ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
(Generate patch)

Comparing BasiliskII/src/Unix/sigsegv.cpp (file contents):
Revision 1.30 by gbeauche, 2003-10-13T19:56:17Z vs.
Revision 1.46 by gbeauche, 2004-01-22T00:00:55Z

# Line 10 | Line 10
10   *    tjw@omnigroup.com Sun, 4 Jun 2000
11   *    www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12   *
13 < *  Basilisk II (C) 1997-2002 Christian Bauer
13 > *  Basilisk II (C) 1997-2004 Christian Bauer
14   *
15   *  This program is free software; you can redistribute it and/or modify
16   *  it under the terms of the GNU General Public License as published by
# Line 36 | Line 36
36   #endif
37  
38   #include <list>
39 + #include <stdio.h>
40   #include <signal.h>
41   #include "sigsegv.h"
42  
# Line 69 | Line 70 | static bool sigsegv_do_install_handler(i
70   enum transfer_size_t {
71          SIZE_UNKNOWN,
72          SIZE_BYTE,
73 <        SIZE_WORD,
74 <        SIZE_LONG
73 >        SIZE_WORD, // 2 bytes
74 >        SIZE_LONG, // 4 bytes
75 >        SIZE_QUAD, // 8 bytes
76   };
77  
78   // Transfer type
# Line 212 | Line 214 | static void powerpc_decode_instruction(i
214  
215   #if HAVE_SIGINFO_T
216   // Generic extended signal handler
215 #define SIGSEGV_FAULT_HANDLER                   sigsegv_fault_handler
217   #if defined(__NetBSD__) || defined(__FreeBSD__)
218   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
219   #else
# Line 222 | Line 223 | static void powerpc_decode_instruction(i
223   #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
224   #define SIGSEGV_FAULT_HANDLER_ARGS              sip, scp
225   #define SIGSEGV_FAULT_ADDRESS                   sip->si_addr
226 < #if defined(__NetBSD__) || defined(__FreeBSD__)
226 > #if (defined(sgi) || defined(__sgi))
227 > #include <ucontext.h>
228 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
229 > #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)SIGSEGV_CONTEXT_REGS[CTX_EPC]
230 > #if (defined(mips) || defined(__mips))
231 > #define SIGSEGV_REGISTER_FILE                   SIGSEGV_CONTEXT_REGS
232 > #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
233 > #endif
234 > #endif
235 > #if defined(__sun__)
236 > #if (defined(sparc) || defined(__sparc__))
237 > #include <sys/stack.h>
238 > #include <sys/regset.h>
239 > #include <sys/ucontext.h>
240 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
241 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[REG_PC]
242 > #define SIGSEGV_SPARC_GWINDOWS                  (((ucontext_t *)scp)->uc_mcontext.gwins)
243 > #define SIGSEGV_SPARC_RWINDOW                   (struct rwindow *)((char *)SIGSEGV_CONTEXT_REGS[REG_SP] + STACK_BIAS)
244 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)SIGSEGV_CONTEXT_REGS), SIGSEGV_SPARC_GWINDOWS, SIGSEGV_SPARC_RWINDOW
245 > #define SIGSEGV_SKIP_INSTRUCTION                sparc_skip_instruction
246 > #endif
247 > #endif
248 > #if defined(__FreeBSD__)
249   #if (defined(i386) || defined(__i386__))
250   #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_eip)
251 < #define SIGSEGV_REGISTER_FILE                   ((unsigned int *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
251 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
252   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
253   #endif
254   #endif
# Line 234 | Line 257 | static void powerpc_decode_instruction(i
257   #include <sys/ucontext.h>
258   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
259   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
260 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)SIGSEGV_CONTEXT_REGS
260 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
261   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
262   #endif
263   #if (defined(x86_64) || defined(__x86_64__))
# Line 242 | Line 265 | static void powerpc_decode_instruction(i
265   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
266   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
267   #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
268 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
269   #endif
270   #if (defined(ia64) || defined(__ia64__))
271   #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
# Line 253 | Line 277 | static void powerpc_decode_instruction(i
277   #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned int *)(SIGSEGV_CONTEXT_REGS->gpr)
278   #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
279   #endif
280 + #if (defined(hppa) || defined(__hppa__))
281 + #undef  SIGSEGV_FAULT_ADDRESS
282 + #define SIGSEGV_FAULT_ADDRESS                   sip->si_ptr
283 + #endif
284 + #if (defined(arm) || defined(__arm__))
285 + #include <asm/ucontext.h> /* use kernel structure, glibc may not be in sync */
286 + #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
287 + #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.arm_pc)
288 + #define SIGSEGV_REGISTER_FILE                   (&SIGSEGV_CONTEXT_REGS.arm_r0)
289 + #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
290 + #endif
291   #endif
292   #endif
293  
294   #if HAVE_SIGCONTEXT_SUBTERFUGE
260 #define SIGSEGV_FAULT_HANDLER                   sigsegv_fault_handler
295   // Linux kernels prior to 2.4 ?
296   #if defined(__linux__)
297   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
# Line 268 | Line 302 | static void powerpc_decode_instruction(i
302   #define SIGSEGV_FAULT_HANDLER_ARGS              &scs
303   #define SIGSEGV_FAULT_ADDRESS                   scp->cr2
304   #define SIGSEGV_FAULT_INSTRUCTION               scp->eip
305 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)scp
305 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)scp
306   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
307   #endif
308   #if (defined(sparc) || defined(__sparc__))
# Line 292 | Line 326 | static void powerpc_decode_instruction(i
326   #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
327   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
328   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
329 <
330 < // From Boehm's GC 6.0alpha8
331 < static sigsegv_address_t get_fault_address(struct sigcontext *scp)
332 < {
333 <        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
334 <        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
335 <        fault_address += (signed long)(signed short)(instruction & 0xffff);
336 <        return (sigsegv_address_t)fault_address;
337 < }
329 > #endif
330 > #if (defined(arm) || defined(__arm__))
331 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int r1, int r2, int r3, struct sigcontext sc
332 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
333 > #define SIGSEGV_FAULT_HANDLER_ARGS              &sc
334 > #define SIGSEGV_FAULT_ADDRESS                   scp->fault_address
335 > #define SIGSEGV_FAULT_INSTRUCTION               scp->arm_pc
336 > #define SIGSEGV_REGISTER_FILE                   &scp->arm_r0
337 > #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
338   #endif
339   #endif
340  
341   // Irix 5 or 6 on MIPS
342 < #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
342 > #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(_SYSTYPE_SVR4))
343   #include <ucontext.h>
344   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
345   #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
346 < #define SIGSEGV_FAULT_ADDRESS                   scp->sc_badvaddr
346 > #define SIGSEGV_FAULT_ADDRESS                   (unsigned long)scp->sc_badvaddr
347 > #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)scp->sc_pc
348   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
349   #endif
350  
# Line 338 | Line 373 | static sigsegv_address_t get_fault_addre
373   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
374   #endif
375  
376 < // NetBSD or FreeBSD
377 < #if defined(__NetBSD__) || defined(__FreeBSD__)
376 > // NetBSD
377 > #if defined(__NetBSD__)
378   #if (defined(m68k) || defined(__m68k__))
379   #include <m68k/frame.h>
380   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
# Line 367 | Line 402 | static sigsegv_address_t get_fault_addre
402          }
403          return (sigsegv_address_t)fault_addr;
404   }
405 < #else
406 < #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, void *scp, char *addr
405 > #endif
406 > #if (defined(alpha) || defined(__alpha__))
407 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
408 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
409 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
410 > #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
411 > #endif
412 > #if (defined(i386) || defined(__i386__))
413 > #error "FIXME: need to decode instruction and compute EA"
414 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
415 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
416 > #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
417 > #endif
418 > #endif
419 > #if defined(__FreeBSD__)
420 > #if (defined(i386) || defined(__i386__))
421 > #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
422 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
423   #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
424   #define SIGSEGV_FAULT_ADDRESS                   addr
425 < #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
425 > #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_eip
426 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&scp->sc_edi)
427 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
428 > #endif
429 > #if (defined(alpha) || defined(__alpha__))
430 > #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
431 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, char *addr, struct sigcontext *scp
432 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, addr, scp
433 > #define SIGSEGV_FAULT_ADDRESS                   addr
434 > #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
435   #endif
436   #endif
437  
438 + // Extract fault address out of a sigcontext
439 + #if (defined(alpha) || defined(__alpha__))
440 + // From Boehm's GC 6.0alpha8
441 + static sigsegv_address_t get_fault_address(struct sigcontext *scp)
442 + {
443 +        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
444 +        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
445 +        fault_address += (signed long)(signed short)(instruction & 0xffff);
446 +        return (sigsegv_address_t)fault_address;
447 + }
448 + #endif
449 +
450 +
451   // MacOS X, not sure which version this works in. Under 10.1
452   // vm_protect does not appear to work from a signal handler. Under
453   // 10.2 signal handlers get siginfo type arguments but the si_addr
# Line 470 | Line 543 | if (ret != KERN_SUCCESS) { \
543  
544   #define SIGSEGV_FAULT_ADDRESS                   code[1]
545   #define SIGSEGV_FAULT_INSTRUCTION               get_fault_instruction(thread, state)
546 < #define SIGSEGV_FAULT_HANDLER                   (code[0] == KERN_PROTECTION_FAILURE) && sigsegv_fault_handler
546 > #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  ((code[0] == KERN_PROTECTION_FAILURE) ? sigsegv_fault_handler(ADDR, IP) : SIGSEGV_RETURN_FAILURE)
547   #define SIGSEGV_FAULT_HANDLER_ARGLIST   mach_port_t thread, exception_data_t code, ppc_thread_state_t *state
548   #define SIGSEGV_FAULT_HANDLER_ARGS              thread, code, &state
549   #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
# Line 550 | Line 623 | handleExceptions(void *priv)
623  
624   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
625   // Decode and skip X86 instruction
626 < #if (defined(i386) || defined(__i386__))
626 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
627   #if defined(__linux__)
628   enum {
629 + #if (defined(i386) || defined(__i386__))
630          X86_REG_EIP = 14,
631          X86_REG_EAX = 11,
632          X86_REG_ECX = 10,
# Line 562 | Line 636 | enum {
636          X86_REG_EBP = 6,
637          X86_REG_ESI = 5,
638          X86_REG_EDI = 4
639 + #endif
640 + #if defined(__x86_64__)
641 +        X86_REG_R8  = 0,
642 +        X86_REG_R9  = 1,
643 +        X86_REG_R10 = 2,
644 +        X86_REG_R11 = 3,
645 +        X86_REG_R12 = 4,
646 +        X86_REG_R13 = 5,
647 +        X86_REG_R14 = 6,
648 +        X86_REG_R15 = 7,
649 +        X86_REG_EDI = 8,
650 +        X86_REG_ESI = 9,
651 +        X86_REG_EBP = 10,
652 +        X86_REG_EBX = 11,
653 +        X86_REG_EDX = 12,
654 +        X86_REG_EAX = 13,
655 +        X86_REG_ECX = 14,
656 +        X86_REG_ESP = 15,
657 +        X86_REG_EIP = 16
658 + #endif
659   };
660   #endif
661   #if defined(__NetBSD__) || defined(__FreeBSD__)
662   enum {
663 + #if (defined(i386) || defined(__i386__))
664          X86_REG_EIP = 10,
665          X86_REG_EAX = 7,
666          X86_REG_ECX = 6,
# Line 575 | Line 670 | enum {
670          X86_REG_EBP = 2,
671          X86_REG_ESI = 1,
672          X86_REG_EDI = 0
673 + #endif
674   };
675   #endif
676   // FIXME: this is partly redundant with the instruction decoding phase
# Line 611 | Line 707 | static inline int ix86_step_over_modrm(u
707          return offset;
708   }
709  
710 < static bool ix86_skip_instruction(unsigned int * regs)
710 > static bool ix86_skip_instruction(unsigned long * regs)
711   {
712          unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
713  
# Line 623 | Line 719 | static bool ix86_skip_instruction(unsign
719          
720          int reg = -1;
721          int len = 0;
722 <        
722 >
723 > #if DEBUG
724 >        printf("IP: %p [%02x %02x %02x %02x...]\n",
725 >                   eip, eip[0], eip[1], eip[2], eip[3]);
726 > #endif
727 >
728          // Operand size prefix
729          if (*eip == 0x66) {
730                  eip++;
# Line 631 | Line 732 | static bool ix86_skip_instruction(unsign
732                  transfer_size = SIZE_WORD;
733          }
734  
735 +        // REX prefix
736 + #if defined(__x86_64__)
737 +        struct rex_t {
738 +                unsigned char W;
739 +                unsigned char R;
740 +                unsigned char X;
741 +                unsigned char B;
742 +        };
743 +        rex_t rex = { 0, 0, 0, 0 };
744 +        bool has_rex = false;
745 +        if ((*eip & 0xf0) == 0x40) {
746 +                has_rex = true;
747 +                const unsigned char b = *eip;
748 +                rex.W = b & (1 << 3);
749 +                rex.R = b & (1 << 2);
750 +                rex.X = b & (1 << 1);
751 +                rex.B = b & (1 << 0);
752 + #if DEBUG
753 +                printf("REX: %c,%c,%c,%c\n",
754 +                           rex.W ? 'W' : '_',
755 +                           rex.R ? 'R' : '_',
756 +                           rex.X ? 'X' : '_',
757 +                           rex.B ? 'B' : '_');
758 + #endif
759 +                eip++;
760 +                len++;
761 +                if (rex.W)
762 +                        transfer_size = SIZE_QUAD;
763 +        }
764 + #else
765 +        const bool has_rex = false;
766 + #endif
767 +
768          // Decode instruction
769 +        int target_size = SIZE_UNKNOWN;
770          switch (eip[0]) {
771          case 0x0f:
772 +                target_size = transfer_size;
773              switch (eip[1]) {
774 +                case 0xbe: // MOVSX r32, r/m8
775              case 0xb6: // MOVZX r32, r/m8
776 +                        transfer_size = SIZE_BYTE;
777 +                        goto do_mov_extend;
778              case 0xb7: // MOVZX r32, r/m16
779 <                switch (eip[2] & 0xc0) {
780 <                case 0x80:
781 <                    reg = (eip[2] >> 3) & 7;
782 <                    transfer_type = SIGSEGV_TRANSFER_LOAD;
783 <                    break;
784 <                case 0x40:
785 <                    reg = (eip[2] >> 3) & 7;
786 <                    transfer_type = SIGSEGV_TRANSFER_LOAD;
787 <                    break;
788 <                case 0x00:
789 <                    reg = (eip[2] >> 3) & 7;
790 <                    transfer_type = SIGSEGV_TRANSFER_LOAD;
791 <                    break;
792 <                }
793 <                len += 3 + ix86_step_over_modrm(eip + 2);
794 <                break;
779 >                        transfer_size = SIZE_WORD;
780 >                        goto do_mov_extend;
781 >                  do_mov_extend:
782 >                        switch (eip[2] & 0xc0) {
783 >                        case 0x80:
784 >                                reg = (eip[2] >> 3) & 7;
785 >                                transfer_type = SIGSEGV_TRANSFER_LOAD;
786 >                                break;
787 >                        case 0x40:
788 >                                reg = (eip[2] >> 3) & 7;
789 >                                transfer_type = SIGSEGV_TRANSFER_LOAD;
790 >                                break;
791 >                        case 0x00:
792 >                                reg = (eip[2] >> 3) & 7;
793 >                                transfer_type = SIGSEGV_TRANSFER_LOAD;
794 >                                break;
795 >                        }
796 >                        len += 3 + ix86_step_over_modrm(eip + 2);
797 >                        break;
798              }
799            break;
800          case 0x8a: // MOV r8, r/m8
# Line 694 | Line 836 | static bool ix86_skip_instruction(unsign
836                  len += 2 + ix86_step_over_modrm(eip + 1);
837                  break;
838          }
839 +        if (target_size == SIZE_UNKNOWN)
840 +                target_size = transfer_size;
841  
842          if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
843                  // Unknown machine code, let it crash. Then patch the decoder
844                  return false;
845          }
846  
847 + #if defined(__x86_64__)
848 +        if (rex.R)
849 +                reg += 8;
850 + #endif
851 +
852          if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
853 <                static const int x86_reg_map[8] = {
853 >                static const int x86_reg_map[] = {
854                          X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
855 <                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI
855 >                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI,
856 > #if defined(__x86_64__)
857 >                        X86_REG_R8,  X86_REG_R9,  X86_REG_R10, X86_REG_R11,
858 >                        X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15,
859 > #endif
860                  };
861                  
862 <                if (reg < 0 || reg >= 8)
862 >                if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1))
863                          return false;
864  
865 +                // Set 0 to the relevant register part
866 +                // NOTE: this is only valid for MOV alike instructions
867                  int rloc = x86_reg_map[reg];
868 <                switch (transfer_size) {
868 >                switch (target_size) {
869                  case SIZE_BYTE:
870 <                        regs[rloc] = (regs[rloc] & ~0xff);
870 >                        if (has_rex || reg < 4)
871 >                                regs[rloc] = (regs[rloc] & ~0x00ffL);
872 >                        else {
873 >                                rloc = x86_reg_map[reg - 4];
874 >                                regs[rloc] = (regs[rloc] & ~0xff00L);
875 >                        }
876                          break;
877                  case SIZE_WORD:
878 <                        regs[rloc] = (regs[rloc] & ~0xffff);
878 >                        regs[rloc] = (regs[rloc] & ~0xffffL);
879                          break;
880                  case SIZE_LONG:
881 +                case SIZE_QUAD: // zero-extension
882                          regs[rloc] = 0;
883                          break;
884                  }
# Line 725 | Line 886 | static bool ix86_skip_instruction(unsign
886  
887   #if DEBUG
888          printf("%08x: %s %s access", regs[X86_REG_EIP],
889 <                   transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : "long",
889 >                   transfer_size == SIZE_BYTE ? "byte" :
890 >                   transfer_size == SIZE_WORD ? "word" :
891 >                   transfer_size == SIZE_LONG ? "long" :
892 >                   transfer_size == SIZE_QUAD ? "quad" : "unknown",
893                     transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
894          
895          if (reg != -1) {
896 <                static const char * x86_reg_str_map[8] = {
897 <                        "eax", "ecx", "edx", "ebx",
898 <                        "esp", "ebp", "esi", "edi"
896 >                static const char * x86_byte_reg_str_map[] = {
897 >                        "al",   "cl",   "dl",   "bl",
898 >                        "spl",  "bpl",  "sil",  "dil",
899 >                        "r8b",  "r9b",  "r10b", "r11b",
900 >                        "r12b", "r13b", "r14b", "r15b",
901 >                        "ah",   "ch",   "dh",   "bh",
902 >                };
903 >                static const char * x86_word_reg_str_map[] = {
904 >                        "ax",   "cx",   "dx",   "bx",
905 >                        "sp",   "bp",   "si",   "di",
906 >                        "r8w",  "r9w",  "r10w", "r11w",
907 >                        "r12w", "r13w", "r14w", "r15w",
908                  };
909 <                printf(" %s register %%%s", transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from", x86_reg_str_map[reg]);
909 >                static const char *x86_long_reg_str_map[] = {
910 >                        "eax",  "ecx",  "edx",  "ebx",
911 >                        "esp",  "ebp",  "esi",  "edi",
912 >                        "r8d",  "r9d",  "r10d", "r11d",
913 >                        "r12d", "r13d", "r14d", "r15d",
914 >                };
915 >                static const char *x86_quad_reg_str_map[] = {
916 >                        "rax", "rcx", "rdx", "rbx",
917 >                        "rsp", "rbp", "rsi", "rdi",
918 >                        "r8",  "r9",  "r10", "r11",
919 >                        "r12", "r13", "r14", "r15",
920 >                };
921 >                const char * reg_str = NULL;
922 >                switch (target_size) {
923 >                case SIZE_BYTE:
924 >                        reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg];
925 >                        break;
926 >                case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break;
927 >                case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break;
928 >                case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break;
929 >                }
930 >                if (reg_str)
931 >                        printf(" %s register %%%s",
932 >                                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from",
933 >                                   reg_str);
934          }
935          printf(", %d bytes instruction\n", len);
936   #endif
# Line 775 | Line 972 | static bool powerpc_skip_instruction(uns
972          return true;
973   }
974   #endif
975 +
976 + // Decode and skip MIPS instruction
977 + #if (defined(mips) || defined(__mips))
978 + enum {
979 + #if (defined(sgi) || defined(__sgi))
980 +  MIPS_REG_EPC = 35,
981   #endif
982 + };
983 + static bool mips_skip_instruction(greg_t * regs)
984 + {
985 +  unsigned int * epc = (unsigned int *)(unsigned long)regs[MIPS_REG_EPC];
986 +
987 +  if (epc == 0)
988 +        return false;
989 +
990 + #if DEBUG
991 +  printf("IP: %p [%08x]\n", epc, epc[0]);
992 + #endif
993 +
994 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
995 +  transfer_size_t transfer_size = SIZE_LONG;
996 +  int direction = 0;
997 +
998 +  const unsigned int opcode = epc[0];
999 +  switch (opcode >> 26) {
1000 +  case 32: // Load Byte
1001 +  case 36: // Load Byte Unsigned
1002 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1003 +        transfer_size = SIZE_BYTE;
1004 +        break;
1005 +  case 33: // Load Halfword
1006 +  case 37: // Load Halfword Unsigned
1007 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1008 +        transfer_size = SIZE_WORD;
1009 +        break;
1010 +  case 35: // Load Word
1011 +  case 39: // Load Word Unsigned
1012 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1013 +        transfer_size = SIZE_LONG;
1014 +        break;
1015 +  case 34: // Load Word Left
1016 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1017 +        transfer_size = SIZE_LONG;
1018 +        direction = -1;
1019 +        break;
1020 +  case 38: // Load Word Right
1021 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1022 +        transfer_size = SIZE_LONG;
1023 +        direction = 1;
1024 +        break;
1025 +  case 55: // Load Doubleword
1026 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1027 +        transfer_size = SIZE_QUAD;
1028 +        break;
1029 +  case 26: // Load Doubleword Left
1030 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1031 +        transfer_size = SIZE_QUAD;
1032 +        direction = -1;
1033 +        break;
1034 +  case 27: // Load Doubleword Right
1035 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1036 +        transfer_size = SIZE_QUAD;
1037 +        direction = 1;
1038 +        break;
1039 +  case 40: // Store Byte
1040 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1041 +        transfer_size = SIZE_BYTE;
1042 +        break;
1043 +  case 41: // Store Halfword
1044 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1045 +        transfer_size = SIZE_WORD;
1046 +        break;
1047 +  case 43: // Store Word
1048 +  case 42: // Store Word Left
1049 +  case 46: // Store Word Right
1050 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1051 +        transfer_size = SIZE_LONG;
1052 +        break;
1053 +  case 63: // Store Doubleword
1054 +  case 44: // Store Doubleword Left
1055 +  case 45: // Store Doubleword Right
1056 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1057 +        transfer_size = SIZE_QUAD;
1058 +        break;
1059 +  /* Misc instructions unlikely to be used within CPU emulators */
1060 +  case 48: // Load Linked Word
1061 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1062 +        transfer_size = SIZE_LONG;
1063 +        break;
1064 +  case 52: // Load Linked Doubleword
1065 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1066 +        transfer_size = SIZE_QUAD;
1067 +        break;
1068 +  case 56: // Store Conditional Word
1069 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1070 +        transfer_size = SIZE_LONG;
1071 +        break;
1072 +  case 60: // Store Conditional Doubleword
1073 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1074 +        transfer_size = SIZE_QUAD;
1075 +        break;
1076 +  }
1077 +
1078 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1079 +        // Unknown machine code, let it crash. Then patch the decoder
1080 +        return false;
1081 +  }
1082 +
1083 +  // Zero target register in case of a load operation
1084 +  const int reg = (opcode >> 16) & 0x1f;
1085 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD) {
1086 +        if (direction == 0)
1087 +          regs[reg] = 0;
1088 +        else {
1089 +          // FIXME: untested code
1090 +          unsigned long ea = regs[(opcode >> 21) & 0x1f];
1091 +          ea += (signed long)(signed int)(signed short)(opcode & 0xffff);
1092 +          const int offset = ea & (transfer_size == SIZE_LONG ? 3 : 7);
1093 +          unsigned long value;
1094 +          if (direction > 0) {
1095 +                const unsigned long rmask = ~((1L << ((offset + 1) * 8)) - 1);
1096 +                value = regs[reg] & rmask;
1097 +          }
1098 +          else {
1099 +                const unsigned long lmask = (1L << (offset * 8)) - 1;
1100 +                value = regs[reg] & lmask;
1101 +          }
1102 +          // restore most significant bits
1103 +          if (transfer_size == SIZE_LONG)
1104 +                value = (signed long)(signed int)value;
1105 +          regs[reg] = value;
1106 +        }
1107 +  }
1108 +
1109 + #if DEBUG
1110 + #if (defined(_ABIN32) || defined(_ABI64))
1111 +  static const char * mips_gpr_names[32] = {
1112 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1113 +        "t0",   "t1",   "t2",   "t3",   "t4",   "t5",   "t6",   "t7",
1114 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1115 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1116 +  };
1117 + #else
1118 +  static const char * mips_gpr_names[32] = {
1119 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1120 +        "a4",   "a5",   "a6",   "a7",   "t0",   "t1",   "t2",   "t3",
1121 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1122 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1123 +  };
1124 + #endif
1125 +  printf("%s %s register %s\n",
1126 +                 transfer_size == SIZE_BYTE ? "byte" :
1127 +                 transfer_size == SIZE_WORD ? "word" :
1128 +                 transfer_size == SIZE_LONG ? "long" :
1129 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1130 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1131 +                 mips_gpr_names[reg]);
1132 + #endif
1133 +
1134 +  regs[MIPS_REG_EPC] += 4;
1135 +  return true;
1136 + }
1137 + #endif
1138 +
1139 + // Decode and skip SPARC instruction
1140 + #if (defined(sparc) || defined(__sparc__))
1141 + enum {
1142 + #if (defined(__sun__))
1143 +  SPARC_REG_G1 = REG_G1,
1144 +  SPARC_REG_O0 = REG_O0,
1145 +  SPARC_REG_PC = REG_PC,
1146 + #endif
1147 + };
1148 + static bool sparc_skip_instruction(unsigned long * regs, gwindows_t * gwins, struct rwindow * rwin)
1149 + {
1150 +  unsigned int * pc = (unsigned int *)regs[SPARC_REG_PC];
1151 +
1152 +  if (pc == 0)
1153 +        return false;
1154 +
1155 + #if DEBUG
1156 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1157 + #endif
1158 +
1159 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1160 +  transfer_size_t transfer_size = SIZE_LONG;
1161 +  bool register_pair = false;
1162 +
1163 +  const unsigned int opcode = pc[0];
1164 +  if ((opcode >> 30) != 3)
1165 +        return false;
1166 +  switch ((opcode >> 19) & 0x3f) {
1167 +  case 9: // Load Signed Byte
1168 +  case 1: // Load Unsigned Byte
1169 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1170 +        transfer_size = SIZE_BYTE;
1171 +        break;
1172 +  case 10:// Load Signed Halfword
1173 +  case 2: // Load Unsigned Word
1174 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1175 +        transfer_size = SIZE_WORD;
1176 +        break;
1177 +  case 8: // Load Word
1178 +  case 0: // Load Unsigned Word
1179 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1180 +        transfer_size = SIZE_LONG;
1181 +        break;
1182 +  case 11:// Load Extended Word
1183 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1184 +        transfer_size = SIZE_QUAD;
1185 +        break;
1186 +  case 3: // Load Doubleword
1187 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1188 +        transfer_size = SIZE_LONG;
1189 +        register_pair = true;
1190 +        break;
1191 +  case 5: // Store Byte
1192 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1193 +        transfer_size = SIZE_BYTE;
1194 +        break;
1195 +  case 6: // Store Halfword
1196 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1197 +        transfer_size = SIZE_WORD;
1198 +        break;
1199 +  case 4: // Store Word
1200 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1201 +        transfer_size = SIZE_LONG;
1202 +        break;
1203 +  case 14:// Store Extended Word
1204 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1205 +        transfer_size = SIZE_QUAD;
1206 +        break;
1207 +  case 7: // Store Doubleword
1208 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1209 +        transfer_size = SIZE_WORD;
1210 +        register_pair = true;
1211 +        break;
1212 +  }
1213 +
1214 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1215 +        // Unknown machine code, let it crash. Then patch the decoder
1216 +        return false;
1217 +  }
1218 +
1219 +  // Zero target register in case of a load operation
1220 +  const int reg = (opcode >> 25) & 0x1f;
1221 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != 0) {
1222 +        // FIXME: code to handle local & input registers is not tested
1223 +        if (reg >= 1 && reg <= 7) {
1224 +          // global registers
1225 +          regs[reg - 1 + SPARC_REG_G1] = 0;
1226 +        }
1227 +        else if (reg >= 8 && reg <= 15) {
1228 +          // output registers
1229 +          regs[reg - 8 + SPARC_REG_O0] = 0;
1230 +        }
1231 +        else if (reg >= 16 && reg <= 23) {
1232 +          // local registers (in register windows)
1233 +          if (gwins)
1234 +                gwins->wbuf->rw_local[reg - 16] = 0;
1235 +          else
1236 +                rwin->rw_local[reg - 16] = 0;
1237 +        }
1238 +        else {
1239 +          // input registers (in register windows)
1240 +          if (gwins)
1241 +                gwins->wbuf->rw_in[reg - 24] = 0;
1242 +          else
1243 +                rwin->rw_in[reg - 24] = 0;
1244 +        }
1245 +  }
1246 +
1247 + #if DEBUG
1248 +  static const char * reg_names[] = {
1249 +        "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
1250 +        "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
1251 +        "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
1252 +        "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7"
1253 +  };
1254 +  printf("%s %s register %s\n",
1255 +                 transfer_size == SIZE_BYTE ? "byte" :
1256 +                 transfer_size == SIZE_WORD ? "word" :
1257 +                 transfer_size == SIZE_LONG ? "long" :
1258 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1259 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1260 +                 reg_names[reg]);
1261 + #endif
1262 +
1263 +  regs[SPARC_REG_PC] += 4;
1264 +  return true;
1265 + }
1266 + #endif
1267 + #endif
1268 +
1269 + // Decode and skip ARM instruction
1270 + #if (defined(arm) || defined(__arm__))
1271 + enum {
1272 + #if (defined(__linux__))
1273 +  ARM_REG_PC = 15,
1274 +  ARM_REG_CPSR = 16
1275 + #endif
1276 + };
1277 + static bool arm_skip_instruction(unsigned long * regs)
1278 + {
1279 +  unsigned int * pc = (unsigned int *)regs[ARM_REG_PC];
1280 +
1281 +  if (pc == 0)
1282 +        return false;
1283 +
1284 + #if DEBUG
1285 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1286 + #endif
1287 +
1288 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1289 +  transfer_size_t transfer_size = SIZE_UNKNOWN;
1290 +  enum { op_sdt = 1, op_sdth = 2 };
1291 +  int op = 0;
1292 +
1293 +  // Handle load/store instructions only
1294 +  const unsigned int opcode = pc[0];
1295 +  switch ((opcode >> 25) & 7) {
1296 +  case 0: // Halfword and Signed Data Transfer (LDRH, STRH, LDRSB, LDRSH)
1297 +        op = op_sdth;
1298 +        // Determine transfer size (S/H bits)
1299 +        switch ((opcode >> 5) & 3) {
1300 +        case 0: // SWP instruction
1301 +          break;
1302 +        case 1: // Unsigned halfwords
1303 +        case 3: // Signed halfwords
1304 +          transfer_size = SIZE_WORD;
1305 +          break;
1306 +        case 2: // Signed byte
1307 +          transfer_size = SIZE_BYTE;
1308 +          break;
1309 +        }
1310 +        break;
1311 +  case 2:
1312 +  case 3: // Single Data Transfer (LDR, STR)
1313 +        op = op_sdt;
1314 +        // Determine transfer size (B bit)
1315 +        if (((opcode >> 22) & 1) == 1)
1316 +          transfer_size = SIZE_BYTE;
1317 +        else
1318 +          transfer_size = SIZE_LONG;
1319 +        break;
1320 +  default:
1321 +        // FIXME: support load/store mutliple?
1322 +        return false;
1323 +  }
1324 +
1325 +  // Check for invalid transfer size (SWP instruction?)
1326 +  if (transfer_size == SIZE_UNKNOWN)
1327 +        return false;
1328 +
1329 +  // Determine transfer type (L bit)
1330 +  if (((opcode >> 20) & 1) == 1)
1331 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1332 +  else
1333 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1334 +
1335 +  // Compute offset
1336 +  int offset;
1337 +  if (((opcode >> 25) & 1) == 0) {
1338 +        if (op == op_sdt)
1339 +          offset = opcode & 0xfff;
1340 +        else if (op == op_sdth) {
1341 +          int rm = opcode & 0xf;
1342 +          if (((opcode >> 22) & 1) == 0) {
1343 +                // register offset
1344 +                offset = regs[rm];
1345 +          }
1346 +          else {
1347 +                // immediate offset
1348 +                offset = ((opcode >> 4) & 0xf0) | (opcode & 0x0f);
1349 +          }
1350 +        }
1351 +  }
1352 +  else {
1353 +        const int rm = opcode & 0xf;
1354 +        const int sh = (opcode >> 7) & 0x1f;
1355 +        if (((opcode >> 4) & 1) == 1) {
1356 +          // we expect only legal load/store instructions
1357 +          printf("FATAL: invalid shift operand\n");
1358 +          return false;
1359 +        }
1360 +        const unsigned int v = regs[rm];
1361 +        switch ((opcode >> 5) & 3) {
1362 +        case 0: // logical shift left
1363 +          offset = sh ? v << sh : v;
1364 +          break;
1365 +        case 1: // logical shift right
1366 +          offset = sh ? v >> sh : 0;
1367 +          break;
1368 +        case 2: // arithmetic shift right
1369 +          if (sh)
1370 +                offset = ((signed int)v) >> sh;
1371 +          else
1372 +                offset = (v & 0x80000000) ? 0xffffffff : 0;
1373 +          break;
1374 +        case 3: // rotate right
1375 +          if (sh)
1376 +                offset = (v >> sh) | (v << (32 - sh));
1377 +          else
1378 +                offset = (v >> 1) | ((regs[ARM_REG_CPSR] << 2) & 0x80000000);
1379 +          break;
1380 +        }
1381 +  }
1382 +  if (((opcode >> 23) & 1) == 0)
1383 +        offset = -offset;
1384 +
1385 +  int rd = (opcode >> 12) & 0xf;
1386 +  int rn = (opcode >> 16) & 0xf;
1387 + #if DEBUG
1388 +  static const char * reg_names[] = {
1389 +        "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1390 +        "r9", "r9", "sl", "fp", "ip", "sp", "lr", "pc"
1391 +  };
1392 +  printf("%s %s register %s\n",
1393 +                 transfer_size == SIZE_BYTE ? "byte" :
1394 +                 transfer_size == SIZE_WORD ? "word" :
1395 +                 transfer_size == SIZE_LONG ? "long" : "unknown",
1396 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1397 +                 reg_names[rd]);
1398 + #endif
1399 +
1400 +  unsigned int base = regs[rn];
1401 +  if (((opcode >> 24) & 1) == 1)
1402 +        base += offset;
1403 +
1404 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD)
1405 +        regs[rd] = 0;
1406 +
1407 +  if (((opcode >> 24) & 1) == 0)                // post-index addressing
1408 +        regs[rn] += offset;
1409 +  else if (((opcode >> 21) & 1) == 1)   // write-back address into base
1410 +        regs[rn] = base;
1411 +
1412 +  regs[ARM_REG_PC] += 4;
1413 +  return true;
1414 + }
1415 + #endif
1416 +
1417  
1418   // Fallbacks
1419   #ifndef SIGSEGV_FAULT_INSTRUCTION
# Line 784 | Line 1422 | static bool powerpc_skip_instruction(uns
1422   #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
1423   #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
1424   #endif
1425 + #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
1426 + #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  sigsegv_fault_handler(ADDR, IP)
1427 + #endif
1428  
1429   // SIGSEGV recovery supported ?
1430   #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
# Line 804 | Line 1445 | static bool handle_badaccess(SIGSEGV_FAU
1445          sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
1446          
1447          // Call user's handler and reinstall the global handler, if required
1448 <        switch (sigsegv_fault_handler(fault_address, fault_instruction)) {
1448 >        switch (SIGSEGV_FAULT_HANDLER_INVOKE(fault_address, fault_instruction)) {
1449          case SIGSEGV_RETURN_SUCCESS:
1450                  return true;
1451  
# Line 829 | Line 1470 | static bool handle_badaccess(SIGSEGV_FAU
1470                  }
1471                  break;
1472   #endif
1473 +        case SIGSEGV_RETURN_FAILURE:
1474 +                return false;
1475          }
1476          
1477          // We can't do anything with the fault_address, dump state?
# Line 1191 | Line 1834 | void sigsegv_set_dump_state(sigsegv_stat
1834   #include <sys/mman.h>
1835   #include "vm_alloc.h"
1836  
1837 + const int REF_INDEX = 123;
1838 + const int REF_VALUE = 45;
1839 +
1840   static int page_size;
1841   static volatile char * page = 0;
1842   static volatile int handler_called = 0;
1843  
1844 + #ifdef __GNUC__
1845 + // Code range where we expect the fault to come from
1846 + static void *b_region, *e_region;
1847 + #endif
1848 +
1849   static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1850   {
1851 + #if DEBUG
1852 +        printf("sigsegv_test_handler(%p, %p)\n", fault_address, instruction_address);
1853 +        printf("expected fault at %p\n", page + REF_INDEX);
1854 + #ifdef __GNUC__
1855 +        printf("expected instruction address range: %p-%p\n", b_region, e_region);
1856 + #endif
1857 + #endif
1858          handler_called++;
1859 <        if ((fault_address - 123) != page)
1859 >        if ((fault_address - REF_INDEX) != page)
1860                  exit(10);
1861 <        if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
1861 > #ifdef __GNUC__
1862 >        // Make sure reported fault instruction address falls into
1863 >        // expected code range
1864 >        if (instruction_address != SIGSEGV_INVALID_PC
1865 >                && ((instruction_address <  (sigsegv_address_t)b_region) ||
1866 >                        (instruction_address >= (sigsegv_address_t)e_region)))
1867                  exit(11);
1868 + #endif
1869 +        if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
1870 +                exit(12);
1871          return SIGSEGV_RETURN_SUCCESS;
1872   }
1873  
1874   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1209 #ifdef __GNUC__
1210 // Code range where we expect the fault to come from
1211 static void *b_region, *e_region;
1212 #endif
1213
1875   static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1876   {
1877 + #if DEBUG
1878 +        printf("sigsegv_insn_handler(%p, %p)\n", fault_address, instruction_address);
1879 + #endif
1880          if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
1881   #ifdef __GNUC__
1882                  // Make sure reported fault instruction address falls into
# Line 1227 | Line 1891 | static sigsegv_return_t sigsegv_insn_han
1891  
1892          return SIGSEGV_RETURN_FAILURE;
1893   }
1894 +
1895 + // More sophisticated tests for instruction skipper
1896 + static bool arch_insn_skipper_tests()
1897 + {
1898 + #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
1899 +        static const unsigned char code[] = {
1900 +                0x8a, 0x00,                    // mov    (%eax),%al
1901 +                0x8a, 0x2c, 0x18,              // mov    (%eax,%ebx,1),%ch
1902 +                0x88, 0x20,                    // mov    %ah,(%eax)
1903 +                0x88, 0x08,                    // mov    %cl,(%eax)
1904 +                0x66, 0x8b, 0x00,              // mov    (%eax),%ax
1905 +                0x66, 0x8b, 0x0c, 0x18,        // mov    (%eax,%ebx,1),%cx
1906 +                0x66, 0x89, 0x00,              // mov    %ax,(%eax)
1907 +                0x66, 0x89, 0x0c, 0x18,        // mov    %cx,(%eax,%ebx,1)
1908 +                0x8b, 0x00,                    // mov    (%eax),%eax
1909 +                0x8b, 0x0c, 0x18,              // mov    (%eax,%ebx,1),%ecx
1910 +                0x89, 0x00,                    // mov    %eax,(%eax)
1911 +                0x89, 0x0c, 0x18,              // mov    %ecx,(%eax,%ebx,1)
1912 + #if defined(__x86_64__)
1913 +                0x44, 0x8a, 0x00,              // mov    (%rax),%r8b
1914 +                0x44, 0x8a, 0x20,              // mov    (%rax),%r12b
1915 +                0x42, 0x8a, 0x3c, 0x10,        // mov    (%rax,%r10,1),%dil
1916 +                0x44, 0x88, 0x00,              // mov    %r8b,(%rax)
1917 +                0x44, 0x88, 0x20,              // mov    %r12b,(%rax)
1918 +                0x42, 0x88, 0x3c, 0x10,        // mov    %dil,(%rax,%r10,1)
1919 +                0x66, 0x44, 0x8b, 0x00,        // mov    (%rax),%r8w
1920 +                0x66, 0x42, 0x8b, 0x0c, 0x10,  // mov    (%rax,%r10,1),%cx
1921 +                0x66, 0x44, 0x89, 0x00,        // mov    %r8w,(%rax)
1922 +                0x66, 0x42, 0x89, 0x0c, 0x10,  // mov    %cx,(%rax,%r10,1)
1923 +                0x44, 0x8b, 0x00,              // mov    (%rax),%r8d
1924 +                0x42, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%ecx
1925 +                0x44, 0x89, 0x00,              // mov    %r8d,(%rax)
1926 +                0x42, 0x89, 0x0c, 0x10,        // mov    %ecx,(%rax,%r10,1)
1927 +                0x48, 0x8b, 0x08,              // mov    (%rax),%rcx
1928 +                0x4c, 0x8b, 0x18,              // mov    (%rax),%r11
1929 +                0x4a, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%rcx
1930 +                0x4e, 0x8b, 0x1c, 0x10,        // mov    (%rax,%r10,1),%r11
1931 +                0x48, 0x89, 0x08,              // mov    %rcx,(%rax)
1932 +                0x4c, 0x89, 0x18,              // mov    %r11,(%rax)
1933 +                0x4a, 0x89, 0x0c, 0x10,        // mov    %rcx,(%rax,%r10,1)
1934 +                0x4e, 0x89, 0x1c, 0x10,        // mov    %r11,(%rax,%r10,1)
1935 + #endif
1936 +                0                              // end
1937 +        };
1938 +        const int N_REGS = 20;
1939 +        unsigned long regs[N_REGS];
1940 +        for (int i = 0; i < N_REGS; i++)
1941 +                regs[i] = i;
1942 +        const unsigned long start_code = (unsigned long)&code;
1943 +        regs[X86_REG_EIP] = start_code;
1944 +        while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1)
1945 +                   && ix86_skip_instruction(regs))
1946 +                ; /* simply iterate */
1947 +        return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1);
1948 + #endif
1949 +        return true;
1950 + }
1951   #endif
1952  
1953   int main(void)
# Line 1238 | Line 1959 | int main(void)
1959          if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
1960                  return 2;
1961          
1962 +        memset((void *)page, 0, page_size);
1963          if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
1964                  return 3;
1965          
1966          if (!sigsegv_install_handler(sigsegv_test_handler))
1967                  return 4;
1968          
1969 <        page[123] = 45;
1970 <        page[123] = 45;
1971 <        
1969 > #ifdef __GNUC__
1970 >        b_region = &&L_b_region1;
1971 >        e_region = &&L_e_region1;
1972 > #endif
1973 > L_b_region1:
1974 >        page[REF_INDEX] = REF_VALUE;
1975 >        if (page[REF_INDEX] != REF_VALUE)
1976 >          exit(20);
1977 >        page[REF_INDEX] = REF_VALUE;
1978 > L_e_region1:
1979 >
1980          if (handler_called != 1)
1981                  return 5;
1982  
# Line 1264 | Line 1994 | int main(void)
1994                  return 8;
1995          
1996   #define TEST_SKIP_INSTRUCTION(TYPE) do {                                \
1997 <                const unsigned int TAG = 0x12345678;                    \
1997 >                const unsigned long TAG = 0x12345678 |                  \
1998 >                (sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0);   \
1999                  TYPE data = *((TYPE *)(page + sizeof(TYPE)));   \
2000 <                volatile unsigned int effect = data + TAG;              \
2000 >                volatile unsigned long effect = data + TAG;             \
2001                  if (effect != TAG)                                                              \
2002                          return 9;                                                                       \
2003          } while (0)
2004          
2005   #ifdef __GNUC__
2006 <        b_region = &&L_b_region;
2007 <        e_region = &&L_e_region;
2006 >        b_region = &&L_b_region2;
2007 >        e_region = &&L_e_region2;
2008   #endif
2009 < L_b_region:
2009 > L_b_region2:
2010          TEST_SKIP_INSTRUCTION(unsigned char);
2011          TEST_SKIP_INSTRUCTION(unsigned short);
2012          TEST_SKIP_INSTRUCTION(unsigned int);
2013 < L_e_region:
2013 >        TEST_SKIP_INSTRUCTION(unsigned long);
2014 >        TEST_SKIP_INSTRUCTION(signed char);
2015 >        TEST_SKIP_INSTRUCTION(signed short);
2016 >        TEST_SKIP_INSTRUCTION(signed int);
2017 >        TEST_SKIP_INSTRUCTION(signed long);
2018 > L_e_region2:
2019 >
2020 >        if (!arch_insn_skipper_tests())
2021 >                return 20;
2022   #endif
2023  
2024          vm_exit();

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines