ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
(Generate patch)

Comparing BasiliskII/src/Unix/sigsegv.cpp (file contents):
Revision 1.23 by gbeauche, 2003-08-17T10:52:52Z vs.
Revision 1.63 by gbeauche, 2006-05-09T06:24:05Z

# Line 4 | Line 4
4   *  Derived from Bruno Haible's work on his SIGSEGV library for clisp
5   *  <http://clisp.sourceforge.net/>
6   *
7 < *  Basilisk II (C) 1997-2002 Christian Bauer
7 > *  MacOS X support derived from the post by Timothy J. Wood to the
8 > *  omnigroup macosx-dev list:
9 > *    Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10 > *    tjw@omnigroup.com Sun, 4 Jun 2000
11 > *    www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12 > *
13 > *  Basilisk II (C) 1997-2005 Christian Bauer
14   *
15   *  This program is free software; you can redistribute it and/or modify
16   *  it under the terms of the GNU General Public License as published by
# Line 30 | Line 36
36   #endif
37  
38   #include <list>
39 + #include <stdio.h>
40   #include <signal.h>
41   #include "sigsegv.h"
42  
# Line 45 | Line 52 | using std::list;
52   // Type of the system signal handler
53   typedef RETSIGTYPE (*signal_handler)(int);
54  
48 // Ignore range chain
49 struct ignore_range_t {
50        sigsegv_address_t       start;
51        unsigned long           length;
52        int                                     transfer_type;
53 };
54
55 typedef list<ignore_range_t> ignore_range_list_t;
56 ignore_range_list_t sigsegv_ignore_ranges;
57
55   // User's SIGSEGV handler
56   static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
57  
# Line 64 | Line 61 | static sigsegv_state_dumper_t sigsegv_st
61   // Actual SIGSEGV handler installer
62   static bool sigsegv_do_install_handler(int sig);
63  
67 // Find ignore range matching address
68 static inline ignore_range_list_t::iterator sigsegv_find_ignore_range(sigsegv_address_t address)
69 {
70        ignore_range_list_t::iterator it;
71        for (it = sigsegv_ignore_ranges.begin(); it != sigsegv_ignore_ranges.end(); it++)
72                if (address >= it->start && address < it->start + it->length)
73                        break;
74        return it;
75 }
76
64  
65   /*
66   *  Instruction decoding aids
# Line 83 | Line 70 | static inline ignore_range_list_t::itera
70   enum transfer_size_t {
71          SIZE_UNKNOWN,
72          SIZE_BYTE,
73 <        SIZE_WORD,
74 <        SIZE_LONG
73 >        SIZE_WORD, // 2 bytes
74 >        SIZE_LONG, // 4 bytes
75 >        SIZE_QUAD, // 8 bytes
76   };
77  
78   // Transfer type
# Line 109 | Line 97 | struct instruction_t {
97          char                            ra, rd;
98   };
99  
100 < static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned int * gpr)
100 > static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned long * gpr)
101   {
102          // Get opcode and divide into fields
103 <        unsigned int opcode = *((unsigned int *)nip);
103 >        unsigned int opcode = *((unsigned int *)(unsigned long)nip);
104          unsigned int primop = opcode >> 26;
105          unsigned int exop = (opcode >> 1) & 0x3ff;
106          unsigned int ra = (opcode >> 16) & 0x1f;
# Line 186 | Line 174 | static void powerpc_decode_instruction(i
174                  transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
175          case 45:        // sthu
176                  transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
177 +        case 58:        // ld, ldu, lwa
178 +                transfer_type = SIGSEGV_TRANSFER_LOAD;
179 +                transfer_size = SIZE_QUAD;
180 +                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
181 +                imm &= ~3;
182 +                break;
183 +        case 62:        // std, stdu, stq
184 +                transfer_type = SIGSEGV_TRANSFER_STORE;
185 +                transfer_size = SIZE_QUAD;
186 +                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
187 +                imm &= ~3;
188 +                break;
189          }
190          
191          // Calculate effective address
# Line 226 | Line 226 | static void powerpc_decode_instruction(i
226  
227   #if HAVE_SIGINFO_T
228   // Generic extended signal handler
229 < #if defined(__NetBSD__) || defined(__FreeBSD__)
229 > #if defined(__FreeBSD__)
230   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
231   #else
232   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
233   #endif
234   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, siginfo_t *sip, void *scp
235 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
236 + #define SIGSEGV_FAULT_HANDLER_ARGS              sip, scp
237   #define SIGSEGV_FAULT_ADDRESS                   sip->si_addr
238 < #if defined(__NetBSD__) || defined(__FreeBSD__)
238 > #if (defined(sgi) || defined(__sgi))
239 > #include <ucontext.h>
240 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
241 > #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)SIGSEGV_CONTEXT_REGS[CTX_EPC]
242 > #if (defined(mips) || defined(__mips))
243 > #define SIGSEGV_REGISTER_FILE                   SIGSEGV_CONTEXT_REGS
244 > #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
245 > #endif
246 > #endif
247 > #if defined(__sun__)
248 > #if (defined(sparc) || defined(__sparc__))
249 > #include <sys/stack.h>
250 > #include <sys/regset.h>
251 > #include <sys/ucontext.h>
252 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
253 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[REG_PC]
254 > #define SIGSEGV_SPARC_GWINDOWS                  (((ucontext_t *)scp)->uc_mcontext.gwins)
255 > #define SIGSEGV_SPARC_RWINDOW                   (struct rwindow *)((char *)SIGSEGV_CONTEXT_REGS[REG_SP] + STACK_BIAS)
256 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)SIGSEGV_CONTEXT_REGS), SIGSEGV_SPARC_GWINDOWS, SIGSEGV_SPARC_RWINDOW
257 > #define SIGSEGV_SKIP_INSTRUCTION                sparc_skip_instruction
258 > #endif
259 > #if defined(__i386__)
260 > #include <sys/regset.h>
261 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
262 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[EIP]
263 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
264 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
265 > #endif
266 > #endif
267 > #if defined(__FreeBSD__) || defined(__OpenBSD__)
268   #if (defined(i386) || defined(__i386__))
269   #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_eip)
270 < #define SIGSEGV_REGISTER_FILE                   ((unsigned int *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
270 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
271   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
272   #endif
273   #endif
274 + #if defined(__NetBSD__)
275 + #if (defined(i386) || defined(__i386__))
276 + #include <sys/ucontext.h>
277 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
278 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_EIP]
279 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
280 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
281 + #endif
282 + #if (defined(powerpc) || defined(__powerpc__))
283 + #include <sys/ucontext.h>
284 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
285 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_PC]
286 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_PC], (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_R0]
287 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
288 + #endif
289 + #endif
290   #if defined(__linux__)
291   #if (defined(i386) || defined(__i386__))
292   #include <sys/ucontext.h>
293   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
294   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
295 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)SIGSEGV_CONTEXT_REGS
295 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
296   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
297   #endif
298   #if (defined(x86_64) || defined(__x86_64__))
# Line 253 | Line 300 | static void powerpc_decode_instruction(i
300   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
301   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
302   #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
303 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
304   #endif
305   #if (defined(ia64) || defined(__ia64__))
306   #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
# Line 261 | Line 309 | static void powerpc_decode_instruction(i
309   #include <sys/ucontext.h>
310   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.regs)
311   #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS->nip)
312 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned int *)(SIGSEGV_CONTEXT_REGS->gpr)
312 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned long *)(SIGSEGV_CONTEXT_REGS->gpr)
313   #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
314   #endif
315 + #if (defined(hppa) || defined(__hppa__))
316 + #undef  SIGSEGV_FAULT_ADDRESS
317 + #define SIGSEGV_FAULT_ADDRESS                   sip->si_ptr
318 + #endif
319 + #if (defined(arm) || defined(__arm__))
320 + #include <asm/ucontext.h> /* use kernel structure, glibc may not be in sync */
321 + #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
322 + #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.arm_pc)
323 + #define SIGSEGV_REGISTER_FILE                   (&SIGSEGV_CONTEXT_REGS.arm_r0)
324 + #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
325 + #endif
326   #endif
327   #endif
328  
# Line 274 | Line 333 | static void powerpc_decode_instruction(i
333   #if (defined(i386) || defined(__i386__))
334   #include <asm/sigcontext.h>
335   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext scs
336 < #define SIGSEGV_FAULT_ADDRESS                   scs.cr2
337 < #define SIGSEGV_FAULT_INSTRUCTION               scs.eip
338 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)(&scs)
336 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
337 > #define SIGSEGV_FAULT_HANDLER_ARGS              &scs
338 > #define SIGSEGV_FAULT_ADDRESS                   scp->cr2
339 > #define SIGSEGV_FAULT_INSTRUCTION               scp->eip
340 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)scp
341   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
342   #endif
343   #if (defined(sparc) || defined(__sparc__))
344   #include <asm/sigcontext.h>
345   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
346 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
347   #define SIGSEGV_FAULT_ADDRESS                   addr
348   #endif
349   #if (defined(powerpc) || defined(__powerpc__))
350   #include <asm/sigcontext.h>
351   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext *scp
352 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, scp
353   #define SIGSEGV_FAULT_ADDRESS                   scp->regs->dar
354   #define SIGSEGV_FAULT_INSTRUCTION               scp->regs->nip
355 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&scp->regs->nip, (unsigned int *)(scp->regs->gpr)
355 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&scp->regs->nip, (unsigned long *)(scp->regs->gpr)
356   #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
357   #endif
358   #if (defined(alpha) || defined(__alpha__))
359   #include <asm/sigcontext.h>
360   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
361 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
362   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
363   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
364 <
365 < // From Boehm's GC 6.0alpha8
366 < static sigsegv_address_t get_fault_address(struct sigcontext *scp)
367 < {
368 <        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
369 <        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
370 <        fault_address += (signed long)(signed short)(instruction & 0xffff);
371 <        return (sigsegv_address_t)fault_address;
372 < }
364 > #endif
365 > #if (defined(arm) || defined(__arm__))
366 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int r1, int r2, int r3, struct sigcontext sc
367 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
368 > #define SIGSEGV_FAULT_HANDLER_ARGS              &sc
369 > #define SIGSEGV_FAULT_ADDRESS                   scp->fault_address
370 > #define SIGSEGV_FAULT_INSTRUCTION               scp->arm_pc
371 > #define SIGSEGV_REGISTER_FILE                   &scp->arm_r0
372 > #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
373   #endif
374   #endif
375  
376   // Irix 5 or 6 on MIPS
377 < #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
377 > #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(_SYSTYPE_SVR4))
378   #include <ucontext.h>
379   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
380 < #define SIGSEGV_FAULT_ADDRESS                   scp->sc_badvaddr
380 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
381 > #define SIGSEGV_FAULT_ADDRESS                   (unsigned long)scp->sc_badvaddr
382 > #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)scp->sc_pc
383   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
384   #endif
385  
386   // HP-UX
387   #if (defined(hpux) || defined(__hpux__))
388   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
389 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
390   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_sl.sl_ss.ss_narrow.ss_cr21
391   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
392   #endif
# Line 328 | Line 395 | static sigsegv_address_t get_fault_addre
395   #if defined(__osf__)
396   #include <ucontext.h>
397   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
398 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
399   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_traparg_a0
400   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
401   #endif
# Line 335 | Line 403 | static sigsegv_address_t get_fault_addre
403   // AIX
404   #if defined(_AIX)
405   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
406 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
407   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_jmpbuf.jmp_context.o_vaddr
408   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
409   #endif
410  
411 < // NetBSD or FreeBSD
412 < #if defined(__NetBSD__) || defined(__FreeBSD__)
411 > // NetBSD
412 > #if defined(__NetBSD__)
413   #if (defined(m68k) || defined(__m68k__))
414   #include <m68k/frame.h>
415   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
416 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
417   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
418   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
419  
# Line 367 | Line 437 | static sigsegv_address_t get_fault_addre
437          }
438          return (sigsegv_address_t)fault_addr;
439   }
440 < #else
441 < #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, void *scp, char *addr
442 < #define SIGSEGV_FAULT_ADDRESS                   addr
440 > #endif
441 > #if (defined(alpha) || defined(__alpha__))
442 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
443 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
444 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
445 > #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
446 > #endif
447 > #if (defined(i386) || defined(__i386__))
448 > #error "FIXME: need to decode instruction and compute EA"
449 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
450 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
451 > #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
452 > #endif
453 > #endif
454 > #if defined(__FreeBSD__)
455 > #if (defined(i386) || defined(__i386__))
456   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
457 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
458 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
459 + #define SIGSEGV_FAULT_ADDRESS                   addr
460 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_eip
461 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&scp->sc_edi)
462 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
463 + #endif
464 + #if (defined(alpha) || defined(__alpha__))
465 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
466 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, char *addr, struct sigcontext *scp
467 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, addr, scp
468 + #define SIGSEGV_FAULT_ADDRESS                   addr
469 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
470   #endif
471   #endif
472  
473 < // MacOS X
473 > // Extract fault address out of a sigcontext
474 > #if (defined(alpha) || defined(__alpha__))
475 > // From Boehm's GC 6.0alpha8
476 > static sigsegv_address_t get_fault_address(struct sigcontext *scp)
477 > {
478 >        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
479 >        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
480 >        fault_address += (signed long)(signed short)(instruction & 0xffff);
481 >        return (sigsegv_address_t)fault_address;
482 > }
483 > #endif
484 >
485 >
486 > // MacOS X, not sure which version this works in. Under 10.1
487 > // vm_protect does not appear to work from a signal handler. Under
488 > // 10.2 signal handlers get siginfo type arguments but the si_addr
489 > // field is the address of the faulting instruction and not the
490 > // address that caused the SIGBUS. Maybe this works in 10.0? In any
491 > // case with Mach exception handlers there is a way to do what this
492 > // was meant to do.
493 > #ifndef HAVE_MACH_EXCEPTIONS
494   #if defined(__APPLE__) && defined(__MACH__)
495   #if (defined(ppc) || defined(__ppc__))
496   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
497 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
498   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
499   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_ir
500   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
# Line 397 | Line 514 | static sigsegv_address_t get_fault_addre
514   #endif
515   #endif
516   #endif
517 + #endif
518 +
519 + #if HAVE_WIN32_EXCEPTIONS
520 + #define WIN32_LEAN_AND_MEAN /* avoid including junk */
521 + #include <windows.h>
522 + #include <winerror.h>
523 +
524 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   EXCEPTION_POINTERS *ExceptionInfo
525 + #define SIGSEGV_FAULT_HANDLER_ARGS              ExceptionInfo
526 + #define SIGSEGV_FAULT_ADDRESS                   ExceptionInfo->ExceptionRecord->ExceptionInformation[1]
527 + #define SIGSEGV_CONTEXT_REGS                    ExceptionInfo->ContextRecord
528 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS->Eip
529 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&SIGSEGV_CONTEXT_REGS->Edi)
530 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
531 + #endif
532 +
533 + #if HAVE_MACH_EXCEPTIONS
534 +
535 + // This can easily be extended to other Mach systems, but really who
536 + // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
537 + // Mach 2.5/3.0?
538 + #if defined(__APPLE__) && defined(__MACH__)
539 +
540 + #include <sys/types.h>
541 + #include <stdlib.h>
542 + #include <stdio.h>
543 + #include <pthread.h>
544 +
545 + /*
546 + * If you are familiar with MIG then you will understand the frustration
547 + * that was necessary to get these embedded into C++ code by hand.
548 + */
549 + extern "C" {
550 + #include <mach/mach.h>
551 + #include <mach/mach_error.h>
552 +
553 + extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
554 + extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
555 +        mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
556 + extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
557 +        exception_type_t, exception_data_t, mach_msg_type_number_t);
558 + extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
559 +        exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
560 +        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
561 + extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
562 +        exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
563 +        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
564 + }
565 +
566 + // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
567 + #define HANDLER_COUNT 64
568 +
569 + // structure to tuck away existing exception handlers
570 + typedef struct _ExceptionPorts {
571 +        mach_msg_type_number_t maskCount;
572 +        exception_mask_t masks[HANDLER_COUNT];
573 +        exception_handler_t handlers[HANDLER_COUNT];
574 +        exception_behavior_t behaviors[HANDLER_COUNT];
575 +        thread_state_flavor_t flavors[HANDLER_COUNT];
576 + } ExceptionPorts;
577 +
578 + // exception handler thread
579 + static pthread_t exc_thread;
580 +
581 + // place where old exception handler info is stored
582 + static ExceptionPorts ports;
583 +
584 + // our exception port
585 + static mach_port_t _exceptionPort = MACH_PORT_NULL;
586 +
587 + #define MACH_CHECK_ERROR(name,ret) \
588 + if (ret != KERN_SUCCESS) { \
589 +        mach_error(#name, ret); \
590 +        exit (1); \
591 + }
592 +
593 + #ifdef __ppc__
594 + #define SIGSEGV_THREAD_STATE_TYPE               ppc_thread_state_t
595 + #define SIGSEGV_THREAD_STATE_FLAVOR             PPC_THREAD_STATE
596 + #define SIGSEGV_THREAD_STATE_COUNT              PPC_THREAD_STATE_COUNT
597 + #define SIGSEGV_FAULT_INSTRUCTION               state->srr0
598 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
599 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&state->srr0, (unsigned long *)&state->r0
600 + #endif
601 + #ifdef __i386__
602 + #ifdef i386_SAVED_STATE
603 + #define SIGSEGV_THREAD_STATE_TYPE               struct i386_saved_state
604 + #define SIGSEGV_THREAD_STATE_FLAVOR             i386_SAVED_STATE
605 + #define SIGSEGV_THREAD_STATE_COUNT              i386_SAVED_STATE_COUNT
606 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&state->edi) /* EDI is the first GPR we consider */
607 + #else
608 + #define SIGSEGV_THREAD_STATE_TYPE               struct i386_thread_state
609 + #define SIGSEGV_THREAD_STATE_FLAVOR             i386_THREAD_STATE
610 + #define SIGSEGV_THREAD_STATE_COUNT              i386_THREAD_STATE_COUNT
611 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&state->eax) /* EAX is the first GPR we consider */
612 + #endif
613 + #define SIGSEGV_FAULT_INSTRUCTION               state->eip
614 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
615 + #endif
616 + #define SIGSEGV_FAULT_ADDRESS                   code[1]
617 + #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  ((code[0] == KERN_PROTECTION_FAILURE || code[0] == KERN_INVALID_ADDRESS) ? sigsegv_fault_handler(ADDR, IP) : SIGSEGV_RETURN_FAILURE)
618 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   mach_port_t thread, exception_data_t code, SIGSEGV_THREAD_STATE_TYPE *state
619 + #define SIGSEGV_FAULT_HANDLER_ARGS              thread, code, &state
620 +
621 + // Since there can only be one exception thread running at any time
622 + // this is not a problem.
623 + #define MSG_SIZE 512
624 + static char msgbuf[MSG_SIZE];
625 + static char replybuf[MSG_SIZE];
626 +
627 + /*
628 + * This is the entry point for the exception handler thread. The job
629 + * of this thread is to wait for exception messages on the exception
630 + * port that was setup beforehand and to pass them on to exc_server.
631 + * exc_server is a MIG generated function that is a part of Mach.
632 + * Its job is to decide what to do with the exception message. In our
633 + * case exc_server calls catch_exception_raise on our behalf. After
634 + * exc_server returns, it is our responsibility to send the reply.
635 + */
636 + static void *
637 + handleExceptions(void *priv)
638 + {
639 +        mach_msg_header_t *msg, *reply;
640 +        kern_return_t krc;
641 +
642 +        msg = (mach_msg_header_t *)msgbuf;
643 +        reply = (mach_msg_header_t *)replybuf;
644 +
645 +        for (;;) {
646 +                krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
647 +                                _exceptionPort, 0, MACH_PORT_NULL);
648 +                MACH_CHECK_ERROR(mach_msg, krc);
649 +
650 +                if (!exc_server(msg, reply)) {
651 +                        fprintf(stderr, "exc_server hated the message\n");
652 +                        exit(1);
653 +                }
654 +
655 +                krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
656 +                                 msg->msgh_local_port, 0, MACH_PORT_NULL);
657 +                if (krc != KERN_SUCCESS) {
658 +                        fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
659 +                                krc, mach_error_string(krc));
660 +                        exit(1);
661 +                }
662 +        }
663 + }
664 + #endif
665 + #endif
666  
667  
668   /*
# Line 405 | Line 671 | static sigsegv_address_t get_fault_addre
671  
672   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
673   // Decode and skip X86 instruction
674 < #if (defined(i386) || defined(__i386__))
674 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
675   #if defined(__linux__)
676   enum {
677 + #if (defined(i386) || defined(__i386__))
678          X86_REG_EIP = 14,
679          X86_REG_EAX = 11,
680          X86_REG_ECX = 10,
# Line 417 | Line 684 | enum {
684          X86_REG_EBP = 6,
685          X86_REG_ESI = 5,
686          X86_REG_EDI = 4
687 + #endif
688 + #if defined(__x86_64__)
689 +        X86_REG_R8  = 0,
690 +        X86_REG_R9  = 1,
691 +        X86_REG_R10 = 2,
692 +        X86_REG_R11 = 3,
693 +        X86_REG_R12 = 4,
694 +        X86_REG_R13 = 5,
695 +        X86_REG_R14 = 6,
696 +        X86_REG_R15 = 7,
697 +        X86_REG_EDI = 8,
698 +        X86_REG_ESI = 9,
699 +        X86_REG_EBP = 10,
700 +        X86_REG_EBX = 11,
701 +        X86_REG_EDX = 12,
702 +        X86_REG_EAX = 13,
703 +        X86_REG_ECX = 14,
704 +        X86_REG_ESP = 15,
705 +        X86_REG_EIP = 16
706 + #endif
707   };
708   #endif
709 < #if defined(__NetBSD__) || defined(__FreeBSD__)
709 > #if defined(__NetBSD__)
710   enum {
711 + #if (defined(i386) || defined(__i386__))
712 +        X86_REG_EIP = _REG_EIP,
713 +        X86_REG_EAX = _REG_EAX,
714 +        X86_REG_ECX = _REG_ECX,
715 +        X86_REG_EDX = _REG_EDX,
716 +        X86_REG_EBX = _REG_EBX,
717 +        X86_REG_ESP = _REG_ESP,
718 +        X86_REG_EBP = _REG_EBP,
719 +        X86_REG_ESI = _REG_ESI,
720 +        X86_REG_EDI = _REG_EDI
721 + #endif
722 + };
723 + #endif
724 + #if defined(__FreeBSD__)
725 + enum {
726 + #if (defined(i386) || defined(__i386__))
727          X86_REG_EIP = 10,
728          X86_REG_EAX = 7,
729          X86_REG_ECX = 6,
# Line 430 | Line 733 | enum {
733          X86_REG_EBP = 2,
734          X86_REG_ESI = 1,
735          X86_REG_EDI = 0
736 + #endif
737 + };
738 + #endif
739 + #if defined(__OpenBSD__)
740 + enum {
741 + #if defined(__i386__)
742 +        // EDI is the first register we consider
743 + #define OREG(REG) offsetof(struct sigcontext, sc_##REG)
744 + #define DREG(REG) ((OREG(REG) - OREG(edi)) / 4)
745 +        X86_REG_EIP = DREG(eip), // 7
746 +        X86_REG_EAX = DREG(eax), // 6
747 +        X86_REG_ECX = DREG(ecx), // 5
748 +        X86_REG_EDX = DREG(edx), // 4
749 +        X86_REG_EBX = DREG(ebx), // 3
750 +        X86_REG_ESP = DREG(esp), // 10
751 +        X86_REG_EBP = DREG(ebp), // 2
752 +        X86_REG_ESI = DREG(esi), // 1
753 +        X86_REG_EDI = DREG(edi)  // 0
754 + #undef DREG
755 + #undef OREG
756 + #endif
757 + };
758 + #endif
759 + #if defined(__sun__)
760 + // Same as for Linux, need to check for x86-64
761 + enum {
762 + #if defined(__i386__)
763 +        X86_REG_EIP = EIP,
764 +        X86_REG_EAX = EAX,
765 +        X86_REG_ECX = ECX,
766 +        X86_REG_EDX = EDX,
767 +        X86_REG_EBX = EBX,
768 +        X86_REG_ESP = ESP,
769 +        X86_REG_EBP = EBP,
770 +        X86_REG_ESI = ESI,
771 +        X86_REG_EDI = EDI
772 + #endif
773 + };
774 + #endif
775 + #if defined(__APPLE__) && defined(__MACH__)
776 + enum {
777 + #ifdef i386_SAVED_STATE
778 +        // same as FreeBSD (in Open Darwin 8.0.1)
779 +        X86_REG_EIP = 10,
780 +        X86_REG_EAX = 7,
781 +        X86_REG_ECX = 6,
782 +        X86_REG_EDX = 5,
783 +        X86_REG_EBX = 4,
784 +        X86_REG_ESP = 13,
785 +        X86_REG_EBP = 2,
786 +        X86_REG_ESI = 1,
787 +        X86_REG_EDI = 0
788 + #else
789 +        // new layout (MacOS X 10.4.4 for x86)
790 +        X86_REG_EIP = 10,
791 +        X86_REG_EAX = 0,
792 +        X86_REG_ECX = 2,
793 +        X86_REG_EDX = 4,
794 +        X86_REG_EBX = 1,
795 +        X86_REG_ESP = 7,
796 +        X86_REG_EBP = 6,
797 +        X86_REG_ESI = 5,
798 +        X86_REG_EDI = 4
799 + #endif
800 + };
801 + #endif
802 + #if defined(_WIN32)
803 + enum {
804 + #if (defined(i386) || defined(__i386__))
805 +        X86_REG_EIP = 7,
806 +        X86_REG_EAX = 5,
807 +        X86_REG_ECX = 4,
808 +        X86_REG_EDX = 3,
809 +        X86_REG_EBX = 2,
810 +        X86_REG_ESP = 10,
811 +        X86_REG_EBP = 6,
812 +        X86_REG_ESI = 1,
813 +        X86_REG_EDI = 0
814 + #endif
815   };
816   #endif
817   // FIXME: this is partly redundant with the instruction decoding phase
# Line 466 | Line 848 | static inline int ix86_step_over_modrm(u
848          return offset;
849   }
850  
851 < static bool ix86_skip_instruction(unsigned int * regs)
851 > static bool ix86_skip_instruction(unsigned long * regs)
852   {
853          unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
854  
855          if (eip == 0)
856                  return false;
857 + #ifdef _WIN32
858 +        if (IsBadCodePtr((FARPROC)eip))
859 +                return false;
860 + #endif
861          
862          transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
863          transfer_size_t transfer_size = SIZE_LONG;
864          
865          int reg = -1;
866          int len = 0;
867 <        
867 >
868 > #if DEBUG
869 >        printf("IP: %p [%02x %02x %02x %02x...]\n",
870 >                   eip, eip[0], eip[1], eip[2], eip[3]);
871 > #endif
872 >
873          // Operand size prefix
874          if (*eip == 0x66) {
875                  eip++;
# Line 486 | Line 877 | static bool ix86_skip_instruction(unsign
877                  transfer_size = SIZE_WORD;
878          }
879  
880 +        // REX prefix
881 + #if defined(__x86_64__)
882 +        struct rex_t {
883 +                unsigned char W;
884 +                unsigned char R;
885 +                unsigned char X;
886 +                unsigned char B;
887 +        };
888 +        rex_t rex = { 0, 0, 0, 0 };
889 +        bool has_rex = false;
890 +        if ((*eip & 0xf0) == 0x40) {
891 +                has_rex = true;
892 +                const unsigned char b = *eip;
893 +                rex.W = b & (1 << 3);
894 +                rex.R = b & (1 << 2);
895 +                rex.X = b & (1 << 1);
896 +                rex.B = b & (1 << 0);
897 + #if DEBUG
898 +                printf("REX: %c,%c,%c,%c\n",
899 +                           rex.W ? 'W' : '_',
900 +                           rex.R ? 'R' : '_',
901 +                           rex.X ? 'X' : '_',
902 +                           rex.B ? 'B' : '_');
903 + #endif
904 +                eip++;
905 +                len++;
906 +                if (rex.W)
907 +                        transfer_size = SIZE_QUAD;
908 +        }
909 + #else
910 +        const bool has_rex = false;
911 + #endif
912 +
913          // Decode instruction
914 +        int target_size = SIZE_UNKNOWN;
915          switch (eip[0]) {
916          case 0x0f:
917 +                target_size = transfer_size;
918              switch (eip[1]) {
919 +                case 0xbe: // MOVSX r32, r/m8
920              case 0xb6: // MOVZX r32, r/m8
921 +                        transfer_size = SIZE_BYTE;
922 +                        goto do_mov_extend;
923 +                case 0xbf: // MOVSX r32, r/m16
924              case 0xb7: // MOVZX r32, r/m16
925 <                switch (eip[2] & 0xc0) {
925 >                        transfer_size = SIZE_WORD;
926 >                        goto do_mov_extend;
927 >                  do_mov_extend:
928 >                        switch (eip[2] & 0xc0) {
929 >                        case 0x80:
930 >                                reg = (eip[2] >> 3) & 7;
931 >                                transfer_type = SIGSEGV_TRANSFER_LOAD;
932 >                                break;
933 >                        case 0x40:
934 >                                reg = (eip[2] >> 3) & 7;
935 >                                transfer_type = SIGSEGV_TRANSFER_LOAD;
936 >                                break;
937 >                        case 0x00:
938 >                                reg = (eip[2] >> 3) & 7;
939 >                                transfer_type = SIGSEGV_TRANSFER_LOAD;
940 >                                break;
941 >                        }
942 >                        len += 3 + ix86_step_over_modrm(eip + 2);
943 >                        break;
944 >            }
945 >          break;
946 > #if defined(__x86_64__)
947 >        case 0x63: // MOVSXD r64, r/m32
948 >                if (has_rex && rex.W) {
949 >                        transfer_size = SIZE_LONG;
950 >                        target_size = SIZE_QUAD;
951 >                }
952 >                else if (transfer_size != SIZE_WORD) {
953 >                        transfer_size = SIZE_LONG;
954 >                        target_size = SIZE_QUAD;
955 >                }
956 >                switch (eip[1] & 0xc0) {
957                  case 0x80:
958 <                    reg = (eip[2] >> 3) & 7;
959 <                    transfer_type = SIGSEGV_TRANSFER_LOAD;
960 <                    break;
958 >                        reg = (eip[1] >> 3) & 7;
959 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
960 >                        break;
961                  case 0x40:
962 <                    reg = (eip[2] >> 3) & 7;
963 <                    transfer_type = SIGSEGV_TRANSFER_LOAD;
964 <                    break;
962 >                        reg = (eip[1] >> 3) & 7;
963 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
964 >                        break;
965                  case 0x00:
966 <                    reg = (eip[2] >> 3) & 7;
967 <                    transfer_type = SIGSEGV_TRANSFER_LOAD;
968 <                    break;
966 >                        reg = (eip[1] >> 3) & 7;
967 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
968 >                        break;
969                  }
970 <                len += 3 + ix86_step_over_modrm(eip + 2);
970 >                len += 2 + ix86_step_over_modrm(eip + 1);
971                  break;
972 <            }
512 <          break;
972 > #endif
973          case 0x8a: // MOV r8, r/m8
974                  transfer_size = SIZE_BYTE;
975          case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
# Line 549 | Line 1009 | static bool ix86_skip_instruction(unsign
1009                  len += 2 + ix86_step_over_modrm(eip + 1);
1010                  break;
1011          }
1012 +        if (target_size == SIZE_UNKNOWN)
1013 +                target_size = transfer_size;
1014  
1015          if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1016                  // Unknown machine code, let it crash. Then patch the decoder
1017                  return false;
1018          }
1019  
1020 + #if defined(__x86_64__)
1021 +        if (rex.R)
1022 +                reg += 8;
1023 + #endif
1024 +
1025          if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
1026 <                static const int x86_reg_map[8] = {
1026 >                static const int x86_reg_map[] = {
1027                          X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
1028 <                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI
1028 >                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI,
1029 > #if defined(__x86_64__)
1030 >                        X86_REG_R8,  X86_REG_R9,  X86_REG_R10, X86_REG_R11,
1031 >                        X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15,
1032 > #endif
1033                  };
1034                  
1035 <                if (reg < 0 || reg >= 8)
1035 >                if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1))
1036                          return false;
1037  
1038 +                // Set 0 to the relevant register part
1039 +                // NOTE: this is only valid for MOV alike instructions
1040                  int rloc = x86_reg_map[reg];
1041 <                switch (transfer_size) {
1041 >                switch (target_size) {
1042                  case SIZE_BYTE:
1043 <                        regs[rloc] = (regs[rloc] & ~0xff);
1043 >                        if (has_rex || reg < 4)
1044 >                                regs[rloc] = (regs[rloc] & ~0x00ffL);
1045 >                        else {
1046 >                                rloc = x86_reg_map[reg - 4];
1047 >                                regs[rloc] = (regs[rloc] & ~0xff00L);
1048 >                        }
1049                          break;
1050                  case SIZE_WORD:
1051 <                        regs[rloc] = (regs[rloc] & ~0xffff);
1051 >                        regs[rloc] = (regs[rloc] & ~0xffffL);
1052                          break;
1053                  case SIZE_LONG:
1054 +                case SIZE_QUAD: // zero-extension
1055                          regs[rloc] = 0;
1056                          break;
1057                  }
# Line 580 | Line 1059 | static bool ix86_skip_instruction(unsign
1059  
1060   #if DEBUG
1061          printf("%08x: %s %s access", regs[X86_REG_EIP],
1062 <                   transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : "long",
1062 >                   transfer_size == SIZE_BYTE ? "byte" :
1063 >                   transfer_size == SIZE_WORD ? "word" :
1064 >                   transfer_size == SIZE_LONG ? "long" :
1065 >                   transfer_size == SIZE_QUAD ? "quad" : "unknown",
1066                     transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1067          
1068          if (reg != -1) {
1069 <                static const char * x86_reg_str_map[8] = {
1070 <                        "eax", "ecx", "edx", "ebx",
1071 <                        "esp", "ebp", "esi", "edi"
1069 >                static const char * x86_byte_reg_str_map[] = {
1070 >                        "al",   "cl",   "dl",   "bl",
1071 >                        "spl",  "bpl",  "sil",  "dil",
1072 >                        "r8b",  "r9b",  "r10b", "r11b",
1073 >                        "r12b", "r13b", "r14b", "r15b",
1074 >                        "ah",   "ch",   "dh",   "bh",
1075 >                };
1076 >                static const char * x86_word_reg_str_map[] = {
1077 >                        "ax",   "cx",   "dx",   "bx",
1078 >                        "sp",   "bp",   "si",   "di",
1079 >                        "r8w",  "r9w",  "r10w", "r11w",
1080 >                        "r12w", "r13w", "r14w", "r15w",
1081 >                };
1082 >                static const char *x86_long_reg_str_map[] = {
1083 >                        "eax",  "ecx",  "edx",  "ebx",
1084 >                        "esp",  "ebp",  "esi",  "edi",
1085 >                        "r8d",  "r9d",  "r10d", "r11d",
1086 >                        "r12d", "r13d", "r14d", "r15d",
1087 >                };
1088 >                static const char *x86_quad_reg_str_map[] = {
1089 >                        "rax", "rcx", "rdx", "rbx",
1090 >                        "rsp", "rbp", "rsi", "rdi",
1091 >                        "r8",  "r9",  "r10", "r11",
1092 >                        "r12", "r13", "r14", "r15",
1093                  };
1094 <                printf(" %s register %%%s", transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from", x86_reg_str_map[reg]);
1094 >                const char * reg_str = NULL;
1095 >                switch (target_size) {
1096 >                case SIZE_BYTE:
1097 >                        reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg];
1098 >                        break;
1099 >                case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break;
1100 >                case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break;
1101 >                case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break;
1102 >                }
1103 >                if (reg_str)
1104 >                        printf(" %s register %%%s",
1105 >                                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from",
1106 >                                   reg_str);
1107          }
1108          printf(", %d bytes instruction\n", len);
1109   #endif
# Line 600 | Line 1115 | static bool ix86_skip_instruction(unsign
1115  
1116   // Decode and skip PPC instruction
1117   #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
1118 < static bool powerpc_skip_instruction(unsigned int * nip_p, unsigned int * regs)
1118 > static bool powerpc_skip_instruction(unsigned long * nip_p, unsigned long * regs)
1119   {
1120          instruction_t instr;
1121          powerpc_decode_instruction(&instr, *nip_p, regs);
# Line 610 | Line 1125 | static bool powerpc_skip_instruction(uns
1125                  return false;
1126          }
1127  
613        ignore_range_list_t::iterator it = sigsegv_find_ignore_range((sigsegv_address_t)instr.addr);
614        if (it == sigsegv_ignore_ranges.end() || ((it->transfer_type & instr.transfer_type) != instr.transfer_type)) {
615                // Address doesn't fall into ignore ranges list, let it crash.
616                return false;
617        }
618
1128   #if DEBUG
1129          printf("%08x: %s %s access", *nip_p,
1130 <                   instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : "long",
1130 >                   instr.transfer_size == SIZE_BYTE ? "byte" :
1131 >                   instr.transfer_size == SIZE_WORD ? "word" :
1132 >                   instr.transfer_size == SIZE_LONG ? "long" : "quad",
1133                     instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1134          
1135          if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
# Line 636 | Line 1147 | static bool powerpc_skip_instruction(uns
1147          return true;
1148   }
1149   #endif
1150 +
1151 + // Decode and skip MIPS instruction
1152 + #if (defined(mips) || defined(__mips))
1153 + enum {
1154 + #if (defined(sgi) || defined(__sgi))
1155 +  MIPS_REG_EPC = 35,
1156 + #endif
1157 + };
1158 + static bool mips_skip_instruction(greg_t * regs)
1159 + {
1160 +  unsigned int * epc = (unsigned int *)(unsigned long)regs[MIPS_REG_EPC];
1161 +
1162 +  if (epc == 0)
1163 +        return false;
1164 +
1165 + #if DEBUG
1166 +  printf("IP: %p [%08x]\n", epc, epc[0]);
1167 + #endif
1168 +
1169 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1170 +  transfer_size_t transfer_size = SIZE_LONG;
1171 +  int direction = 0;
1172 +
1173 +  const unsigned int opcode = epc[0];
1174 +  switch (opcode >> 26) {
1175 +  case 32: // Load Byte
1176 +  case 36: // Load Byte Unsigned
1177 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1178 +        transfer_size = SIZE_BYTE;
1179 +        break;
1180 +  case 33: // Load Halfword
1181 +  case 37: // Load Halfword Unsigned
1182 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1183 +        transfer_size = SIZE_WORD;
1184 +        break;
1185 +  case 35: // Load Word
1186 +  case 39: // Load Word Unsigned
1187 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1188 +        transfer_size = SIZE_LONG;
1189 +        break;
1190 +  case 34: // Load Word Left
1191 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1192 +        transfer_size = SIZE_LONG;
1193 +        direction = -1;
1194 +        break;
1195 +  case 38: // Load Word Right
1196 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1197 +        transfer_size = SIZE_LONG;
1198 +        direction = 1;
1199 +        break;
1200 +  case 55: // Load Doubleword
1201 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1202 +        transfer_size = SIZE_QUAD;
1203 +        break;
1204 +  case 26: // Load Doubleword Left
1205 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1206 +        transfer_size = SIZE_QUAD;
1207 +        direction = -1;
1208 +        break;
1209 +  case 27: // Load Doubleword Right
1210 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1211 +        transfer_size = SIZE_QUAD;
1212 +        direction = 1;
1213 +        break;
1214 +  case 40: // Store Byte
1215 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1216 +        transfer_size = SIZE_BYTE;
1217 +        break;
1218 +  case 41: // Store Halfword
1219 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1220 +        transfer_size = SIZE_WORD;
1221 +        break;
1222 +  case 43: // Store Word
1223 +  case 42: // Store Word Left
1224 +  case 46: // Store Word Right
1225 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1226 +        transfer_size = SIZE_LONG;
1227 +        break;
1228 +  case 63: // Store Doubleword
1229 +  case 44: // Store Doubleword Left
1230 +  case 45: // Store Doubleword Right
1231 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1232 +        transfer_size = SIZE_QUAD;
1233 +        break;
1234 +  /* Misc instructions unlikely to be used within CPU emulators */
1235 +  case 48: // Load Linked Word
1236 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1237 +        transfer_size = SIZE_LONG;
1238 +        break;
1239 +  case 52: // Load Linked Doubleword
1240 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1241 +        transfer_size = SIZE_QUAD;
1242 +        break;
1243 +  case 56: // Store Conditional Word
1244 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1245 +        transfer_size = SIZE_LONG;
1246 +        break;
1247 +  case 60: // Store Conditional Doubleword
1248 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1249 +        transfer_size = SIZE_QUAD;
1250 +        break;
1251 +  }
1252 +
1253 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1254 +        // Unknown machine code, let it crash. Then patch the decoder
1255 +        return false;
1256 +  }
1257 +
1258 +  // Zero target register in case of a load operation
1259 +  const int reg = (opcode >> 16) & 0x1f;
1260 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD) {
1261 +        if (direction == 0)
1262 +          regs[reg] = 0;
1263 +        else {
1264 +          // FIXME: untested code
1265 +          unsigned long ea = regs[(opcode >> 21) & 0x1f];
1266 +          ea += (signed long)(signed int)(signed short)(opcode & 0xffff);
1267 +          const int offset = ea & (transfer_size == SIZE_LONG ? 3 : 7);
1268 +          unsigned long value;
1269 +          if (direction > 0) {
1270 +                const unsigned long rmask = ~((1L << ((offset + 1) * 8)) - 1);
1271 +                value = regs[reg] & rmask;
1272 +          }
1273 +          else {
1274 +                const unsigned long lmask = (1L << (offset * 8)) - 1;
1275 +                value = regs[reg] & lmask;
1276 +          }
1277 +          // restore most significant bits
1278 +          if (transfer_size == SIZE_LONG)
1279 +                value = (signed long)(signed int)value;
1280 +          regs[reg] = value;
1281 +        }
1282 +  }
1283 +
1284 + #if DEBUG
1285 + #if (defined(_ABIN32) || defined(_ABI64))
1286 +  static const char * mips_gpr_names[32] = {
1287 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1288 +        "t0",   "t1",   "t2",   "t3",   "t4",   "t5",   "t6",   "t7",
1289 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1290 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1291 +  };
1292 + #else
1293 +  static const char * mips_gpr_names[32] = {
1294 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1295 +        "a4",   "a5",   "a6",   "a7",   "t0",   "t1",   "t2",   "t3",
1296 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1297 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1298 +  };
1299 + #endif
1300 +  printf("%s %s register %s\n",
1301 +                 transfer_size == SIZE_BYTE ? "byte" :
1302 +                 transfer_size == SIZE_WORD ? "word" :
1303 +                 transfer_size == SIZE_LONG ? "long" :
1304 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1305 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1306 +                 mips_gpr_names[reg]);
1307 + #endif
1308 +
1309 +  regs[MIPS_REG_EPC] += 4;
1310 +  return true;
1311 + }
1312 + #endif
1313 +
1314 + // Decode and skip SPARC instruction
1315 + #if (defined(sparc) || defined(__sparc__))
1316 + enum {
1317 + #if (defined(__sun__))
1318 +  SPARC_REG_G1 = REG_G1,
1319 +  SPARC_REG_O0 = REG_O0,
1320 +  SPARC_REG_PC = REG_PC,
1321 +  SPARC_REG_nPC = REG_nPC
1322   #endif
1323 + };
1324 + static bool sparc_skip_instruction(unsigned long * regs, gwindows_t * gwins, struct rwindow * rwin)
1325 + {
1326 +  unsigned int * pc = (unsigned int *)regs[SPARC_REG_PC];
1327 +
1328 +  if (pc == 0)
1329 +        return false;
1330 +
1331 + #if DEBUG
1332 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1333 + #endif
1334 +
1335 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1336 +  transfer_size_t transfer_size = SIZE_LONG;
1337 +  bool register_pair = false;
1338 +
1339 +  const unsigned int opcode = pc[0];
1340 +  if ((opcode >> 30) != 3)
1341 +        return false;
1342 +  switch ((opcode >> 19) & 0x3f) {
1343 +  case 9: // Load Signed Byte
1344 +  case 1: // Load Unsigned Byte
1345 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1346 +        transfer_size = SIZE_BYTE;
1347 +        break;
1348 +  case 10:// Load Signed Halfword
1349 +  case 2: // Load Unsigned Word
1350 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1351 +        transfer_size = SIZE_WORD;
1352 +        break;
1353 +  case 8: // Load Word
1354 +  case 0: // Load Unsigned Word
1355 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1356 +        transfer_size = SIZE_LONG;
1357 +        break;
1358 +  case 11:// Load Extended Word
1359 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1360 +        transfer_size = SIZE_QUAD;
1361 +        break;
1362 +  case 3: // Load Doubleword
1363 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1364 +        transfer_size = SIZE_LONG;
1365 +        register_pair = true;
1366 +        break;
1367 +  case 5: // Store Byte
1368 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1369 +        transfer_size = SIZE_BYTE;
1370 +        break;
1371 +  case 6: // Store Halfword
1372 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1373 +        transfer_size = SIZE_WORD;
1374 +        break;
1375 +  case 4: // Store Word
1376 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1377 +        transfer_size = SIZE_LONG;
1378 +        break;
1379 +  case 14:// Store Extended Word
1380 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1381 +        transfer_size = SIZE_QUAD;
1382 +        break;
1383 +  case 7: // Store Doubleword
1384 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1385 +        transfer_size = SIZE_LONG;
1386 +        register_pair = true;
1387 +        break;
1388 +  }
1389 +
1390 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1391 +        // Unknown machine code, let it crash. Then patch the decoder
1392 +        return false;
1393 +  }
1394 +
1395 +  const int reg = (opcode >> 25) & 0x1f;
1396 +
1397 + #if DEBUG
1398 +  static const char * reg_names[] = {
1399 +        "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
1400 +        "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
1401 +        "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
1402 +        "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7"
1403 +  };
1404 +  printf("%s %s register %s\n",
1405 +                 transfer_size == SIZE_BYTE ? "byte" :
1406 +                 transfer_size == SIZE_WORD ? "word" :
1407 +                 transfer_size == SIZE_LONG ? "long" :
1408 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1409 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1410 +                 reg_names[reg]);
1411 + #endif
1412 +
1413 +  // Zero target register in case of a load operation
1414 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != 0) {
1415 +        // FIXME: code to handle local & input registers is not tested
1416 +        if (reg >= 1 && reg < 8) {
1417 +          // global registers
1418 +          regs[reg - 1 + SPARC_REG_G1] = 0;
1419 +        }
1420 +        else if (reg >= 8 && reg < 16) {
1421 +          // output registers
1422 +          regs[reg - 8 + SPARC_REG_O0] = 0;
1423 +        }
1424 +        else if (reg >= 16 && reg < 24) {
1425 +          // local registers (in register windows)
1426 +          if (gwins)
1427 +                gwins->wbuf->rw_local[reg - 16] = 0;
1428 +          else
1429 +                rwin->rw_local[reg - 16] = 0;
1430 +        }
1431 +        else {
1432 +          // input registers (in register windows)
1433 +          if (gwins)
1434 +                gwins->wbuf->rw_in[reg - 24] = 0;
1435 +          else
1436 +                rwin->rw_in[reg - 24] = 0;
1437 +        }
1438 +  }
1439 +
1440 +  regs[SPARC_REG_PC] += 4;
1441 +  regs[SPARC_REG_nPC] += 4;
1442 +  return true;
1443 + }
1444 + #endif
1445 + #endif
1446 +
1447 + // Decode and skip ARM instruction
1448 + #if (defined(arm) || defined(__arm__))
1449 + enum {
1450 + #if (defined(__linux__))
1451 +  ARM_REG_PC = 15,
1452 +  ARM_REG_CPSR = 16
1453 + #endif
1454 + };
1455 + static bool arm_skip_instruction(unsigned long * regs)
1456 + {
1457 +  unsigned int * pc = (unsigned int *)regs[ARM_REG_PC];
1458 +
1459 +  if (pc == 0)
1460 +        return false;
1461 +
1462 + #if DEBUG
1463 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1464 + #endif
1465 +
1466 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1467 +  transfer_size_t transfer_size = SIZE_UNKNOWN;
1468 +  enum { op_sdt = 1, op_sdth = 2 };
1469 +  int op = 0;
1470 +
1471 +  // Handle load/store instructions only
1472 +  const unsigned int opcode = pc[0];
1473 +  switch ((opcode >> 25) & 7) {
1474 +  case 0: // Halfword and Signed Data Transfer (LDRH, STRH, LDRSB, LDRSH)
1475 +        op = op_sdth;
1476 +        // Determine transfer size (S/H bits)
1477 +        switch ((opcode >> 5) & 3) {
1478 +        case 0: // SWP instruction
1479 +          break;
1480 +        case 1: // Unsigned halfwords
1481 +        case 3: // Signed halfwords
1482 +          transfer_size = SIZE_WORD;
1483 +          break;
1484 +        case 2: // Signed byte
1485 +          transfer_size = SIZE_BYTE;
1486 +          break;
1487 +        }
1488 +        break;
1489 +  case 2:
1490 +  case 3: // Single Data Transfer (LDR, STR)
1491 +        op = op_sdt;
1492 +        // Determine transfer size (B bit)
1493 +        if (((opcode >> 22) & 1) == 1)
1494 +          transfer_size = SIZE_BYTE;
1495 +        else
1496 +          transfer_size = SIZE_LONG;
1497 +        break;
1498 +  default:
1499 +        // FIXME: support load/store mutliple?
1500 +        return false;
1501 +  }
1502 +
1503 +  // Check for invalid transfer size (SWP instruction?)
1504 +  if (transfer_size == SIZE_UNKNOWN)
1505 +        return false;
1506 +
1507 +  // Determine transfer type (L bit)
1508 +  if (((opcode >> 20) & 1) == 1)
1509 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1510 +  else
1511 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1512 +
1513 +  // Compute offset
1514 +  int offset;
1515 +  if (((opcode >> 25) & 1) == 0) {
1516 +        if (op == op_sdt)
1517 +          offset = opcode & 0xfff;
1518 +        else if (op == op_sdth) {
1519 +          int rm = opcode & 0xf;
1520 +          if (((opcode >> 22) & 1) == 0) {
1521 +                // register offset
1522 +                offset = regs[rm];
1523 +          }
1524 +          else {
1525 +                // immediate offset
1526 +                offset = ((opcode >> 4) & 0xf0) | (opcode & 0x0f);
1527 +          }
1528 +        }
1529 +  }
1530 +  else {
1531 +        const int rm = opcode & 0xf;
1532 +        const int sh = (opcode >> 7) & 0x1f;
1533 +        if (((opcode >> 4) & 1) == 1) {
1534 +          // we expect only legal load/store instructions
1535 +          printf("FATAL: invalid shift operand\n");
1536 +          return false;
1537 +        }
1538 +        const unsigned int v = regs[rm];
1539 +        switch ((opcode >> 5) & 3) {
1540 +        case 0: // logical shift left
1541 +          offset = sh ? v << sh : v;
1542 +          break;
1543 +        case 1: // logical shift right
1544 +          offset = sh ? v >> sh : 0;
1545 +          break;
1546 +        case 2: // arithmetic shift right
1547 +          if (sh)
1548 +                offset = ((signed int)v) >> sh;
1549 +          else
1550 +                offset = (v & 0x80000000) ? 0xffffffff : 0;
1551 +          break;
1552 +        case 3: // rotate right
1553 +          if (sh)
1554 +                offset = (v >> sh) | (v << (32 - sh));
1555 +          else
1556 +                offset = (v >> 1) | ((regs[ARM_REG_CPSR] << 2) & 0x80000000);
1557 +          break;
1558 +        }
1559 +  }
1560 +  if (((opcode >> 23) & 1) == 0)
1561 +        offset = -offset;
1562 +
1563 +  int rd = (opcode >> 12) & 0xf;
1564 +  int rn = (opcode >> 16) & 0xf;
1565 + #if DEBUG
1566 +  static const char * reg_names[] = {
1567 +        "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1568 +        "r9", "r9", "sl", "fp", "ip", "sp", "lr", "pc"
1569 +  };
1570 +  printf("%s %s register %s\n",
1571 +                 transfer_size == SIZE_BYTE ? "byte" :
1572 +                 transfer_size == SIZE_WORD ? "word" :
1573 +                 transfer_size == SIZE_LONG ? "long" : "unknown",
1574 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1575 +                 reg_names[rd]);
1576 + #endif
1577 +
1578 +  unsigned int base = regs[rn];
1579 +  if (((opcode >> 24) & 1) == 1)
1580 +        base += offset;
1581 +
1582 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD)
1583 +        regs[rd] = 0;
1584 +
1585 +  if (((opcode >> 24) & 1) == 0)                // post-index addressing
1586 +        regs[rn] += offset;
1587 +  else if (((opcode >> 21) & 1) == 1)   // write-back address into base
1588 +        regs[rn] = base;
1589 +
1590 +  regs[ARM_REG_PC] += 4;
1591 +  return true;
1592 + }
1593 + #endif
1594 +
1595  
1596   // Fallbacks
1597   #ifndef SIGSEGV_FAULT_INSTRUCTION
1598   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_PC
1599   #endif
1600 + #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
1601 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
1602 + #endif
1603 + #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
1604 + #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  sigsegv_fault_handler(ADDR, IP)
1605 + #endif
1606  
1607   // SIGSEGV recovery supported ?
1608   #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
# Line 653 | Line 1614 | static bool powerpc_skip_instruction(uns
1614   *  SIGSEGV global handler
1615   */
1616  
1617 < #ifdef HAVE_SIGSEGV_RECOVERY
1618 < static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1617 > // This function handles the badaccess to memory.
1618 > // It is called from the signal handler or the exception handler.
1619 > static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
1620   {
1621 + #ifdef HAVE_MACH_EXCEPTIONS
1622 +        // We must match the initial count when writing back the CPU state registers
1623 +        kern_return_t krc;
1624 +        mach_msg_type_number_t count;
1625 +
1626 +        count = SIGSEGV_THREAD_STATE_COUNT;
1627 +        krc = thread_get_state(thread, SIGSEGV_THREAD_STATE_FLAVOR, (thread_state_t)state, &count);
1628 +        MACH_CHECK_ERROR (thread_get_state, krc);
1629 + #endif
1630 +
1631          sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
1632          sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
661        bool fault_recovered = false;
1633          
1634          // Call user's handler and reinstall the global handler, if required
1635 <        if (sigsegv_fault_handler(fault_address, fault_instruction)) {
1636 < #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1637 <                sigsegv_do_install_handler(sig);
1635 >        switch (SIGSEGV_FAULT_HANDLER_INVOKE(fault_address, fault_instruction)) {
1636 >        case SIGSEGV_RETURN_SUCCESS:
1637 >                return true;
1638 >
1639 > #if HAVE_SIGSEGV_SKIP_INSTRUCTION
1640 >        case SIGSEGV_RETURN_SKIP_INSTRUCTION:
1641 >                // Call the instruction skipper with the register file
1642 >                // available
1643 >                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
1644 > #ifdef HAVE_MACH_EXCEPTIONS
1645 >                        // Unlike UNIX signals where the thread state
1646 >                        // is modified off of the stack, in Mach we
1647 >                        // need to actually call thread_set_state to
1648 >                        // have the register values updated.
1649 >                        krc = thread_set_state(thread,
1650 >                                                                   SIGSEGV_THREAD_STATE_FLAVOR, (thread_state_t)state,
1651 >                                                                   count);
1652 >                        MACH_CHECK_ERROR (thread_set_state, krc);
1653   #endif
1654 <                fault_recovered = true;
1654 >                        return true;
1655 >                }
1656 >                break;
1657 > #endif
1658 >        case SIGSEGV_RETURN_FAILURE:
1659 >                // We can't do anything with the fault_address, dump state?
1660 >                if (sigsegv_state_dumper != 0)
1661 >                        sigsegv_state_dumper(fault_address, fault_instruction);
1662 >                break;
1663          }
1664 < #if HAVE_SIGSEGV_SKIP_INSTRUCTION
1665 <        else if (sigsegv_ignore_ranges.size() > 0) {
1666 <                // Call the instruction skipper with the register file available
1667 <                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE))
1668 <                        fault_recovered = true;
1664 >
1665 >        return false;
1666 > }
1667 >
1668 >
1669 > /*
1670 > * There are two mechanisms for handling a bad memory access,
1671 > * Mach exceptions and UNIX signals. The implementation specific
1672 > * code appears below. Its reponsibility is to call handle_badaccess
1673 > * which is the routine that handles the fault in an implementation
1674 > * agnostic manner. The implementation specific code below is then
1675 > * reponsible for checking whether handle_badaccess was able
1676 > * to handle the memory access error and perform any implementation
1677 > * specific tasks necessary afterwards.
1678 > */
1679 >
1680 > #ifdef HAVE_MACH_EXCEPTIONS
1681 > /*
1682 > * We need to forward all exceptions that we do not handle.
1683 > * This is important, there are many exceptions that may be
1684 > * handled by other exception handlers. For example debuggers
1685 > * use exceptions and the exception hander is in another
1686 > * process in such a case. (Timothy J. Wood states in his
1687 > * message to the list that he based this code on that from
1688 > * gdb for Darwin.)
1689 > */
1690 > static inline kern_return_t
1691 > forward_exception(mach_port_t thread_port,
1692 >                                  mach_port_t task_port,
1693 >                                  exception_type_t exception_type,
1694 >                                  exception_data_t exception_data,
1695 >                                  mach_msg_type_number_t data_count,
1696 >                                  ExceptionPorts *oldExceptionPorts)
1697 > {
1698 >        kern_return_t kret;
1699 >        unsigned int portIndex;
1700 >        mach_port_t port;
1701 >        exception_behavior_t behavior;
1702 >        thread_state_flavor_t flavor;
1703 >        thread_state_data_t thread_state;
1704 >        mach_msg_type_number_t thread_state_count;
1705 >
1706 >        for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
1707 >                if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
1708 >                        // This handler wants the exception
1709 >                        break;
1710 >                }
1711 >        }
1712 >
1713 >        if (portIndex >= oldExceptionPorts->maskCount) {
1714 >                fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
1715 >                return KERN_FAILURE;
1716 >        }
1717 >
1718 >        port = oldExceptionPorts->handlers[portIndex];
1719 >        behavior = oldExceptionPorts->behaviors[portIndex];
1720 >        flavor = oldExceptionPorts->flavors[portIndex];
1721 >
1722 >        if (!VALID_THREAD_STATE_FLAVOR(flavor)) {
1723 >                fprintf(stderr, "Invalid thread_state flavor = %d. Not forwarding\n", flavor);
1724 >                return KERN_FAILURE;
1725 >        }
1726 >
1727 >        /*
1728 >         fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
1729 >         */
1730 >
1731 >        if (behavior != EXCEPTION_DEFAULT) {
1732 >                thread_state_count = THREAD_STATE_MAX;
1733 >                kret = thread_get_state (thread_port, flavor, (natural_t *)&thread_state,
1734 >                                                                 &thread_state_count);
1735 >                MACH_CHECK_ERROR (thread_get_state, kret);
1736 >        }
1737 >
1738 >        switch (behavior) {
1739 >        case EXCEPTION_DEFAULT:
1740 >          // fprintf(stderr, "forwarding to exception_raise\n");
1741 >          kret = exception_raise(port, thread_port, task_port, exception_type,
1742 >                                                         exception_data, data_count);
1743 >          MACH_CHECK_ERROR (exception_raise, kret);
1744 >          break;
1745 >        case EXCEPTION_STATE:
1746 >          // fprintf(stderr, "forwarding to exception_raise_state\n");
1747 >          kret = exception_raise_state(port, exception_type, exception_data,
1748 >                                                                   data_count, &flavor,
1749 >                                                                   (natural_t *)&thread_state, thread_state_count,
1750 >                                                                   (natural_t *)&thread_state, &thread_state_count);
1751 >          MACH_CHECK_ERROR (exception_raise_state, kret);
1752 >          break;
1753 >        case EXCEPTION_STATE_IDENTITY:
1754 >          // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
1755 >          kret = exception_raise_state_identity(port, thread_port, task_port,
1756 >                                                                                        exception_type, exception_data,
1757 >                                                                                        data_count, &flavor,
1758 >                                                                                        (natural_t *)&thread_state, thread_state_count,
1759 >                                                                                        (natural_t *)&thread_state, &thread_state_count);
1760 >          MACH_CHECK_ERROR (exception_raise_state_identity, kret);
1761 >          break;
1762 >        default:
1763 >          fprintf(stderr, "forward_exception got unknown behavior\n");
1764 >          kret = KERN_FAILURE;
1765 >          break;
1766 >        }
1767 >
1768 >        if (behavior != EXCEPTION_DEFAULT) {
1769 >                kret = thread_set_state (thread_port, flavor, (natural_t *)&thread_state,
1770 >                                                                 thread_state_count);
1771 >                MACH_CHECK_ERROR (thread_set_state, kret);
1772          }
1773 +
1774 +        return kret;
1775 + }
1776 +
1777 + /*
1778 + * This is the code that actually handles the exception.
1779 + * It is called by exc_server. For Darwin 5 Apple changed
1780 + * this a bit from how this family of functions worked in
1781 + * Mach. If you are familiar with that it is a little
1782 + * different. The main variation that concerns us here is
1783 + * that code is an array of exception specific codes and
1784 + * codeCount is a count of the number of codes in the code
1785 + * array. In typical Mach all exceptions have a code
1786 + * and sub-code. It happens to be the case that for a
1787 + * EXC_BAD_ACCESS exception the first entry is the type of
1788 + * bad access that occurred and the second entry is the
1789 + * faulting address so these entries correspond exactly to
1790 + * how the code and sub-code are used on Mach.
1791 + *
1792 + * This is a MIG interface. No code in Basilisk II should
1793 + * call this directley. This has to have external C
1794 + * linkage because that is what exc_server expects.
1795 + */
1796 + kern_return_t
1797 + catch_exception_raise(mach_port_t exception_port,
1798 +                                          mach_port_t thread,
1799 +                                          mach_port_t task,
1800 +                                          exception_type_t exception,
1801 +                                          exception_data_t code,
1802 +                                          mach_msg_type_number_t codeCount)
1803 + {
1804 +        SIGSEGV_THREAD_STATE_TYPE state;
1805 +        kern_return_t krc;
1806 +
1807 +        if ((exception == EXC_BAD_ACCESS)  && (codeCount >= 2)) {
1808 +                if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
1809 +                        return KERN_SUCCESS;
1810 +        }
1811 +
1812 +        // In Mach we do not need to remove the exception handler.
1813 +        // If we forward the exception, eventually some exception handler
1814 +        // will take care of this exception.
1815 +        krc = forward_exception(thread, task, exception, code, codeCount, &ports);
1816 +
1817 +        return krc;
1818 + }
1819   #endif
1820  
1821 <        if (!fault_recovered) {
1822 <                // FAIL: reinstall default handler for "safe" crash
1821 > #ifdef HAVE_SIGSEGV_RECOVERY
1822 > // Handle bad memory accesses with signal handler
1823 > static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1824 > {
1825 >        // Call handler and reinstall the global handler, if required
1826 >        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
1827 > #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1828 >                sigsegv_do_install_handler(sig);
1829 > #endif
1830 >                return;
1831 >        }
1832 >
1833 >        // Failure: reinstall default handler for "safe" crash
1834   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1835 <                SIGSEGV_ALL_SIGNALS
1835 >        SIGSEGV_ALL_SIGNALS
1836   #undef FAULT_HANDLER
683                
684                // We can't do anything with the fault_address, dump state?
685                if (sigsegv_state_dumper != 0)
686                        sigsegv_state_dumper(fault_address, fault_instruction);
687        }
1837   }
1838   #endif
1839  
# Line 729 | Line 1878 | static bool sigsegv_do_install_handler(i
1878   }
1879   #endif
1880  
1881 < bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1881 > #if defined(HAVE_MACH_EXCEPTIONS)
1882 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1883   {
1884 < #ifdef HAVE_SIGSEGV_RECOVERY
1884 >        /*
1885 >         * Except for the exception port functions, this should be
1886 >         * pretty much stock Mach. If later you choose to support
1887 >         * other Mach's besides Darwin, just check for __MACH__
1888 >         * here and __APPLE__ where the actual differences are.
1889 >         */
1890 > #if defined(__APPLE__) && defined(__MACH__)
1891 >        if (sigsegv_fault_handler != NULL) {
1892 >                sigsegv_fault_handler = handler;
1893 >                return true;
1894 >        }
1895 >
1896 >        kern_return_t krc;
1897 >
1898 >        // create the the exception port
1899 >        krc = mach_port_allocate(mach_task_self(),
1900 >                          MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
1901 >        if (krc != KERN_SUCCESS) {
1902 >                mach_error("mach_port_allocate", krc);
1903 >                return false;
1904 >        }
1905 >
1906 >        // add a port send right
1907 >        krc = mach_port_insert_right(mach_task_self(),
1908 >                              _exceptionPort, _exceptionPort,
1909 >                              MACH_MSG_TYPE_MAKE_SEND);
1910 >        if (krc != KERN_SUCCESS) {
1911 >                mach_error("mach_port_insert_right", krc);
1912 >                return false;
1913 >        }
1914 >
1915 >        // get the old exception ports
1916 >        ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
1917 >        krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
1918 >                                &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
1919 >        if (krc != KERN_SUCCESS) {
1920 >                mach_error("thread_get_exception_ports", krc);
1921 >                return false;
1922 >        }
1923 >
1924 >        // set the new exception port
1925 >        //
1926 >        // We could have used EXCEPTION_STATE_IDENTITY instead of
1927 >        // EXCEPTION_DEFAULT to get the thread state in the initial
1928 >        // message, but it turns out that in the common case this is not
1929 >        // neccessary. If we need it we can later ask for it from the
1930 >        // suspended thread.
1931 >        //
1932 >        // Even with THREAD_STATE_NONE, Darwin provides the program
1933 >        // counter in the thread state.  The comments in the header file
1934 >        // seem to imply that you can count on the GPR's on an exception
1935 >        // as well but just to be safe I use MACHINE_THREAD_STATE because
1936 >        // you have to ask for all of the GPR's anyway just to get the
1937 >        // program counter. In any case because of update effective
1938 >        // address from immediate and update address from effective
1939 >        // addresses of ra and rb modes (as good an name as any for these
1940 >        // addressing modes) used in PPC instructions, you will need the
1941 >        // GPR state anyway.
1942 >        krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
1943 >                                EXCEPTION_DEFAULT, SIGSEGV_THREAD_STATE_FLAVOR);
1944 >        if (krc != KERN_SUCCESS) {
1945 >                mach_error("thread_set_exception_ports", krc);
1946 >                return false;
1947 >        }
1948 >
1949 >        // create the exception handler thread
1950 >        if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
1951 >                (void)fprintf(stderr, "creation of exception thread failed\n");
1952 >                return false;
1953 >        }
1954 >
1955 >        // do not care about the exception thread any longer, let is run standalone
1956 >        (void)pthread_detach(exc_thread);
1957 >
1958          sigsegv_fault_handler = handler;
1959 +        return true;
1960 + #else
1961 +        return false;
1962 + #endif
1963 + }
1964 + #endif
1965 +
1966 + #ifdef HAVE_WIN32_EXCEPTIONS
1967 + static LONG WINAPI main_exception_filter(EXCEPTION_POINTERS *ExceptionInfo)
1968 + {
1969 +        if (sigsegv_fault_handler != NULL
1970 +                && ExceptionInfo->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION
1971 +                && ExceptionInfo->ExceptionRecord->NumberParameters == 2
1972 +                && handle_badaccess(ExceptionInfo))
1973 +                return EXCEPTION_CONTINUE_EXECUTION;
1974 +
1975 +        return EXCEPTION_CONTINUE_SEARCH;
1976 + }
1977 +
1978 + #if defined __CYGWIN__ && defined __i386__
1979 + /* In Cygwin programs, SetUnhandledExceptionFilter has no effect because Cygwin
1980 +   installs a global exception handler.  We have to dig deep in order to install
1981 +   our main_exception_filter.  */
1982 +
1983 + /* Data structures for the current thread's exception handler chain.
1984 +   On the x86 Windows uses register fs, offset 0 to point to the current
1985 +   exception handler; Cygwin mucks with it, so we must do the same... :-/ */
1986 +
1987 + /* Magic taken from winsup/cygwin/include/exceptions.h.  */
1988 +
1989 + struct exception_list {
1990 +    struct exception_list *prev;
1991 +    int (*handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
1992 + };
1993 + typedef struct exception_list exception_list;
1994 +
1995 + /* Magic taken from winsup/cygwin/exceptions.cc.  */
1996 +
1997 + __asm__ (".equ __except_list,0");
1998 +
1999 + extern exception_list *_except_list __asm__ ("%fs:__except_list");
2000 +
2001 + /* For debugging.  _except_list is not otherwise accessible from gdb.  */
2002 + static exception_list *
2003 + debug_get_except_list ()
2004 + {
2005 +  return _except_list;
2006 + }
2007 +
2008 + /* Cygwin's original exception handler.  */
2009 + static int (*cygwin_exception_handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
2010 +
2011 + /* Our exception handler.  */
2012 + static int
2013 + libsigsegv_exception_handler (EXCEPTION_RECORD *exception, void *frame, CONTEXT *context, void *dispatch)
2014 + {
2015 +  EXCEPTION_POINTERS ExceptionInfo;
2016 +  ExceptionInfo.ExceptionRecord = exception;
2017 +  ExceptionInfo.ContextRecord = context;
2018 +  if (main_exception_filter (&ExceptionInfo) == EXCEPTION_CONTINUE_SEARCH)
2019 +    return cygwin_exception_handler (exception, frame, context, dispatch);
2020 +  else
2021 +    return 0;
2022 + }
2023 +
2024 + static void
2025 + do_install_main_exception_filter ()
2026 + {
2027 +  /* We cannot insert any handler into the chain, because such handlers
2028 +     must lie on the stack (?).  Instead, we have to replace(!) Cygwin's
2029 +     global exception handler.  */
2030 +  cygwin_exception_handler = _except_list->handler;
2031 +  _except_list->handler = libsigsegv_exception_handler;
2032 + }
2033 +
2034 + #else
2035 +
2036 + static void
2037 + do_install_main_exception_filter ()
2038 + {
2039 +  SetUnhandledExceptionFilter ((LPTOP_LEVEL_EXCEPTION_FILTER) &main_exception_filter);
2040 + }
2041 + #endif
2042 +
2043 + static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
2044 + {
2045 +        static bool main_exception_filter_installed = false;
2046 +        if (!main_exception_filter_installed) {
2047 +                do_install_main_exception_filter();
2048 +                main_exception_filter_installed = true;
2049 +        }
2050 +        sigsegv_fault_handler = handler;
2051 +        return true;
2052 + }
2053 + #endif
2054 +
2055 + bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
2056 + {
2057 + #if defined(HAVE_SIGSEGV_RECOVERY)
2058          bool success = true;
2059   #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
2060          SIGSEGV_ALL_SIGNALS
2061   #undef FAULT_HANDLER
2062 +        if (success)
2063 +            sigsegv_fault_handler = handler;
2064          return success;
2065 + #elif defined(HAVE_MACH_EXCEPTIONS) || defined(HAVE_WIN32_EXCEPTIONS)
2066 +        return sigsegv_do_install_handler(handler);
2067   #else
2068          // FAIL: no siginfo_t nor sigcontext subterfuge is available
2069          return false;
# Line 751 | Line 2077 | bool sigsegv_install_handler(sigsegv_fau
2077  
2078   void sigsegv_deinstall_handler(void)
2079   {
2080 +  // We do nothing for Mach exceptions, the thread would need to be
2081 +  // suspended if not already so, and we might mess with other
2082 +  // exception handlers that came after we registered ours. There is
2083 +  // no need to remove the exception handler, in fact this function is
2084 +  // not called anywhere in Basilisk II.
2085   #ifdef HAVE_SIGSEGV_RECOVERY
2086          sigsegv_fault_handler = 0;
2087   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
2088          SIGSEGV_ALL_SIGNALS
2089   #undef FAULT_HANDLER
2090   #endif
2091 < }
2092 <
2093 <
763 < /*
764 < *  Add SIGSEGV ignore range
765 < */
766 <
767 < void sigsegv_add_ignore_range(sigsegv_address_t address, unsigned long length, int transfer_type)
768 < {
769 <        ignore_range_t ignore_range;
770 <        ignore_range.start = address;
771 <        ignore_range.length = length;
772 <        ignore_range.transfer_type = transfer_type;
773 <        sigsegv_ignore_ranges.push_front(ignore_range);
774 < }
775 <
776 <
777 < /*
778 < *  Remove SIGSEGV ignore range. Range must match installed one, otherwise FALSE is returned.
779 < */
780 <
781 < bool sigsegv_remove_ignore_range(sigsegv_address_t address, unsigned long length, int transfer_type)
782 < {
783 <        ignore_range_list_t::iterator it;
784 <        for (it = sigsegv_ignore_ranges.begin(); it != sigsegv_ignore_ranges.end(); it++)
785 <                if (it->start == address && it->length == length && ((it->transfer_type & transfer_type) == transfer_type))
786 <                        break;
787 <
788 <        if (it != sigsegv_ignore_ranges.end()) {
789 <                if (it->transfer_type != transfer_type)
790 <                        it->transfer_type &= ~transfer_type;
791 <                else
792 <                        sigsegv_ignore_ranges.erase(it);
793 <                return true;
794 <        }
795 <
796 <        return false;
2091 > #ifdef HAVE_WIN32_EXCEPTIONS
2092 >        sigsegv_fault_handler = NULL;
2093 > #endif
2094   }
2095  
2096  
# Line 815 | Line 2112 | void sigsegv_set_dump_state(sigsegv_stat
2112   #include <stdio.h>
2113   #include <stdlib.h>
2114   #include <fcntl.h>
2115 + #ifdef HAVE_SYS_MMAN_H
2116   #include <sys/mman.h>
2117 + #endif
2118   #include "vm_alloc.h"
2119  
2120 + const int REF_INDEX = 123;
2121 + const int REF_VALUE = 45;
2122 +
2123   static int page_size;
2124   static volatile char * page = 0;
2125   static volatile int handler_called = 0;
2126  
2127 < static bool sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2127 > /* Barriers */
2128 > #ifdef __GNUC__
2129 > #define BARRIER() asm volatile ("" : : : "memory")
2130 > #else
2131 > #define BARRIER() /* nothing */
2132 > #endif
2133 >
2134 > #ifdef __GNUC__
2135 > // Code range where we expect the fault to come from
2136 > static void *b_region, *e_region;
2137 > #endif
2138 >
2139 > static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2140   {
2141 + #if DEBUG
2142 +        printf("sigsegv_test_handler(%p, %p)\n", fault_address, instruction_address);
2143 +        printf("expected fault at %p\n", page + REF_INDEX);
2144 + #ifdef __GNUC__
2145 +        printf("expected instruction address range: %p-%p\n", b_region, e_region);
2146 + #endif
2147 + #endif
2148          handler_called++;
2149 <        if ((fault_address - 123) != page)
2150 <                exit(1);
2149 >        if ((fault_address - REF_INDEX) != page)
2150 >                exit(10);
2151 > #ifdef __GNUC__
2152 >        // Make sure reported fault instruction address falls into
2153 >        // expected code range
2154 >        if (instruction_address != SIGSEGV_INVALID_PC
2155 >                && ((instruction_address <  (sigsegv_address_t)b_region) ||
2156 >                        (instruction_address >= (sigsegv_address_t)e_region)))
2157 >                exit(11);
2158 > #endif
2159          if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
2160 <                exit(1);
2161 <        return true;
2160 >                exit(12);
2161 >        return SIGSEGV_RETURN_SUCCESS;
2162   }
2163  
2164   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
2165 < static bool sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2165 > static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2166   {
2167 <        return false;
2167 > #if DEBUG
2168 >        printf("sigsegv_insn_handler(%p, %p)\n", fault_address, instruction_address);
2169 > #endif
2170 >        if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
2171 > #ifdef __GNUC__
2172 >                // Make sure reported fault instruction address falls into
2173 >                // expected code range
2174 >                if (instruction_address != SIGSEGV_INVALID_PC
2175 >                        && ((instruction_address <  (sigsegv_address_t)b_region) ||
2176 >                                (instruction_address >= (sigsegv_address_t)e_region)))
2177 >                        return SIGSEGV_RETURN_FAILURE;
2178 > #endif
2179 >                return SIGSEGV_RETURN_SKIP_INSTRUCTION;
2180 >        }
2181 >
2182 >        return SIGSEGV_RETURN_FAILURE;
2183 > }
2184 >
2185 > // More sophisticated tests for instruction skipper
2186 > static bool arch_insn_skipper_tests()
2187 > {
2188 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
2189 >        static const unsigned char code[] = {
2190 >                0x8a, 0x00,                    // mov    (%eax),%al
2191 >                0x8a, 0x2c, 0x18,              // mov    (%eax,%ebx,1),%ch
2192 >                0x88, 0x20,                    // mov    %ah,(%eax)
2193 >                0x88, 0x08,                    // mov    %cl,(%eax)
2194 >                0x66, 0x8b, 0x00,              // mov    (%eax),%ax
2195 >                0x66, 0x8b, 0x0c, 0x18,        // mov    (%eax,%ebx,1),%cx
2196 >                0x66, 0x89, 0x00,              // mov    %ax,(%eax)
2197 >                0x66, 0x89, 0x0c, 0x18,        // mov    %cx,(%eax,%ebx,1)
2198 >                0x8b, 0x00,                    // mov    (%eax),%eax
2199 >                0x8b, 0x0c, 0x18,              // mov    (%eax,%ebx,1),%ecx
2200 >                0x89, 0x00,                    // mov    %eax,(%eax)
2201 >                0x89, 0x0c, 0x18,              // mov    %ecx,(%eax,%ebx,1)
2202 > #if defined(__x86_64__)
2203 >                0x44, 0x8a, 0x00,              // mov    (%rax),%r8b
2204 >                0x44, 0x8a, 0x20,              // mov    (%rax),%r12b
2205 >                0x42, 0x8a, 0x3c, 0x10,        // mov    (%rax,%r10,1),%dil
2206 >                0x44, 0x88, 0x00,              // mov    %r8b,(%rax)
2207 >                0x44, 0x88, 0x20,              // mov    %r12b,(%rax)
2208 >                0x42, 0x88, 0x3c, 0x10,        // mov    %dil,(%rax,%r10,1)
2209 >                0x66, 0x44, 0x8b, 0x00,        // mov    (%rax),%r8w
2210 >                0x66, 0x42, 0x8b, 0x0c, 0x10,  // mov    (%rax,%r10,1),%cx
2211 >                0x66, 0x44, 0x89, 0x00,        // mov    %r8w,(%rax)
2212 >                0x66, 0x42, 0x89, 0x0c, 0x10,  // mov    %cx,(%rax,%r10,1)
2213 >                0x44, 0x8b, 0x00,              // mov    (%rax),%r8d
2214 >                0x42, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%ecx
2215 >                0x44, 0x89, 0x00,              // mov    %r8d,(%rax)
2216 >                0x42, 0x89, 0x0c, 0x10,        // mov    %ecx,(%rax,%r10,1)
2217 >                0x48, 0x8b, 0x08,              // mov    (%rax),%rcx
2218 >                0x4c, 0x8b, 0x18,              // mov    (%rax),%r11
2219 >                0x4a, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%rcx
2220 >                0x4e, 0x8b, 0x1c, 0x10,        // mov    (%rax,%r10,1),%r11
2221 >                0x48, 0x89, 0x08,              // mov    %rcx,(%rax)
2222 >                0x4c, 0x89, 0x18,              // mov    %r11,(%rax)
2223 >                0x4a, 0x89, 0x0c, 0x10,        // mov    %rcx,(%rax,%r10,1)
2224 >                0x4e, 0x89, 0x1c, 0x10,        // mov    %r11,(%rax,%r10,1)
2225 >                0x63, 0x47, 0x04,              // movslq 4(%rdi),%eax
2226 >                0x48, 0x63, 0x47, 0x04,        // movslq 4(%rdi),%rax
2227 > #endif
2228 >                0                              // end
2229 >        };
2230 >        const int N_REGS = 20;
2231 >        unsigned long regs[N_REGS];
2232 >        for (int i = 0; i < N_REGS; i++)
2233 >                regs[i] = i;
2234 >        const unsigned long start_code = (unsigned long)&code;
2235 >        regs[X86_REG_EIP] = start_code;
2236 >        while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1)
2237 >                   && ix86_skip_instruction(regs))
2238 >                ; /* simply iterate */
2239 >        return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1);
2240 > #endif
2241 >        return true;
2242   }
2243   #endif
2244  
# Line 844 | Line 2247 | int main(void)
2247          if (vm_init() < 0)
2248                  return 1;
2249  
2250 <        page_size = getpagesize();
2250 >        page_size = vm_get_page_size();
2251          if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
2252 <                return 1;
2252 >                return 2;
2253          
2254 +        memset((void *)page, 0, page_size);
2255          if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
2256 <                return 1;
2256 >                return 3;
2257          
2258          if (!sigsegv_install_handler(sigsegv_test_handler))
2259 <                return 1;
856 <        
857 <        page[123] = 45;
858 <        page[123] = 45;
2259 >                return 4;
2260          
2261 + #ifdef __GNUC__
2262 +        b_region = &&L_b_region1;
2263 +        e_region = &&L_e_region1;
2264 + #endif
2265 + L_b_region1:
2266 +        page[REF_INDEX] = REF_VALUE;
2267 +        if (page[REF_INDEX] != REF_VALUE)
2268 +          exit(20);
2269 +        page[REF_INDEX] = REF_VALUE;
2270 +        BARRIER();
2271 + L_e_region1:
2272 +
2273          if (handler_called != 1)
2274 <                return 1;
2274 >                return 5;
2275  
2276   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
2277          if (!sigsegv_install_handler(sigsegv_insn_handler))
2278 <                return 1;
2278 >                return 6;
2279          
2280          if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
2281 <                return 1;
2281 >                return 7;
2282          
2283          for (int i = 0; i < page_size; i++)
2284                  page[i] = (i + 1) % page_size;
2285          
2286          if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
2287 <                return 1;
2287 >                return 8;
2288          
876        sigsegv_add_ignore_range((char *)page, page_size, SIGSEGV_TRANSFER_LOAD | SIGSEGV_TRANSFER_STORE);
877
2289   #define TEST_SKIP_INSTRUCTION(TYPE) do {                                \
2290 <                const unsigned int TAG = 0x12345678;                    \
2290 >                const unsigned long TAG = 0x12345678 |                  \
2291 >                (sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0);   \
2292                  TYPE data = *((TYPE *)(page + sizeof(TYPE)));   \
2293 <                volatile unsigned int effect = data + TAG;              \
2293 >                volatile unsigned long effect = data + TAG;             \
2294                  if (effect != TAG)                                                              \
2295 <                        return 1;                                                                       \
2295 >                        return 9;                                                                       \
2296          } while (0)
2297          
2298 + #ifdef __GNUC__
2299 +        b_region = &&L_b_region2;
2300 +        e_region = &&L_e_region2;
2301 + #endif
2302 + L_b_region2:
2303          TEST_SKIP_INSTRUCTION(unsigned char);
2304          TEST_SKIP_INSTRUCTION(unsigned short);
2305          TEST_SKIP_INSTRUCTION(unsigned int);
2306 +        TEST_SKIP_INSTRUCTION(unsigned long);
2307 +        TEST_SKIP_INSTRUCTION(signed char);
2308 +        TEST_SKIP_INSTRUCTION(signed short);
2309 +        TEST_SKIP_INSTRUCTION(signed int);
2310 +        TEST_SKIP_INSTRUCTION(signed long);
2311 +        BARRIER();
2312 + L_e_region2:
2313 +
2314 +        if (!arch_insn_skipper_tests())
2315 +                return 20;
2316   #endif
2317  
2318          vm_exit();

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines