISTER_TYPE *)SIGSEGV_CONTEXT_REGS
318 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
319   #endif
320   #if (defined(ia64) || defined(__ia64__))
321 < #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
321 > #define SIGSEGV_CONTEXT_REGS                    ((struct sigcontext *)scp)
322 > #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
323 > #define SIGSEGV_REGISTER_FILE                   SIGSEGV_CONTEXT_REGS
324 > #define SIGSEGV_SKIP_INSTRUCTION                ia64_skip_instruction
325   #endif
326   #if (defined(powerpc) || defined(__powerpc__))
327   #include <sys/ucontext.h>
328   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.regs)
329   #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS->nip)
330 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned int *)(SIGSEGV_CONTEXT_REGS->gpr)
330 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned long *)(SIGSEGV_CONTEXT_REGS->gpr)
331   #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
332   #endif
333 + #if (defined(hppa) || defined(__hppa__))
334 + #undef  SIGSEGV_FAULT_ADDRESS
335 + #define SIGSEGV_FAULT_ADDRESS                   sip->si_ptr
336 + #endif
337 + #if (defined(arm) || defined(__arm__))
338 + #include <asm/ucontext.h> /* use kernel structure, glibc may not be in sync */
339 + #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
340 + #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.arm_pc)
341 + #define SIGSEGV_REGISTER_FILE                   (&SIGSEGV_CONTEXT_REGS.arm_r0)
342 + #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
343 + #endif
344 + #if (defined(mips) || defined(__mips__))
345 + #include <sys/ucontext.h>
346 + #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
347 + #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.pc)
348 + #define SIGSEGV_REGISTER_FILE                   &SIGSEGV_CONTEXT_REGS.pc, &SIGSEGV_CONTEXT_REGS.gregs[0]
349 + #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
350 + #endif
351   #endif
352   #endif
353  
354   #if HAVE_SIGCONTEXT_SUBTERFUGE
260 #define SIGSEGV_FAULT_HANDLER                   sigsegv_fault_handler
355   // Linux kernels prior to 2.4 ?
356   #if defined(__linux__)
357   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
# Line 268 | Line 362 | static void powerpc_decode_instruction(i
362   #define SIGSEGV_FAULT_HANDLER_ARGS              &scs
363   #define SIGSEGV_FAULT_ADDRESS                   scp->cr2
364   #define SIGSEGV_FAULT_INSTRUCTION               scp->eip
365 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)scp
365 > #define SIGSEGV_REGISTER_FILE                   (SIGSEGV_REGISTER_TYPE *)scp
366   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
367   #endif
368   #if (defined(sparc) || defined(__sparc__))
# Line 283 | Line 377 | static void powerpc_decode_instruction(i
377   #define SIGSEGV_FAULT_HANDLER_ARGS              sig, scp
378   #define SIGSEGV_FAULT_ADDRESS                   scp->regs->dar
379   #define SIGSEGV_FAULT_INSTRUCTION               scp->regs->nip
380 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&scp->regs->nip, (unsigned int *)(scp->regs->gpr)
380 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&scp->regs->nip, (unsigned long *)(scp->regs->gpr)
381   #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
382   #endif
383   #if (defined(alpha) || defined(__alpha__))
# Line 292 | Line 386 | static void powerpc_decode_instruction(i
386   #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
387   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
388   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
389 <
390 < // From Boehm's GC 6.0alpha8
391 < static sigsegv_address_t get_fault_address(struct sigcontext *scp)
392 < {
393 <        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
394 <        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
395 <        fault_address += (signed long)(signed short)(instruction & 0xffff);
396 <        return (sigsegv_address_t)fault_address;
397 < }
389 > #endif
390 > #if (defined(arm) || defined(__arm__))
391 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int r1, int r2, int r3, struct sigcontext sc
392 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
393 > #define SIGSEGV_FAULT_HANDLER_ARGS              &sc
394 > #define SIGSEGV_FAULT_ADDRESS                   scp->fault_address
395 > #define SIGSEGV_FAULT_INSTRUCTION               scp->arm_pc
396 > #define SIGSEGV_REGISTER_FILE                   &scp->arm_r0
397 > #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
398   #endif
399   #endif
400  
401   // Irix 5 or 6 on MIPS
402 < #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
402 > #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(_SYSTYPE_SVR4))
403   #include <ucontext.h>
404   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
405   #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
406 < #define SIGSEGV_FAULT_ADDRESS                   scp->sc_badvaddr
406 > #define SIGSEGV_FAULT_ADDRESS                   (unsigned long)scp->sc_badvaddr
407 > #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)scp->sc_pc
408   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
409   #endif
410  
# Line 338 | Line 433 | static sigsegv_address_t get_fault_addre
433   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
434   #endif
435  
436 < // NetBSD or FreeBSD
437 < #if defined(__NetBSD__) || defined(__FreeBSD__)
436 > // NetBSD
437 > #if defined(__NetBSD__)
438   #if (defined(m68k) || defined(__m68k__))
439   #include <m68k/frame.h>
440   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
# Line 367 | Line 462 | static sigsegv_address_t get_fault_addre
462          }
463          return (sigsegv_address_t)fault_addr;
464   }
465 < #else
466 < #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, void *scp, char *addr
465 > #endif
466 > #if (defined(alpha) || defined(__alpha__))
467 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
468 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
469 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
470 > #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
471 > #endif
472 > #if (defined(i386) || defined(__i386__))
473 > #error "FIXME: need to decode instruction and compute EA"
474 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
475 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
476 > #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
477 > #endif
478 > #endif
479 > #if defined(__FreeBSD__)
480 > #if (defined(i386) || defined(__i386__))
481 > #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
482 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
483   #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
484   #define SIGSEGV_FAULT_ADDRESS                   addr
485 < #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
485 > #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_eip
486 > #define SIGSEGV_REGISTER_FILE                   ((SIGSEGV_REGISTER_TYPE *)&scp->sc_edi)
487 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
488 > #endif
489 > #if (defined(alpha) || defined(__alpha__))
490 > #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
491 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, char *addr, struct sigcontext *scp
492 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, addr, scp
493 > #define SIGSEGV_FAULT_ADDRESS                   addr
494 > #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
495   #endif
496   #endif
497  
498 + // Extract fault address out of a sigcontext
499 + #if (defined(alpha) || defined(__alpha__))
500 + // From Boehm's GC 6.0alpha8
501 + static sigsegv_address_t get_fault_address(struct sigcontext *scp)
502 + {
503 +        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
504 +        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
505 +        fault_address += (signed long)(signed short)(instruction & 0xffff);
506 +        return (sigsegv_address_t)fault_address;
507 + }
508 + #endif
509 +
510 +
511   // MacOS X, not sure which version this works in. Under 10.1
512   // vm_protect does not appear to work from a signal handler. Under
513   // 10.2 signal handlers get siginfo type arguments but the si_addr
# Line 408 | Line 541 | static sigsegv_address_t get_fault_addre
541   #endif
542   #endif
543  
544 + #if HAVE_WIN32_EXCEPTIONS
545 + #define WIN32_LEAN_AND_MEAN /* avoid including junk */
546 + #include <windows.h>
547 + #include <winerror.h>
548 +
549 + #if defined(_M_IX86)
550 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   EXCEPTION_POINTERS *ExceptionInfo
551 + #define SIGSEGV_FAULT_HANDLER_ARGS              ExceptionInfo
552 + #define SIGSEGV_FAULT_ADDRESS                   ExceptionInfo->ExceptionRecord->ExceptionInformation[1]
553 + #define SIGSEGV_CONTEXT_REGS                    ExceptionInfo->ContextRecord
554 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS->Eip
555 + #define SIGSEGV_REGISTER_FILE                   ((SIGSEGV_REGISTER_TYPE *)&SIGSEGV_CONTEXT_REGS->Edi)
556 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
557 + #endif
558 + #if defined(_M_X64)
559 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   EXCEPTION_POINTERS *ExceptionInfo
560 + #define SIGSEGV_FAULT_HANDLER_ARGS              ExceptionInfo
561 + #define SIGSEGV_FAULT_ADDRESS                   ExceptionInfo->ExceptionRecord->ExceptionInformation[1]
562 + #define SIGSEGV_CONTEXT_REGS                    ExceptionInfo->ContextRecord
563 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS->Rip
564 + #define SIGSEGV_REGISTER_FILE                   ((SIGSEGV_REGISTER_TYPE *)&SIGSEGV_CONTEXT_REGS->Rax)
565 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
566 + #endif
567 + #endif
568 +
569   #if HAVE_MACH_EXCEPTIONS
570  
571   // This can easily be extended to other Mach systems, but really who
# Line 468 | Line 626 | if (ret != KERN_SUCCESS) { \
626          exit (1); \
627   }
628  
629 < #define SIGSEGV_FAULT_ADDRESS                   code[1]
630 < #define SIGSEGV_FAULT_INSTRUCTION               get_fault_instruction(thread, state)
631 < #define SIGSEGV_FAULT_HANDLER                   (code[0] == KERN_PROTECTION_FAILURE) && sigsegv_fault_handler
632 < #define SIGSEGV_FAULT_HANDLER_ARGLIST   mach_port_t thread, exception_data_t code, ppc_thread_state_t *state
633 < #define SIGSEGV_FAULT_HANDLER_ARGS              thread, code, &state
629 > #ifdef __ppc__
630 > #if __DARWIN_UNIX03 && defined _STRUCT_PPC_THREAD_STATE
631 > #define MACH_FIELD_NAME(X)                              __CONCAT(__,X)
632 > #endif
633 > #define SIGSEGV_EXCEPTION_STATE_TYPE    ppc_exception_state_t
634 > #define SIGSEGV_EXCEPTION_STATE_FLAVOR  PPC_EXCEPTION_STATE
635 > #define SIGSEGV_EXCEPTION_STATE_COUNT   PPC_EXCEPTION_STATE_COUNT
636 > #define SIGSEGV_FAULT_ADDRESS                   SIP->exc_state.MACH_FIELD_NAME(dar)
637 > #define SIGSEGV_THREAD_STATE_TYPE               ppc_thread_state_t
638 > #define SIGSEGV_THREAD_STATE_FLAVOR             PPC_THREAD_STATE
639 > #define SIGSEGV_THREAD_STATE_COUNT              PPC_THREAD_STATE_COUNT
640 > #define SIGSEGV_FAULT_INSTRUCTION               SIP->thr_state.MACH_FIELD_NAME(srr0)
641   #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
642 < #define SIGSEGV_REGISTER_FILE                   &state->srr0, &state->r0
643 <
644 < // Given a suspended thread, stuff the current instruction and
645 < // registers into state.
646 < //
647 < // It would have been nice to have this be ppc/x86 independant which
648 < // could have been done easily with a thread_state_t instead of
649 < // ppc_thread_state_t, but because of the way this is called it is
650 < // easier to do it this way.
651 < #if (defined(ppc) || defined(__ppc__))
652 < static inline sigsegv_address_t get_fault_instruction(mach_port_t thread, ppc_thread_state_t *state)
653 < {
654 <        kern_return_t krc;
655 <        mach_msg_type_number_t count;
656 <
657 <        count = MACHINE_THREAD_STATE_COUNT;
658 <        krc = thread_get_state(thread, MACHINE_THREAD_STATE, (thread_state_t)state, &count);
659 <        MACH_CHECK_ERROR (thread_get_state, krc);
642 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIP->thr_state.MACH_FIELD_NAME(srr0), (unsigned long *)&SIP->thr_state.MACH_FIELD_NAME(r0)
643 > #endif
644 > #ifdef __ppc64__
645 > #if __DARWIN_UNIX03 && defined _STRUCT_PPC_THREAD_STATE64
646 > #define MACH_FIELD_NAME(X)                              __CONCAT(__,X)
647 > #endif
648 > #define SIGSEGV_EXCEPTION_STATE_TYPE    ppc_exception_state64_t
649 > #define SIGSEGV_EXCEPTION_STATE_FLAVOR  PPC_EXCEPTION_STATE64
650 > #define SIGSEGV_EXCEPTION_STATE_COUNT   PPC_EXCEPTION_STATE64_COUNT
651 > #define SIGSEGV_FAULT_ADDRESS                   SIP->exc_state.MACH_FIELD_NAME(dar)
652 > #define SIGSEGV_THREAD_STATE_TYPE               ppc_thread_state64_t
653 > #define SIGSEGV_THREAD_STATE_FLAVOR             PPC_THREAD_STATE64
654 > #define SIGSEGV_THREAD_STATE_COUNT              PPC_THREAD_STATE64_COUNT
655 > #define SIGSEGV_FAULT_INSTRUCTION               SIP->thr_state.MACH_FIELD_NAME(srr0)
656 > #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
657 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIP->thr_state.MACH_FIELD_NAME(srr0), (unsigned long *)&SIP->thr_state.MACH_FIELD_NAME(r0)
658 > #endif
659 > #ifdef __i386__
660 > #if __DARWIN_UNIX03 && defined _STRUCT_X86_THREAD_STATE32
661 > #define MACH_FIELD_NAME(X)                              __CONCAT(__,X)
662 > #endif
663 > #define SIGSEGV_EXCEPTION_STATE_TYPE    i386_exception_state_t
664 > #define SIGSEGV_EXCEPTION_STATE_FLAVOR  i386_EXCEPTION_STATE
665 > #define SIGSEGV_EXCEPTION_STATE_COUNT   i386_EXCEPTION_STATE_COUNT
666 > #define SIGSEGV_FAULT_ADDRESS                   SIP->exc_state.MACH_FIELD_NAME(faultvaddr)
667 > #define SIGSEGV_THREAD_STATE_TYPE               i386_thread_state_t
668 > #define SIGSEGV_THREAD_STATE_FLAVOR             i386_THREAD_STATE
669 > #define SIGSEGV_THREAD_STATE_COUNT              i386_THREAD_STATE_COUNT
670 > #define SIGSEGV_FAULT_INSTRUCTION               SIP->thr_state.MACH_FIELD_NAME(eip)
671 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
672 > #define SIGSEGV_REGISTER_FILE                   ((SIGSEGV_REGISTER_TYPE *)&SIP->thr_state.MACH_FIELD_NAME(eax)) /* EAX is the first GPR we consider */
673 > #endif
674 > #ifdef __x86_64__
675 > #if __DARWIN_UNIX03 && defined _STRUCT_X86_THREAD_STATE64
676 > #define MACH_FIELD_NAME(X)                              __CONCAT(__,X)
677 > #endif
678 > #define SIGSEGV_EXCEPTION_STATE_TYPE    x86_exception_state64_t
679 > #define SIGSEGV_EXCEPTION_STATE_FLAVOR  x86_EXCEPTION_STATE64
680 > #define SIGSEGV_EXCEPTION_STATE_COUNT   x86_EXCEPTION_STATE64_COUNT
681 > #define SIGSEGV_FAULT_ADDRESS                   SIP->exc_state.MACH_FIELD_NAME(faultvaddr)
682 > #define SIGSEGV_THREAD_STATE_TYPE               x86_thread_state64_t
683 > #define SIGSEGV_THREAD_STATE_FLAVOR             x86_THREAD_STATE64
684 > #define SIGSEGV_THREAD_STATE_COUNT              x86_THREAD_STATE64_COUNT
685 > #define SIGSEGV_FAULT_INSTRUCTION               SIP->thr_state.MACH_FIELD_NAME(rip)
686 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
687 > #define SIGSEGV_REGISTER_FILE                   ((SIGSEGV_REGISTER_TYPE *)&SIP->thr_state.MACH_FIELD_NAME(rax)) /* RAX is the first GPR we consider */
688 > #endif
689 > #define SIGSEGV_FAULT_ADDRESS_FAST              code[1]
690 > #define SIGSEGV_FAULT_INSTRUCTION_FAST  SIGSEGV_INVALID_ADDRESS
691 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   mach_port_t thread, exception_data_t code
692 > #define SIGSEGV_FAULT_HANDLER_ARGS              thread, code
693  
694 <        return (sigsegv_address_t)state->srr0;
695 < }
694 > #ifndef MACH_FIELD_NAME
695 > #define MACH_FIELD_NAME(X) X
696   #endif
697  
698   // Since there can only be one exception thread running at any time
# Line 548 | Line 746 | handleExceptions(void *priv)
746   *  Instruction skipping
747   */
748  
749 + #ifndef SIGSEGV_REGISTER_TYPE
750 + #define SIGSEGV_REGISTER_TYPE sigsegv_uintptr_t
751 + #endif
752 +
753   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
754   // Decode and skip X86 instruction
755 < #if (defined(i386) || defined(__i386__))
755 > #if (defined(i386) || defined(__i386__)) || (defined(__x86_64__) || defined(_M_X64))
756   #if defined(__linux__)
757   enum {
758 + #if (defined(i386) || defined(__i386__))
759          X86_REG_EIP = 14,
760          X86_REG_EAX = 11,
761          X86_REG_ECX = 10,
# Line 562 | Line 765 | enum {
765          X86_REG_EBP = 6,
766          X86_REG_ESI = 5,
767          X86_REG_EDI = 4
768 + #endif
769 + #if defined(__x86_64__)
770 +        X86_REG_R8  = 0,
771 +        X86_REG_R9  = 1,
772 +        X86_REG_R10 = 2,
773 +        X86_REG_R11 = 3,
774 +        X86_REG_R12 = 4,
775 +        X86_REG_R13 = 5,
776 +        X86_REG_R14 = 6,
777 +        X86_REG_R15 = 7,
778 +        X86_REG_EDI = 8,
779 +        X86_REG_ESI = 9,
780 +        X86_REG_EBP = 10,
781 +        X86_REG_EBX = 11,
782 +        X86_REG_EDX = 12,
783 +        X86_REG_EAX = 13,
784 +        X86_REG_ECX = 14,
785 +        X86_REG_ESP = 15,
786 +        X86_REG_EIP = 16
787 + #endif
788   };
789   #endif
790 < #if defined(__NetBSD__) || defined(__FreeBSD__)
790 > #if defined(__NetBSD__)
791   enum {
792 + #if (defined(i386) || defined(__i386__))
793 +        X86_REG_EIP = _REG_EIP,
794 +        X86_REG_EAX = _REG_EAX,
795 +        X86_REG_ECX = _REG_ECX,
796 +        X86_REG_EDX = _REG_EDX,
797 +        X86_REG_EBX = _REG_EBX,
798 +        X86_REG_ESP = _REG_ESP,
799 +        X86_REG_EBP = _REG_EBP,
800 +        X86_REG_ESI = _REG_ESI,
801 +        X86_REG_EDI = _REG_EDI
802 + #endif
803 + };
804 + #endif
805 + #if defined(__FreeBSD__)
806 + enum {
807 + #if (defined(i386) || defined(__i386__))
808          X86_REG_EIP = 10,
809          X86_REG_EAX = 7,
810          X86_REG_ECX = 6,
# Line 575 | Line 814 | enum {
814          X86_REG_EBP = 2,
815          X86_REG_ESI = 1,
816          X86_REG_EDI = 0
817 + #endif
818 + };
819 + #endif
820 + #if defined(__OpenBSD__)
821 + enum {
822 + #if defined(__i386__)
823 +        // EDI is the first register we consider
824 + #define OREG(REG) offsetof(struct sigcontext, sc_##REG)
825 + #define DREG(REG) ((OREG(REG) - OREG(edi)) / 4)
826 +        X86_REG_EIP = DREG(eip), // 7
827 +        X86_REG_EAX = DREG(eax), // 6
828 +        X86_REG_ECX = DREG(ecx), // 5
829 +        X86_REG_EDX = DREG(edx), // 4
830 +        X86_REG_EBX = DREG(ebx), // 3
831 +        X86_REG_ESP = DREG(esp), // 10
832 +        X86_REG_EBP = DREG(ebp), // 2
833 +        X86_REG_ESI = DREG(esi), // 1
834 +        X86_REG_EDI = DREG(edi)  // 0
835 + #undef DREG
836 + #undef OREG
837 + #endif
838 + };
839 + #endif
840 + #if defined(__sun__)
841 + // Same as for Linux, need to check for x86-64
842 + enum {
843 + #if defined(__i386__)
844 +        X86_REG_EIP = EIP,
845 +        X86_REG_EAX = EAX,
846 +        X86_REG_ECX = ECX,
847 +        X86_REG_EDX = EDX,
848 +        X86_REG_EBX = EBX,
849 +        X86_REG_ESP = ESP,
850 +        X86_REG_EBP = EBP,
851 +        X86_REG_ESI = ESI,
852 +        X86_REG_EDI = EDI
853 + #endif
854 + };
855 + #endif
856 + #if defined(__APPLE__) && defined(__MACH__)
857 + enum {
858 + #if (defined(i386) || defined(__i386__))
859 + #ifdef i386_SAVED_STATE
860 +        // same as FreeBSD (in Open Darwin 8.0.1)
861 +        X86_REG_EIP = 10,
862 +        X86_REG_EAX = 7,
863 +        X86_REG_ECX = 6,
864 +        X86_REG_EDX = 5,
865 +        X86_REG_EBX = 4,
866 +        X86_REG_ESP = 13,
867 +        X86_REG_EBP = 2,
868 +        X86_REG_ESI = 1,
869 +        X86_REG_EDI = 0
870 + #else
871 +        // new layout (MacOS X 10.4.4 for x86)
872 +        X86_REG_EIP = 10,
873 +        X86_REG_EAX = 0,
874 +        X86_REG_ECX = 2,
875 +        X86_REG_EDX = 3,
876 +        X86_REG_EBX = 1,
877 +        X86_REG_ESP = 7,
878 +        X86_REG_EBP = 6,
879 +        X86_REG_ESI = 5,
880 +        X86_REG_EDI = 4
881 + #endif
882 + #endif
883 + #if defined(__x86_64__)
884 +        X86_REG_R8  = 8,
885 +        X86_REG_R9  = 9,
886 +        X86_REG_R10 = 10,
887 +        X86_REG_R11 = 11,
888 +        X86_REG_R12 = 12,
889 +        X86_REG_R13 = 13,
890 +        X86_REG_R14 = 14,
891 +        X86_REG_R15 = 15,
892 +        X86_REG_EDI = 4,
893 +        X86_REG_ESI = 5,
894 +        X86_REG_EBP = 6,
895 +        X86_REG_EBX = 1,
896 +        X86_REG_EDX = 3,
897 +        X86_REG_EAX = 0,
898 +        X86_REG_ECX = 2,
899 +        X86_REG_ESP = 7,
900 +        X86_REG_EIP = 16
901 + #endif
902 + };
903 + #endif
904 + #if defined(_WIN32)
905 + enum {
906 + #if defined(_M_IX86)
907 +        X86_REG_EIP = 7,
908 +        X86_REG_EAX = 5,
909 +        X86_REG_ECX = 4,
910 +        X86_REG_EDX = 3,
911 +        X86_REG_EBX = 2,
912 +        X86_REG_ESP = 10,
913 +        X86_REG_EBP = 6,
914 +        X86_REG_ESI = 1,
915 +        X86_REG_EDI = 0
916 + #endif
917 + #if defined(_M_X64)
918 +        X86_REG_EAX = 0,
919 +        X86_REG_ECX = 1,
920 +        X86_REG_EDX = 2,
921 +        X86_REG_EBX = 3,
922 +        X86_REG_ESP = 4,
923 +        X86_REG_EBP = 5,
924 +        X86_REG_ESI = 6,
925 +        X86_REG_EDI = 7,
926 +        X86_REG_R8  = 8,
927 +        X86_REG_R9  = 9,
928 +        X86_REG_R10 = 10,
929 +        X86_REG_R11 = 11,
930 +        X86_REG_R12 = 12,
931 +        X86_REG_R13 = 13,
932 +        X86_REG_R14 = 14,
933 +        X86_REG_R15 = 15,
934 +        X86_REG_EIP = 16
935 + #endif
936   };
937   #endif
938   // FIXME: this is partly redundant with the instruction decoding phase
# Line 611 | Line 969 | static inline int ix86_step_over_modrm(u
969          return offset;
970   }
971  
972 < static bool ix86_skip_instruction(unsigned int * regs)
972 > static bool ix86_skip_instruction(SIGSEGV_REGISTER_TYPE * regs)
973   {
974          unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
975  
976          if (eip == 0)
977                  return false;
978 + #ifdef _WIN32
979 +        if (IsBadCodePtr((FARPROC)eip))
980 +                return false;
981 + #endif
982          
983 +        enum instruction_type_t {
984 +                i_MOV,
985 +                i_ADD
986 +        };
987 +
988          transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
989          transfer_size_t transfer_size = SIZE_LONG;
990 +        instruction_type_t instruction_type = i_MOV;
991          
992          int reg = -1;
993          int len = 0;
994 <        
994 >
995 > #if DEBUG
996 >        printf("IP: %p [%02x %02x %02x %02x...]\n",
997 >                   eip, eip[0], eip[1], eip[2], eip[3]);
998 > #endif
999 >
1000          // Operand size prefix
1001          if (*eip == 0x66) {
1002                  eip++;
# Line 631 | Line 1004 | static bool ix86_skip_instruction(unsign
1004                  transfer_size = SIZE_WORD;
1005          }
1006  
1007 +        // REX prefix
1008 + #if defined(__x86_64__) || defined(_M_X64)
1009 +        struct rex_t {
1010 +                unsigned char W;
1011 +                unsigned char R;
1012 +                unsigned char X;
1013 +                unsigned char B;
1014 +        };
1015 +        rex_t rex = { 0, 0, 0, 0 };
1016 +        bool has_rex = false;
1017 +        if ((*eip & 0xf0) == 0x40) {
1018 +                has_rex = true;
1019 +                const unsigned char b = *eip;
1020 +                rex.W = b & (1 << 3);
1021 +                rex.R = b & (1 << 2);
1022 +                rex.X = b & (1 << 1);
1023 +                rex.B = b & (1 << 0);
1024 + #if DEBUG
1025 +                printf("REX: %c,%c,%c,%c\n",
1026 +                           rex.W ? 'W' : '_',
1027 +                           rex.R ? 'R' : '_',
1028 +                           rex.X ? 'X' : '_',
1029 +                           rex.B ? 'B' : '_');
1030 + #endif
1031 +                eip++;
1032 +                len++;
1033 +                if (rex.W)
1034 +                        transfer_size = SIZE_QUAD;
1035 +        }
1036 + #else
1037 +        const bool has_rex = false;
1038 + #endif
1039 +
1040          // Decode instruction
1041 +        int op_len = 1;
1042 +        int target_size = SIZE_UNKNOWN;
1043          switch (eip[0]) {
1044          case 0x0f:
1045 +                target_size = transfer_size;
1046              switch (eip[1]) {
1047 +                case 0xbe: // MOVSX r32, r/m8
1048              case 0xb6: // MOVZX r32, r/m8
1049 +                        transfer_size = SIZE_BYTE;
1050 +                        goto do_mov_extend;
1051 +                case 0xbf: // MOVSX r32, r/m16
1052              case 0xb7: // MOVZX r32, r/m16
1053 <                switch (eip[2] & 0xc0) {
1054 <                case 0x80:
1055 <                    reg = (eip[2] >> 3) & 7;
1056 <                    transfer_type = SIGSEGV_TRANSFER_LOAD;
1057 <                    break;
645 <                case 0x40:
646 <                    reg = (eip[2] >> 3) & 7;
647 <                    transfer_type = SIGSEGV_TRANSFER_LOAD;
648 <                    break;
649 <                case 0x00:
650 <                    reg = (eip[2] >> 3) & 7;
651 <                    transfer_type = SIGSEGV_TRANSFER_LOAD;
652 <                    break;
1053 >                        transfer_size = SIZE_WORD;
1054 >                        goto do_mov_extend;
1055 >                  do_mov_extend:
1056 >                        op_len = 2;
1057 >                        goto do_transfer_load;
1058                  }
654                len += 3 + ix86_step_over_modrm(eip + 2);
1059                  break;
1060 <            }
1061 <          break;
1060 > #if defined(__x86_64__) || defined(_M_X64)
1061 >        case 0x63: // MOVSXD r64, r/m32
1062 >                if (has_rex && rex.W) {
1063 >                        transfer_size = SIZE_LONG;
1064 >                        target_size = SIZE_QUAD;
1065 >                }
1066 >                else if (transfer_size != SIZE_WORD) {
1067 >                        transfer_size = SIZE_LONG;
1068 >                        target_size = SIZE_QUAD;
1069 >                }
1070 >                goto do_transfer_load;
1071 > #endif
1072 >        case 0x02: // ADD r8, r/m8
1073 >                transfer_size = SIZE_BYTE;
1074 >        case 0x03: // ADD r32, r/m32
1075 >                instruction_type = i_ADD;
1076 >                goto do_transfer_load;
1077          case 0x8a: // MOV r8, r/m8
1078                  transfer_size = SIZE_BYTE;
1079          case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
1080 <                switch (eip[1] & 0xc0) {
1080 >          do_transfer_load:
1081 >                switch (eip[op_len] & 0xc0) {
1082                  case 0x80:
1083 <                        reg = (eip[1] >> 3) & 7;
1083 >                        reg = (eip[op_len] >> 3) & 7;
1084                          transfer_type = SIGSEGV_TRANSFER_LOAD;
1085                          break;
1086                  case 0x40:
1087 <                        reg = (eip[1] >> 3) & 7;
1087 >                        reg = (eip[op_len] >> 3) & 7;
1088                          transfer_type = SIGSEGV_TRANSFER_LOAD;
1089                          break;
1090                  case 0x00:
1091 <                        reg = (eip[1] >> 3) & 7;
1091 >                        reg = (eip[op_len] >> 3) & 7;
1092                          transfer_type = SIGSEGV_TRANSFER_LOAD;
1093                          break;
1094                  }
1095 <                len += 2 + ix86_step_over_modrm(eip + 1);
1095 >                len += 1 + op_len + ix86_step_over_modrm(eip + op_len);
1096                  break;
1097 +        case 0x00: // ADD r/m8, r8
1098 +                transfer_size = SIZE_BYTE;
1099 +        case 0x01: // ADD r/m32, r32
1100 +                instruction_type = i_ADD;
1101 +                goto do_transfer_store;
1102          case 0x88: // MOV r/m8, r8
1103                  transfer_size = SIZE_BYTE;
1104          case 0x89: // MOV r/m32, r32 (or 16-bit operation)
1105 <                switch (eip[1] & 0xc0) {
1105 >          do_transfer_store:
1106 >                switch (eip[op_len] & 0xc0) {
1107                  case 0x80:
1108 <                        reg = (eip[1] >> 3) & 7;
1108 >                        reg = (eip[op_len] >> 3) & 7;
1109                          transfer_type = SIGSEGV_TRANSFER_STORE;
1110                          break;
1111                  case 0x40:
1112 <                        reg = (eip[1] >> 3) & 7;
1112 >                        reg = (eip[op_len] >> 3) & 7;
1113                          transfer_type = SIGSEGV_TRANSFER_STORE;
1114                          break;
1115                  case 0x00:
1116 <                        reg = (eip[1] >> 3) & 7;
1116 >                        reg = (eip[op_len] >> 3) & 7;
1117                          transfer_type = SIGSEGV_TRANSFER_STORE;
1118                          break;
1119                  }
1120 <                len += 2 + ix86_step_over_modrm(eip + 1);
1120 >                len += 1 + op_len + ix86_step_over_modrm(eip + op_len);
1121                  break;
1122          }
1123 +        if (target_size == SIZE_UNKNOWN)
1124 +                target_size = transfer_size;
1125  
1126          if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1127                  // Unknown machine code, let it crash. Then patch the decoder
1128                  return false;
1129          }
1130  
1131 <        if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
1132 <                static const int x86_reg_map[8] = {
1131 > #if defined(__x86_64__) || defined(_M_X64)
1132 >        if (rex.R)
1133 >                reg += 8;
1134 > #endif
1135 >
1136 >        if (instruction_type == i_MOV && transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
1137 >                static const int x86_reg_map[] = {
1138                          X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
1139 <                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI
1139 >                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI,
1140 > #if defined(__x86_64__) || defined(_M_X64)
1141 >                        X86_REG_R8,  X86_REG_R9,  X86_REG_R10, X86_REG_R11,
1142 >                        X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15,
1143 > #endif
1144                  };
1145                  
1146 <                if (reg < 0 || reg >= 8)
1146 >                if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1))
1147                          return false;
1148  
1149 +                // Set 0 to the relevant register part
1150 +                // NOTE: this is only valid for MOV alike instructions
1151                  int rloc = x86_reg_map[reg];
1152 <                switch (transfer_size) {
1152 >                switch (target_size) {
1153                  case SIZE_BYTE:
1154 <                        regs[rloc] = (regs[rloc] & ~0xff);
1154 >                        if (has_rex || reg < 4)
1155 >                                regs[rloc] = (regs[rloc] & ~0x00ffL);
1156 >                        else {
1157 >                                rloc = x86_reg_map[reg - 4];
1158 >                                regs[rloc] = (regs[rloc] & ~0xff00L);
1159 >                        }
1160                          break;
1161                  case SIZE_WORD:
1162 <                        regs[rloc] = (regs[rloc] & ~0xffff);
1162 >                        regs[rloc] = (regs[rloc] & ~0xffffL);
1163                          break;
1164                  case SIZE_LONG:
1165 +                case SIZE_QUAD: // zero-extension
1166                          regs[rloc] = 0;
1167                          break;
1168                  }
1169          }
1170  
1171   #if DEBUG
1172 <        printf("%08x: %s %s access", regs[X86_REG_EIP],
1173 <                   transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : "long",
1172 >        printf("%p: %s %s access", (void *)regs[X86_REG_EIP],
1173 >                   transfer_size == SIZE_BYTE ? "byte" :
1174 >                   transfer_size == SIZE_WORD ? "word" :
1175 >                   transfer_size == SIZE_LONG ? "long" :
1176 >                   transfer_size == SIZE_QUAD ? "quad" : "unknown",
1177                     transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1178          
1179          if (reg != -1) {
1180 <                static const char * x86_reg_str_map[8] = {
1181 <                        "eax", "ecx", "edx", "ebx",
1182 <                        "esp", "ebp", "esi", "edi"
1180 >                static const char * x86_byte_reg_str_map[] = {
1181 >                        "al",   "cl",   "dl",   "bl",
1182 >                        "spl",  "bpl",  "sil",  "dil",
1183 >                        "r8b",  "r9b",  "r10b", "r11b",
1184 >                        "r12b", "r13b", "r14b", "r15b",
1185 >                        "ah",   "ch",   "dh",   "bh",
1186                  };
1187 <                printf(" %s register %%%s", transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from", x86_reg_str_map[reg]);
1187 >                static const char * x86_word_reg_str_map[] = {
1188 >                        "ax",   "cx",   "dx",   "bx",
1189 >                        "sp",   "bp",   "si",   "di",
1190 >                        "r8w",  "r9w",  "r10w", "r11w",
1191 >                        "r12w", "r13w", "r14w", "r15w",
1192 >                };
1193 >                static const char *x86_long_reg_str_map[] = {
1194 >                        "eax",  "ecx",  "edx",  "ebx",
1195 >                        "esp",  "ebp",  "esi",  "edi",
1196 >                        "r8d",  "r9d",  "r10d", "r11d",
1197 >                        "r12d", "r13d", "r14d", "r15d",
1198 >                };
1199 >                static const char *x86_quad_reg_str_map[] = {
1200 >                        "rax", "rcx", "rdx", "rbx",
1201 >                        "rsp", "rbp", "rsi", "rdi",
1202 >                        "r8",  "r9",  "r10", "r11",
1203 >                        "r12", "r13", "r14", "r15",
1204 >                };
1205 >                const char * reg_str = NULL;
1206 >                switch (target_size) {
1207 >                case SIZE_BYTE:
1208 >                        reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg];
1209 >                        break;
1210 >                case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break;
1211 >                case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break;
1212 >                case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break;
1213 >                }
1214 >                if (reg_str)
1215 >                        printf(" %s register %%%s",
1216 >                                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from",
1217 >                                   reg_str);
1218          }
1219          printf(", %d bytes instruction\n", len);
1220   #endif
# Line 743 | Line 1224 | static bool ix86_skip_instruction(unsign
1224   }
1225   #endif
1226  
1227 + // Decode and skip IA-64 instruction
1228 + #if defined(__ia64__)
1229 + typedef uint64_t ia64_bundle_t[2];
1230 + #if defined(__linux__)
1231 + // We can directly patch the slot number
1232 + #define IA64_CAN_PATCH_IP_SLOT  1
1233 + // Helper macros to access the machine context
1234 + #define IA64_CONTEXT_TYPE               struct sigcontext *
1235 + #define IA64_CONTEXT                    scp
1236 + #define IA64_GET_IP()                   (IA64_CONTEXT->sc_ip)
1237 + #define IA64_SET_IP(V)                  (IA64_CONTEXT->sc_ip = (V))
1238 + #define IA64_GET_PR(P)                  ((IA64_CONTEXT->sc_pr >> (P)) & 1)
1239 + #define IA64_GET_NAT(I)                 ((IA64_CONTEXT->sc_nat >> (I)) & 1)
1240 + #define IA64_GET_GR(R)                  (IA64_CONTEXT->sc_gr[(R)])
1241 + #define _IA64_SET_GR(R,V)               (IA64_CONTEXT->sc_gr[(R)] = (V))
1242 + #define _IA64_SET_NAT(I,V)              (IA64_CONTEXT->sc_nat = (IA64_CONTEXT->sc_nat & ~(1ull << (I))) | (((uint64_t)!!(V)) << (I)))
1243 + #define IA64_SET_GR(R,V,N)              (_IA64_SET_GR(R,V), _IA64_SET_NAT(R,N))
1244 +
1245 + // Load bundle (in little-endian)
1246 + static inline void ia64_load_bundle(ia64_bundle_t bundle, uint64_t raw_ip)
1247 + {
1248 +        uint64_t *ip = (uint64_t *)(raw_ip & ~3ull);
1249 +        bundle[0] = ip[0];
1250 +        bundle[1] = ip[1];
1251 + }
1252 + #endif
1253 +
1254 + // Instruction operations
1255 + enum {
1256 +        IA64_INST_UNKNOWN = 0,
1257 +        IA64_INST_LD1,                          // ld1 op0=[op1]
1258 +        IA64_INST_LD1_UPDATE,           // ld1 op0=[op1],op2
1259 +        IA64_INST_LD2,                          // ld2 op0=[op1]
1260 +        IA64_INST_LD2_UPDATE,           // ld2 op0=[op1],op2
1261 +        IA64_INST_LD4,                          // ld4 op0=[op1]
1262 +        IA64_INST_LD4_UPDATE,           // ld4 op0=[op1],op2
1263 +        IA64_INST_LD8,                          // ld8 op0=[op1]
1264 +        IA64_INST_LD8_UPDATE,           // ld8 op0=[op1],op2
1265 +        IA64_INST_ST1,                          // st1 [op0]=op1
1266 +        IA64_INST_ST1_UPDATE,           // st1 [op0]=op1,op2
1267 +        IA64_INST_ST2,                          // st2 [op0]=op1
1268 +        IA64_INST_ST2_UPDATE,           // st2 [op0]=op1,op2
1269 +        IA64_INST_ST4,                          // st4 [op0]=op1
1270 +        IA64_INST_ST4_UPDATE,           // st4 [op0]=op1,op2
1271 +        IA64_INST_ST8,                          // st8 [op0]=op1
1272 +        IA64_INST_ST8_UPDATE,           // st8 [op0]=op1,op2
1273 +        IA64_INST_ADD,                          // add op0=op1,op2,op3
1274 +        IA64_INST_SUB,                          // sub op0=op1,op2,op3
1275 +        IA64_INST_SHLADD,                       // shladd op0=op1,op3,op2
1276 +        IA64_INST_AND,                          // and op0=op1,op2
1277 +        IA64_INST_ANDCM,                        // andcm op0=op1,op2
1278 +        IA64_INST_OR,                           // or op0=op1,op2
1279 +        IA64_INST_XOR,                          // xor op0=op1,op2
1280 +        IA64_INST_SXT1,                         // sxt1 op0=op1
1281 +        IA64_INST_SXT2,                         // sxt2 op0=op1
1282 +        IA64_INST_SXT4,                         // sxt4 op0=op1
1283 +        IA64_INST_ZXT1,                         // zxt1 op0=op1
1284 +        IA64_INST_ZXT2,                         // zxt2 op0=op1
1285 +        IA64_INST_ZXT4,                         // zxt4 op0=op1
1286 +        IA64_INST_NOP                           // nop op0
1287 + };
1288 +
1289 + const int IA64_N_OPERANDS = 4;
1290 +
1291 + // Decoded operand type
1292 + struct ia64_operand_t {
1293 +        uint8_t commit;                         // commit result of operation to register file?
1294 +        uint8_t valid;                          // XXX: not really used, can be removed (debug)
1295 +        int8_t index;                           // index of GPR, or -1 if immediate value
1296 +        uint8_t nat;                            // NaT state before operation
1297 +        uint64_t value;                         // register contents or immediate value
1298 + };
1299 +
1300 + // Decoded instruction type
1301 + struct ia64_instruction_t {
1302 +        uint8_t mnemo;                          // operation to perform
1303 +        uint8_t pred;                           // predicate register to check
1304 +        uint8_t no_memory;                      // used to emulated main fault instruction
1305 +        uint64_t inst;                          // the raw instruction bits (41-bit wide)
1306 +        ia64_operand_t operands[IA64_N_OPERANDS];
1307 + };
1308 +
1309 + // Get immediate sign-bit
1310 + static inline int ia64_inst_get_sbit(uint64_t inst)
1311 + {
1312 +        return (inst >> 36) & 1;
1313 + }
1314 +
1315 + // Get 8-bit immediate value (A3, A8, I27, M30)
1316 + static inline uint64_t ia64_inst_get_imm8(uint64_t inst)
1317 + {
1318 +        uint64_t value = (inst >> 13) & 0x7full;
1319 +        if (ia64_inst_get_sbit(inst))
1320 +                value |= ~0x7full;
1321 +        return value;
1322 + }
1323 +
1324 + // Get 9-bit immediate value (M3)
1325 + static inline uint64_t ia64_inst_get_imm9b(uint64_t inst)
1326 + {
1327 +        uint64_t value = (((inst >> 27) & 1) << 7) | ((inst >> 13) & 0x7f);
1328 +        if (ia64_inst_get_sbit(inst))
1329 +                value |= ~0xffull;
1330 +        return value;
1331 + }
1332 +
1333 + // Get 9-bit immediate value (M5)
1334 + static inline uint64_t ia64_inst_get_imm9a(uint64_t inst)
1335 + {
1336 +        uint64_t value = (((inst >> 27) & 1) << 7) | ((inst >> 6) & 0x7f);
1337 +        if (ia64_inst_get_sbit(inst))
1338 +                value |= ~0xffull;
1339 +        return value;
1340 + }
1341 +
1342 + // Get 14-bit immediate value (A4)
1343 + static inline uint64_t ia64_inst_get_imm14(uint64_t inst)
1344 + {
1345 +        uint64_t value = (((inst >> 27) & 0x3f) << 7) | (inst & 0x7f);
1346 +        if (ia64_inst_get_sbit(inst))
1347 +                value |= ~0x1ffull;
1348 +        return value;
1349 + }
1350 +
1351 + // Get 22-bit immediate value (A5)
1352 + static inline uint64_t ia64_inst_get_imm22(uint64_t inst)
1353 + {
1354 +        uint64_t value = ((((inst >> 22) & 0x1f) << 16) |
1355 +                                          (((inst >> 27) & 0x1ff) << 7) |
1356 +                                          (inst & 0x7f));
1357 +        if (ia64_inst_get_sbit(inst))
1358 +                value |= ~0x1fffffull;
1359 +        return value;
1360 + }
1361 +
1362 + // Get 21-bit immediate value (I19)
1363 + static inline uint64_t ia64_inst_get_imm21(uint64_t inst)
1364 + {
1365 +        return (((inst >> 36) & 1) << 20) | ((inst >> 6) & 0xfffff);
1366 + }
1367 +
1368 + // Get 2-bit count value (A2)
1369 + static inline int ia64_inst_get_count2(uint64_t inst)
1370 + {
1371 +        return (inst >> 27) & 0x3;
1372 + }
1373 +
1374 + // Get bundle template
1375 + static inline unsigned int ia64_get_template(uint64_t ip)
1376 + {
1377 +        ia64_bundle_t bundle;
1378 +        ia64_load_bundle(bundle, ip);
1379 +        return bundle[0] & 0x1f;
1380 + }
1381 +
1382 + // Get specified instruction in bundle
1383 + static uint64_t ia64_get_instruction(uint64_t ip, int slot)
1384 + {
1385 +        uint64_t inst;
1386 +        ia64_bundle_t bundle;
1387 +        ia64_load_bundle(bundle, ip);
1388 + #if DEBUG
1389 +        printf("Bundle: %016llx%016llx\n", bundle[1], bundle[0]);
1390 + #endif
1391 +
1392 +        switch (slot) {
1393 +        case 0:
1394 +                inst = (bundle[0] >> 5) & 0x1ffffffffffull;
1395 +                break;
1396 +        case 1:
1397 +                inst = ((bundle[1] & 0x7fffffull) << 18) | ((bundle[0] >> 46) & 0x3ffffull);
1398 +                break;
1399 +        case 2:
1400 +                inst = (bundle[1] >> 23) & 0x1ffffffffffull;
1401 +                break;
1402 +        case 3:
1403 +                fprintf(stderr, "ERROR: ia64_get_instruction(), invalid slot number %d\n", slot);
1404 +                abort();
1405 +                break;
1406 +        }
1407 +
1408 + #if DEBUG
1409 +        printf(" Instruction %d: 0x%016llx\n", slot, inst);
1410 + #endif
1411 +        return inst;
1412 + }
1413 +
1414 + // Decode group 0 instructions
1415 + static bool ia64_decode_instruction_0(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
1416 + {
1417 +        const int r1 = (inst->inst >>  6) & 0x7f;
1418 +        const int r3 = (inst->inst >> 20) & 0x7f;
1419 +
1420 +        const int x3 = (inst->inst >> 33) & 0x07;
1421 +        const int x6 = (inst->inst >> 27) & 0x3f;
1422 +        const int x2 = (inst->inst >> 31) & 0x03;
1423 +        const int x4 = (inst->inst >> 27) & 0x0f;
1424 +
1425 +        if (x3 == 0) {
1426 +                switch (x6) {
1427 +                case 0x01:                                              // nop.i (I19)
1428 +                        inst->mnemo = IA64_INST_NOP;
1429 +                        inst->operands[0].valid = true;
1430 +                        inst->operands[0].index = -1;
1431 +                        inst->operands[0].value = ia64_inst_get_imm21(inst->inst);
1432 +                        return true;
1433 +                case 0x14:                                              // sxt1 (I29)
1434 +                case 0x15:                                              // sxt2 (I29)
1435 +                case 0x16:                                              // sxt4 (I29)
1436 +                case 0x10:                                              // zxt1 (I29)
1437 +                case 0x11:                                              // zxt2 (I29)
1438 +                case 0x12:                                              // zxt4 (I29)
1439 +                        switch (x6) {
1440 +                        case 0x14: inst->mnemo = IA64_INST_SXT1; break;
1441 +                        case 0x15: inst->mnemo = IA64_INST_SXT2; break;
1442 +                        case 0x16: inst->mnemo = IA64_INST_SXT4; break;
1443 +                        case 0x10: inst->mnemo = IA64_INST_ZXT1; break;
1444 +                        case 0x11: inst->mnemo = IA64_INST_ZXT2; break;
1445 +                        case 0x12: inst->mnemo = IA64_INST_ZXT4; break;
1446 +                        default: abort();
1447 +                        }
1448 +                        inst->operands[0].valid = true;
1449 +                        inst->operands[0].index = r1;
1450 +                        inst->operands[1].valid = true;
1451 +                        inst->operands[1].index = r3;
1452 +                        inst->operands[1].value = IA64_GET_GR(r3);
1453 +                        inst->operands[1].nat   = IA64_GET_NAT(r3);
1454 +                        return true;
1455 +                }
1456 +        }
1457 +        return false;
1458 + }
1459 +
1460 + // Decode group 4 instructions (load/store instructions)
1461 + static bool ia64_decode_instruction_4(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
1462 + {
1463 +        const int r1 = (inst->inst >> 6) & 0x7f;
1464 +        const int r2 = (inst->inst >> 13) & 0x7f;
1465 +        const int r3 = (inst->inst >> 20) & 0x7f;
1466 +
1467 +        const int m  = (inst->inst >> 36) & 1;
1468 +        const int x  = (inst->inst >> 27) & 1;
1469 +        const int x6 = (inst->inst >> 30) & 0x3f;
1470 +
1471 +        switch (x6) {
1472 +        case 0x00:
1473 +        case 0x01:
1474 +        case 0x02:
1475 +        case 0x03:
1476 +                if (x == 0) {
1477 +                        inst->operands[0].valid = true;
1478 +                        inst->operands[0].index = r1;
1479 +                        inst->operands[1].valid = true;
1480 +                        inst->operands[1].index = r3;
1481 +                        inst->operands[1].value = IA64_GET_GR(r3);
1482 +                        inst->operands[1].nat   = IA64_GET_NAT(r3);
1483 +                        if (m == 0) {
1484 +                                switch (x6) {
1485 +                                case 0x00: inst->mnemo = IA64_INST_LD1; break;
1486 +                                case 0x01: inst->mnemo = IA64_INST_LD2; break;
1487 +                                case 0x02: inst->mnemo = IA64_INST_LD4; break;
1488 +                                case 0x03: inst->mnemo = IA64_INST_LD8; break;
1489 +                                }
1490 +                        }
1491 +                        else {
1492 +                                inst->operands[2].valid = true;
1493 +                                inst->operands[2].index = r2;
1494 +                                inst->operands[2].value = IA64_GET_GR(r2);
1495 +                                inst->operands[2].nat   = IA64_GET_NAT(r2);
1496 +                                switch (x6) {
1497 +                                case 0x00: inst->mnemo = IA64_INST_LD1_UPDATE; break;
1498 +                                case 0x01: inst->mnemo = IA64_INST_LD2_UPDATE; break;
1499 +                                case 0x02: inst->mnemo = IA64_INST_LD4_UPDATE; break;
1500 +                                case 0x03: inst->mnemo = IA64_INST_LD8_UPDATE; break;
1501 +                                }
1502 +                        }
1503 +                        return true;
1504 +                }
1505 +                break;
1506 +        case 0x30:
1507 +        case 0x31:
1508 +        case 0x32:
1509 +        case 0x33:
1510 +                if (m == 0 && x == 0) {
1511 +                        inst->operands[0].valid = true;
1512 +                        inst->operands[0].index = r3;
1513 +                        inst->operands[0].value = IA64_GET_GR(r3);
1514 +                        inst->operands[0].nat   = IA64_GET_NAT(r3);
1515 +                        inst->operands[1].valid = true;
1516 +                        inst->operands[1].index = r2;
1517 +                        inst->operands[1].value = IA64_GET_GR(r2);
1518 +                        inst->operands[1].nat   = IA64_GET_NAT(r2);
1519 +                        switch (x6) {
1520 +                        case 0x30: inst->mnemo = IA64_INST_ST1; break;
1521 +                        case 0x31: inst->mnemo = IA64_INST_ST2; break;
1522 +                        case 0x32: inst->mnemo = IA64_INST_ST4; break;
1523 +                        case 0x33: inst->mnemo = IA64_INST_ST8; break;
1524 +                        }
1525 +                        return true;
1526 +                }
1527 +                break;
1528 +        }
1529 +        return false;
1530 + }
1531 +
1532 + // Decode group 5 instructions (load/store instructions)
1533 + static bool ia64_decode_instruction_5(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
1534 + {
1535 +        const int r1 = (inst->inst >> 6) & 0x7f;
1536 +        const int r2 = (inst->inst >> 13) & 0x7f;
1537 +        const int r3 = (inst->inst >> 20) & 0x7f;
1538 +
1539 +        const int x6 = (inst->inst >> 30) & 0x3f;
1540 +
1541 +        switch (x6) {
1542 +        case 0x00:
1543 +        case 0x01:
1544 +        case 0x02:
1545 +        case 0x03:
1546 +                inst->operands[0].valid = true;
1547 +                inst->operands[0].index = r1;
1548 +                inst->operands[1].valid = true;
1549 +                inst->operands[1].index = r3;
1550 +                inst->operands[1].value = IA64_GET_GR(r3);
1551 +                inst->operands[1].nat   = IA64_GET_NAT(r3);
1552 +                inst->operands[2].valid = true;
1553 +                inst->operands[2].index = -1;
1554 +                inst->operands[2].value = ia64_inst_get_imm9b(inst->inst);
1555 +                inst->operands[2].nat   = 0;
1556 +                switch (x6) {
1557 +                case 0x00: inst->mnemo = IA64_INST_LD1_UPDATE; break;
1558 +                case 0x01: inst->mnemo = IA64_INST_LD2_UPDATE; break;
1559 +                case 0x02: inst->mnemo = IA64_INST_LD4_UPDATE; break;
1560 +                case 0x03: inst->mnemo = IA64_INST_LD8_UPDATE; break;
1561 +                }
1562 +                return true;
1563 +        case 0x30:
1564 +        case 0x31:
1565 +        case 0x32:
1566 +        case 0x33:
1567 +                inst->operands[0].valid = true;
1568 +                inst->operands[0].index = r3;
1569 +                inst->operands[0].value = IA64_GET_GR(r3);
1570 +                inst->operands[0].nat   = IA64_GET_NAT(r3);
1571 +                inst->operands[1].valid = true;
1572 +                inst->operands[1].index = r2;
1573 +                inst->operands[1].value = IA64_GET_GR(r2);
1574 +                inst->operands[1].nat   = IA64_GET_NAT(r2);
1575 +                inst->operands[2].valid = true;
1576 +                inst->operands[2].index = -1;
1577 +                inst->operands[2].value = ia64_inst_get_imm9a(inst->inst);
1578 +                inst->operands[2].nat   = 0;
1579 +                switch (x6) {
1580 +                case 0x30: inst->mnemo = IA64_INST_ST1_UPDATE; break;
1581 +                case 0x31: inst->mnemo = IA64_INST_ST2_UPDATE; break;
1582 +                case 0x32: inst->mnemo = IA64_INST_ST4_UPDATE; break;
1583 +                case 0x33: inst->mnemo = IA64_INST_ST8_UPDATE; break;
1584 +                }
1585 +                return true;
1586 +        }
1587 +        return false;
1588 + }
1589 +
1590 + // Decode group 8 instructions (ALU integer)
1591 + static bool ia64_decode_instruction_8(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
1592 + {
1593 +        const int r1  = (inst->inst >> 6) & 0x7f;
1594 +        const int r2  = (inst->inst >> 13) & 0x7f;
1595 +        const int r3  = (inst->inst >> 20) & 0x7f;
1596 +
1597 +        const int x2a = (inst->inst >> 34) & 0x3;
1598 +        const int x2b = (inst->inst >> 27) & 0x3;
1599 +        const int x4  = (inst->inst >> 29) & 0xf;
1600 +        const int ve  = (inst->inst >> 33) & 0x1;
1601 +
1602 +        // destination register (r1) is always valid in this group
1603 +        inst->operands[0].valid = true;
1604 +        inst->operands[0].index = r1;
1605 +
1606 +        // source register (r3) is always valid in this group
1607 +        inst->operands[2].valid = true;
1608 +        inst->operands[2].index = r3;
1609 +        inst->operands[2].value = IA64_GET_GR(r3);
1610 +        inst->operands[2].nat   = IA64_GET_NAT(r3);
1611 +
1612 +        if (x2a == 0 && ve == 0) {
1613 +                inst->operands[1].valid = true;
1614 +                inst->operands[1].index = r2;
1615 +                inst->operands[1].value = IA64_GET_GR(r2);
1616 +                inst->operands[1].nat   = IA64_GET_NAT(r2);
1617 +                switch (x4) {
1618 +                case 0x0:                               // add (A1)
1619 +                        inst->mnemo = IA64_INST_ADD;
1620 +                        inst->operands[3].valid = true;
1621 +                        inst->operands[3].index = -1;
1622 +                        inst->operands[3].value = x2b == 1;
1623 +                        return true;
1624 +                case 0x1:                               // add (A1)
1625 +                        inst->mnemo = IA64_INST_SUB;
1626 +                        inst->operands[3].valid = true;
1627 +                        inst->operands[3].index = -1;
1628 +                        inst->operands[3].value = x2b == 0;
1629 +                        return true;
1630 +                case 0x4:                               // shladd (A2)
1631 +                        inst->mnemo = IA64_INST_SHLADD;
1632 +                        inst->operands[3].valid = true;
1633 +                        inst->operands[3].index = -1;
1634 +                        inst->operands[3].value = ia64_inst_get_count2(inst->inst);
1635 +                        return true;
1636 +                case 0x9:
1637 +                        if (x2b == 1) {
1638 +                                inst->mnemo = IA64_INST_SUB;
1639 +                                inst->operands[1].index = -1;
1640 +                                inst->operands[1].value = ia64_inst_get_imm8(inst->inst);
1641 +                                inst->operands[1].nat   = 0;
1642 +                                return true;
1643 +                        }
1644 +                        break;
1645 +                case 0xb:
1646 +                        inst->operands[1].index = -1;
1647 +                        inst->operands[1].value = ia64_inst_get_imm8(inst->inst);
1648 +                        inst->operands[1].nat   = 0;
1649 +                        // fall-through
1650 +                case 0x3:
1651 +                        switch (x2b) {
1652 +                        case 0: inst->mnemo = IA64_INST_AND;   break;
1653 +                        case 1: inst->mnemo = IA64_INST_ANDCM; break;
1654 +                        case 2: inst->mnemo = IA64_INST_OR;    break;
1655 +                        case 3: inst->mnemo = IA64_INST_XOR;   break;
1656 +                        }
1657 +                        return true;
1658 +                }
1659 +        }
1660 +        return false;
1661 + }
1662 +
1663 + // Decode instruction
1664 + static bool ia64_decode_instruction(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
1665 + {
1666 +        const int major = (inst->inst >> 37) & 0xf;
1667 +
1668 +        inst->mnemo = IA64_INST_UNKNOWN;
1669 +        inst->pred  = inst->inst & 0x3f;
1670 +        memset(&inst->operands[0], 0, sizeof(inst->operands));
1671 +
1672 +        switch (major) {
1673 +        case 0x0: return ia64_decode_instruction_0(inst, IA64_CONTEXT);
1674 +        case 0x4: return ia64_decode_instruction_4(inst, IA64_CONTEXT);
1675 +        case 0x5: return ia64_decode_instruction_5(inst, IA64_CONTEXT);
1676 +        case 0x8: return ia64_decode_instruction_8(inst, IA64_CONTEXT);
1677 +        }
1678 +        return false;
1679 + }
1680 +
1681 + static bool ia64_emulate_instruction(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
1682 + {
1683 +        // XXX: handle Register NaT Consumption fault?
1684 +        // XXX: this simple emulator assumes instructions in a bundle
1685 +        // don't depend on effects of other instructions in the same
1686 +        // bundle. It probably would be simpler to JIT-generate code to be
1687 +        // executed natively but probably more costly (inject/extract CPU state)
1688 +        if (inst->mnemo == IA64_INST_UNKNOWN)
1689 +                return false;
1690 +        if (inst->pred && !IA64_GET_PR(inst->pred))
1691 +                return true;
1692 +
1693 +        uint8_t nat, nat2;
1694 +        uint64_t dst, dst2, src1, src2, src3;
1695 +
1696 +        switch (inst->mnemo) {
1697 +        case IA64_INST_NOP:
1698 +                break;
1699 +        case IA64_INST_ADD:
1700 +        case IA64_INST_SUB:
1701 +        case IA64_INST_SHLADD:
1702 +                src3 = inst->operands[3].value;
1703 +                // fall-through
1704 +        case IA64_INST_AND:
1705 +        case IA64_INST_ANDCM:
1706 +        case IA64_INST_OR:
1707 +        case IA64_INST_XOR:
1708 +                src1 = inst->operands[1].value;
1709 +                src2 = inst->operands[2].value;
1710 +                switch (inst->mnemo) {
1711 +                case IA64_INST_ADD:   dst = src1 + src2 + src3; break;
1712 +                case IA64_INST_SUB:   dst = src1 - src2 - src3; break;
1713 +                case IA64_INST_SHLADD: dst = (src1 << src3) + src2; break;
1714 +                case IA64_INST_AND:   dst = src1 & src2;                break;
1715 +                case IA64_INST_ANDCM: dst = src1 &~ src2;               break;
1716 +                case IA64_INST_OR:    dst = src1 | src2;                break;
1717 +                case IA64_INST_XOR:   dst = src1 ^ src2;                break;
1718 +                }
1719 +                inst->operands[0].commit = true;
1720 +                inst->operands[0].value  = dst;
1721 +                inst->operands[0].nat    = inst->operands[1].nat | inst->operands[2].nat;
1722 +                break;
1723 +        case IA64_INST_SXT1:
1724 +        case IA64_INST_SXT2:
1725 +        case IA64_INST_SXT4:
1726 +        case IA64_INST_ZXT1:
1727 +        case IA64_INST_ZXT2:
1728 +        case IA64_INST_ZXT4:
1729 +                src1 = inst->operands[1].value;
1730 +                switch (inst->mnemo) {
1731 +                case IA64_INST_SXT1: dst = (int64_t)(int8_t)src1;               break;
1732 +                case IA64_INST_SXT2: dst = (int64_t)(int16_t)src1;              break;
1733 +                case IA64_INST_SXT4: dst = (int64_t)(int32_t)src1;              break;
1734 +                case IA64_INST_ZXT1: dst = (uint8_t)src1;                               break;
1735 +                case IA64_INST_ZXT2: dst = (uint16_t)src1;                              break;
1736 +                case IA64_INST_ZXT4: dst = (uint32_t)src1;                              break;
1737 +                }
1738 +                inst->operands[0].commit = true;
1739 +                inst->operands[0].value  = dst;
1740 +                inst->operands[0].nat    = inst->operands[1].nat;
1741 +                break;
1742 +        case IA64_INST_LD1_UPDATE:
1743 +        case IA64_INST_LD2_UPDATE:
1744 +        case IA64_INST_LD4_UPDATE:
1745 +        case IA64_INST_LD8_UPDATE:
1746 +                inst->operands[1].commit = true;
1747 +                dst2 = inst->operands[1].value + inst->operands[2].value;
1748 +                nat2 = inst->operands[2].nat ? inst->operands[2].nat : 0;
1749 +                // fall-through
1750 +        case IA64_INST_LD1:
1751 +        case IA64_INST_LD2:
1752 +        case IA64_INST_LD4:
1753 +        case IA64_INST_LD8:
1754 +                src1 = inst->operands[1].value;
1755 +                if (inst->no_memory)
1756 +                        dst = 0;
1757 +                else {
1758 +                        switch (inst->mnemo) {
1759 +                        case IA64_INST_LD1: case IA64_INST_LD1_UPDATE: dst = *((uint8_t *)src1);        break;
1760 +                        case IA64_INST_LD2: case IA64_INST_LD2_UPDATE: dst = *((uint16_t *)src1);       break;
1761 +                        case IA64_INST_LD4: case IA64_INST_LD4_UPDATE: dst = *((uint32_t *)src1);       break;
1762 +                        case IA64_INST_LD8: case IA64_INST_LD8_UPDATE: dst = *((uint64_t *)src1);       break;
1763 +                        }
1764 +                }
1765 +                inst->operands[0].commit = true;
1766 +                inst->operands[0].value  = dst;
1767 +                inst->operands[0].nat    = 0;
1768 +                inst->operands[1].value  = dst2;
1769 +                inst->operands[1].nat    = nat2;
1770 +                break;
1771 +        case IA64_INST_ST1_UPDATE:
1772 +        case IA64_INST_ST2_UPDATE:
1773 +        case IA64_INST_ST4_UPDATE:
1774 +        case IA64_INST_ST8_UPDATE:
1775 +                inst->operands[0].commit = 0;
1776 +                dst2 = inst->operands[0].value + inst->operands[2].value;
1777 +                nat2 = inst->operands[2].nat ? inst->operands[2].nat : 0;
1778 +                // fall-through
1779 +        case IA64_INST_ST1:
1780 +        case IA64_INST_ST2:
1781 +        case IA64_INST_ST4:
1782 +        case IA64_INST_ST8:
1783 +                dst  = inst->operands[0].value;
1784 +                src1 = inst->operands[1].value;
1785 +                if (!inst->no_memory) {
1786 +                        switch (inst->mnemo) {
1787 +                        case IA64_INST_ST1: case IA64_INST_ST1_UPDATE: *((uint8_t *)dst) = src1;        break;
1788 +                        case IA64_INST_ST2: case IA64_INST_ST2_UPDATE: *((uint16_t *)dst) = src1;       break;
1789 +                        case IA64_INST_ST4: case IA64_INST_ST4_UPDATE: *((uint32_t *)dst) = src1;       break;
1790 +                        case IA64_INST_ST8: case IA64_INST_ST8_UPDATE: *((uint64_t *)dst) = src1;       break;
1791 +                        }
1792 +                }
1793 +                inst->operands[0].value  = dst2;
1794 +                inst->operands[0].nat    = nat2;
1795 +                break;
1796 +        default:
1797 +                return false;
1798 +        }
1799 +
1800 +        for (int i = 0; i < IA64_N_OPERANDS; i++) {
1801 +                ia64_operand_t const & op = inst->operands[i];
1802 +                if (!op.commit)
1803 +                        continue;
1804 +                if (op.index == -1)
1805 +                        return false; // XXX: internal error
1806 +                IA64_SET_GR(op.index, op.value, op.nat);
1807 +        }
1808 +        return true;
1809 + }
1810 +
1811 + static bool ia64_emulate_instruction(uint64_t raw_inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
1812 + {
1813 +        ia64_instruction_t inst;
1814 +        memset(&inst, 0, sizeof(inst));
1815 +        inst.inst = raw_inst;
1816 +        if (!ia64_decode_instruction(&inst, IA64_CONTEXT))
1817 +                return false;
1818 +        return ia64_emulate_instruction(&inst, IA64_CONTEXT);
1819 + }
1820 +
1821 + static bool ia64_skip_instruction(IA64_CONTEXT_TYPE IA64_CONTEXT)
1822 + {
1823 +        uint64_t ip = IA64_GET_IP();
1824 + #if DEBUG
1825 +        printf("IP: 0x%016llx\n", ip);
1826 + #if 0
1827 +        printf(" Template 0x%02x\n", ia64_get_template(ip));
1828 +        ia64_get_instruction(ip, 0);
1829 +        ia64_get_instruction(ip, 1);
1830 +        ia64_get_instruction(ip, 2);
1831 + #endif
1832 + #endif
1833 +
1834 +        // Select which decode switch to use
1835 +        ia64_instruction_t inst;
1836 +        inst.inst = ia64_get_instruction(ip, ip & 3);
1837 +        if (!ia64_decode_instruction(&inst, IA64_CONTEXT)) {
1838 +                fprintf(stderr, "ERROR: ia64_skip_instruction(): could not decode instruction\n");
1839 +                return false;
1840 +        }
1841 +
1842 +        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1843 +        transfer_size_t transfer_size = SIZE_UNKNOWN;
1844 +
1845 +        switch (inst.mnemo) {
1846 +        case IA64_INST_LD1:
1847 +        case IA64_INST_LD2:
1848 +        case IA64_INST_LD4:
1849 +        case IA64_INST_LD8:
1850 +        case IA64_INST_LD1_UPDATE:
1851 +        case IA64_INST_LD2_UPDATE:
1852 +        case IA64_INST_LD4_UPDATE:
1853 +        case IA64_INST_LD8_UPDATE:
1854 +                transfer_type = SIGSEGV_TRANSFER_LOAD;
1855 +                break;
1856 +        case IA64_INST_ST1:
1857 +        case IA64_INST_ST2:
1858 +        case IA64_INST_ST4:
1859 +        case IA64_INST_ST8:
1860 +        case IA64_INST_ST1_UPDATE:
1861 +        case IA64_INST_ST2_UPDATE:
1862 +        case IA64_INST_ST4_UPDATE:
1863 +        case IA64_INST_ST8_UPDATE:
1864 +                transfer_type = SIGSEGV_TRANSFER_STORE;
1865 +                break;
1866 +        }
1867 +
1868 +        if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1869 +                // Unknown machine code, let it crash. Then patch the decoder
1870 +                fprintf(stderr, "ERROR: ia64_skip_instruction(): not a load/store instruction\n");
1871 +                return false;
1872 +        }
1873 +
1874 +        switch (inst.mnemo) {
1875 +        case IA64_INST_LD1:
1876 +        case IA64_INST_LD1_UPDATE:
1877 +        case IA64_INST_ST1:
1878 +        case IA64_INST_ST1_UPDATE:
1879 +                transfer_size = SIZE_BYTE;
1880 +                break;
1881 +        case IA64_INST_LD2:
1882 +        case IA64_INST_LD2_UPDATE:
1883 +        case IA64_INST_ST2:
1884 +        case IA64_INST_ST2_UPDATE:
1885 +                transfer_size = SIZE_WORD;
1886 +                break;
1887 +        case IA64_INST_LD4:
1888 +        case IA64_INST_LD4_UPDATE:
1889 +        case IA64_INST_ST4:
1890 +        case IA64_INST_ST4_UPDATE:
1891 +                transfer_size = SIZE_LONG;
1892 +                break;
1893 +        case IA64_INST_LD8:
1894 +        case IA64_INST_LD8_UPDATE:
1895 +        case IA64_INST_ST8:
1896 +        case IA64_INST_ST8_UPDATE:
1897 +                transfer_size = SIZE_QUAD;
1898 +                break;
1899 +        }
1900 +
1901 +        if (transfer_size == SIZE_UNKNOWN) {
1902 +                // Unknown machine code, let it crash. Then patch the decoder
1903 +                fprintf(stderr, "ERROR: ia64_skip_instruction(): unknown transfer size\n");
1904 +                return false;
1905 +        }
1906 +
1907 +        inst.no_memory = true;
1908 +        if (!ia64_emulate_instruction(&inst, IA64_CONTEXT)) {
1909 +                fprintf(stderr, "ERROR: ia64_skip_instruction(): could not emulate fault instruction\n");
1910 +                return false;
1911 +        }
1912 +
1913 +        int slot = ip & 3;
1914 +        bool emulate_next = false;
1915 +        switch (slot) {
1916 +        case 0:
1917 +                switch (ia64_get_template(ip)) {
1918 +                case 0x2: // MI;I
1919 +                case 0x3: // MI;I;
1920 +                        emulate_next = true;
1921 +                        slot = 2;
1922 +                        break;
1923 +                case 0xa: // M;MI
1924 +                case 0xb: // M;MI;
1925 +                        emulate_next = true;
1926 +                        slot = 1;
1927 +                        break;
1928 +                }
1929 +                break;
1930 +        }
1931 +        if (emulate_next && !IA64_CAN_PATCH_IP_SLOT) {
1932 +                while (slot < 3) {
1933 +                        if (!ia64_emulate_instruction(ia64_get_instruction(ip, slot), IA64_CONTEXT)) {
1934 +                                fprintf(stderr, "ERROR: ia64_skip_instruction(): could not emulate instruction\n");
1935 +                                return false;
1936 +                        }
1937 +                        ++slot;
1938 +                }
1939 +        }
1940 +
1941 + #if IA64_CAN_PATCH_IP_SLOT
1942 +        if ((slot = ip & 3) < 2)
1943 +                IA64_SET_IP((ip & ~3ull) + (slot + 1));
1944 +        else
1945 + #endif
1946 +                IA64_SET_IP((ip & ~3ull) + 16);
1947 + #if DEBUG
1948 +        printf("IP: 0x%016llx\n", IA64_GET_IP());
1949 + #endif
1950 +        return true;
1951 + }
1952 + #endif
1953 +
1954   // Decode and skip PPC instruction
1955 < #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
1956 < static bool powerpc_skip_instruction(unsigned int * nip_p, unsigned int * regs)
1955 > #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__))
1956 > static bool powerpc_skip_instruction(unsigned long * nip_p, unsigned long * regs)
1957   {
1958          instruction_t instr;
1959          powerpc_decode_instruction(&instr, *nip_p, regs);
# Line 757 | Line 1965 | static bool powerpc_skip_instruction(uns
1965  
1966   #if DEBUG
1967          printf("%08x: %s %s access", *nip_p,
1968 <                   instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : "long",
1968 >                   instr.transfer_size == SIZE_BYTE ? "byte" :
1969 >                   instr.transfer_size == SIZE_WORD ? "word" :
1970 >                   instr.transfer_size == SIZE_LONG ? "long" : "quad",
1971                     instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1972          
1973          if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
# Line 775 | Line 1985 | static bool powerpc_skip_instruction(uns
1985          return true;
1986   }
1987   #endif
1988 +
1989 + // Decode and skip MIPS instruction
1990 + #if (defined(mips) || defined(__mips))
1991 + static bool mips_skip_instruction(greg_t * pc_p, greg_t * regs)
1992 + {
1993 +  unsigned int * epc = (unsigned int *)(unsigned long)*pc_p;
1994 +
1995 +  if (epc == 0)
1996 +        return false;
1997 +
1998 + #if DEBUG
1999 +  printf("IP: %p [%08x]\n", epc, epc[0]);
2000 + #endif
2001 +
2002 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
2003 +  transfer_size_t transfer_size = SIZE_LONG;
2004 +  int direction = 0;
2005 +
2006 +  const unsigned int opcode = epc[0];
2007 +  switch (opcode >> 26) {
2008 +  case 32: // Load Byte
2009 +  case 36: // Load Byte Unsigned
2010 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2011 +        transfer_size = SIZE_BYTE;
2012 +        break;
2013 +  case 33: // Load Halfword
2014 +  case 37: // Load Halfword Unsigned
2015 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2016 +        transfer_size = SIZE_WORD;
2017 +        break;
2018 +  case 35: // Load Word
2019 +  case 39: // Load Word Unsigned
2020 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2021 +        transfer_size = SIZE_LONG;
2022 +        break;
2023 +  case 34: // Load Word Left
2024 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2025 +        transfer_size = SIZE_LONG;
2026 +        direction = -1;
2027 +        break;
2028 +  case 38: // Load Word Right
2029 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2030 +        transfer_size = SIZE_LONG;
2031 +        direction = 1;
2032 +        break;
2033 +  case 55: // Load Doubleword
2034 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2035 +        transfer_size = SIZE_QUAD;
2036 +        break;
2037 +  case 26: // Load Doubleword Left
2038 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2039 +        transfer_size = SIZE_QUAD;
2040 +        direction = -1;
2041 +        break;
2042 +  case 27: // Load Doubleword Right
2043 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2044 +        transfer_size = SIZE_QUAD;
2045 +        direction = 1;
2046 +        break;
2047 +  case 40: // Store Byte
2048 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2049 +        transfer_size = SIZE_BYTE;
2050 +        break;
2051 +  case 41: // Store Halfword
2052 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2053 +        transfer_size = SIZE_WORD;
2054 +        break;
2055 +  case 43: // Store Word
2056 +  case 42: // Store Word Left
2057 +  case 46: // Store Word Right
2058 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2059 +        transfer_size = SIZE_LONG;
2060 +        break;
2061 +  case 63: // Store Doubleword
2062 +  case 44: // Store Doubleword Left
2063 +  case 45: // Store Doubleword Right
2064 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2065 +        transfer_size = SIZE_QUAD;
2066 +        break;
2067 +  /* Misc instructions unlikely to be used within CPU emulators */
2068 +  case 48: // Load Linked Word
2069 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2070 +        transfer_size = SIZE_LONG;
2071 +        break;
2072 +  case 52: // Load Linked Doubleword
2073 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2074 +        transfer_size = SIZE_QUAD;
2075 +        break;
2076 +  case 56: // Store Conditional Word
2077 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2078 +        transfer_size = SIZE_LONG;
2079 +        break;
2080 +  case 60: // Store Conditional Doubleword
2081 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2082 +        transfer_size = SIZE_QUAD;
2083 +        break;
2084 +  }
2085 +
2086 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
2087 +        // Unknown machine code, let it crash. Then patch the decoder
2088 +        return false;
2089 +  }
2090 +
2091 +  // Zero target register in case of a load operation
2092 +  const int reg = (opcode >> 16) & 0x1f;
2093 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD) {
2094 +        if (direction == 0)
2095 +          regs[reg] = 0;
2096 +        else {
2097 +          // FIXME: untested code
2098 +          unsigned long ea = regs[(opcode >> 21) & 0x1f];
2099 +          ea += (signed long)(signed int)(signed short)(opcode & 0xffff);
2100 +          const int offset = ea & (transfer_size == SIZE_LONG ? 3 : 7);
2101 +          unsigned long value;
2102 +          if (direction > 0) {
2103 +                const unsigned long rmask = ~((1L << ((offset + 1) * 8)) - 1);
2104 +                value = regs[reg] & rmask;
2105 +          }
2106 +          else {
2107 +                const unsigned long lmask = (1L << (offset * 8)) - 1;
2108 +                value = regs[reg] & lmask;
2109 +          }
2110 +          // restore most significant bits
2111 +          if (transfer_size == SIZE_LONG)
2112 +                value = (signed long)(signed int)value;
2113 +          regs[reg] = value;
2114 +        }
2115 +  }
2116 +
2117 + #if DEBUG
2118 + #if (defined(_ABIN32) || defined(_ABI64))
2119 +  static const char * mips_gpr_names[32] = {
2120 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
2121 +        "t0",   "t1",   "t2",   "t3",   "t4",   "t5",   "t6",   "t7",
2122 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
2123 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
2124 +  };
2125 + #else
2126 +  static const char * mips_gpr_names[32] = {
2127 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
2128 +        "a4",   "a5",   "a6",   "a7",   "t0",   "t1",   "t2",   "t3",
2129 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
2130 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
2131 +  };
2132 + #endif
2133 +  printf("%s %s register %s\n",
2134 +                 transfer_size == SIZE_BYTE ? "byte" :
2135 +                 transfer_size == SIZE_WORD ? "word" :
2136 +                 transfer_size == SIZE_LONG ? "long" :
2137 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
2138 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
2139 +                 mips_gpr_names[reg]);
2140   #endif
2141  
2142 +  *pc_p += 4;
2143 +  return true;
2144 + }
2145 + #endif
2146 +
2147 + // Decode and skip SPARC instruction
2148 + #if (defined(sparc) || defined(__sparc__))
2149 + enum {
2150 + #if (defined(__sun__))
2151 +  SPARC_REG_G1 = REG_G1,
2152 +  SPARC_REG_O0 = REG_O0,
2153 +  SPARC_REG_PC = REG_PC,
2154 +  SPARC_REG_nPC = REG_nPC
2155 + #endif
2156 + };
2157 + static bool sparc_skip_instruction(unsigned long * regs, gwindows_t * gwins, struct rwindow * rwin)
2158 + {
2159 +  unsigned int * pc = (unsigned int *)regs[SPARC_REG_PC];
2160 +
2161 +  if (pc == 0)
2162 +        return false;
2163 +
2164 + #if DEBUG
2165 +  printf("IP: %p [%08x]\n", pc, pc[0]);
2166 + #endif
2167 +
2168 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
2169 +  transfer_size_t transfer_size = SIZE_LONG;
2170 +  bool register_pair = false;
2171 +
2172 +  const unsigned int opcode = pc[0];
2173 +  if ((opcode >> 30) != 3)
2174 +        return false;
2175 +  switch ((opcode >> 19) & 0x3f) {
2176 +  case 9: // Load Signed Byte
2177 +  case 1: // Load Unsigned Byte
2178 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2179 +        transfer_size = SIZE_BYTE;
2180 +        break;
2181 +  case 10:// Load Signed Halfword
2182 +  case 2: // Load Unsigned Word
2183 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2184 +        transfer_size = SIZE_WORD;
2185 +        break;
2186 +  case 8: // Load Word
2187 +  case 0: // Load Unsigned Word
2188 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2189 +        transfer_size = SIZE_LONG;
2190 +        break;
2191 +  case 11:// Load Extended Word
2192 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2193 +        transfer_size = SIZE_QUAD;
2194 +        break;
2195 +  case 3: // Load Doubleword
2196 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2197 +        transfer_size = SIZE_LONG;
2198 +        register_pair = true;
2199 +        break;
2200 +  case 5: // Store Byte
2201 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2202 +        transfer_size = SIZE_BYTE;
2203 +        break;
2204 +  case 6: // Store Halfword
2205 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2206 +        transfer_size = SIZE_WORD;
2207 +        break;
2208 +  case 4: // Store Word
2209 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2210 +        transfer_size = SIZE_LONG;
2211 +        break;
2212 +  case 14:// Store Extended Word
2213 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2214 +        transfer_size = SIZE_QUAD;
2215 +        break;
2216 +  case 7: // Store Doubleword
2217 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2218 +        transfer_size = SIZE_LONG;
2219 +        register_pair = true;
2220 +        break;
2221 +  }
2222 +
2223 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
2224 +        // Unknown machine code, let it crash. Then patch the decoder
2225 +        return false;
2226 +  }
2227 +
2228 +  const int reg = (opcode >> 25) & 0x1f;
2229 +
2230 + #if DEBUG
2231 +  static const char * reg_names[] = {
2232 +        "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
2233 +        "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
2234 +        "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
2235 +        "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7"
2236 +  };
2237 +  printf("%s %s register %s\n",
2238 +                 transfer_size == SIZE_BYTE ? "byte" :
2239 +                 transfer_size == SIZE_WORD ? "word" :
2240 +                 transfer_size == SIZE_LONG ? "long" :
2241 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
2242 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
2243 +                 reg_names[reg]);
2244 + #endif
2245 +
2246 +  // Zero target register in case of a load operation
2247 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != 0) {
2248 +        // FIXME: code to handle local & input registers is not tested
2249 +        if (reg >= 1 && reg < 8) {
2250 +          // global registers
2251 +          regs[reg - 1 + SPARC_REG_G1] = 0;
2252 +        }
2253 +        else if (reg >= 8 && reg < 16) {
2254 +          // output registers
2255 +          regs[reg - 8 + SPARC_REG_O0] = 0;
2256 +        }
2257 +        else if (reg >= 16 && reg < 24) {
2258 +          // local registers (in register windows)
2259 +          if (gwins)
2260 +                gwins->wbuf->rw_local[reg - 16] = 0;
2261 +          else
2262 +                rwin->rw_local[reg - 16] = 0;
2263 +        }
2264 +        else {
2265 +          // input registers (in register windows)
2266 +          if (gwins)
2267 +                gwins->wbuf->rw_in[reg - 24] = 0;
2268 +          else
2269 +                rwin->rw_in[reg - 24] = 0;
2270 +        }
2271 +  }
2272 +
2273 +  regs[SPARC_REG_PC] += 4;
2274 +  regs[SPARC_REG_nPC] += 4;
2275 +  return true;
2276 + }
2277 + #endif
2278 + #endif
2279 +
2280 + // Decode and skip ARM instruction
2281 + #if (defined(arm) || defined(__arm__))
2282 + enum {
2283 + #if (defined(__linux__))
2284 +  ARM_REG_PC = 15,
2285 +  ARM_REG_CPSR = 16
2286 + #endif
2287 + };
2288 + static bool arm_skip_instruction(unsigned long * regs)
2289 + {
2290 +  unsigned int * pc = (unsigned int *)regs[ARM_REG_PC];
2291 +
2292 +  if (pc == 0)
2293 +        return false;
2294 +
2295 + #if DEBUG
2296 +  printf("IP: %p [%08x]\n", pc, pc[0]);
2297 + #endif
2298 +
2299 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
2300 +  transfer_size_t transfer_size = SIZE_UNKNOWN;
2301 +  enum { op_sdt = 1, op_sdth = 2 };
2302 +  int op = 0;
2303 +
2304 +  // Handle load/store instructions only
2305 +  const unsigned int opcode = pc[0];
2306 +  switch ((opcode >> 25) & 7) {
2307 +  case 0: // Halfword and Signed Data Transfer (LDRH, STRH, LDRSB, LDRSH)
2308 +        op = op_sdth;
2309 +        // Determine transfer size (S/H bits)
2310 +        switch ((opcode >> 5) & 3) {
2311 +        case 0: // SWP instruction
2312 +          break;
2313 +        case 1: // Unsigned halfwords
2314 +        case 3: // Signed halfwords
2315 +          transfer_size = SIZE_WORD;
2316 +          break;
2317 +        case 2: // Signed byte
2318 +          transfer_size = SIZE_BYTE;
2319 +          break;
2320 +        }
2321 +        break;
2322 +  case 2:
2323 +  case 3: // Single Data Transfer (LDR, STR)
2324 +        op = op_sdt;
2325 +        // Determine transfer size (B bit)
2326 +        if (((opcode >> 22) & 1) == 1)
2327 +          transfer_size = SIZE_BYTE;
2328 +        else
2329 +          transfer_size = SIZE_LONG;
2330 +        break;
2331 +  default:
2332 +        // FIXME: support load/store mutliple?
2333 +        return false;
2334 +  }
2335 +
2336 +  // Check for invalid transfer size (SWP instruction?)
2337 +  if (transfer_size == SIZE_UNKNOWN)
2338 +        return false;
2339 +
2340 +  // Determine transfer type (L bit)
2341 +  if (((opcode >> 20) & 1) == 1)
2342 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2343 +  else
2344 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2345 +
2346 +  // Compute offset
2347 +  int offset;
2348 +  if (((opcode >> 25) & 1) == 0) {
2349 +        if (op == op_sdt)
2350 +          offset = opcode & 0xfff;
2351 +        else if (op == op_sdth) {
2352 +          int rm = opcode & 0xf;
2353 +          if (((opcode >> 22) & 1) == 0) {
2354 +                // register offset
2355 +                offset = regs[rm];
2356 +          }
2357 +          else {
2358 +                // immediate offset
2359 +                offset = ((opcode >> 4) & 0xf0) | (opcode & 0x0f);
2360 +          }
2361 +        }
2362 +  }
2363 +  else {
2364 +        const int rm = opcode & 0xf;
2365 +        const int sh = (opcode >> 7) & 0x1f;
2366 +        if (((opcode >> 4) & 1) == 1) {
2367 +          // we expect only legal load/store instructions
2368 +          printf("FATAL: invalid shift operand\n");
2369 +          return false;
2370 +        }
2371 +        const unsigned int v = regs[rm];
2372 +        switch ((opcode >> 5) & 3) {
2373 +        case 0: // logical shift left
2374 +          offset = sh ? v << sh : v;
2375 +          break;
2376 +        case 1: // logical shift right
2377 +          offset = sh ? v >> sh : 0;
2378 +          break;
2379 +        case 2: // arithmetic shift right
2380 +          if (sh)
2381 +                offset = ((signed int)v) >> sh;
2382 +          else
2383 +                offset = (v & 0x80000000) ? 0xffffffff : 0;
2384 +          break;
2385 +        case 3: // rotate right
2386 +          if (sh)
2387 +                offset = (v >> sh) | (v << (32 - sh));
2388 +          else
2389 +                offset = (v >> 1) | ((regs[ARM_REG_CPSR] << 2) & 0x80000000);
2390 +          break;
2391 +        }
2392 +  }
2393 +  if (((opcode >> 23) & 1) == 0)
2394 +        offset = -offset;
2395 +
2396 +  int rd = (opcode >> 12) & 0xf;
2397 +  int rn = (opcode >> 16) & 0xf;
2398 + #if DEBUG
2399 +  static const char * reg_names[] = {
2400 +        "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2401 +        "r9", "r9", "sl", "fp", "ip", "sp", "lr", "pc"
2402 +  };
2403 +  printf("%s %s register %s\n",
2404 +                 transfer_size == SIZE_BYTE ? "byte" :
2405 +                 transfer_size == SIZE_WORD ? "word" :
2406 +                 transfer_size == SIZE_LONG ? "long" : "unknown",
2407 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
2408 +                 reg_names[rd]);
2409 + #endif
2410 +
2411 +  unsigned int base = regs[rn];
2412 +  if (((opcode >> 24) & 1) == 1)
2413 +        base += offset;
2414 +
2415 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD)
2416 +        regs[rd] = 0;
2417 +
2418 +  if (((opcode >> 24) & 1) == 0)                // post-index addressing
2419 +        regs[rn] += offset;
2420 +  else if (((opcode >> 21) & 1) == 1)   // write-back address into base
2421 +        regs[rn] = base;
2422 +
2423 +  regs[ARM_REG_PC] += 4;
2424 +  return true;
2425 + }
2426 + #endif
2427 +
2428 +
2429   // Fallbacks
2430 + #ifndef SIGSEGV_FAULT_ADDRESS_FAST
2431 + #define SIGSEGV_FAULT_ADDRESS_FAST              SIGSEGV_FAULT_ADDRESS
2432 + #endif
2433 + #ifndef SIGSEGV_FAULT_INSTRUCTION_FAST
2434 + #define SIGSEGV_FAULT_INSTRUCTION_FAST  SIGSEGV_FAULT_INSTRUCTION
2435 + #endif
2436   #ifndef SIGSEGV_FAULT_INSTRUCTION
2437 < #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_PC
2437 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_ADDRESS
2438   #endif
2439   #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
2440   #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
2441   #endif
2442 + #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
2443 + #define SIGSEGV_FAULT_HANDLER_INVOKE(P) sigsegv_fault_handler(P)
2444 + #endif
2445  
2446   // SIGSEGV recovery supported ?
2447   #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
# Line 795 | Line 2453 | static bool powerpc_skip_instruction(uns
2453   *  SIGSEGV global handler
2454   */
2455  
2456 < #if defined(HAVE_SIGSEGV_RECOVERY) || defined(HAVE_MACH_EXCEPTIONS)
2456 > struct sigsegv_info_t {
2457 >        sigsegv_address_t addr;
2458 >        sigsegv_address_t pc;
2459 > #ifdef HAVE_MACH_EXCEPTIONS
2460 >        mach_port_t thread;
2461 >        bool has_exc_state;
2462 >        SIGSEGV_EXCEPTION_STATE_TYPE exc_state;
2463 >        mach_msg_type_number_t exc_state_count;
2464 >        bool has_thr_state;
2465 >        SIGSEGV_THREAD_STATE_TYPE thr_state;
2466 >        mach_msg_type_number_t thr_state_count;
2467 > #endif
2468 > };
2469 >
2470 > #ifdef HAVE_MACH_EXCEPTIONS
2471 > static void mach_get_exception_state(sigsegv_info_t *SIP)
2472 > {
2473 >        SIP->exc_state_count = SIGSEGV_EXCEPTION_STATE_COUNT;
2474 >        kern_return_t krc = thread_get_state(SIP->thread,
2475 >                                                                                 SIGSEGV_EXCEPTION_STATE_FLAVOR,
2476 >                                                                                 (natural_t *)&SIP->exc_state,
2477 >                                                                                 &SIP->exc_state_count);
2478 >        MACH_CHECK_ERROR(thread_get_state, krc);
2479 >        SIP->has_exc_state = true;
2480 > }
2481 >
2482 > static void mach_get_thread_state(sigsegv_info_t *SIP)
2483 > {
2484 >        SIP->thr_state_count = SIGSEGV_THREAD_STATE_COUNT;
2485 >        kern_return_t krc = thread_get_state(SIP->thread,
2486 >                                                                                 SIGSEGV_THREAD_STATE_FLAVOR,
2487 >                                                                                 (natural_t *)&SIP->thr_state,
2488 >                                                                                 &SIP->thr_state_count);
2489 >        MACH_CHECK_ERROR(thread_get_state, krc);
2490 >        SIP->has_thr_state = true;
2491 > }
2492 >
2493 > static void mach_set_thread_state(sigsegv_info_t *SIP)
2494 > {
2495 >        kern_return_t krc = thread_set_state(SIP->thread,
2496 >                                                                                 SIGSEGV_THREAD_STATE_FLAVOR,
2497 >                                                                                 (natural_t *)&SIP->thr_state,
2498 >                                                                                 SIP->thr_state_count);
2499 >        MACH_CHECK_ERROR(thread_set_state, krc);
2500 > }
2501 > #endif
2502 >
2503 > // Return the address of the invalid memory reference
2504 > sigsegv_address_t sigsegv_get_fault_address(sigsegv_info_t *SIP)
2505 > {
2506 > #ifdef HAVE_MACH_EXCEPTIONS
2507 >        static int use_fast_path = -1;
2508 >        if (use_fast_path != 1 && !SIP->has_exc_state) {
2509 >                mach_get_exception_state(SIP);
2510 >
2511 >                sigsegv_address_t addr = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
2512 >                if (use_fast_path < 0) {
2513 >                        const char *machfault = getenv("SIGSEGV_MACH_FAULT");
2514 >                        if (machfault) {
2515 >                                if (strcmp(machfault, "fast") == 0)
2516 >                                        use_fast_path = 1;
2517 >                                else if (strcmp(machfault, "slow") == 0)
2518 >                                        use_fast_path = 0;
2519 >                        }
2520 >                        if (use_fast_path < 0)
2521 >                                use_fast_path = addr == SIP->addr;
2522 >                }
2523 >                SIP->addr = addr;
2524 >        }
2525 > #endif
2526 >        return SIP->addr;
2527 > }
2528 >
2529 > // Return the address of the instruction that caused the fault, or
2530 > // SIGSEGV_INVALID_ADDRESS if we could not retrieve this information
2531 > sigsegv_address_t sigsegv_get_fault_instruction_address(sigsegv_info_t *SIP)
2532 > {
2533 > #ifdef HAVE_MACH_EXCEPTIONS
2534 >        if (!SIP->has_thr_state) {
2535 >                mach_get_thread_state(SIP);
2536 >
2537 >                SIP->pc = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
2538 >        }
2539 > #endif
2540 >        return SIP->pc;
2541 > }
2542 >
2543   // This function handles the badaccess to memory.
2544   // It is called from the signal handler or the exception handler.
2545   static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
2546   {
2547 <        sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
2548 <        sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
2549 <        
2547 >        sigsegv_info_t SI;
2548 >        SI.addr = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS_FAST;
2549 >        SI.pc = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION_FAST;
2550 > #ifdef HAVE_MACH_EXCEPTIONS
2551 >        SI.thread = thread;
2552 >        SI.has_exc_state = false;
2553 >        SI.has_thr_state = false;
2554 > #endif
2555 >        sigsegv_info_t * const SIP = &SI;
2556 >
2557          // Call user's handler and reinstall the global handler, if required
2558 <        switch (sigsegv_fault_handler(fault_address, fault_instruction)) {
2558 >        switch (SIGSEGV_FAULT_HANDLER_INVOKE(SIP)) {
2559          case SIGSEGV_RETURN_SUCCESS:
2560                  return true;
2561  
# Line 812 | Line 2563 | static bool handle_badaccess(SIGSEGV_FAU
2563          case SIGSEGV_RETURN_SKIP_INSTRUCTION:
2564                  // Call the instruction skipper with the register file
2565                  // available
2566 + #ifdef HAVE_MACH_EXCEPTIONS
2567 +                if (!SIP->has_thr_state)
2568 +                        mach_get_thread_state(SIP);
2569 + #endif
2570                  if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
2571   #ifdef HAVE_MACH_EXCEPTIONS
2572                          // Unlike UNIX signals where the thread state
2573                          // is modified off of the stack, in Mach we
2574                          // need to actually call thread_set_state to
2575                          // have the register values updated.
2576 <                        kern_return_t krc;
822 <
823 <                        krc = thread_set_state(thread,
824 <                                                                   MACHINE_THREAD_STATE, (thread_state_t)state,
825 <                                                                   MACHINE_THREAD_STATE_COUNT);
826 <                        MACH_CHECK_ERROR (thread_get_state, krc);
2576 >                        mach_set_thread_state(SIP);
2577   #endif
2578                          return true;
2579                  }
2580                  break;
2581   #endif
2582 +        case SIGSEGV_RETURN_FAILURE:
2583 +                // We can't do anything with the fault_address, dump state?
2584 +                if (sigsegv_state_dumper != 0)
2585 +                        sigsegv_state_dumper(SIP);
2586 +                break;
2587          }
833        
834        // We can't do anything with the fault_address, dump state?
835        if (sigsegv_state_dumper != 0)
836                sigsegv_state_dumper(fault_address, fault_instruction);
2588  
2589          return false;
2590   }
840 #endif
2591  
2592  
2593   /*
# Line 874 | Line 2624 | forward_exception(mach_port_t thread_por
2624          mach_port_t port;
2625          exception_behavior_t behavior;
2626          thread_state_flavor_t flavor;
2627 <        thread_state_t thread_state;
2627 >        thread_state_data_t thread_state;
2628          mach_msg_type_number_t thread_state_count;
2629  
2630          for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
# Line 893 | Line 2643 | forward_exception(mach_port_t thread_por
2643          behavior = oldExceptionPorts->behaviors[portIndex];
2644          flavor = oldExceptionPorts->flavors[portIndex];
2645  
2646 +        if (!VALID_THREAD_STATE_FLAVOR(flavor)) {
2647 +                fprintf(stderr, "Invalid thread_state flavor = %d. Not forwarding\n", flavor);
2648 +                return KERN_FAILURE;
2649 +        }
2650 +
2651          /*
2652           fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
2653           */
2654  
2655          if (behavior != EXCEPTION_DEFAULT) {
2656                  thread_state_count = THREAD_STATE_MAX;
2657 <                kret = thread_get_state (thread_port, flavor, thread_state,
2657 >                kret = thread_get_state (thread_port, flavor, (natural_t *)&thread_state,
2658                                                                   &thread_state_count);
2659                  MACH_CHECK_ERROR (thread_get_state, kret);
2660          }
# Line 915 | Line 2670 | forward_exception(mach_port_t thread_por
2670            // fprintf(stderr, "forwarding to exception_raise_state\n");
2671            kret = exception_raise_state(port, exception_type, exception_data,
2672                                                                     data_count, &flavor,
2673 <                                                                   thread_state, thread_state_count,
2674 <                                                                   thread_state, &thread_state_count);
2673 >                                                                   (natural_t *)&thread_state, thread_state_count,
2674 >                                                                   (natural_t *)&thread_state, &thread_state_count);
2675            MACH_CHECK_ERROR (exception_raise_state, kret);
2676            break;
2677          case EXCEPTION_STATE_IDENTITY:
# Line 924 | Line 2679 | forward_exception(mach_port_t thread_por
2679            kret = exception_raise_state_identity(port, thread_port, task_port,
2680                                                                                          exception_type, exception_data,
2681                                                                                          data_count, &flavor,
2682 <                                                                                        thread_state, thread_state_count,
2683 <                                                                                        thread_state, &thread_state_count);
2682 >                                                                                        (natural_t *)&thread_state, thread_state_count,
2683 >                                                                                        (natural_t *)&thread_state, &thread_state_count);
2684            MACH_CHECK_ERROR (exception_raise_state_identity, kret);
2685            break;
2686          default:
2687            fprintf(stderr, "forward_exception got unknown behavior\n");
2688 +          kret = KERN_FAILURE;
2689            break;
2690          }
2691  
2692          if (behavior != EXCEPTION_DEFAULT) {
2693 <                kret = thread_set_state (thread_port, flavor, thread_state,
2693 >                kret = thread_set_state (thread_port, flavor, (natural_t *)&thread_state,
2694                                                                   thread_state_count);
2695                  MACH_CHECK_ERROR (thread_set_state, kret);
2696          }
2697  
2698 <        return KERN_SUCCESS;
2698 >        return kret;
2699   }
2700  
2701   /*
# Line 967 | Line 2723 | catch_exception_raise(mach_port_t except
2723                                            mach_port_t task,
2724                                            exception_type_t exception,
2725                                            exception_data_t code,
2726 <                                          mach_msg_type_number_t codeCount)
2726 >                                          mach_msg_type_number_t code_count)
2727   {
972        ppc_thread_state_t state;
2728          kern_return_t krc;
2729  
2730 <        if ((exception == EXC_BAD_ACCESS)  && (codeCount >= 2)) {
2731 <                if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
2732 <                        return KERN_SUCCESS;
2730 >        if (exception == EXC_BAD_ACCESS) {
2731 >                switch (code[0]) {
2732 >                case KERN_PROTECTION_FAILURE:
2733 >                case KERN_INVALID_ADDRESS:
2734 >                        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
2735 >                                return KERN_SUCCESS;
2736 >                        break;
2737 >                }
2738          }
2739  
2740          // In Mach we do not need to remove the exception handler.
2741          // If we forward the exception, eventually some exception handler
2742          // will take care of this exception.
2743 <        krc = forward_exception(thread, task, exception, code, codeCount, &ports);
2743 >        krc = forward_exception(thread, task, exception, code, code_count, &ports);
2744  
2745          return krc;
2746   }
# Line 1108 | Line 2868 | static bool sigsegv_do_install_handler(s
2868          // addressing modes) used in PPC instructions, you will need the
2869          // GPR state anyway.
2870          krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
2871 <                                EXCEPTION_DEFAULT, MACHINE_THREAD_STATE);
2871 >                                EXCEPTION_DEFAULT, SIGSEGV_THREAD_STATE_FLAVOR);
2872          if (krc != KERN_SUCCESS) {
2873                  mach_error("thread_set_exception_ports", krc);
2874                  return false;
# Line 1131 | Line 2891 | static bool sigsegv_do_install_handler(s
2891   }
2892   #endif
2893  
2894 + #ifdef HAVE_WIN32_EXCEPTIONS
2895 + static LONG WINAPI main_exception_filter(EXCEPTION_POINTERS *ExceptionInfo)
2896 + {
2897 +        if (sigsegv_fault_handler != NULL
2898 +                && ExceptionInfo->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION
2899 +                && ExceptionInfo->ExceptionRecord->NumberParameters == 2
2900 +                && handle_badaccess(ExceptionInfo))
2901 +                return EXCEPTION_CONTINUE_EXECUTION;
2902 +
2903 +        return EXCEPTION_CONTINUE_SEARCH;
2904 + }
2905 +
2906 + #if defined __CYGWIN__ && defined __i386__
2907 + /* In Cygwin programs, SetUnhandledExceptionFilter has no effect because Cygwin
2908 +   installs a global exception handler.  We have to dig deep in order to install
2909 +   our main_exception_filter.  */
2910 +
2911 + /* Data structures for the current thread's exception handler chain.
2912 +   On the x86 Windows uses register fs, offset 0 to point to the current
2913 +   exception handler; Cygwin mucks with it, so we must do the same... :-/ */
2914 +
2915 + /* Magic taken from winsup/cygwin/include/exceptions.h.  */
2916 +
2917 + struct exception_list {
2918 +    struct exception_list *prev;
2919 +    int (*handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
2920 + };
2921 + typedef struct exception_list exception_list;
2922 +
2923 + /* Magic taken from winsup/cygwin/exceptions.cc.  */
2924 +
2925 + __asm__ (".equ __except_list,0");
2926 +
2927 + extern exception_list *_except_list __asm__ ("%fs:__except_list");
2928 +
2929 + /* For debugging.  _except_list is not otherwise accessible from gdb.  */
2930 + static exception_list *
2931 + debug_get_except_list ()
2932 + {
2933 +  return _except_list;
2934 + }
2935 +
2936 + /* Cygwin's original exception handler.  */
2937 + static int (*cygwin_exception_handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
2938 +
2939 + /* Our exception handler.  */
2940 + static int
2941 + libsigsegv_exception_handler (EXCEPTION_RECORD *exception, void *frame, CONTEXT *context, void *dispatch)
2942 + {
2943 +  EXCEPTION_POINTERS ExceptionInfo;
2944 +  ExceptionInfo.ExceptionRecord = exception;
2945 +  ExceptionInfo.ContextRecord = context;
2946 +  if (main_exception_filter (&ExceptionInfo) == EXCEPTION_CONTINUE_SEARCH)
2947 +    return cygwin_exception_handler (exception, frame, context, dispatch);
2948 +  else
2949 +    return 0;
2950 + }
2951 +
2952 + static void
2953 + do_install_main_exception_filter ()
2954 + {
2955 +  /* We cannot insert any handler into the chain, because such handlers
2956 +     must lie on the stack (?).  Instead, we have to replace(!) Cygwin's
2957 +     global exception handler.  */
2958 +  cygwin_exception_handler = _except_list->handler;
2959 +  _except_list->handler = libsigsegv_exception_handler;
2960 + }
2961 +
2962 + #else
2963 +
2964 + static void
2965 + do_install_main_exception_filter ()
2966 + {
2967 +  SetUnhandledExceptionFilter ((LPTOP_LEVEL_EXCEPTION_FILTER) &main_exception_filter);
2968 + }
2969 + #endif
2970 +
2971 + static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
2972 + {
2973 +        static bool main_exception_filter_installed = false;
2974 +        if (!main_exception_filter_installed) {
2975 +                do_install_main_exception_filter();
2976 +                main_exception_filter_installed = true;
2977 +        }
2978 +        sigsegv_fault_handler = handler;
2979 +        return true;
2980 + }
2981 + #endif
2982 +
2983   bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
2984   {
2985   #if defined(HAVE_SIGSEGV_RECOVERY)
# Line 1141 | Line 2990 | bool sigsegv_install_handler(sigsegv_fau
2990          if (success)
2991              sigsegv_fault_handler = handler;
2992          return success;
2993 < #elif defined(HAVE_MACH_EXCEPTIONS)
2993 > #elif defined(HAVE_MACH_EXCEPTIONS) || defined(HAVE_WIN32_EXCEPTIONS)
2994          return sigsegv_do_install_handler(handler);
2995   #else
2996          // FAIL: no siginfo_t nor sigcontext subterfuge is available
# Line 1167 | Line 3016 | void sigsegv_deinstall_handler(void)
3016          SIGSEGV_ALL_SIGNALS
3017   #undef FAULT_HANDLER
3018   #endif
3019 + #ifdef HAVE_WIN32_EXCEPTIONS
3020 +        sigsegv_fault_handler = NULL;
3021 + #endif
3022   }
3023  
3024  
# Line 1188 | Line 3040 | void sigsegv_set_dump_state(sigsegv_stat
3040   #include <stdio.h>
3041   #include <stdlib.h>
3042   #include <fcntl.h>
3043 + #ifdef HAVE_SYS_MMAN_H
3044   #include <sys/mman.h>
3045 + #endif
3046   #include "vm_alloc.h"
3047  
3048 < static int page_size;
3048 > const int REF_INDEX = 123;
3049 > const int REF_VALUE = 45;
3050 >
3051 > static sigsegv_uintptr_t page_size;
3052   static volatile char * page = 0;
3053   static volatile int handler_called = 0;
3054  
3055 < static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
3055 > /* Barriers */
3056 > #ifdef __GNUC__
3057 > #define BARRIER() asm volatile ("" : : : "memory")
3058 > #else
3059 > #define BARRIER() /* nothing */
3060 > #endif
3061 >
3062 > #ifdef __GNUC__
3063 > // Code range where we expect the fault to come from
3064 > static void *b_region, *e_region;
3065 > #endif
3066 >
3067 > static sigsegv_return_t sigsegv_test_handler(sigsegv_info_t *sip)
3068   {
3069 +        const sigsegv_address_t fault_address = sigsegv_get_fault_address(sip);
3070 +        const sigsegv_address_t instruction_address = sigsegv_get_fault_instruction_address(sip);
3071 + #if DEBUG
3072 +        printf("sigsegv_test_handler(%p, %p)\n", fault_address, instruction_address);
3073 +        printf("expected fault at %p\n", page + REF_INDEX);
3074 + #ifdef __GNUC__
3075 +        printf("expected instruction address range: %p-%p\n", b_region, e_region);
3076 + #endif
3077 + #endif
3078          handler_called++;
3079 <        if ((fault_address - 123) != page)
3079 >        if ((fault_address - REF_INDEX) != page)
3080                  exit(10);
3081 <        if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
3081 > #ifdef __GNUC__
3082 >        // Make sure reported fault instruction address falls into
3083 >        // expected code range
3084 >        if (instruction_address != SIGSEGV_INVALID_ADDRESS
3085 >                && ((instruction_address <  (sigsegv_address_t)b_region) ||
3086 >                        (instruction_address >= (sigsegv_address_t)e_region)))
3087                  exit(11);
3088 + #endif
3089 +        if (vm_protect((char *)((sigsegv_uintptr_t)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
3090 +                exit(12);
3091          return SIGSEGV_RETURN_SUCCESS;
3092   }
3093  
3094   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
3095 < #ifdef __GNUC__
1210 < // Code range where we expect the fault to come from
1211 < static void *b_region, *e_region;
1212 < #endif
1213 <
1214 < static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
3095 > static sigsegv_return_t sigsegv_insn_handler(sigsegv_info_t *sip)
3096   {
3097 <        if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
3097 >        const sigsegv_address_t fault_address = sigsegv_get_fault_address(sip);
3098 >        const sigsegv_address_t instruction_address = sigsegv_get_fault_instruction_address(sip);
3099 > #if DEBUG
3100 >        printf("sigsegv_insn_handler(%p, %p)\n", fault_address, instruction_address);
3101 > #endif
3102 >        if (((sigsegv_uintptr_t)fault_address - (sigsegv_uintptr_t)page) < page_size) {
3103   #ifdef __GNUC__
3104                  // Make sure reported fault instruction address falls into
3105                  // expected code range
3106 <                if (instruction_address != SIGSEGV_INVALID_PC
3106 >                if (instruction_address != SIGSEGV_INVALID_ADDRESS
3107                          && ((instruction_address <  (sigsegv_address_t)b_region) ||
3108                                  (instruction_address >= (sigsegv_address_t)e_region)))
3109                          return SIGSEGV_RETURN_FAILURE;
# Line 1227 | Line 3113 | static sigsegv_return_t sigsegv_insn_han
3113  
3114          return SIGSEGV_RETURN_FAILURE;
3115   }
3116 +
3117 + // More sophisticated tests for instruction skipper
3118 + static bool arch_insn_skipper_tests()
3119 + {
3120 + #if (defined(i386) || defined(__i386__)) || (defined(__x86_64__) || defined(_M_X64))
3121 +        static const unsigned char code[] = {
3122 +                0x8a, 0x00,                    // mov    (%eax),%al
3123 +                0x8a, 0x2c, 0x18,              // mov    (%eax,%ebx,1),%ch
3124 +                0x88, 0x20,                    // mov    %ah,(%eax)
3125 +                0x88, 0x08,                    // mov    %cl,(%eax)
3126 +                0x66, 0x8b, 0x00,              // mov    (%eax),%ax
3127 +                0x66, 0x8b, 0x0c, 0x18,        // mov    (%eax,%ebx,1),%cx
3128 +                0x66, 0x89, 0x00,              // mov    %ax,(%eax)
3129 +                0x66, 0x89, 0x0c, 0x18,        // mov    %cx,(%eax,%ebx,1)
3130 +                0x8b, 0x00,                    // mov    (%eax),%eax
3131 +                0x8b, 0x0c, 0x18,              // mov    (%eax,%ebx,1),%ecx
3132 +                0x89, 0x00,                    // mov    %eax,(%eax)
3133 +                0x89, 0x0c, 0x18,              // mov    %ecx,(%eax,%ebx,1)
3134 + #if defined(__x86_64__) || defined(_M_X64)
3135 +                0x44, 0x8a, 0x00,              // mov    (%rax),%r8b
3136 +                0x44, 0x8a, 0x20,              // mov    (%rax),%r12b
3137 +                0x42, 0x8a, 0x3c, 0x10,        // mov    (%rax,%r10,1),%dil
3138 +                0x44, 0x88, 0x00,              // mov    %r8b,(%rax)
3139 +                0x44, 0x88, 0x20,              // mov    %r12b,(%rax)
3140 +                0x42, 0x88, 0x3c, 0x10,        // mov    %dil,(%rax,%r10,1)
3141 +                0x66, 0x44, 0x8b, 0x00,        // mov    (%rax),%r8w
3142 +                0x66, 0x42, 0x8b, 0x0c, 0x10,  // mov    (%rax,%r10,1),%cx
3143 +                0x66, 0x44, 0x89, 0x00,        // mov    %r8w,(%rax)
3144 +                0x66, 0x42, 0x89, 0x0c, 0x10,  // mov    %cx,(%rax,%r10,1)
3145 +                0x44, 0x8b, 0x00,              // mov    (%rax),%r8d
3146 +                0x42, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%ecx
3147 +                0x44, 0x89, 0x00,              // mov    %r8d,(%rax)
3148 +                0x42, 0x89, 0x0c, 0x10,        // mov    %ecx,(%rax,%r10,1)
3149 +                0x48, 0x8b, 0x08,              // mov    (%rax),%rcx
3150 +                0x4c, 0x8b, 0x18,              // mov    (%rax),%r11
3151 +                0x4a, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%rcx
3152 +                0x4e, 0x8b, 0x1c, 0x10,        // mov    (%rax,%r10,1),%r11
3153 +                0x48, 0x89, 0x08,              // mov    %rcx,(%rax)
3154 +                0x4c, 0x89, 0x18,              // mov    %r11,(%rax)
3155 +                0x4a, 0x89, 0x0c, 0x10,        // mov    %rcx,(%rax,%r10,1)
3156 +                0x4e, 0x89, 0x1c, 0x10,        // mov    %r11,(%rax,%r10,1)
3157 +                0x63, 0x47, 0x04,              // movslq 4(%rdi),%eax
3158 +                0x48, 0x63, 0x47, 0x04,        // movslq 4(%rdi),%rax
3159 + #endif
3160 +                0                              // end
3161 +        };
3162 +        const int N_REGS = 20;
3163 +        SIGSEGV_REGISTER_TYPE regs[N_REGS];
3164 +        for (int i = 0; i < N_REGS; i++)
3165 +                regs[i] = i;
3166 +        const sigsegv_uintptr_t start_code = (sigsegv_uintptr_t)&code;
3167 +        regs[X86_REG_EIP] = start_code;
3168 +        while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1)
3169 +                   && ix86_skip_instruction(regs))
3170 +                ; /* simply iterate */
3171 +        return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1);
3172 + #endif
3173 +        return true;
3174 + }
3175   #endif
3176  
3177   int main(void)
# Line 1234 | Line 3179 | int main(void)
3179          if (vm_init() < 0)
3180                  return 1;
3181  
3182 <        page_size = getpagesize();
3182 >        page_size = vm_get_page_size();
3183          if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
3184                  return 2;
3185          
3186 +        memset((void *)page, 0, page_size);
3187          if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
3188                  return 3;
3189          
3190          if (!sigsegv_install_handler(sigsegv_test_handler))
3191                  return 4;
3192 <        
3193 <        page[123] = 45;
3194 <        page[123] = 45;
3195 <        
3192 >
3193 > #ifdef __GNUC__
3194 >        b_region = &&L_b_region1;
3195 >        e_region = &&L_e_region1;
3196 > #endif
3197 >        /* This is a really awful hack but otherwise gcc is smart enough
3198 >         * (or bug'ous enough?) to optimize the labels and place them
3199 >         * e.g. at the "main" entry point, which is wrong.
3200 >         */
3201 >        volatile int label_hack = 1;
3202 >        switch (label_hack) {
3203 >        case 1:
3204 >        L_b_region1:
3205 >                page[REF_INDEX] = REF_VALUE;
3206 >                if (page[REF_INDEX] != REF_VALUE)
3207 >                        exit(20);
3208 >                page[REF_INDEX] = REF_VALUE;
3209 >                BARRIER();
3210 >                // fall-through
3211 >        case 2:
3212 >        L_e_region1:
3213 >                BARRIER();
3214 >                break;
3215 >        }
3216 >
3217          if (handler_called != 1)
3218                  return 5;
3219  
# Line 1264 | Line 3231 | int main(void)
3231                  return 8;
3232          
3233   #define TEST_SKIP_INSTRUCTION(TYPE) do {                                \
3234 <                const unsigned int TAG = 0x12345678;                    \
3234 >                const unsigned long TAG = 0x12345678 |                  \
3235 >                (sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0);   \
3236                  TYPE data = *((TYPE *)(page + sizeof(TYPE)));   \
3237 <                volatile unsigned int effect = data + TAG;              \
3237 >                volatile unsigned long effect = data + TAG;             \
3238                  if (effect != TAG)                                                              \
3239                          return 9;                                                                       \
3240          } while (0)
3241          
3242   #ifdef __GNUC__
3243 <        b_region = &&L_b_region;
3244 <        e_region = &&L_e_region;
3243 >        b_region = &&L_b_region2;
3244 >        e_region = &&L_e_region2;
3245   #endif
3246 < L_b_region:
3247 <        TEST_SKIP_INSTRUCTION(unsigned char);
3248 <        TEST_SKIP_INSTRUCTION(unsigned short);
3249 <        TEST_SKIP_INSTRUCTION(unsigned int);
3250 < L_e_region:
3246 >        switch (label_hack) {
3247 >        case 1:
3248 >        L_b_region2:
3249 >                TEST_SKIP_INSTRUCTION(unsigned char);
3250 >                TEST_SKIP_INSTRUCTION(unsigned short);
3251 >                TEST_SKIP_INSTRUCTION(unsigned int);
3252 >                TEST_SKIP_INSTRUCTION(unsigned long);
3253 >                TEST_SKIP_INSTRUCTION(signed char);
3254 >                TEST_SKIP_INSTRUCTION(signed short);
3255 >                TEST_SKIP_INSTRUCTION(signed int);
3256 >                TEST_SKIP_INSTRUCTION(signed long);
3257 >                BARRIER();
3258 >                // fall-through
3259 >        case 2:
3260 >        L_e_region2:
3261 >                BARRIER();
3262 >                break;
3263 >        }
3264 >        if (!arch_insn_skipper_tests())
3265 >                return 20;
3266   #endif
3267  
3268          vm_exit();

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines