ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
(Generate patch)

Comparing BasiliskII/src/Unix/sigsegv.cpp (file contents):
Revision 1.15 by gbeauche, 2002-05-20T16:00:07Z vs.
Revision 1.30 by gbeauche, 2003-10-13T19:56:17Z

# Line 4 | Line 4
4   *  Derived from Bruno Haible's work on his SIGSEGV library for clisp
5   *  <http://clisp.sourceforge.net/>
6   *
7 + *  MacOS X support derived from the post by Timothy J. Wood to the
8 + *  omnigroup macosx-dev list:
9 + *    Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10 + *    tjw@omnigroup.com Sun, 4 Jun 2000
11 + *    www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12 + *
13   *  Basilisk II (C) 1997-2002 Christian Bauer
14   *
15   *  This program is free software; you can redistribute it and/or modify
# Line 29 | Line 35
35   #include "config.h"
36   #endif
37  
38 + #include <list>
39   #include <signal.h>
40   #include "sigsegv.h"
41  
42 + #ifndef NO_STD_NAMESPACE
43 + using std::list;
44 + #endif
45 +
46   // Return value type of a signal handler (standard type if not defined)
47   #ifndef RETSIGTYPE
48   #define RETSIGTYPE void
# Line 40 | Line 51
51   // Type of the system signal handler
52   typedef RETSIGTYPE (*signal_handler)(int);
53  
43 // Is the fault to be ignored?
44 static bool sigsegv_ignore_fault = false;
45
54   // User's SIGSEGV handler
55   static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
56  
# Line 57 | Line 65 | static bool sigsegv_do_install_handler(i
65   *  Instruction decoding aids
66   */
67  
60 // Transfer type
61 enum transfer_type_t {
62        TYPE_UNKNOWN,
63        TYPE_LOAD,
64        TYPE_STORE
65 };
66
68   // Transfer size
69   enum transfer_size_t {
70          SIZE_UNKNOWN,
# Line 72 | Line 73 | enum transfer_size_t {
73          SIZE_LONG
74   };
75  
76 + // Transfer type
77 + typedef sigsegv_transfer_type_t transfer_type_t;
78 +
79   #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
80   // Addressing mode
81   enum addressing_mode_t {
# Line 103 | Line 107 | static void powerpc_decode_instruction(i
107          signed int imm = (signed short)(opcode & 0xffff);
108          
109          // Analyze opcode
110 <        transfer_type_t transfer_type = TYPE_UNKNOWN;
110 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
111          transfer_size_t transfer_size = SIZE_UNKNOWN;
112          addressing_mode_t addr_mode = MODE_UNKNOWN;
113          switch (primop) {
114          case 31:
115                  switch (exop) {
116                  case 23:        // lwzx
117 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
117 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
118                  case 55:        // lwzux
119 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
119 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
120                  case 87:        // lbzx
121 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
121 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
122                  case 119:       // lbzux
123 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
123 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
124                  case 151:       // stwx
125 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
125 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
126                  case 183:       // stwux
127 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
127 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
128                  case 215:       // stbx
129 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
129 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
130                  case 247:       // stbux
131 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
131 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
132                  case 279:       // lhzx
133 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
133 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
134                  case 311:       // lhzux
135 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
135 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
136                  case 343:       // lhax
137 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
137 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
138                  case 375:       // lhaux
139 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
139 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
140                  case 407:       // sthx
141 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
141 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
142                  case 439:       // sthux
143 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
143 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
144                  }
145                  break;
146          
147          case 32:        // lwz
148 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
148 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
149          case 33:        // lwzu
150 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
150 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
151          case 34:        // lbz
152 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
152 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
153          case 35:        // lbzu
154 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
154 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
155          case 36:        // stw
156 <                transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
156 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
157          case 37:        // stwu
158 <                transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
158 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
159          case 38:        // stb
160 <                transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
160 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
161          case 39:        // stbu
162 <                transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
162 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
163          case 40:        // lhz
164 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
164 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
165          case 41:        // lhzu
166 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
166 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
167          case 42:        // lha
168 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
168 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
169          case 43:        // lhau
170 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
170 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
171          case 44:        // sth
172 <                transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
172 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
173          case 45:        // sthu
174 <                transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
174 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
175          }
176          
177          // Calculate effective address
# Line 208 | Line 212 | static void powerpc_decode_instruction(i
212  
213   #if HAVE_SIGINFO_T
214   // Generic extended signal handler
215 + #define SIGSEGV_FAULT_HANDLER                   sigsegv_fault_handler
216   #if defined(__NetBSD__) || defined(__FreeBSD__)
217   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
218   #else
219   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
220   #endif
221   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, siginfo_t *sip, void *scp
222 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
223 + #define SIGSEGV_FAULT_HANDLER_ARGS              sip, scp
224   #define SIGSEGV_FAULT_ADDRESS                   sip->si_addr
225 + #if defined(__NetBSD__) || defined(__FreeBSD__)
226 + #if (defined(i386) || defined(__i386__))
227 + #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_eip)
228 + #define SIGSEGV_REGISTER_FILE                   ((unsigned int *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
229 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
230 + #endif
231 + #endif
232   #if defined(__linux__)
233   #if (defined(i386) || defined(__i386__))
234   #include <sys/ucontext.h>
# Line 223 | Line 237 | static void powerpc_decode_instruction(i
237   #define SIGSEGV_REGISTER_FILE                   (unsigned int *)SIGSEGV_CONTEXT_REGS
238   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
239   #endif
240 + #if (defined(x86_64) || defined(__x86_64__))
241 + #include <sys/ucontext.h>
242 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
243 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
244 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
245 + #endif
246   #if (defined(ia64) || defined(__ia64__))
247   #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
248   #endif
# Line 237 | Line 257 | static void powerpc_decode_instruction(i
257   #endif
258  
259   #if HAVE_SIGCONTEXT_SUBTERFUGE
260 + #define SIGSEGV_FAULT_HANDLER                   sigsegv_fault_handler
261   // Linux kernels prior to 2.4 ?
262   #if defined(__linux__)
263   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
264   #if (defined(i386) || defined(__i386__))
265   #include <asm/sigcontext.h>
266   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext scs
267 < #define SIGSEGV_FAULT_ADDRESS                   scs.cr2
268 < #define SIGSEGV_FAULT_INSTRUCTION               scs.eip
269 < #define SIGSEGV_REGISTER_FILE                   (unsigned long *)(&scs)
267 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
268 > #define SIGSEGV_FAULT_HANDLER_ARGS              &scs
269 > #define SIGSEGV_FAULT_ADDRESS                   scp->cr2
270 > #define SIGSEGV_FAULT_INSTRUCTION               scp->eip
271 > #define SIGSEGV_REGISTER_FILE                   (unsigned int *)scp
272   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
273   #endif
274   #if (defined(sparc) || defined(__sparc__))
275   #include <asm/sigcontext.h>
276   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
277 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
278   #define SIGSEGV_FAULT_ADDRESS                   addr
279   #endif
280   #if (defined(powerpc) || defined(__powerpc__))
281   #include <asm/sigcontext.h>
282   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext *scp
283 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, scp
284   #define SIGSEGV_FAULT_ADDRESS                   scp->regs->dar
285   #define SIGSEGV_FAULT_INSTRUCTION               scp->regs->nip
286   #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&scp->regs->nip, (unsigned int *)(scp->regs->gpr)
# Line 264 | Line 289 | static void powerpc_decode_instruction(i
289   #if (defined(alpha) || defined(__alpha__))
290   #include <asm/sigcontext.h>
291   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
292 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
293   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
294   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
295  
# Line 282 | Line 308 | static sigsegv_address_t get_fault_addre
308   #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
309   #include <ucontext.h>
310   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
311 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
312   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_badvaddr
313   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
314   #endif
# Line 289 | Line 316 | static sigsegv_address_t get_fault_addre
316   // HP-UX
317   #if (defined(hpux) || defined(__hpux__))
318   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
319 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
320   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_sl.sl_ss.ss_narrow.ss_cr21
321   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
322   #endif
# Line 297 | Line 325 | static sigsegv_address_t get_fault_addre
325   #if defined(__osf__)
326   #include <ucontext.h>
327   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
328 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
329   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_traparg_a0
330   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
331   #endif
# Line 304 | Line 333 | static sigsegv_address_t get_fault_addre
333   // AIX
334   #if defined(_AIX)
335   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
336 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
337   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_jmpbuf.jmp_context.o_vaddr
338   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
339   #endif
# Line 313 | Line 343 | static sigsegv_address_t get_fault_addre
343   #if (defined(m68k) || defined(__m68k__))
344   #include <m68k/frame.h>
345   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
346 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
347   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
348   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
349  
# Line 338 | Line 369 | static sigsegv_address_t get_fault_addre
369   }
370   #else
371   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, void *scp, char *addr
372 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
373   #define SIGSEGV_FAULT_ADDRESS                   addr
374   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
375   #endif
376   #endif
377  
378 < // MacOS X
378 > // MacOS X, not sure which version this works in. Under 10.1
379 > // vm_protect does not appear to work from a signal handler. Under
380 > // 10.2 signal handlers get siginfo type arguments but the si_addr
381 > // field is the address of the faulting instruction and not the
382 > // address that caused the SIGBUS. Maybe this works in 10.0? In any
383 > // case with Mach exception handlers there is a way to do what this
384 > // was meant to do.
385 > #ifndef HAVE_MACH_EXCEPTIONS
386   #if defined(__APPLE__) && defined(__MACH__)
387   #if (defined(ppc) || defined(__ppc__))
388   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
389 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
390   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
391   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_ir
392   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
# Line 366 | Line 406 | static sigsegv_address_t get_fault_addre
406   #endif
407   #endif
408   #endif
409 + #endif
410 +
411 + #if HAVE_MACH_EXCEPTIONS
412 +
413 + // This can easily be extended to other Mach systems, but really who
414 + // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
415 + // Mach 2.5/3.0?
416 + #if defined(__APPLE__) && defined(__MACH__)
417 +
418 + #include <sys/types.h>
419 + #include <stdlib.h>
420 + #include <stdio.h>
421 + #include <pthread.h>
422 +
423 + /*
424 + * If you are familiar with MIG then you will understand the frustration
425 + * that was necessary to get these embedded into C++ code by hand.
426 + */
427 + extern "C" {
428 + #include <mach/mach.h>
429 + #include <mach/mach_error.h>
430 +
431 + extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
432 + extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
433 +        mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
434 + extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
435 +        exception_type_t, exception_data_t, mach_msg_type_number_t);
436 + extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
437 +        exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
438 +        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
439 + extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
440 +        exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
441 +        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
442 + }
443 +
444 + // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
445 + #define HANDLER_COUNT 64
446 +
447 + // structure to tuck away existing exception handlers
448 + typedef struct _ExceptionPorts {
449 +        mach_msg_type_number_t maskCount;
450 +        exception_mask_t masks[HANDLER_COUNT];
451 +        exception_handler_t handlers[HANDLER_COUNT];
452 +        exception_behavior_t behaviors[HANDLER_COUNT];
453 +        thread_state_flavor_t flavors[HANDLER_COUNT];
454 + } ExceptionPorts;
455 +
456 + // exception handler thread
457 + static pthread_t exc_thread;
458 +
459 + // place where old exception handler info is stored
460 + static ExceptionPorts ports;
461 +
462 + // our exception port
463 + static mach_port_t _exceptionPort = MACH_PORT_NULL;
464 +
465 + #define MACH_CHECK_ERROR(name,ret) \
466 + if (ret != KERN_SUCCESS) { \
467 +        mach_error(#name, ret); \
468 +        exit (1); \
469 + }
470 +
471 + #define SIGSEGV_FAULT_ADDRESS                   code[1]
472 + #define SIGSEGV_FAULT_INSTRUCTION               get_fault_instruction(thread, state)
473 + #define SIGSEGV_FAULT_HANDLER                   (code[0] == KERN_PROTECTION_FAILURE) && sigsegv_fault_handler
474 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   mach_port_t thread, exception_data_t code, ppc_thread_state_t *state
475 + #define SIGSEGV_FAULT_HANDLER_ARGS              thread, code, &state
476 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
477 + #define SIGSEGV_REGISTER_FILE                   &state->srr0, &state->r0
478 +
479 + // Given a suspended thread, stuff the current instruction and
480 + // registers into state.
481 + //
482 + // It would have been nice to have this be ppc/x86 independant which
483 + // could have been done easily with a thread_state_t instead of
484 + // ppc_thread_state_t, but because of the way this is called it is
485 + // easier to do it this way.
486 + #if (defined(ppc) || defined(__ppc__))
487 + static inline sigsegv_address_t get_fault_instruction(mach_port_t thread, ppc_thread_state_t *state)
488 + {
489 +        kern_return_t krc;
490 +        mach_msg_type_number_t count;
491 +
492 +        count = MACHINE_THREAD_STATE_COUNT;
493 +        krc = thread_get_state(thread, MACHINE_THREAD_STATE, (thread_state_t)state, &count);
494 +        MACH_CHECK_ERROR (thread_get_state, krc);
495 +
496 +        return (sigsegv_address_t)state->srr0;
497 + }
498 + #endif
499 +
500 + // Since there can only be one exception thread running at any time
501 + // this is not a problem.
502 + #define MSG_SIZE 512
503 + static char msgbuf[MSG_SIZE];
504 + static char replybuf[MSG_SIZE];
505 +
506 + /*
507 + * This is the entry point for the exception handler thread. The job
508 + * of this thread is to wait for exception messages on the exception
509 + * port that was setup beforehand and to pass them on to exc_server.
510 + * exc_server is a MIG generated function that is a part of Mach.
511 + * Its job is to decide what to do with the exception message. In our
512 + * case exc_server calls catch_exception_raise on our behalf. After
513 + * exc_server returns, it is our responsibility to send the reply.
514 + */
515 + static void *
516 + handleExceptions(void *priv)
517 + {
518 +        mach_msg_header_t *msg, *reply;
519 +        kern_return_t krc;
520 +
521 +        msg = (mach_msg_header_t *)msgbuf;
522 +        reply = (mach_msg_header_t *)replybuf;
523 +
524 +        for (;;) {
525 +                krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
526 +                                _exceptionPort, 0, MACH_PORT_NULL);
527 +                MACH_CHECK_ERROR(mach_msg, krc);
528 +
529 +                if (!exc_server(msg, reply)) {
530 +                        fprintf(stderr, "exc_server hated the message\n");
531 +                        exit(1);
532 +                }
533 +
534 +                krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
535 +                                 msg->msgh_local_port, 0, MACH_PORT_NULL);
536 +                if (krc != KERN_SUCCESS) {
537 +                        fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
538 +                                krc, mach_error_string(krc));
539 +                        exit(1);
540 +                }
541 +        }
542 + }
543 + #endif
544 + #endif
545  
546  
547   /*
# Line 388 | Line 564 | enum {
564          X86_REG_EDI = 4
565   };
566   #endif
567 + #if defined(__NetBSD__) || defined(__FreeBSD__)
568 + enum {
569 +        X86_REG_EIP = 10,
570 +        X86_REG_EAX = 7,
571 +        X86_REG_ECX = 6,
572 +        X86_REG_EDX = 5,
573 +        X86_REG_EBX = 4,
574 +        X86_REG_ESP = 13,
575 +        X86_REG_EBP = 2,
576 +        X86_REG_ESI = 1,
577 +        X86_REG_EDI = 0
578 + };
579 + #endif
580   // FIXME: this is partly redundant with the instruction decoding phase
581   // to discover transfer type and register number
582   static inline int ix86_step_over_modrm(unsigned char * p)
# Line 429 | Line 618 | static bool ix86_skip_instruction(unsign
618          if (eip == 0)
619                  return false;
620          
621 <        transfer_type_t transfer_type = TYPE_UNKNOWN;
621 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
622          transfer_size_t transfer_size = SIZE_LONG;
623          
624          int reg = -1;
# Line 444 | Line 633 | static bool ix86_skip_instruction(unsign
633  
634          // Decode instruction
635          switch (eip[0]) {
636 +        case 0x0f:
637 +            switch (eip[1]) {
638 +            case 0xb6: // MOVZX r32, r/m8
639 +            case 0xb7: // MOVZX r32, r/m16
640 +                switch (eip[2] & 0xc0) {
641 +                case 0x80:
642 +                    reg = (eip[2] >> 3) & 7;
643 +                    transfer_type = SIGSEGV_TRANSFER_LOAD;
644 +                    break;
645 +                case 0x40:
646 +                    reg = (eip[2] >> 3) & 7;
647 +                    transfer_type = SIGSEGV_TRANSFER_LOAD;
648 +                    break;
649 +                case 0x00:
650 +                    reg = (eip[2] >> 3) & 7;
651 +                    transfer_type = SIGSEGV_TRANSFER_LOAD;
652 +                    break;
653 +                }
654 +                len += 3 + ix86_step_over_modrm(eip + 2);
655 +                break;
656 +            }
657 +          break;
658          case 0x8a: // MOV r8, r/m8
659                  transfer_size = SIZE_BYTE;
660          case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
661                  switch (eip[1] & 0xc0) {
662                  case 0x80:
663                          reg = (eip[1] >> 3) & 7;
664 <                        transfer_type = TYPE_LOAD;
664 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
665                          break;
666                  case 0x40:
667                          reg = (eip[1] >> 3) & 7;
668 <                        transfer_type = TYPE_LOAD;
668 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
669                          break;
670                  case 0x00:
671                          reg = (eip[1] >> 3) & 7;
672 <                        transfer_type = TYPE_LOAD;
672 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
673                          break;
674                  }
675                  len += 2 + ix86_step_over_modrm(eip + 1);
# Line 469 | Line 680 | static bool ix86_skip_instruction(unsign
680                  switch (eip[1] & 0xc0) {
681                  case 0x80:
682                          reg = (eip[1] >> 3) & 7;
683 <                        transfer_type = TYPE_STORE;
683 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
684                          break;
685                  case 0x40:
686                          reg = (eip[1] >> 3) & 7;
687 <                        transfer_type = TYPE_STORE;
687 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
688                          break;
689                  case 0x00:
690                          reg = (eip[1] >> 3) & 7;
691 <                        transfer_type = TYPE_STORE;
691 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
692                          break;
693                  }
694                  len += 2 + ix86_step_over_modrm(eip + 1);
695                  break;
696          }
697  
698 <        if (transfer_type == TYPE_UNKNOWN) {
698 >        if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
699                  // Unknown machine code, let it crash. Then patch the decoder
700                  return false;
701          }
702  
703 <        if (transfer_type == TYPE_LOAD && reg != -1) {
703 >        if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
704                  static const int x86_reg_map[8] = {
705                          X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
706                          X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI
# Line 515 | Line 726 | static bool ix86_skip_instruction(unsign
726   #if DEBUG
727          printf("%08x: %s %s access", regs[X86_REG_EIP],
728                     transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : "long",
729 <                   transfer_type == TYPE_LOAD ? "read" : "write");
729 >                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
730          
731          if (reg != -1) {
732                  static const char * x86_reg_str_map[8] = {
733                          "eax", "ecx", "edx", "ebx",
734                          "esp", "ebp", "esi", "edi"
735                  };
736 <                printf(" %s register %%%s", transfer_type == TYPE_LOAD ? "to" : "from", x86_reg_str_map[reg]);
736 >                printf(" %s register %%%s", transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from", x86_reg_str_map[reg]);
737          }
738          printf(", %d bytes instruction\n", len);
739   #endif
# Line 539 | Line 750 | static bool powerpc_skip_instruction(uns
750          instruction_t instr;
751          powerpc_decode_instruction(&instr, *nip_p, regs);
752          
753 <        if (instr.transfer_type == TYPE_UNKNOWN) {
753 >        if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
754                  // Unknown machine code, let it crash. Then patch the decoder
755                  return false;
756          }
# Line 547 | Line 758 | static bool powerpc_skip_instruction(uns
758   #if DEBUG
759          printf("%08x: %s %s access", *nip_p,
760                     instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : "long",
761 <                   instr.transfer_type == TYPE_LOAD ? "read" : "write");
761 >                   instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
762          
763          if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
764                  printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
765 <        if (instr.transfer_type == TYPE_LOAD)
765 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
766                  printf(" r%d (rd = 0)\n", instr.rd);
767   #endif
768          
769          if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
770                  regs[instr.ra] = instr.addr;
771 <        if (instr.transfer_type == TYPE_LOAD)
771 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
772                  regs[instr.rd] = 0;
773          
774          *nip_p += 4;
# Line 570 | Line 781 | static bool powerpc_skip_instruction(uns
781   #ifndef SIGSEGV_FAULT_INSTRUCTION
782   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_PC
783   #endif
784 + #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
785 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
786 + #endif
787  
788   // SIGSEGV recovery supported ?
789   #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
# Line 581 | Line 795 | static bool powerpc_skip_instruction(uns
795   *  SIGSEGV global handler
796   */
797  
798 < #ifdef HAVE_SIGSEGV_RECOVERY
799 < static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
798 > #if defined(HAVE_SIGSEGV_RECOVERY) || defined(HAVE_MACH_EXCEPTIONS)
799 > // This function handles the badaccess to memory.
800 > // It is called from the signal handler or the exception handler.
801 > static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
802   {
803          sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
804          sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
589        bool fault_recovered = false;
805          
806          // Call user's handler and reinstall the global handler, if required
807 <        if (sigsegv_fault_handler(fault_address, fault_instruction)) {
808 < #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
809 <                sigsegv_do_install_handler(sig);
807 >        switch (sigsegv_fault_handler(fault_address, fault_instruction)) {
808 >        case SIGSEGV_RETURN_SUCCESS:
809 >                return true;
810 >
811 > #if HAVE_SIGSEGV_SKIP_INSTRUCTION
812 >        case SIGSEGV_RETURN_SKIP_INSTRUCTION:
813 >                // Call the instruction skipper with the register file
814 >                // available
815 >                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
816 > #ifdef HAVE_MACH_EXCEPTIONS
817 >                        // Unlike UNIX signals where the thread state
818 >                        // is modified off of the stack, in Mach we
819 >                        // need to actually call thread_set_state to
820 >                        // have the register values updated.
821 >                        kern_return_t krc;
822 >
823 >                        krc = thread_set_state(thread,
824 >                                                                   MACHINE_THREAD_STATE, (thread_state_t)state,
825 >                                                                   MACHINE_THREAD_STATE_COUNT);
826 >                        MACH_CHECK_ERROR (thread_get_state, krc);
827 > #endif
828 >                        return true;
829 >                }
830 >                break;
831   #endif
596                fault_recovered = true;
832          }
833 < #if HAVE_SIGSEGV_SKIP_INSTRUCTION
834 <        else if (sigsegv_ignore_fault) {
835 <                // Call the instruction skipper with the register file available
836 <                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE))
837 <                        fault_recovered = true;
833 >        
834 >        // We can't do anything with the fault_address, dump state?
835 >        if (sigsegv_state_dumper != 0)
836 >                sigsegv_state_dumper(fault_address, fault_instruction);
837 >
838 >        return false;
839 > }
840 > #endif
841 >
842 >
843 > /*
844 > * There are two mechanisms for handling a bad memory access,
845 > * Mach exceptions and UNIX signals. The implementation specific
846 > * code appears below. Its reponsibility is to call handle_badaccess
847 > * which is the routine that handles the fault in an implementation
848 > * agnostic manner. The implementation specific code below is then
849 > * reponsible for checking whether handle_badaccess was able
850 > * to handle the memory access error and perform any implementation
851 > * specific tasks necessary afterwards.
852 > */
853 >
854 > #ifdef HAVE_MACH_EXCEPTIONS
855 > /*
856 > * We need to forward all exceptions that we do not handle.
857 > * This is important, there are many exceptions that may be
858 > * handled by other exception handlers. For example debuggers
859 > * use exceptions and the exception hander is in another
860 > * process in such a case. (Timothy J. Wood states in his
861 > * message to the list that he based this code on that from
862 > * gdb for Darwin.)
863 > */
864 > static inline kern_return_t
865 > forward_exception(mach_port_t thread_port,
866 >                                  mach_port_t task_port,
867 >                                  exception_type_t exception_type,
868 >                                  exception_data_t exception_data,
869 >                                  mach_msg_type_number_t data_count,
870 >                                  ExceptionPorts *oldExceptionPorts)
871 > {
872 >        kern_return_t kret;
873 >        unsigned int portIndex;
874 >        mach_port_t port;
875 >        exception_behavior_t behavior;
876 >        thread_state_flavor_t flavor;
877 >        thread_state_t thread_state;
878 >        mach_msg_type_number_t thread_state_count;
879 >
880 >        for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
881 >                if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
882 >                        // This handler wants the exception
883 >                        break;
884 >                }
885 >        }
886 >
887 >        if (portIndex >= oldExceptionPorts->maskCount) {
888 >                fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
889 >                return KERN_FAILURE;
890 >        }
891 >
892 >        port = oldExceptionPorts->handlers[portIndex];
893 >        behavior = oldExceptionPorts->behaviors[portIndex];
894 >        flavor = oldExceptionPorts->flavors[portIndex];
895 >
896 >        /*
897 >         fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
898 >         */
899 >
900 >        if (behavior != EXCEPTION_DEFAULT) {
901 >                thread_state_count = THREAD_STATE_MAX;
902 >                kret = thread_get_state (thread_port, flavor, thread_state,
903 >                                                                 &thread_state_count);
904 >                MACH_CHECK_ERROR (thread_get_state, kret);
905 >        }
906 >
907 >        switch (behavior) {
908 >        case EXCEPTION_DEFAULT:
909 >          // fprintf(stderr, "forwarding to exception_raise\n");
910 >          kret = exception_raise(port, thread_port, task_port, exception_type,
911 >                                                         exception_data, data_count);
912 >          MACH_CHECK_ERROR (exception_raise, kret);
913 >          break;
914 >        case EXCEPTION_STATE:
915 >          // fprintf(stderr, "forwarding to exception_raise_state\n");
916 >          kret = exception_raise_state(port, exception_type, exception_data,
917 >                                                                   data_count, &flavor,
918 >                                                                   thread_state, thread_state_count,
919 >                                                                   thread_state, &thread_state_count);
920 >          MACH_CHECK_ERROR (exception_raise_state, kret);
921 >          break;
922 >        case EXCEPTION_STATE_IDENTITY:
923 >          // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
924 >          kret = exception_raise_state_identity(port, thread_port, task_port,
925 >                                                                                        exception_type, exception_data,
926 >                                                                                        data_count, &flavor,
927 >                                                                                        thread_state, thread_state_count,
928 >                                                                                        thread_state, &thread_state_count);
929 >          MACH_CHECK_ERROR (exception_raise_state_identity, kret);
930 >          break;
931 >        default:
932 >          fprintf(stderr, "forward_exception got unknown behavior\n");
933 >          break;
934 >        }
935 >
936 >        if (behavior != EXCEPTION_DEFAULT) {
937 >                kret = thread_set_state (thread_port, flavor, thread_state,
938 >                                                                 thread_state_count);
939 >                MACH_CHECK_ERROR (thread_set_state, kret);
940          }
941 +
942 +        return KERN_SUCCESS;
943 + }
944 +
945 + /*
946 + * This is the code that actually handles the exception.
947 + * It is called by exc_server. For Darwin 5 Apple changed
948 + * this a bit from how this family of functions worked in
949 + * Mach. If you are familiar with that it is a little
950 + * different. The main variation that concerns us here is
951 + * that code is an array of exception specific codes and
952 + * codeCount is a count of the number of codes in the code
953 + * array. In typical Mach all exceptions have a code
954 + * and sub-code. It happens to be the case that for a
955 + * EXC_BAD_ACCESS exception the first entry is the type of
956 + * bad access that occurred and the second entry is the
957 + * faulting address so these entries correspond exactly to
958 + * how the code and sub-code are used on Mach.
959 + *
960 + * This is a MIG interface. No code in Basilisk II should
961 + * call this directley. This has to have external C
962 + * linkage because that is what exc_server expects.
963 + */
964 + kern_return_t
965 + catch_exception_raise(mach_port_t exception_port,
966 +                                          mach_port_t thread,
967 +                                          mach_port_t task,
968 +                                          exception_type_t exception,
969 +                                          exception_data_t code,
970 +                                          mach_msg_type_number_t codeCount)
971 + {
972 +        ppc_thread_state_t state;
973 +        kern_return_t krc;
974 +
975 +        if ((exception == EXC_BAD_ACCESS)  && (codeCount >= 2)) {
976 +                if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
977 +                        return KERN_SUCCESS;
978 +        }
979 +
980 +        // In Mach we do not need to remove the exception handler.
981 +        // If we forward the exception, eventually some exception handler
982 +        // will take care of this exception.
983 +        krc = forward_exception(thread, task, exception, code, codeCount, &ports);
984 +
985 +        return krc;
986 + }
987   #endif
988  
989 <        if (!fault_recovered) {
990 <                // FAIL: reinstall default handler for "safe" crash
989 > #ifdef HAVE_SIGSEGV_RECOVERY
990 > // Handle bad memory accesses with signal handler
991 > static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
992 > {
993 >        // Call handler and reinstall the global handler, if required
994 >        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
995 > #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
996 >                sigsegv_do_install_handler(sig);
997 > #endif
998 >                return;
999 >        }
1000 >
1001 >        // Failure: reinstall default handler for "safe" crash
1002   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1003 <                SIGSEGV_ALL_SIGNALS
1003 >        SIGSEGV_ALL_SIGNALS
1004   #undef FAULT_HANDLER
611                
612                // We can't do anything with the fault_address, dump state?
613                if (sigsegv_state_dumper != 0)
614                        sigsegv_state_dumper(fault_address, fault_instruction);
615        }
1005   }
1006   #endif
1007  
# Line 626 | Line 1015 | static bool sigsegv_do_install_handler(i
1015   {
1016          // Setup SIGSEGV handler to process writes to frame buffer
1017   #ifdef HAVE_SIGACTION
1018 <        struct sigaction vosf_sa;
1019 <        sigemptyset(&vosf_sa.sa_mask);
1020 <        vosf_sa.sa_sigaction = sigsegv_handler;
1021 <        vosf_sa.sa_flags = SA_SIGINFO;
1022 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1018 >        struct sigaction sigsegv_sa;
1019 >        sigemptyset(&sigsegv_sa.sa_mask);
1020 >        sigsegv_sa.sa_sigaction = sigsegv_handler;
1021 >        sigsegv_sa.sa_flags = SA_SIGINFO;
1022 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1023   #else
1024          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1025   #endif
# Line 642 | Line 1031 | static bool sigsegv_do_install_handler(i
1031   {
1032          // Setup SIGSEGV handler to process writes to frame buffer
1033   #ifdef HAVE_SIGACTION
1034 <        struct sigaction vosf_sa;
1035 <        sigemptyset(&vosf_sa.sa_mask);
1036 <        vosf_sa.sa_handler = (signal_handler)sigsegv_handler;
1034 >        struct sigaction sigsegv_sa;
1035 >        sigemptyset(&sigsegv_sa.sa_mask);
1036 >        sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
1037 >        sigsegv_sa.sa_flags = 0;
1038   #if !EMULATED_68K && defined(__NetBSD__)
1039 <        sigaddset(&vosf_sa.sa_mask, SIGALRM);
1040 <        vosf_sa.sa_flags = SA_ONSTACK;
651 < #else
652 <        vosf_sa.sa_flags = 0;
1039 >        sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
1040 >        sigsegv_sa.sa_flags |= SA_ONSTACK;
1041   #endif
1042 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1042 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1043   #else
1044          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1045   #endif
1046   }
1047   #endif
1048  
1049 < bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1049 > #if defined(HAVE_MACH_EXCEPTIONS)
1050 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1051   {
1052 < #ifdef HAVE_SIGSEGV_RECOVERY
1052 >        /*
1053 >         * Except for the exception port functions, this should be
1054 >         * pretty much stock Mach. If later you choose to support
1055 >         * other Mach's besides Darwin, just check for __MACH__
1056 >         * here and __APPLE__ where the actual differences are.
1057 >         */
1058 > #if defined(__APPLE__) && defined(__MACH__)
1059 >        if (sigsegv_fault_handler != NULL) {
1060 >                sigsegv_fault_handler = handler;
1061 >                return true;
1062 >        }
1063 >
1064 >        kern_return_t krc;
1065 >
1066 >        // create the the exception port
1067 >        krc = mach_port_allocate(mach_task_self(),
1068 >                          MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
1069 >        if (krc != KERN_SUCCESS) {
1070 >                mach_error("mach_port_allocate", krc);
1071 >                return false;
1072 >        }
1073 >
1074 >        // add a port send right
1075 >        krc = mach_port_insert_right(mach_task_self(),
1076 >                              _exceptionPort, _exceptionPort,
1077 >                              MACH_MSG_TYPE_MAKE_SEND);
1078 >        if (krc != KERN_SUCCESS) {
1079 >                mach_error("mach_port_insert_right", krc);
1080 >                return false;
1081 >        }
1082 >
1083 >        // get the old exception ports
1084 >        ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
1085 >        krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
1086 >                                &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
1087 >        if (krc != KERN_SUCCESS) {
1088 >                mach_error("thread_get_exception_ports", krc);
1089 >                return false;
1090 >        }
1091 >
1092 >        // set the new exception port
1093 >        //
1094 >        // We could have used EXCEPTION_STATE_IDENTITY instead of
1095 >        // EXCEPTION_DEFAULT to get the thread state in the initial
1096 >        // message, but it turns out that in the common case this is not
1097 >        // neccessary. If we need it we can later ask for it from the
1098 >        // suspended thread.
1099 >        //
1100 >        // Even with THREAD_STATE_NONE, Darwin provides the program
1101 >        // counter in the thread state.  The comments in the header file
1102 >        // seem to imply that you can count on the GPR's on an exception
1103 >        // as well but just to be safe I use MACHINE_THREAD_STATE because
1104 >        // you have to ask for all of the GPR's anyway just to get the
1105 >        // program counter. In any case because of update effective
1106 >        // address from immediate and update address from effective
1107 >        // addresses of ra and rb modes (as good an name as any for these
1108 >        // addressing modes) used in PPC instructions, you will need the
1109 >        // GPR state anyway.
1110 >        krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
1111 >                                EXCEPTION_DEFAULT, MACHINE_THREAD_STATE);
1112 >        if (krc != KERN_SUCCESS) {
1113 >                mach_error("thread_set_exception_ports", krc);
1114 >                return false;
1115 >        }
1116 >
1117 >        // create the exception handler thread
1118 >        if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
1119 >                (void)fprintf(stderr, "creation of exception thread failed\n");
1120 >                return false;
1121 >        }
1122 >
1123 >        // do not care about the exception thread any longer, let is run standalone
1124 >        (void)pthread_detach(exc_thread);
1125 >
1126          sigsegv_fault_handler = handler;
1127 +        return true;
1128 + #else
1129 +        return false;
1130 + #endif
1131 + }
1132 + #endif
1133 +
1134 + bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1135 + {
1136 + #if defined(HAVE_SIGSEGV_RECOVERY)
1137          bool success = true;
1138   #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
1139          SIGSEGV_ALL_SIGNALS
1140   #undef FAULT_HANDLER
1141 +        if (success)
1142 +            sigsegv_fault_handler = handler;
1143          return success;
1144 + #elif defined(HAVE_MACH_EXCEPTIONS)
1145 +        return sigsegv_do_install_handler(handler);
1146   #else
1147          // FAIL: no siginfo_t nor sigcontext subterfuge is available
1148          return false;
# Line 680 | Line 1156 | bool sigsegv_install_handler(sigsegv_fau
1156  
1157   void sigsegv_deinstall_handler(void)
1158   {
1159 +  // We do nothing for Mach exceptions, the thread would need to be
1160 +  // suspended if not already so, and we might mess with other
1161 +  // exception handlers that came after we registered ours. There is
1162 +  // no need to remove the exception handler, in fact this function is
1163 +  // not called anywhere in Basilisk II.
1164   #ifdef HAVE_SIGSEGV_RECOVERY
1165          sigsegv_fault_handler = 0;
1166   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
# Line 690 | Line 1171 | void sigsegv_deinstall_handler(void)
1171  
1172  
1173   /*
693 *  SIGSEGV ignore state modifier
694 */
695
696 void sigsegv_set_ignore_state(bool ignore_fault)
697 {
698        sigsegv_ignore_fault = ignore_fault;
699 }
700
701
702 /*
1174   *  Set callback function when we cannot handle the fault
1175   */
1176  
# Line 724 | Line 1195 | static int page_size;
1195   static volatile char * page = 0;
1196   static volatile int handler_called = 0;
1197  
1198 < static bool sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1198 > static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1199   {
1200          handler_called++;
1201          if ((fault_address - 123) != page)
1202 <                exit(1);
1202 >                exit(10);
1203          if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
1204 <                exit(1);
1205 <        return true;
1204 >                exit(11);
1205 >        return SIGSEGV_RETURN_SUCCESS;
1206   }
1207  
1208   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1209 < static bool sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1209 > #ifdef __GNUC__
1210 > // Code range where we expect the fault to come from
1211 > static void *b_region, *e_region;
1212 > #endif
1213 >
1214 > static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1215   {
1216 <        return false;
1216 >        if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
1217 > #ifdef __GNUC__
1218 >                // Make sure reported fault instruction address falls into
1219 >                // expected code range
1220 >                if (instruction_address != SIGSEGV_INVALID_PC
1221 >                        && ((instruction_address <  (sigsegv_address_t)b_region) ||
1222 >                                (instruction_address >= (sigsegv_address_t)e_region)))
1223 >                        return SIGSEGV_RETURN_FAILURE;
1224 > #endif
1225 >                return SIGSEGV_RETURN_SKIP_INSTRUCTION;
1226 >        }
1227 >
1228 >        return SIGSEGV_RETURN_FAILURE;
1229   }
1230   #endif
1231  
# Line 748 | Line 1236 | int main(void)
1236  
1237          page_size = getpagesize();
1238          if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
1239 <                return 1;
1239 >                return 2;
1240          
1241          if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
1242 <                return 1;
1242 >                return 3;
1243          
1244          if (!sigsegv_install_handler(sigsegv_test_handler))
1245 <                return 1;
1245 >                return 4;
1246          
1247          page[123] = 45;
1248          page[123] = 45;
1249          
1250          if (handler_called != 1)
1251 <                return 1;
1251 >                return 5;
1252  
1253   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1254          if (!sigsegv_install_handler(sigsegv_insn_handler))
1255 <                return 1;
1255 >                return 6;
1256          
1257 <        if (vm_protect((char *)page, page_size, VM_PAGE_WRITE) < 0)
1258 <                return 1;
1257 >        if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
1258 >                return 7;
1259          
1260          for (int i = 0; i < page_size; i++)
1261                  page[i] = (i + 1) % page_size;
1262          
1263          if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
1264 <                return 1;
1264 >                return 8;
1265          
778        sigsegv_set_ignore_state(true);
779
1266   #define TEST_SKIP_INSTRUCTION(TYPE) do {                                \
1267                  const unsigned int TAG = 0x12345678;                    \
1268                  TYPE data = *((TYPE *)(page + sizeof(TYPE)));   \
1269                  volatile unsigned int effect = data + TAG;              \
1270                  if (effect != TAG)                                                              \
1271 <                        return 1;                                                                       \
1271 >                        return 9;                                                                       \
1272          } while (0)
1273          
1274 + #ifdef __GNUC__
1275 +        b_region = &&L_b_region;
1276 +        e_region = &&L_e_region;
1277 + #endif
1278 + L_b_region:
1279          TEST_SKIP_INSTRUCTION(unsigned char);
1280          TEST_SKIP_INSTRUCTION(unsigned short);
1281          TEST_SKIP_INSTRUCTION(unsigned int);
1282 + L_e_region:
1283   #endif
1284  
1285          vm_exit();

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines