ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
(Generate patch)

Comparing BasiliskII/src/Unix/sigsegv.cpp (file contents):
Revision 1.30 by gbeauche, 2003-10-13T19:56:17Z vs.
Revision 1.65 by gbeauche, 2007-06-05T13:15:57Z

# Line 10 | Line 10
10   *    tjw@omnigroup.com Sun, 4 Jun 2000
11   *    www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12   *
13 < *  Basilisk II (C) 1997-2002 Christian Bauer
13 > *  Basilisk II (C) 1997-2005 Christian Bauer
14   *
15   *  This program is free software; you can redistribute it and/or modify
16   *  it under the terms of the GNU General Public License as published by
# Line 36 | Line 36
36   #endif
37  
38   #include <list>
39 + #include <stdio.h>
40   #include <signal.h>
41   #include "sigsegv.h"
42  
# Line 65 | Line 66 | static bool sigsegv_do_install_handler(i
66   *  Instruction decoding aids
67   */
68  
69 + // Transfer type
70 + enum transfer_type_t {
71 +        SIGSEGV_TRANSFER_UNKNOWN        = 0,
72 +        SIGSEGV_TRANSFER_LOAD           = 1,
73 +        SIGSEGV_TRANSFER_STORE          = 2,
74 + };
75 +
76   // Transfer size
77   enum transfer_size_t {
78          SIZE_UNKNOWN,
79          SIZE_BYTE,
80 <        SIZE_WORD,
81 <        SIZE_LONG
80 >        SIZE_WORD, // 2 bytes
81 >        SIZE_LONG, // 4 bytes
82 >        SIZE_QUAD, // 8 bytes
83   };
84  
76 // Transfer type
77 typedef sigsegv_transfer_type_t transfer_type_t;
78
85   #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
86   // Addressing mode
87   enum addressing_mode_t {
# Line 95 | Line 101 | struct instruction_t {
101          char                            ra, rd;
102   };
103  
104 < static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned int * gpr)
104 > static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned long * gpr)
105   {
106          // Get opcode and divide into fields
107 <        unsigned int opcode = *((unsigned int *)nip);
107 >        unsigned int opcode = *((unsigned int *)(unsigned long)nip);
108          unsigned int primop = opcode >> 26;
109          unsigned int exop = (opcode >> 1) & 0x3ff;
110          unsigned int ra = (opcode >> 16) & 0x1f;
# Line 172 | Line 178 | static void powerpc_decode_instruction(i
178                  transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
179          case 45:        // sthu
180                  transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
181 +        case 58:        // ld, ldu, lwa
182 +                transfer_type = SIGSEGV_TRANSFER_LOAD;
183 +                transfer_size = SIZE_QUAD;
184 +                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
185 +                imm &= ~3;
186 +                break;
187 +        case 62:        // std, stdu, stq
188 +                transfer_type = SIGSEGV_TRANSFER_STORE;
189 +                transfer_size = SIZE_QUAD;
190 +                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
191 +                imm &= ~3;
192 +                break;
193          }
194          
195          // Calculate effective address
# Line 212 | Line 230 | static void powerpc_decode_instruction(i
230  
231   #if HAVE_SIGINFO_T
232   // Generic extended signal handler
233 < #define SIGSEGV_FAULT_HANDLER                   sigsegv_fault_handler
216 < #if defined(__NetBSD__) || defined(__FreeBSD__)
233 > #if defined(__FreeBSD__)
234   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
235   #else
236   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
# Line 222 | Line 239 | static void powerpc_decode_instruction(i
239   #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
240   #define SIGSEGV_FAULT_HANDLER_ARGS              sip, scp
241   #define SIGSEGV_FAULT_ADDRESS                   sip->si_addr
242 < #if defined(__NetBSD__) || defined(__FreeBSD__)
242 > #if (defined(sgi) || defined(__sgi))
243 > #include <ucontext.h>
244 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
245 > #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)SIGSEGV_CONTEXT_REGS[CTX_EPC]
246 > #if (defined(mips) || defined(__mips))
247 > #define SIGSEGV_REGISTER_FILE                   &SIGSEGV_CONTEXT_REGS[CTX_EPC], &SIGSEGV_CONTEXT_REGS[CTX_R0]
248 > #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
249 > #endif
250 > #endif
251 > #if defined(__sun__)
252 > #if (defined(sparc) || defined(__sparc__))
253 > #include <sys/stack.h>
254 > #include <sys/regset.h>
255 > #include <sys/ucontext.h>
256 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
257 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[REG_PC]
258 > #define SIGSEGV_SPARC_GWINDOWS                  (((ucontext_t *)scp)->uc_mcontext.gwins)
259 > #define SIGSEGV_SPARC_RWINDOW                   (struct rwindow *)((char *)SIGSEGV_CONTEXT_REGS[REG_SP] + STACK_BIAS)
260 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)SIGSEGV_CONTEXT_REGS), SIGSEGV_SPARC_GWINDOWS, SIGSEGV_SPARC_RWINDOW
261 > #define SIGSEGV_SKIP_INSTRUCTION                sparc_skip_instruction
262 > #endif
263 > #if defined(__i386__)
264 > #include <sys/regset.h>
265 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
266 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[EIP]
267 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
268 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
269 > #endif
270 > #endif
271 > #if defined(__FreeBSD__) || defined(__OpenBSD__)
272   #if (defined(i386) || defined(__i386__))
273   #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_eip)
274 < #define SIGSEGV_REGISTER_FILE                   ((unsigned int *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
274 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
275 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
276 > #endif
277 > #endif
278 > #if defined(__NetBSD__)
279 > #if (defined(i386) || defined(__i386__))
280 > #include <sys/ucontext.h>
281 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
282 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_EIP]
283 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
284   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
285   #endif
286 + #if (defined(powerpc) || defined(__powerpc__))
287 + #include <sys/ucontext.h>
288 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
289 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_PC]
290 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_PC], (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_R0]
291 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
292 + #endif
293   #endif
294   #if defined(__linux__)
295   #if (defined(i386) || defined(__i386__))
296   #include <sys/ucontext.h>
297   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
298   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
299 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)SIGSEGV_CONTEXT_REGS
299 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
300   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
301   #endif
302   #if (defined(x86_64) || defined(__x86_64__))
# Line 242 | Line 304 | static void powerpc_decode_instruction(i
304   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
305   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
306   #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
307 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
308   #endif
309   #if (defined(ia64) || defined(__ia64__))
310   #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
# Line 250 | Line 313 | static void powerpc_decode_instruction(i
313   #include <sys/ucontext.h>
314   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.regs)
315   #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS->nip)
316 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned int *)(SIGSEGV_CONTEXT_REGS->gpr)
316 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned long *)(SIGSEGV_CONTEXT_REGS->gpr)
317   #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
318   #endif
319 + #if (defined(hppa) || defined(__hppa__))
320 + #undef  SIGSEGV_FAULT_ADDRESS
321 + #define SIGSEGV_FAULT_ADDRESS                   sip->si_ptr
322 + #endif
323 + #if (defined(arm) || defined(__arm__))
324 + #include <asm/ucontext.h> /* use kernel structure, glibc may not be in sync */
325 + #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
326 + #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.arm_pc)
327 + #define SIGSEGV_REGISTER_FILE                   (&SIGSEGV_CONTEXT_REGS.arm_r0)
328 + #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
329 + #endif
330 + #if (defined(mips) || defined(__mips__))
331 + #include <sys/ucontext.h>
332 + #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
333 + #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.pc)
334 + #define SIGSEGV_REGISTER_FILE                   &SIGSEGV_CONTEXT_REGS.pc, &SIGSEGV_CONTEXT_REGS.gregs[0]
335 + #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
336 + #endif
337   #endif
338   #endif
339  
340   #if HAVE_SIGCONTEXT_SUBTERFUGE
260 #define SIGSEGV_FAULT_HANDLER                   sigsegv_fault_handler
341   // Linux kernels prior to 2.4 ?
342   #if defined(__linux__)
343   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
# Line 268 | Line 348 | static void powerpc_decode_instruction(i
348   #define SIGSEGV_FAULT_HANDLER_ARGS              &scs
349   #define SIGSEGV_FAULT_ADDRESS                   scp->cr2
350   #define SIGSEGV_FAULT_INSTRUCTION               scp->eip
351 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)scp
351 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)scp
352   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
353   #endif
354   #if (defined(sparc) || defined(__sparc__))
# Line 283 | Line 363 | static void powerpc_decode_instruction(i
363   #define SIGSEGV_FAULT_HANDLER_ARGS              sig, scp
364   #define SIGSEGV_FAULT_ADDRESS                   scp->regs->dar
365   #define SIGSEGV_FAULT_INSTRUCTION               scp->regs->nip
366 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&scp->regs->nip, (unsigned int *)(scp->regs->gpr)
366 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&scp->regs->nip, (unsigned long *)(scp->regs->gpr)
367   #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
368   #endif
369   #if (defined(alpha) || defined(__alpha__))
# Line 292 | Line 372 | static void powerpc_decode_instruction(i
372   #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
373   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
374   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
375 <
376 < // From Boehm's GC 6.0alpha8
377 < static sigsegv_address_t get_fault_address(struct sigcontext *scp)
378 < {
379 <        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
380 <        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
381 <        fault_address += (signed long)(signed short)(instruction & 0xffff);
382 <        return (sigsegv_address_t)fault_address;
383 < }
375 > #endif
376 > #if (defined(arm) || defined(__arm__))
377 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int r1, int r2, int r3, struct sigcontext sc
378 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
379 > #define SIGSEGV_FAULT_HANDLER_ARGS              &sc
380 > #define SIGSEGV_FAULT_ADDRESS                   scp->fault_address
381 > #define SIGSEGV_FAULT_INSTRUCTION               scp->arm_pc
382 > #define SIGSEGV_REGISTER_FILE                   &scp->arm_r0
383 > #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
384   #endif
385   #endif
386  
387   // Irix 5 or 6 on MIPS
388 < #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
388 > #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(_SYSTYPE_SVR4))
389   #include <ucontext.h>
390   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
391   #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
392 < #define SIGSEGV_FAULT_ADDRESS                   scp->sc_badvaddr
392 > #define SIGSEGV_FAULT_ADDRESS                   (unsigned long)scp->sc_badvaddr
393 > #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)scp->sc_pc
394   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
395   #endif
396  
# Line 338 | Line 419 | static sigsegv_address_t get_fault_addre
419   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
420   #endif
421  
422 < // NetBSD or FreeBSD
423 < #if defined(__NetBSD__) || defined(__FreeBSD__)
422 > // NetBSD
423 > #if defined(__NetBSD__)
424   #if (defined(m68k) || defined(__m68k__))
425   #include <m68k/frame.h>
426   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
# Line 367 | Line 448 | static sigsegv_address_t get_fault_addre
448          }
449          return (sigsegv_address_t)fault_addr;
450   }
451 < #else
452 < #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, void *scp, char *addr
451 > #endif
452 > #if (defined(alpha) || defined(__alpha__))
453 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
454 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
455 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
456 > #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
457 > #endif
458 > #if (defined(i386) || defined(__i386__))
459 > #error "FIXME: need to decode instruction and compute EA"
460 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
461 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
462 > #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
463 > #endif
464 > #endif
465 > #if defined(__FreeBSD__)
466 > #if (defined(i386) || defined(__i386__))
467 > #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
468 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
469   #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
470   #define SIGSEGV_FAULT_ADDRESS                   addr
471 < #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
471 > #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_eip
472 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&scp->sc_edi)
473 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
474 > #endif
475 > #if (defined(alpha) || defined(__alpha__))
476 > #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
477 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, char *addr, struct sigcontext *scp
478 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, addr, scp
479 > #define SIGSEGV_FAULT_ADDRESS                   addr
480 > #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
481   #endif
482   #endif
483  
484 + // Extract fault address out of a sigcontext
485 + #if (defined(alpha) || defined(__alpha__))
486 + // From Boehm's GC 6.0alpha8
487 + static sigsegv_address_t get_fault_address(struct sigcontext *scp)
488 + {
489 +        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
490 +        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
491 +        fault_address += (signed long)(signed short)(instruction & 0xffff);
492 +        return (sigsegv_address_t)fault_address;
493 + }
494 + #endif
495 +
496 +
497   // MacOS X, not sure which version this works in. Under 10.1
498   // vm_protect does not appear to work from a signal handler. Under
499   // 10.2 signal handlers get siginfo type arguments but the si_addr
# Line 408 | Line 527 | static sigsegv_address_t get_fault_addre
527   #endif
528   #endif
529  
530 + #if HAVE_WIN32_EXCEPTIONS
531 + #define WIN32_LEAN_AND_MEAN /* avoid including junk */
532 + #include <windows.h>
533 + #include <winerror.h>
534 +
535 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   EXCEPTION_POINTERS *ExceptionInfo
536 + #define SIGSEGV_FAULT_HANDLER_ARGS              ExceptionInfo
537 + #define SIGSEGV_FAULT_ADDRESS                   ExceptionInfo->ExceptionRecord->ExceptionInformation[1]
538 + #define SIGSEGV_CONTEXT_REGS                    ExceptionInfo->ContextRecord
539 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS->Eip
540 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&SIGSEGV_CONTEXT_REGS->Edi)
541 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
542 + #endif
543 +
544   #if HAVE_MACH_EXCEPTIONS
545  
546   // This can easily be extended to other Mach systems, but really who
# Line 468 | Line 601 | if (ret != KERN_SUCCESS) { \
601          exit (1); \
602   }
603  
604 < #define SIGSEGV_FAULT_ADDRESS                   code[1]
605 < #define SIGSEGV_FAULT_INSTRUCTION               get_fault_instruction(thread, state)
606 < #define SIGSEGV_FAULT_HANDLER                   (code[0] == KERN_PROTECTION_FAILURE) && sigsegv_fault_handler
607 < #define SIGSEGV_FAULT_HANDLER_ARGLIST   mach_port_t thread, exception_data_t code, ppc_thread_state_t *state
608 < #define SIGSEGV_FAULT_HANDLER_ARGS              thread, code, &state
604 > #ifdef __ppc__
605 > #define SIGSEGV_THREAD_STATE_TYPE               ppc_thread_state_t
606 > #define SIGSEGV_THREAD_STATE_FLAVOR             PPC_THREAD_STATE
607 > #define SIGSEGV_THREAD_STATE_COUNT              PPC_THREAD_STATE_COUNT
608 > #define SIGSEGV_FAULT_INSTRUCTION               state->srr0
609   #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
610 < #define SIGSEGV_REGISTER_FILE                   &state->srr0, &state->r0
611 <
612 < // Given a suspended thread, stuff the current instruction and
613 < // registers into state.
614 < //
615 < // It would have been nice to have this be ppc/x86 independant which
616 < // could have been done easily with a thread_state_t instead of
617 < // ppc_thread_state_t, but because of the way this is called it is
618 < // easier to do it this way.
619 < #if (defined(ppc) || defined(__ppc__))
620 < static inline sigsegv_address_t get_fault_instruction(mach_port_t thread, ppc_thread_state_t *state)
621 < {
622 <        kern_return_t krc;
623 <        mach_msg_type_number_t count;
624 <
625 <        count = MACHINE_THREAD_STATE_COUNT;
493 <        krc = thread_get_state(thread, MACHINE_THREAD_STATE, (thread_state_t)state, &count);
494 <        MACH_CHECK_ERROR (thread_get_state, krc);
495 <
496 <        return (sigsegv_address_t)state->srr0;
497 < }
610 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&state->srr0, (unsigned long *)&state->r0
611 > #endif
612 > #ifdef __i386__
613 > #ifdef i386_SAVED_STATE
614 > #define SIGSEGV_THREAD_STATE_TYPE               struct i386_saved_state
615 > #define SIGSEGV_THREAD_STATE_FLAVOR             i386_SAVED_STATE
616 > #define SIGSEGV_THREAD_STATE_COUNT              i386_SAVED_STATE_COUNT
617 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&state->edi) /* EDI is the first GPR we consider */
618 > #else
619 > #define SIGSEGV_THREAD_STATE_TYPE               struct i386_thread_state
620 > #define SIGSEGV_THREAD_STATE_FLAVOR             i386_THREAD_STATE
621 > #define SIGSEGV_THREAD_STATE_COUNT              i386_THREAD_STATE_COUNT
622 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&state->eax) /* EAX is the first GPR we consider */
623 > #endif
624 > #define SIGSEGV_FAULT_INSTRUCTION               state->eip
625 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
626   #endif
627 + #define SIGSEGV_FAULT_ADDRESS                   code[1]
628 + #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  ((code[0] == KERN_PROTECTION_FAILURE || code[0] == KERN_INVALID_ADDRESS) ? sigsegv_fault_handler(ADDR, IP) : SIGSEGV_RETURN_FAILURE)
629 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   mach_port_t thread, exception_data_t code, SIGSEGV_THREAD_STATE_TYPE *state
630 + #define SIGSEGV_FAULT_HANDLER_ARGS              thread, code, &state
631  
632   // Since there can only be one exception thread running at any time
633   // this is not a problem.
# Line 550 | Line 682 | handleExceptions(void *priv)
682  
683   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
684   // Decode and skip X86 instruction
685 < #if (defined(i386) || defined(__i386__))
685 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
686   #if defined(__linux__)
687   enum {
688 + #if (defined(i386) || defined(__i386__))
689          X86_REG_EIP = 14,
690          X86_REG_EAX = 11,
691          X86_REG_ECX = 10,
# Line 562 | Line 695 | enum {
695          X86_REG_EBP = 6,
696          X86_REG_ESI = 5,
697          X86_REG_EDI = 4
698 + #endif
699 + #if defined(__x86_64__)
700 +        X86_REG_R8  = 0,
701 +        X86_REG_R9  = 1,
702 +        X86_REG_R10 = 2,
703 +        X86_REG_R11 = 3,
704 +        X86_REG_R12 = 4,
705 +        X86_REG_R13 = 5,
706 +        X86_REG_R14 = 6,
707 +        X86_REG_R15 = 7,
708 +        X86_REG_EDI = 8,
709 +        X86_REG_ESI = 9,
710 +        X86_REG_EBP = 10,
711 +        X86_REG_EBX = 11,
712 +        X86_REG_EDX = 12,
713 +        X86_REG_EAX = 13,
714 +        X86_REG_ECX = 14,
715 +        X86_REG_ESP = 15,
716 +        X86_REG_EIP = 16
717 + #endif
718 + };
719 + #endif
720 + #if defined(__NetBSD__)
721 + enum {
722 + #if (defined(i386) || defined(__i386__))
723 +        X86_REG_EIP = _REG_EIP,
724 +        X86_REG_EAX = _REG_EAX,
725 +        X86_REG_ECX = _REG_ECX,
726 +        X86_REG_EDX = _REG_EDX,
727 +        X86_REG_EBX = _REG_EBX,
728 +        X86_REG_ESP = _REG_ESP,
729 +        X86_REG_EBP = _REG_EBP,
730 +        X86_REG_ESI = _REG_ESI,
731 +        X86_REG_EDI = _REG_EDI
732 + #endif
733   };
734   #endif
735 < #if defined(__NetBSD__) || defined(__FreeBSD__)
735 > #if defined(__FreeBSD__)
736   enum {
737 + #if (defined(i386) || defined(__i386__))
738          X86_REG_EIP = 10,
739          X86_REG_EAX = 7,
740          X86_REG_ECX = 6,
# Line 575 | Line 744 | enum {
744          X86_REG_EBP = 2,
745          X86_REG_ESI = 1,
746          X86_REG_EDI = 0
747 + #endif
748 + };
749 + #endif
750 + #if defined(__OpenBSD__)
751 + enum {
752 + #if defined(__i386__)
753 +        // EDI is the first register we consider
754 + #define OREG(REG) offsetof(struct sigcontext, sc_##REG)
755 + #define DREG(REG) ((OREG(REG) - OREG(edi)) / 4)
756 +        X86_REG_EIP = DREG(eip), // 7
757 +        X86_REG_EAX = DREG(eax), // 6
758 +        X86_REG_ECX = DREG(ecx), // 5
759 +        X86_REG_EDX = DREG(edx), // 4
760 +        X86_REG_EBX = DREG(ebx), // 3
761 +        X86_REG_ESP = DREG(esp), // 10
762 +        X86_REG_EBP = DREG(ebp), // 2
763 +        X86_REG_ESI = DREG(esi), // 1
764 +        X86_REG_EDI = DREG(edi)  // 0
765 + #undef DREG
766 + #undef OREG
767 + #endif
768 + };
769 + #endif
770 + #if defined(__sun__)
771 + // Same as for Linux, need to check for x86-64
772 + enum {
773 + #if defined(__i386__)
774 +        X86_REG_EIP = EIP,
775 +        X86_REG_EAX = EAX,
776 +        X86_REG_ECX = ECX,
777 +        X86_REG_EDX = EDX,
778 +        X86_REG_EBX = EBX,
779 +        X86_REG_ESP = ESP,
780 +        X86_REG_EBP = EBP,
781 +        X86_REG_ESI = ESI,
782 +        X86_REG_EDI = EDI
783 + #endif
784 + };
785 + #endif
786 + #if defined(__APPLE__) && defined(__MACH__)
787 + enum {
788 + #ifdef i386_SAVED_STATE
789 +        // same as FreeBSD (in Open Darwin 8.0.1)
790 +        X86_REG_EIP = 10,
791 +        X86_REG_EAX = 7,
792 +        X86_REG_ECX = 6,
793 +        X86_REG_EDX = 5,
794 +        X86_REG_EBX = 4,
795 +        X86_REG_ESP = 13,
796 +        X86_REG_EBP = 2,
797 +        X86_REG_ESI = 1,
798 +        X86_REG_EDI = 0
799 + #else
800 +        // new layout (MacOS X 10.4.4 for x86)
801 +        X86_REG_EIP = 10,
802 +        X86_REG_EAX = 0,
803 +        X86_REG_ECX = 2,
804 +        X86_REG_EDX = 4,
805 +        X86_REG_EBX = 1,
806 +        X86_REG_ESP = 7,
807 +        X86_REG_EBP = 6,
808 +        X86_REG_ESI = 5,
809 +        X86_REG_EDI = 4
810 + #endif
811 + };
812 + #endif
813 + #if defined(_WIN32)
814 + enum {
815 + #if (defined(i386) || defined(__i386__))
816 +        X86_REG_EIP = 7,
817 +        X86_REG_EAX = 5,
818 +        X86_REG_ECX = 4,
819 +        X86_REG_EDX = 3,
820 +        X86_REG_EBX = 2,
821 +        X86_REG_ESP = 10,
822 +        X86_REG_EBP = 6,
823 +        X86_REG_ESI = 1,
824 +        X86_REG_EDI = 0
825 + #endif
826   };
827   #endif
828   // FIXME: this is partly redundant with the instruction decoding phase
# Line 611 | Line 859 | static inline int ix86_step_over_modrm(u
859          return offset;
860   }
861  
862 < static bool ix86_skip_instruction(unsigned int * regs)
862 > static bool ix86_skip_instruction(unsigned long * regs)
863   {
864          unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
865  
866          if (eip == 0)
867                  return false;
868 + #ifdef _WIN32
869 +        if (IsBadCodePtr((FARPROC)eip))
870 +                return false;
871 + #endif
872          
873 +        enum instruction_type_t {
874 +                i_MOV,
875 +                i_ADD
876 +        };
877 +
878          transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
879          transfer_size_t transfer_size = SIZE_LONG;
880 +        instruction_type_t instruction_type = i_MOV;
881          
882          int reg = -1;
883          int len = 0;
884 <        
884 >
885 > #if DEBUG
886 >        printf("IP: %p [%02x %02x %02x %02x...]\n",
887 >                   eip, eip[0], eip[1], eip[2], eip[3]);
888 > #endif
889 >
890          // Operand size prefix
891          if (*eip == 0x66) {
892                  eip++;
# Line 631 | Line 894 | static bool ix86_skip_instruction(unsign
894                  transfer_size = SIZE_WORD;
895          }
896  
897 +        // REX prefix
898 + #if defined(__x86_64__)
899 +        struct rex_t {
900 +                unsigned char W;
901 +                unsigned char R;
902 +                unsigned char X;
903 +                unsigned char B;
904 +        };
905 +        rex_t rex = { 0, 0, 0, 0 };
906 +        bool has_rex = false;
907 +        if ((*eip & 0xf0) == 0x40) {
908 +                has_rex = true;
909 +                const unsigned char b = *eip;
910 +                rex.W = b & (1 << 3);
911 +                rex.R = b & (1 << 2);
912 +                rex.X = b & (1 << 1);
913 +                rex.B = b & (1 << 0);
914 + #if DEBUG
915 +                printf("REX: %c,%c,%c,%c\n",
916 +                           rex.W ? 'W' : '_',
917 +                           rex.R ? 'R' : '_',
918 +                           rex.X ? 'X' : '_',
919 +                           rex.B ? 'B' : '_');
920 + #endif
921 +                eip++;
922 +                len++;
923 +                if (rex.W)
924 +                        transfer_size = SIZE_QUAD;
925 +        }
926 + #else
927 +        const bool has_rex = false;
928 + #endif
929 +
930          // Decode instruction
931 +        int op_len = 1;
932 +        int target_size = SIZE_UNKNOWN;
933          switch (eip[0]) {
934          case 0x0f:
935 +                target_size = transfer_size;
936              switch (eip[1]) {
937 +                case 0xbe: // MOVSX r32, r/m8
938              case 0xb6: // MOVZX r32, r/m8
939 +                        transfer_size = SIZE_BYTE;
940 +                        goto do_mov_extend;
941 +                case 0xbf: // MOVSX r32, r/m16
942              case 0xb7: // MOVZX r32, r/m16
943 <                switch (eip[2] & 0xc0) {
944 <                case 0x80:
945 <                    reg = (eip[2] >> 3) & 7;
946 <                    transfer_type = SIGSEGV_TRANSFER_LOAD;
947 <                    break;
645 <                case 0x40:
646 <                    reg = (eip[2] >> 3) & 7;
647 <                    transfer_type = SIGSEGV_TRANSFER_LOAD;
648 <                    break;
649 <                case 0x00:
650 <                    reg = (eip[2] >> 3) & 7;
651 <                    transfer_type = SIGSEGV_TRANSFER_LOAD;
652 <                    break;
943 >                        transfer_size = SIZE_WORD;
944 >                        goto do_mov_extend;
945 >                  do_mov_extend:
946 >                        op_len = 2;
947 >                        goto do_transfer_load;
948                  }
654                len += 3 + ix86_step_over_modrm(eip + 2);
949                  break;
950 <            }
951 <          break;
950 > #if defined(__x86_64__)
951 >        case 0x63: // MOVSXD r64, r/m32
952 >                if (has_rex && rex.W) {
953 >                        transfer_size = SIZE_LONG;
954 >                        target_size = SIZE_QUAD;
955 >                }
956 >                else if (transfer_size != SIZE_WORD) {
957 >                        transfer_size = SIZE_LONG;
958 >                        target_size = SIZE_QUAD;
959 >                }
960 >                goto do_transfer_load;
961 > #endif
962 >        case 0x02: // ADD r8, r/m8
963 >                transfer_size = SIZE_BYTE;
964 >        case 0x03: // ADD r32, r/m32
965 >                instruction_type = i_ADD;
966 >                goto do_transfer_load;
967          case 0x8a: // MOV r8, r/m8
968                  transfer_size = SIZE_BYTE;
969          case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
970 <                switch (eip[1] & 0xc0) {
970 >          do_transfer_load:
971 >                switch (eip[op_len] & 0xc0) {
972                  case 0x80:
973 <                        reg = (eip[1] >> 3) & 7;
973 >                        reg = (eip[op_len] >> 3) & 7;
974                          transfer_type = SIGSEGV_TRANSFER_LOAD;
975                          break;
976                  case 0x40:
977 <                        reg = (eip[1] >> 3) & 7;
977 >                        reg = (eip[op_len] >> 3) & 7;
978                          transfer_type = SIGSEGV_TRANSFER_LOAD;
979                          break;
980                  case 0x00:
981 <                        reg = (eip[1] >> 3) & 7;
981 >                        reg = (eip[op_len] >> 3) & 7;
982                          transfer_type = SIGSEGV_TRANSFER_LOAD;
983                          break;
984                  }
985 <                len += 2 + ix86_step_over_modrm(eip + 1);
985 >                len += 1 + op_len + ix86_step_over_modrm(eip + op_len);
986                  break;
987 +        case 0x00: // ADD r/m8, r8
988 +                transfer_size = SIZE_BYTE;
989 +        case 0x01: // ADD r/m32, r32
990 +                instruction_type = i_ADD;
991 +                goto do_transfer_store;
992          case 0x88: // MOV r/m8, r8
993                  transfer_size = SIZE_BYTE;
994          case 0x89: // MOV r/m32, r32 (or 16-bit operation)
995 <                switch (eip[1] & 0xc0) {
995 >          do_transfer_store:
996 >                switch (eip[op_len] & 0xc0) {
997                  case 0x80:
998 <                        reg = (eip[1] >> 3) & 7;
998 >                        reg = (eip[op_len] >> 3) & 7;
999                          transfer_type = SIGSEGV_TRANSFER_STORE;
1000                          break;
1001                  case 0x40:
1002 <                        reg = (eip[1] >> 3) & 7;
1002 >                        reg = (eip[op_len] >> 3) & 7;
1003                          transfer_type = SIGSEGV_TRANSFER_STORE;
1004                          break;
1005                  case 0x00:
1006 <                        reg = (eip[1] >> 3) & 7;
1006 >                        reg = (eip[op_len] >> 3) & 7;
1007                          transfer_type = SIGSEGV_TRANSFER_STORE;
1008                          break;
1009                  }
1010 <                len += 2 + ix86_step_over_modrm(eip + 1);
1010 >                len += 1 + op_len + ix86_step_over_modrm(eip + op_len);
1011                  break;
1012          }
1013 +        if (target_size == SIZE_UNKNOWN)
1014 +                target_size = transfer_size;
1015  
1016          if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1017                  // Unknown machine code, let it crash. Then patch the decoder
1018                  return false;
1019          }
1020  
1021 <        if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
1022 <                static const int x86_reg_map[8] = {
1021 > #if defined(__x86_64__)
1022 >        if (rex.R)
1023 >                reg += 8;
1024 > #endif
1025 >
1026 >        if (instruction_type == i_MOV && transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
1027 >                static const int x86_reg_map[] = {
1028                          X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
1029 <                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI
1029 >                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI,
1030 > #if defined(__x86_64__)
1031 >                        X86_REG_R8,  X86_REG_R9,  X86_REG_R10, X86_REG_R11,
1032 >                        X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15,
1033 > #endif
1034                  };
1035                  
1036 <                if (reg < 0 || reg >= 8)
1036 >                if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1))
1037                          return false;
1038  
1039 +                // Set 0 to the relevant register part
1040 +                // NOTE: this is only valid for MOV alike instructions
1041                  int rloc = x86_reg_map[reg];
1042 <                switch (transfer_size) {
1042 >                switch (target_size) {
1043                  case SIZE_BYTE:
1044 <                        regs[rloc] = (regs[rloc] & ~0xff);
1044 >                        if (has_rex || reg < 4)
1045 >                                regs[rloc] = (regs[rloc] & ~0x00ffL);
1046 >                        else {
1047 >                                rloc = x86_reg_map[reg - 4];
1048 >                                regs[rloc] = (regs[rloc] & ~0xff00L);
1049 >                        }
1050                          break;
1051                  case SIZE_WORD:
1052 <                        regs[rloc] = (regs[rloc] & ~0xffff);
1052 >                        regs[rloc] = (regs[rloc] & ~0xffffL);
1053                          break;
1054                  case SIZE_LONG:
1055 +                case SIZE_QUAD: // zero-extension
1056                          regs[rloc] = 0;
1057                          break;
1058                  }
1059          }
1060  
1061   #if DEBUG
1062 <        printf("%08x: %s %s access", regs[X86_REG_EIP],
1063 <                   transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : "long",
1062 >        printf("%p: %s %s access", (void *)regs[X86_REG_EIP],
1063 >                   transfer_size == SIZE_BYTE ? "byte" :
1064 >                   transfer_size == SIZE_WORD ? "word" :
1065 >                   transfer_size == SIZE_LONG ? "long" :
1066 >                   transfer_size == SIZE_QUAD ? "quad" : "unknown",
1067                     transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1068          
1069          if (reg != -1) {
1070 <                static const char * x86_reg_str_map[8] = {
1071 <                        "eax", "ecx", "edx", "ebx",
1072 <                        "esp", "ebp", "esi", "edi"
1070 >                static const char * x86_byte_reg_str_map[] = {
1071 >                        "al",   "cl",   "dl",   "bl",
1072 >                        "spl",  "bpl",  "sil",  "dil",
1073 >                        "r8b",  "r9b",  "r10b", "r11b",
1074 >                        "r12b", "r13b", "r14b", "r15b",
1075 >                        "ah",   "ch",   "dh",   "bh",
1076                  };
1077 <                printf(" %s register %%%s", transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from", x86_reg_str_map[reg]);
1077 >                static const char * x86_word_reg_str_map[] = {
1078 >                        "ax",   "cx",   "dx",   "bx",
1079 >                        "sp",   "bp",   "si",   "di",
1080 >                        "r8w",  "r9w",  "r10w", "r11w",
1081 >                        "r12w", "r13w", "r14w", "r15w",
1082 >                };
1083 >                static const char *x86_long_reg_str_map[] = {
1084 >                        "eax",  "ecx",  "edx",  "ebx",
1085 >                        "esp",  "ebp",  "esi",  "edi",
1086 >                        "r8d",  "r9d",  "r10d", "r11d",
1087 >                        "r12d", "r13d", "r14d", "r15d",
1088 >                };
1089 >                static const char *x86_quad_reg_str_map[] = {
1090 >                        "rax", "rcx", "rdx", "rbx",
1091 >                        "rsp", "rbp", "rsi", "rdi",
1092 >                        "r8",  "r9",  "r10", "r11",
1093 >                        "r12", "r13", "r14", "r15",
1094 >                };
1095 >                const char * reg_str = NULL;
1096 >                switch (target_size) {
1097 >                case SIZE_BYTE:
1098 >                        reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg];
1099 >                        break;
1100 >                case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break;
1101 >                case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break;
1102 >                case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break;
1103 >                }
1104 >                if (reg_str)
1105 >                        printf(" %s register %%%s",
1106 >                                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from",
1107 >                                   reg_str);
1108          }
1109          printf(", %d bytes instruction\n", len);
1110   #endif
# Line 745 | Line 1116 | static bool ix86_skip_instruction(unsign
1116  
1117   // Decode and skip PPC instruction
1118   #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
1119 < static bool powerpc_skip_instruction(unsigned int * nip_p, unsigned int * regs)
1119 > static bool powerpc_skip_instruction(unsigned long * nip_p, unsigned long * regs)
1120   {
1121          instruction_t instr;
1122          powerpc_decode_instruction(&instr, *nip_p, regs);
# Line 757 | Line 1128 | static bool powerpc_skip_instruction(uns
1128  
1129   #if DEBUG
1130          printf("%08x: %s %s access", *nip_p,
1131 <                   instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : "long",
1131 >                   instr.transfer_size == SIZE_BYTE ? "byte" :
1132 >                   instr.transfer_size == SIZE_WORD ? "word" :
1133 >                   instr.transfer_size == SIZE_LONG ? "long" : "quad",
1134                     instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1135          
1136          if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
# Line 775 | Line 1148 | static bool powerpc_skip_instruction(uns
1148          return true;
1149   }
1150   #endif
1151 +
1152 + // Decode and skip MIPS instruction
1153 + #if (defined(mips) || defined(__mips))
1154 + static bool mips_skip_instruction(greg_t * pc_p, greg_t * regs)
1155 + {
1156 +  unsigned int * epc = (unsigned int *)(unsigned long)*pc_p;
1157 +
1158 +  if (epc == 0)
1159 +        return false;
1160 +
1161 + #if DEBUG
1162 +  printf("IP: %p [%08x]\n", epc, epc[0]);
1163 + #endif
1164 +
1165 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1166 +  transfer_size_t transfer_size = SIZE_LONG;
1167 +  int direction = 0;
1168 +
1169 +  const unsigned int opcode = epc[0];
1170 +  switch (opcode >> 26) {
1171 +  case 32: // Load Byte
1172 +  case 36: // Load Byte Unsigned
1173 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1174 +        transfer_size = SIZE_BYTE;
1175 +        break;
1176 +  case 33: // Load Halfword
1177 +  case 37: // Load Halfword Unsigned
1178 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1179 +        transfer_size = SIZE_WORD;
1180 +        break;
1181 +  case 35: // Load Word
1182 +  case 39: // Load Word Unsigned
1183 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1184 +        transfer_size = SIZE_LONG;
1185 +        break;
1186 +  case 34: // Load Word Left
1187 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1188 +        transfer_size = SIZE_LONG;
1189 +        direction = -1;
1190 +        break;
1191 +  case 38: // Load Word Right
1192 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1193 +        transfer_size = SIZE_LONG;
1194 +        direction = 1;
1195 +        break;
1196 +  case 55: // Load Doubleword
1197 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1198 +        transfer_size = SIZE_QUAD;
1199 +        break;
1200 +  case 26: // Load Doubleword Left
1201 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1202 +        transfer_size = SIZE_QUAD;
1203 +        direction = -1;
1204 +        break;
1205 +  case 27: // Load Doubleword Right
1206 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1207 +        transfer_size = SIZE_QUAD;
1208 +        direction = 1;
1209 +        break;
1210 +  case 40: // Store Byte
1211 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1212 +        transfer_size = SIZE_BYTE;
1213 +        break;
1214 +  case 41: // Store Halfword
1215 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1216 +        transfer_size = SIZE_WORD;
1217 +        break;
1218 +  case 43: // Store Word
1219 +  case 42: // Store Word Left
1220 +  case 46: // Store Word Right
1221 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1222 +        transfer_size = SIZE_LONG;
1223 +        break;
1224 +  case 63: // Store Doubleword
1225 +  case 44: // Store Doubleword Left
1226 +  case 45: // Store Doubleword Right
1227 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1228 +        transfer_size = SIZE_QUAD;
1229 +        break;
1230 +  /* Misc instructions unlikely to be used within CPU emulators */
1231 +  case 48: // Load Linked Word
1232 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1233 +        transfer_size = SIZE_LONG;
1234 +        break;
1235 +  case 52: // Load Linked Doubleword
1236 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1237 +        transfer_size = SIZE_QUAD;
1238 +        break;
1239 +  case 56: // Store Conditional Word
1240 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1241 +        transfer_size = SIZE_LONG;
1242 +        break;
1243 +  case 60: // Store Conditional Doubleword
1244 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1245 +        transfer_size = SIZE_QUAD;
1246 +        break;
1247 +  }
1248 +
1249 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1250 +        // Unknown machine code, let it crash. Then patch the decoder
1251 +        return false;
1252 +  }
1253 +
1254 +  // Zero target register in case of a load operation
1255 +  const int reg = (opcode >> 16) & 0x1f;
1256 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD) {
1257 +        if (direction == 0)
1258 +          regs[reg] = 0;
1259 +        else {
1260 +          // FIXME: untested code
1261 +          unsigned long ea = regs[(opcode >> 21) & 0x1f];
1262 +          ea += (signed long)(signed int)(signed short)(opcode & 0xffff);
1263 +          const int offset = ea & (transfer_size == SIZE_LONG ? 3 : 7);
1264 +          unsigned long value;
1265 +          if (direction > 0) {
1266 +                const unsigned long rmask = ~((1L << ((offset + 1) * 8)) - 1);
1267 +                value = regs[reg] & rmask;
1268 +          }
1269 +          else {
1270 +                const unsigned long lmask = (1L << (offset * 8)) - 1;
1271 +                value = regs[reg] & lmask;
1272 +          }
1273 +          // restore most significant bits
1274 +          if (transfer_size == SIZE_LONG)
1275 +                value = (signed long)(signed int)value;
1276 +          regs[reg] = value;
1277 +        }
1278 +  }
1279 +
1280 + #if DEBUG
1281 + #if (defined(_ABIN32) || defined(_ABI64))
1282 +  static const char * mips_gpr_names[32] = {
1283 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1284 +        "t0",   "t1",   "t2",   "t3",   "t4",   "t5",   "t6",   "t7",
1285 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1286 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1287 +  };
1288 + #else
1289 +  static const char * mips_gpr_names[32] = {
1290 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1291 +        "a4",   "a5",   "a6",   "a7",   "t0",   "t1",   "t2",   "t3",
1292 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1293 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1294 +  };
1295 + #endif
1296 +  printf("%s %s register %s\n",
1297 +                 transfer_size == SIZE_BYTE ? "byte" :
1298 +                 transfer_size == SIZE_WORD ? "word" :
1299 +                 transfer_size == SIZE_LONG ? "long" :
1300 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1301 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1302 +                 mips_gpr_names[reg]);
1303 + #endif
1304 +
1305 +  *pc_p += 4;
1306 +  return true;
1307 + }
1308 + #endif
1309 +
1310 + // Decode and skip SPARC instruction
1311 + #if (defined(sparc) || defined(__sparc__))
1312 + enum {
1313 + #if (defined(__sun__))
1314 +  SPARC_REG_G1 = REG_G1,
1315 +  SPARC_REG_O0 = REG_O0,
1316 +  SPARC_REG_PC = REG_PC,
1317 +  SPARC_REG_nPC = REG_nPC
1318 + #endif
1319 + };
1320 + static bool sparc_skip_instruction(unsigned long * regs, gwindows_t * gwins, struct rwindow * rwin)
1321 + {
1322 +  unsigned int * pc = (unsigned int *)regs[SPARC_REG_PC];
1323 +
1324 +  if (pc == 0)
1325 +        return false;
1326 +
1327 + #if DEBUG
1328 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1329   #endif
1330  
1331 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1332 +  transfer_size_t transfer_size = SIZE_LONG;
1333 +  bool register_pair = false;
1334 +
1335 +  const unsigned int opcode = pc[0];
1336 +  if ((opcode >> 30) != 3)
1337 +        return false;
1338 +  switch ((opcode >> 19) & 0x3f) {
1339 +  case 9: // Load Signed Byte
1340 +  case 1: // Load Unsigned Byte
1341 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1342 +        transfer_size = SIZE_BYTE;
1343 +        break;
1344 +  case 10:// Load Signed Halfword
1345 +  case 2: // Load Unsigned Word
1346 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1347 +        transfer_size = SIZE_WORD;
1348 +        break;
1349 +  case 8: // Load Word
1350 +  case 0: // Load Unsigned Word
1351 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1352 +        transfer_size = SIZE_LONG;
1353 +        break;
1354 +  case 11:// Load Extended Word
1355 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1356 +        transfer_size = SIZE_QUAD;
1357 +        break;
1358 +  case 3: // Load Doubleword
1359 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1360 +        transfer_size = SIZE_LONG;
1361 +        register_pair = true;
1362 +        break;
1363 +  case 5: // Store Byte
1364 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1365 +        transfer_size = SIZE_BYTE;
1366 +        break;
1367 +  case 6: // Store Halfword
1368 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1369 +        transfer_size = SIZE_WORD;
1370 +        break;
1371 +  case 4: // Store Word
1372 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1373 +        transfer_size = SIZE_LONG;
1374 +        break;
1375 +  case 14:// Store Extended Word
1376 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1377 +        transfer_size = SIZE_QUAD;
1378 +        break;
1379 +  case 7: // Store Doubleword
1380 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1381 +        transfer_size = SIZE_LONG;
1382 +        register_pair = true;
1383 +        break;
1384 +  }
1385 +
1386 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1387 +        // Unknown machine code, let it crash. Then patch the decoder
1388 +        return false;
1389 +  }
1390 +
1391 +  const int reg = (opcode >> 25) & 0x1f;
1392 +
1393 + #if DEBUG
1394 +  static const char * reg_names[] = {
1395 +        "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
1396 +        "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
1397 +        "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
1398 +        "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7"
1399 +  };
1400 +  printf("%s %s register %s\n",
1401 +                 transfer_size == SIZE_BYTE ? "byte" :
1402 +                 transfer_size == SIZE_WORD ? "word" :
1403 +                 transfer_size == SIZE_LONG ? "long" :
1404 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1405 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1406 +                 reg_names[reg]);
1407 + #endif
1408 +
1409 +  // Zero target register in case of a load operation
1410 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != 0) {
1411 +        // FIXME: code to handle local & input registers is not tested
1412 +        if (reg >= 1 && reg < 8) {
1413 +          // global registers
1414 +          regs[reg - 1 + SPARC_REG_G1] = 0;
1415 +        }
1416 +        else if (reg >= 8 && reg < 16) {
1417 +          // output registers
1418 +          regs[reg - 8 + SPARC_REG_O0] = 0;
1419 +        }
1420 +        else if (reg >= 16 && reg < 24) {
1421 +          // local registers (in register windows)
1422 +          if (gwins)
1423 +                gwins->wbuf->rw_local[reg - 16] = 0;
1424 +          else
1425 +                rwin->rw_local[reg - 16] = 0;
1426 +        }
1427 +        else {
1428 +          // input registers (in register windows)
1429 +          if (gwins)
1430 +                gwins->wbuf->rw_in[reg - 24] = 0;
1431 +          else
1432 +                rwin->rw_in[reg - 24] = 0;
1433 +        }
1434 +  }
1435 +
1436 +  regs[SPARC_REG_PC] += 4;
1437 +  regs[SPARC_REG_nPC] += 4;
1438 +  return true;
1439 + }
1440 + #endif
1441 + #endif
1442 +
1443 + // Decode and skip ARM instruction
1444 + #if (defined(arm) || defined(__arm__))
1445 + enum {
1446 + #if (defined(__linux__))
1447 +  ARM_REG_PC = 15,
1448 +  ARM_REG_CPSR = 16
1449 + #endif
1450 + };
1451 + static bool arm_skip_instruction(unsigned long * regs)
1452 + {
1453 +  unsigned int * pc = (unsigned int *)regs[ARM_REG_PC];
1454 +
1455 +  if (pc == 0)
1456 +        return false;
1457 +
1458 + #if DEBUG
1459 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1460 + #endif
1461 +
1462 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1463 +  transfer_size_t transfer_size = SIZE_UNKNOWN;
1464 +  enum { op_sdt = 1, op_sdth = 2 };
1465 +  int op = 0;
1466 +
1467 +  // Handle load/store instructions only
1468 +  const unsigned int opcode = pc[0];
1469 +  switch ((opcode >> 25) & 7) {
1470 +  case 0: // Halfword and Signed Data Transfer (LDRH, STRH, LDRSB, LDRSH)
1471 +        op = op_sdth;
1472 +        // Determine transfer size (S/H bits)
1473 +        switch ((opcode >> 5) & 3) {
1474 +        case 0: // SWP instruction
1475 +          break;
1476 +        case 1: // Unsigned halfwords
1477 +        case 3: // Signed halfwords
1478 +          transfer_size = SIZE_WORD;
1479 +          break;
1480 +        case 2: // Signed byte
1481 +          transfer_size = SIZE_BYTE;
1482 +          break;
1483 +        }
1484 +        break;
1485 +  case 2:
1486 +  case 3: // Single Data Transfer (LDR, STR)
1487 +        op = op_sdt;
1488 +        // Determine transfer size (B bit)
1489 +        if (((opcode >> 22) & 1) == 1)
1490 +          transfer_size = SIZE_BYTE;
1491 +        else
1492 +          transfer_size = SIZE_LONG;
1493 +        break;
1494 +  default:
1495 +        // FIXME: support load/store mutliple?
1496 +        return false;
1497 +  }
1498 +
1499 +  // Check for invalid transfer size (SWP instruction?)
1500 +  if (transfer_size == SIZE_UNKNOWN)
1501 +        return false;
1502 +
1503 +  // Determine transfer type (L bit)
1504 +  if (((opcode >> 20) & 1) == 1)
1505 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1506 +  else
1507 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1508 +
1509 +  // Compute offset
1510 +  int offset;
1511 +  if (((opcode >> 25) & 1) == 0) {
1512 +        if (op == op_sdt)
1513 +          offset = opcode & 0xfff;
1514 +        else if (op == op_sdth) {
1515 +          int rm = opcode & 0xf;
1516 +          if (((opcode >> 22) & 1) == 0) {
1517 +                // register offset
1518 +                offset = regs[rm];
1519 +          }
1520 +          else {
1521 +                // immediate offset
1522 +                offset = ((opcode >> 4) & 0xf0) | (opcode & 0x0f);
1523 +          }
1524 +        }
1525 +  }
1526 +  else {
1527 +        const int rm = opcode & 0xf;
1528 +        const int sh = (opcode >> 7) & 0x1f;
1529 +        if (((opcode >> 4) & 1) == 1) {
1530 +          // we expect only legal load/store instructions
1531 +          printf("FATAL: invalid shift operand\n");
1532 +          return false;
1533 +        }
1534 +        const unsigned int v = regs[rm];
1535 +        switch ((opcode >> 5) & 3) {
1536 +        case 0: // logical shift left
1537 +          offset = sh ? v << sh : v;
1538 +          break;
1539 +        case 1: // logical shift right
1540 +          offset = sh ? v >> sh : 0;
1541 +          break;
1542 +        case 2: // arithmetic shift right
1543 +          if (sh)
1544 +                offset = ((signed int)v) >> sh;
1545 +          else
1546 +                offset = (v & 0x80000000) ? 0xffffffff : 0;
1547 +          break;
1548 +        case 3: // rotate right
1549 +          if (sh)
1550 +                offset = (v >> sh) | (v << (32 - sh));
1551 +          else
1552 +                offset = (v >> 1) | ((regs[ARM_REG_CPSR] << 2) & 0x80000000);
1553 +          break;
1554 +        }
1555 +  }
1556 +  if (((opcode >> 23) & 1) == 0)
1557 +        offset = -offset;
1558 +
1559 +  int rd = (opcode >> 12) & 0xf;
1560 +  int rn = (opcode >> 16) & 0xf;
1561 + #if DEBUG
1562 +  static const char * reg_names[] = {
1563 +        "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1564 +        "r9", "r9", "sl", "fp", "ip", "sp", "lr", "pc"
1565 +  };
1566 +  printf("%s %s register %s\n",
1567 +                 transfer_size == SIZE_BYTE ? "byte" :
1568 +                 transfer_size == SIZE_WORD ? "word" :
1569 +                 transfer_size == SIZE_LONG ? "long" : "unknown",
1570 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1571 +                 reg_names[rd]);
1572 + #endif
1573 +
1574 +  unsigned int base = regs[rn];
1575 +  if (((opcode >> 24) & 1) == 1)
1576 +        base += offset;
1577 +
1578 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD)
1579 +        regs[rd] = 0;
1580 +
1581 +  if (((opcode >> 24) & 1) == 0)                // post-index addressing
1582 +        regs[rn] += offset;
1583 +  else if (((opcode >> 21) & 1) == 1)   // write-back address into base
1584 +        regs[rn] = base;
1585 +
1586 +  regs[ARM_REG_PC] += 4;
1587 +  return true;
1588 + }
1589 + #endif
1590 +
1591 +
1592   // Fallbacks
1593   #ifndef SIGSEGV_FAULT_INSTRUCTION
1594   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_PC
# Line 784 | Line 1596 | static bool powerpc_skip_instruction(uns
1596   #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
1597   #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
1598   #endif
1599 + #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
1600 + #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  sigsegv_fault_handler(ADDR, IP)
1601 + #endif
1602  
1603   // SIGSEGV recovery supported ?
1604   #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
# Line 795 | Line 1610 | static bool powerpc_skip_instruction(uns
1610   *  SIGSEGV global handler
1611   */
1612  
798 #if defined(HAVE_SIGSEGV_RECOVERY) || defined(HAVE_MACH_EXCEPTIONS)
1613   // This function handles the badaccess to memory.
1614   // It is called from the signal handler or the exception handler.
1615   static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
1616   {
1617 + #ifdef HAVE_MACH_EXCEPTIONS
1618 +        // We must match the initial count when writing back the CPU state registers
1619 +        kern_return_t krc;
1620 +        mach_msg_type_number_t count;
1621 +
1622 +        count = SIGSEGV_THREAD_STATE_COUNT;
1623 +        krc = thread_get_state(thread, SIGSEGV_THREAD_STATE_FLAVOR, (thread_state_t)state, &count);
1624 +        MACH_CHECK_ERROR (thread_get_state, krc);
1625 + #endif
1626 +
1627          sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
1628          sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
1629          
1630          // Call user's handler and reinstall the global handler, if required
1631 <        switch (sigsegv_fault_handler(fault_address, fault_instruction)) {
1631 >        switch (SIGSEGV_FAULT_HANDLER_INVOKE(fault_address, fault_instruction)) {
1632          case SIGSEGV_RETURN_SUCCESS:
1633                  return true;
1634  
# Line 818 | Line 1642 | static bool handle_badaccess(SIGSEGV_FAU
1642                          // is modified off of the stack, in Mach we
1643                          // need to actually call thread_set_state to
1644                          // have the register values updated.
821                        kern_return_t krc;
822
1645                          krc = thread_set_state(thread,
1646 <                                                                   MACHINE_THREAD_STATE, (thread_state_t)state,
1647 <                                                                   MACHINE_THREAD_STATE_COUNT);
1648 <                        MACH_CHECK_ERROR (thread_get_state, krc);
1646 >                                                                   SIGSEGV_THREAD_STATE_FLAVOR, (thread_state_t)state,
1647 >                                                                   count);
1648 >                        MACH_CHECK_ERROR (thread_set_state, krc);
1649   #endif
1650                          return true;
1651                  }
1652                  break;
1653   #endif
1654 +        case SIGSEGV_RETURN_FAILURE:
1655 +                // We can't do anything with the fault_address, dump state?
1656 +                if (sigsegv_state_dumper != 0)
1657 +                        sigsegv_state_dumper(fault_address, fault_instruction);
1658 +                break;
1659          }
833        
834        // We can't do anything with the fault_address, dump state?
835        if (sigsegv_state_dumper != 0)
836                sigsegv_state_dumper(fault_address, fault_instruction);
1660  
1661          return false;
1662   }
840 #endif
1663  
1664  
1665   /*
# Line 874 | Line 1696 | forward_exception(mach_port_t thread_por
1696          mach_port_t port;
1697          exception_behavior_t behavior;
1698          thread_state_flavor_t flavor;
1699 <        thread_state_t thread_state;
1699 >        thread_state_data_t thread_state;
1700          mach_msg_type_number_t thread_state_count;
1701  
1702          for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
# Line 893 | Line 1715 | forward_exception(mach_port_t thread_por
1715          behavior = oldExceptionPorts->behaviors[portIndex];
1716          flavor = oldExceptionPorts->flavors[portIndex];
1717  
1718 +        if (!VALID_THREAD_STATE_FLAVOR(flavor)) {
1719 +                fprintf(stderr, "Invalid thread_state flavor = %d. Not forwarding\n", flavor);
1720 +                return KERN_FAILURE;
1721 +        }
1722 +
1723          /*
1724           fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
1725           */
1726  
1727          if (behavior != EXCEPTION_DEFAULT) {
1728                  thread_state_count = THREAD_STATE_MAX;
1729 <                kret = thread_get_state (thread_port, flavor, thread_state,
1729 >                kret = thread_get_state (thread_port, flavor, (natural_t *)&thread_state,
1730                                                                   &thread_state_count);
1731                  MACH_CHECK_ERROR (thread_get_state, kret);
1732          }
# Line 915 | Line 1742 | forward_exception(mach_port_t thread_por
1742            // fprintf(stderr, "forwarding to exception_raise_state\n");
1743            kret = exception_raise_state(port, exception_type, exception_data,
1744                                                                     data_count, &flavor,
1745 <                                                                   thread_state, thread_state_count,
1746 <                                                                   thread_state, &thread_state_count);
1745 >                                                                   (natural_t *)&thread_state, thread_state_count,
1746 >                                                                   (natural_t *)&thread_state, &thread_state_count);
1747            MACH_CHECK_ERROR (exception_raise_state, kret);
1748            break;
1749          case EXCEPTION_STATE_IDENTITY:
# Line 924 | Line 1751 | forward_exception(mach_port_t thread_por
1751            kret = exception_raise_state_identity(port, thread_port, task_port,
1752                                                                                          exception_type, exception_data,
1753                                                                                          data_count, &flavor,
1754 <                                                                                        thread_state, thread_state_count,
1755 <                                                                                        thread_state, &thread_state_count);
1754 >                                                                                        (natural_t *)&thread_state, thread_state_count,
1755 >                                                                                        (natural_t *)&thread_state, &thread_state_count);
1756            MACH_CHECK_ERROR (exception_raise_state_identity, kret);
1757            break;
1758          default:
1759            fprintf(stderr, "forward_exception got unknown behavior\n");
1760 +          kret = KERN_FAILURE;
1761            break;
1762          }
1763  
1764          if (behavior != EXCEPTION_DEFAULT) {
1765 <                kret = thread_set_state (thread_port, flavor, thread_state,
1765 >                kret = thread_set_state (thread_port, flavor, (natural_t *)&thread_state,
1766                                                                   thread_state_count);
1767                  MACH_CHECK_ERROR (thread_set_state, kret);
1768          }
1769  
1770 <        return KERN_SUCCESS;
1770 >        return kret;
1771   }
1772  
1773   /*
# Line 969 | Line 1797 | catch_exception_raise(mach_port_t except
1797                                            exception_data_t code,
1798                                            mach_msg_type_number_t codeCount)
1799   {
1800 <        ppc_thread_state_t state;
1800 >        SIGSEGV_THREAD_STATE_TYPE state;
1801          kern_return_t krc;
1802  
1803          if ((exception == EXC_BAD_ACCESS)  && (codeCount >= 2)) {
# Line 1108 | Line 1936 | static bool sigsegv_do_install_handler(s
1936          // addressing modes) used in PPC instructions, you will need the
1937          // GPR state anyway.
1938          krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
1939 <                                EXCEPTION_DEFAULT, MACHINE_THREAD_STATE);
1939 >                                EXCEPTION_DEFAULT, SIGSEGV_THREAD_STATE_FLAVOR);
1940          if (krc != KERN_SUCCESS) {
1941                  mach_error("thread_set_exception_ports", krc);
1942                  return false;
# Line 1131 | Line 1959 | static bool sigsegv_do_install_handler(s
1959   }
1960   #endif
1961  
1962 + #ifdef HAVE_WIN32_EXCEPTIONS
1963 + static LONG WINAPI main_exception_filter(EXCEPTION_POINTERS *ExceptionInfo)
1964 + {
1965 +        if (sigsegv_fault_handler != NULL
1966 +                && ExceptionInfo->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION
1967 +                && ExceptionInfo->ExceptionRecord->NumberParameters == 2
1968 +                && handle_badaccess(ExceptionInfo))
1969 +                return EXCEPTION_CONTINUE_EXECUTION;
1970 +
1971 +        return EXCEPTION_CONTINUE_SEARCH;
1972 + }
1973 +
1974 + #if defined __CYGWIN__ && defined __i386__
1975 + /* In Cygwin programs, SetUnhandledExceptionFilter has no effect because Cygwin
1976 +   installs a global exception handler.  We have to dig deep in order to install
1977 +   our main_exception_filter.  */
1978 +
1979 + /* Data structures for the current thread's exception handler chain.
1980 +   On the x86 Windows uses register fs, offset 0 to point to the current
1981 +   exception handler; Cygwin mucks with it, so we must do the same... :-/ */
1982 +
1983 + /* Magic taken from winsup/cygwin/include/exceptions.h.  */
1984 +
1985 + struct exception_list {
1986 +    struct exception_list *prev;
1987 +    int (*handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
1988 + };
1989 + typedef struct exception_list exception_list;
1990 +
1991 + /* Magic taken from winsup/cygwin/exceptions.cc.  */
1992 +
1993 + __asm__ (".equ __except_list,0");
1994 +
1995 + extern exception_list *_except_list __asm__ ("%fs:__except_list");
1996 +
1997 + /* For debugging.  _except_list is not otherwise accessible from gdb.  */
1998 + static exception_list *
1999 + debug_get_except_list ()
2000 + {
2001 +  return _except_list;
2002 + }
2003 +
2004 + /* Cygwin's original exception handler.  */
2005 + static int (*cygwin_exception_handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
2006 +
2007 + /* Our exception handler.  */
2008 + static int
2009 + libsigsegv_exception_handler (EXCEPTION_RECORD *exception, void *frame, CONTEXT *context, void *dispatch)
2010 + {
2011 +  EXCEPTION_POINTERS ExceptionInfo;
2012 +  ExceptionInfo.ExceptionRecord = exception;
2013 +  ExceptionInfo.ContextRecord = context;
2014 +  if (main_exception_filter (&ExceptionInfo) == EXCEPTION_CONTINUE_SEARCH)
2015 +    return cygwin_exception_handler (exception, frame, context, dispatch);
2016 +  else
2017 +    return 0;
2018 + }
2019 +
2020 + static void
2021 + do_install_main_exception_filter ()
2022 + {
2023 +  /* We cannot insert any handler into the chain, because such handlers
2024 +     must lie on the stack (?).  Instead, we have to replace(!) Cygwin's
2025 +     global exception handler.  */
2026 +  cygwin_exception_handler = _except_list->handler;
2027 +  _except_list->handler = libsigsegv_exception_handler;
2028 + }
2029 +
2030 + #else
2031 +
2032 + static void
2033 + do_install_main_exception_filter ()
2034 + {
2035 +  SetUnhandledExceptionFilter ((LPTOP_LEVEL_EXCEPTION_FILTER) &main_exception_filter);
2036 + }
2037 + #endif
2038 +
2039 + static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
2040 + {
2041 +        static bool main_exception_filter_installed = false;
2042 +        if (!main_exception_filter_installed) {
2043 +                do_install_main_exception_filter();
2044 +                main_exception_filter_installed = true;
2045 +        }
2046 +        sigsegv_fault_handler = handler;
2047 +        return true;
2048 + }
2049 + #endif
2050 +
2051   bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
2052   {
2053   #if defined(HAVE_SIGSEGV_RECOVERY)
# Line 1141 | Line 2058 | bool sigsegv_install_handler(sigsegv_fau
2058          if (success)
2059              sigsegv_fault_handler = handler;
2060          return success;
2061 < #elif defined(HAVE_MACH_EXCEPTIONS)
2061 > #elif defined(HAVE_MACH_EXCEPTIONS) || defined(HAVE_WIN32_EXCEPTIONS)
2062          return sigsegv_do_install_handler(handler);
2063   #else
2064          // FAIL: no siginfo_t nor sigcontext subterfuge is available
# Line 1167 | Line 2084 | void sigsegv_deinstall_handler(void)
2084          SIGSEGV_ALL_SIGNALS
2085   #undef FAULT_HANDLER
2086   #endif
2087 + #ifdef HAVE_WIN32_EXCEPTIONS
2088 +        sigsegv_fault_handler = NULL;
2089 + #endif
2090   }
2091  
2092  
# Line 1188 | Line 2108 | void sigsegv_set_dump_state(sigsegv_stat
2108   #include <stdio.h>
2109   #include <stdlib.h>
2110   #include <fcntl.h>
2111 + #ifdef HAVE_SYS_MMAN_H
2112   #include <sys/mman.h>
2113 + #endif
2114   #include "vm_alloc.h"
2115  
2116 + const int REF_INDEX = 123;
2117 + const int REF_VALUE = 45;
2118 +
2119   static int page_size;
2120   static volatile char * page = 0;
2121   static volatile int handler_called = 0;
2122  
2123 + /* Barriers */
2124 + #ifdef __GNUC__
2125 + #define BARRIER() asm volatile ("" : : : "memory")
2126 + #else
2127 + #define BARRIER() /* nothing */
2128 + #endif
2129 +
2130 + #ifdef __GNUC__
2131 + // Code range where we expect the fault to come from
2132 + static void *b_region, *e_region;
2133 + #endif
2134 +
2135   static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2136   {
2137 + #if DEBUG
2138 +        printf("sigsegv_test_handler(%p, %p)\n", fault_address, instruction_address);
2139 +        printf("expected fault at %p\n", page + REF_INDEX);
2140 + #ifdef __GNUC__
2141 +        printf("expected instruction address range: %p-%p\n", b_region, e_region);
2142 + #endif
2143 + #endif
2144          handler_called++;
2145 <        if ((fault_address - 123) != page)
2145 >        if ((fault_address - REF_INDEX) != page)
2146                  exit(10);
2147 <        if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
2147 > #ifdef __GNUC__
2148 >        // Make sure reported fault instruction address falls into
2149 >        // expected code range
2150 >        if (instruction_address != SIGSEGV_INVALID_PC
2151 >                && ((instruction_address <  (sigsegv_address_t)b_region) ||
2152 >                        (instruction_address >= (sigsegv_address_t)e_region)))
2153                  exit(11);
2154 + #endif
2155 +        if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
2156 +                exit(12);
2157          return SIGSEGV_RETURN_SUCCESS;
2158   }
2159  
2160   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1209 #ifdef __GNUC__
1210 // Code range where we expect the fault to come from
1211 static void *b_region, *e_region;
1212 #endif
1213
2161   static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2162   {
2163 + #if DEBUG
2164 +        printf("sigsegv_insn_handler(%p, %p)\n", fault_address, instruction_address);
2165 + #endif
2166          if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
2167   #ifdef __GNUC__
2168                  // Make sure reported fault instruction address falls into
# Line 1227 | Line 2177 | static sigsegv_return_t sigsegv_insn_han
2177  
2178          return SIGSEGV_RETURN_FAILURE;
2179   }
2180 +
2181 + // More sophisticated tests for instruction skipper
2182 + static bool arch_insn_skipper_tests()
2183 + {
2184 + #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
2185 +        static const unsigned char code[] = {
2186 +                0x8a, 0x00,                    // mov    (%eax),%al
2187 +                0x8a, 0x2c, 0x18,              // mov    (%eax,%ebx,1),%ch
2188 +                0x88, 0x20,                    // mov    %ah,(%eax)
2189 +                0x88, 0x08,                    // mov    %cl,(%eax)
2190 +                0x66, 0x8b, 0x00,              // mov    (%eax),%ax
2191 +                0x66, 0x8b, 0x0c, 0x18,        // mov    (%eax,%ebx,1),%cx
2192 +                0x66, 0x89, 0x00,              // mov    %ax,(%eax)
2193 +                0x66, 0x89, 0x0c, 0x18,        // mov    %cx,(%eax,%ebx,1)
2194 +                0x8b, 0x00,                    // mov    (%eax),%eax
2195 +                0x8b, 0x0c, 0x18,              // mov    (%eax,%ebx,1),%ecx
2196 +                0x89, 0x00,                    // mov    %eax,(%eax)
2197 +                0x89, 0x0c, 0x18,              // mov    %ecx,(%eax,%ebx,1)
2198 + #if defined(__x86_64__)
2199 +                0x44, 0x8a, 0x00,              // mov    (%rax),%r8b
2200 +                0x44, 0x8a, 0x20,              // mov    (%rax),%r12b
2201 +                0x42, 0x8a, 0x3c, 0x10,        // mov    (%rax,%r10,1),%dil
2202 +                0x44, 0x88, 0x00,              // mov    %r8b,(%rax)
2203 +                0x44, 0x88, 0x20,              // mov    %r12b,(%rax)
2204 +                0x42, 0x88, 0x3c, 0x10,        // mov    %dil,(%rax,%r10,1)
2205 +                0x66, 0x44, 0x8b, 0x00,        // mov    (%rax),%r8w
2206 +                0x66, 0x42, 0x8b, 0x0c, 0x10,  // mov    (%rax,%r10,1),%cx
2207 +                0x66, 0x44, 0x89, 0x00,        // mov    %r8w,(%rax)
2208 +                0x66, 0x42, 0x89, 0x0c, 0x10,  // mov    %cx,(%rax,%r10,1)
2209 +                0x44, 0x8b, 0x00,              // mov    (%rax),%r8d
2210 +                0x42, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%ecx
2211 +                0x44, 0x89, 0x00,              // mov    %r8d,(%rax)
2212 +                0x42, 0x89, 0x0c, 0x10,        // mov    %ecx,(%rax,%r10,1)
2213 +                0x48, 0x8b, 0x08,              // mov    (%rax),%rcx
2214 +                0x4c, 0x8b, 0x18,              // mov    (%rax),%r11
2215 +                0x4a, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%rcx
2216 +                0x4e, 0x8b, 0x1c, 0x10,        // mov    (%rax,%r10,1),%r11
2217 +                0x48, 0x89, 0x08,              // mov    %rcx,(%rax)
2218 +                0x4c, 0x89, 0x18,              // mov    %r11,(%rax)
2219 +                0x4a, 0x89, 0x0c, 0x10,        // mov    %rcx,(%rax,%r10,1)
2220 +                0x4e, 0x89, 0x1c, 0x10,        // mov    %r11,(%rax,%r10,1)
2221 +                0x63, 0x47, 0x04,              // movslq 4(%rdi),%eax
2222 +                0x48, 0x63, 0x47, 0x04,        // movslq 4(%rdi),%rax
2223 + #endif
2224 +                0                              // end
2225 +        };
2226 +        const int N_REGS = 20;
2227 +        unsigned long regs[N_REGS];
2228 +        for (int i = 0; i < N_REGS; i++)
2229 +                regs[i] = i;
2230 +        const unsigned long start_code = (unsigned long)&code;
2231 +        regs[X86_REG_EIP] = start_code;
2232 +        while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1)
2233 +                   && ix86_skip_instruction(regs))
2234 +                ; /* simply iterate */
2235 +        return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1);
2236 + #endif
2237 +        return true;
2238 + }
2239   #endif
2240  
2241   int main(void)
# Line 1234 | Line 2243 | int main(void)
2243          if (vm_init() < 0)
2244                  return 1;
2245  
2246 <        page_size = getpagesize();
2246 >        page_size = vm_get_page_size();
2247          if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
2248                  return 2;
2249          
2250 +        memset((void *)page, 0, page_size);
2251          if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
2252                  return 3;
2253          
2254          if (!sigsegv_install_handler(sigsegv_test_handler))
2255                  return 4;
2256          
2257 <        page[123] = 45;
2258 <        page[123] = 45;
2259 <        
2257 > #ifdef __GNUC__
2258 >        b_region = &&L_b_region1;
2259 >        e_region = &&L_e_region1;
2260 > #endif
2261 > L_b_region1:
2262 >        page[REF_INDEX] = REF_VALUE;
2263 >        if (page[REF_INDEX] != REF_VALUE)
2264 >          exit(20);
2265 >        page[REF_INDEX] = REF_VALUE;
2266 >        BARRIER();
2267 > L_e_region1:
2268 >
2269          if (handler_called != 1)
2270                  return 5;
2271  
# Line 1264 | Line 2283 | int main(void)
2283                  return 8;
2284          
2285   #define TEST_SKIP_INSTRUCTION(TYPE) do {                                \
2286 <                const unsigned int TAG = 0x12345678;                    \
2286 >                const unsigned long TAG = 0x12345678 |                  \
2287 >                (sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0);   \
2288                  TYPE data = *((TYPE *)(page + sizeof(TYPE)));   \
2289 <                volatile unsigned int effect = data + TAG;              \
2289 >                volatile unsigned long effect = data + TAG;             \
2290                  if (effect != TAG)                                                              \
2291                          return 9;                                                                       \
2292          } while (0)
2293          
2294   #ifdef __GNUC__
2295 <        b_region = &&L_b_region;
2296 <        e_region = &&L_e_region;
2295 >        b_region = &&L_b_region2;
2296 >        e_region = &&L_e_region2;
2297   #endif
2298 < L_b_region:
2298 > L_b_region2:
2299          TEST_SKIP_INSTRUCTION(unsigned char);
2300          TEST_SKIP_INSTRUCTION(unsigned short);
2301          TEST_SKIP_INSTRUCTION(unsigned int);
2302 < L_e_region:
2302 >        TEST_SKIP_INSTRUCTION(unsigned long);
2303 >        TEST_SKIP_INSTRUCTION(signed char);
2304 >        TEST_SKIP_INSTRUCTION(signed short);
2305 >        TEST_SKIP_INSTRUCTION(signed int);
2306 >        TEST_SKIP_INSTRUCTION(signed long);
2307 >        BARRIER();
2308 > L_e_region2:
2309 >
2310 >        if (!arch_insn_skipper_tests())
2311 >                return 20;
2312   #endif
2313  
2314          vm_exit();

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines