ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
(Generate patch)

Comparing BasiliskII/src/Unix/sigsegv.cpp (file contents):
Revision 1.21 by gbeauche, 2002-10-03T15:49:14Z vs.
Revision 1.53 by gbeauche, 2005-02-20T11:39:12Z

# Line 4 | Line 4
4   *  Derived from Bruno Haible's work on his SIGSEGV library for clisp
5   *  <http://clisp.sourceforge.net/>
6   *
7 < *  Basilisk II (C) 1997-2002 Christian Bauer
7 > *  MacOS X support derived from the post by Timothy J. Wood to the
8 > *  omnigroup macosx-dev list:
9 > *    Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10 > *    tjw@omnigroup.com Sun, 4 Jun 2000
11 > *    www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12 > *
13 > *  Basilisk II (C) 1997-2005 Christian Bauer
14   *
15   *  This program is free software; you can redistribute it and/or modify
16   *  it under the terms of the GNU General Public License as published by
# Line 29 | Line 35
35   #include "config.h"
36   #endif
37  
38 + #include <list>
39 + #include <stdio.h>
40   #include <signal.h>
41   #include "sigsegv.h"
42  
43 + #ifndef NO_STD_NAMESPACE
44 + using std::list;
45 + #endif
46 +
47   // Return value type of a signal handler (standard type if not defined)
48   #ifndef RETSIGTYPE
49   #define RETSIGTYPE void
# Line 40 | Line 52
52   // Type of the system signal handler
53   typedef RETSIGTYPE (*signal_handler)(int);
54  
43 // Is the fault to be ignored?
44 static bool sigsegv_ignore_fault = false;
45
55   // User's SIGSEGV handler
56   static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
57  
# Line 57 | Line 66 | static bool sigsegv_do_install_handler(i
66   *  Instruction decoding aids
67   */
68  
60 // Transfer type
61 enum transfer_type_t {
62        TYPE_UNKNOWN,
63        TYPE_LOAD,
64        TYPE_STORE
65 };
66
69   // Transfer size
70   enum transfer_size_t {
71          SIZE_UNKNOWN,
72          SIZE_BYTE,
73 <        SIZE_WORD,
74 <        SIZE_LONG
73 >        SIZE_WORD, // 2 bytes
74 >        SIZE_LONG, // 4 bytes
75 >        SIZE_QUAD, // 8 bytes
76   };
77  
78 + // Transfer type
79 + typedef sigsegv_transfer_type_t transfer_type_t;
80 +
81   #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
82   // Addressing mode
83   enum addressing_mode_t {
# Line 91 | Line 97 | struct instruction_t {
97          char                            ra, rd;
98   };
99  
100 < static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned int * gpr)
100 > static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned long * gpr)
101   {
102          // Get opcode and divide into fields
103 <        unsigned int opcode = *((unsigned int *)nip);
103 >        unsigned int opcode = *((unsigned int *)(unsigned long)nip);
104          unsigned int primop = opcode >> 26;
105          unsigned int exop = (opcode >> 1) & 0x3ff;
106          unsigned int ra = (opcode >> 16) & 0x1f;
# Line 103 | Line 109 | static void powerpc_decode_instruction(i
109          signed int imm = (signed short)(opcode & 0xffff);
110          
111          // Analyze opcode
112 <        transfer_type_t transfer_type = TYPE_UNKNOWN;
112 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
113          transfer_size_t transfer_size = SIZE_UNKNOWN;
114          addressing_mode_t addr_mode = MODE_UNKNOWN;
115          switch (primop) {
116          case 31:
117                  switch (exop) {
118                  case 23:        // lwzx
119 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
119 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
120                  case 55:        // lwzux
121 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
121 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
122                  case 87:        // lbzx
123 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
123 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
124                  case 119:       // lbzux
125 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
125 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
126                  case 151:       // stwx
127 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
127 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
128                  case 183:       // stwux
129 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
129 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
130                  case 215:       // stbx
131 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
131 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
132                  case 247:       // stbux
133 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
133 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
134                  case 279:       // lhzx
135 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
135 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
136                  case 311:       // lhzux
137 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
137 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
138                  case 343:       // lhax
139 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
139 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
140                  case 375:       // lhaux
141 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
141 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
142                  case 407:       // sthx
143 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
143 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
144                  case 439:       // sthux
145 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
145 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
146                  }
147                  break;
148          
149          case 32:        // lwz
150 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
150 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
151          case 33:        // lwzu
152 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
152 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
153          case 34:        // lbz
154 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
154 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
155          case 35:        // lbzu
156 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
156 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
157          case 36:        // stw
158 <                transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
158 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
159          case 37:        // stwu
160 <                transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
160 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
161          case 38:        // stb
162 <                transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
162 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
163          case 39:        // stbu
164 <                transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
164 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
165          case 40:        // lhz
166 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
166 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
167          case 41:        // lhzu
168 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
168 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
169          case 42:        // lha
170 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
170 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
171          case 43:        // lhau
172 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
172 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
173          case 44:        // sth
174 <                transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
174 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
175          case 45:        // sthu
176 <                transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
176 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
177 >        case 58:        // ld, ldu, lwa
178 >                transfer_type = SIGSEGV_TRANSFER_LOAD;
179 >                transfer_size = SIZE_QUAD;
180 >                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
181 >                imm &= ~3;
182 >                break;
183 >        case 62:        // std, stdu, stq
184 >                transfer_type = SIGSEGV_TRANSFER_STORE;
185 >                transfer_size = SIZE_QUAD;
186 >                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
187 >                imm &= ~3;
188 >                break;
189          }
190          
191          // Calculate effective address
# Line 208 | Line 226 | static void powerpc_decode_instruction(i
226  
227   #if HAVE_SIGINFO_T
228   // Generic extended signal handler
229 < #if defined(__NetBSD__) || defined(__FreeBSD__)
229 > #if defined(__FreeBSD__)
230   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
231   #else
232   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
233   #endif
234   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, siginfo_t *sip, void *scp
235 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
236 + #define SIGSEGV_FAULT_HANDLER_ARGS              sip, scp
237   #define SIGSEGV_FAULT_ADDRESS                   sip->si_addr
238 < #if defined(__NetBSD__) || defined(__FreeBSD__)
238 > #if (defined(sgi) || defined(__sgi))
239 > #include <ucontext.h>
240 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
241 > #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)SIGSEGV_CONTEXT_REGS[CTX_EPC]
242 > #if (defined(mips) || defined(__mips))
243 > #define SIGSEGV_REGISTER_FILE                   SIGSEGV_CONTEXT_REGS
244 > #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
245 > #endif
246 > #endif
247 > #if defined(__sun__)
248 > #if (defined(sparc) || defined(__sparc__))
249 > #include <sys/stack.h>
250 > #include <sys/regset.h>
251 > #include <sys/ucontext.h>
252 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
253 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[REG_PC]
254 > #define SIGSEGV_SPARC_GWINDOWS                  (((ucontext_t *)scp)->uc_mcontext.gwins)
255 > #define SIGSEGV_SPARC_RWINDOW                   (struct rwindow *)((char *)SIGSEGV_CONTEXT_REGS[REG_SP] + STACK_BIAS)
256 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)SIGSEGV_CONTEXT_REGS), SIGSEGV_SPARC_GWINDOWS, SIGSEGV_SPARC_RWINDOW
257 > #define SIGSEGV_SKIP_INSTRUCTION                sparc_skip_instruction
258 > #endif
259 > #endif
260 > #if defined(__FreeBSD__)
261   #if (defined(i386) || defined(__i386__))
262   #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_eip)
263 < #define SIGSEGV_REGISTER_FILE                   ((unsigned int *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
263 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
264   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
265   #endif
266   #endif
267 + #if defined(__NetBSD__)
268 + #if (defined(i386) || defined(__i386__))
269 + #include <sys/ucontext.h>
270 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
271 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_EIP]
272 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
273 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
274 + #endif
275 + #if (defined(powerpc) || defined(__powerpc__))
276 + #include <sys/ucontext.h>
277 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
278 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_PC]
279 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_PC], (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_R0]
280 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
281 + #endif
282 + #endif
283   #if defined(__linux__)
284   #if (defined(i386) || defined(__i386__))
285   #include <sys/ucontext.h>
286   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
287   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
288 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)SIGSEGV_CONTEXT_REGS
288 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
289   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
290   #endif
291   #if (defined(x86_64) || defined(__x86_64__))
# Line 235 | Line 293 | static void powerpc_decode_instruction(i
293   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
294   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
295   #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
296 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
297   #endif
298   #if (defined(ia64) || defined(__ia64__))
299   #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
# Line 243 | Line 302 | static void powerpc_decode_instruction(i
302   #include <sys/ucontext.h>
303   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.regs)
304   #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS->nip)
305 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned int *)(SIGSEGV_CONTEXT_REGS->gpr)
305 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned long *)(SIGSEGV_CONTEXT_REGS->gpr)
306   #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
307   #endif
308 + #if (defined(hppa) || defined(__hppa__))
309 + #undef  SIGSEGV_FAULT_ADDRESS
310 + #define SIGSEGV_FAULT_ADDRESS                   sip->si_ptr
311 + #endif
312 + #if (defined(arm) || defined(__arm__))
313 + #include <asm/ucontext.h> /* use kernel structure, glibc may not be in sync */
314 + #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
315 + #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.arm_pc)
316 + #define SIGSEGV_REGISTER_FILE                   (&SIGSEGV_CONTEXT_REGS.arm_r0)
317 + #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
318 + #endif
319   #endif
320   #endif
321  
# Line 256 | Line 326 | static void powerpc_decode_instruction(i
326   #if (defined(i386) || defined(__i386__))
327   #include <asm/sigcontext.h>
328   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext scs
329 < #define SIGSEGV_FAULT_ADDRESS                   scs.cr2
330 < #define SIGSEGV_FAULT_INSTRUCTION               scs.eip
331 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)(&scs)
329 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
330 > #define SIGSEGV_FAULT_HANDLER_ARGS              &scs
331 > #define SIGSEGV_FAULT_ADDRESS                   scp->cr2
332 > #define SIGSEGV_FAULT_INSTRUCTION               scp->eip
333 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)scp
334   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
335   #endif
336   #if (defined(sparc) || defined(__sparc__))
337   #include <asm/sigcontext.h>
338   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
339 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
340   #define SIGSEGV_FAULT_ADDRESS                   addr
341   #endif
342   #if (defined(powerpc) || defined(__powerpc__))
343   #include <asm/sigcontext.h>
344   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext *scp
345 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, scp
346   #define SIGSEGV_FAULT_ADDRESS                   scp->regs->dar
347   #define SIGSEGV_FAULT_INSTRUCTION               scp->regs->nip
348 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&scp->regs->nip, (unsigned int *)(scp->regs->gpr)
348 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&scp->regs->nip, (unsigned long *)(scp->regs->gpr)
349   #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
350   #endif
351   #if (defined(alpha) || defined(__alpha__))
352   #include <asm/sigcontext.h>
353   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
354 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
355   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
356   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
357 <
358 < // From Boehm's GC 6.0alpha8
359 < static sigsegv_address_t get_fault_address(struct sigcontext *scp)
360 < {
361 <        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
362 <        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
363 <        fault_address += (signed long)(signed short)(instruction & 0xffff);
364 <        return (sigsegv_address_t)fault_address;
365 < }
357 > #endif
358 > #if (defined(arm) || defined(__arm__))
359 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int r1, int r2, int r3, struct sigcontext sc
360 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
361 > #define SIGSEGV_FAULT_HANDLER_ARGS              &sc
362 > #define SIGSEGV_FAULT_ADDRESS                   scp->fault_address
363 > #define SIGSEGV_FAULT_INSTRUCTION               scp->arm_pc
364 > #define SIGSEGV_REGISTER_FILE                   &scp->arm_r0
365 > #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
366   #endif
367   #endif
368  
369   // Irix 5 or 6 on MIPS
370 < #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
370 > #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(_SYSTYPE_SVR4))
371   #include <ucontext.h>
372   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
373 < #define SIGSEGV_FAULT_ADDRESS                   scp->sc_badvaddr
373 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
374 > #define SIGSEGV_FAULT_ADDRESS                   (unsigned long)scp->sc_badvaddr
375 > #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)scp->sc_pc
376   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
377   #endif
378  
379   // HP-UX
380   #if (defined(hpux) || defined(__hpux__))
381   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
382 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
383   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_sl.sl_ss.ss_narrow.ss_cr21
384   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
385   #endif
# Line 310 | Line 388 | static sigsegv_address_t get_fault_addre
388   #if defined(__osf__)
389   #include <ucontext.h>
390   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
391 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
392   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_traparg_a0
393   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
394   #endif
# Line 317 | Line 396 | static sigsegv_address_t get_fault_addre
396   // AIX
397   #if defined(_AIX)
398   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
399 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
400   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_jmpbuf.jmp_context.o_vaddr
401   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
402   #endif
403  
404 < // NetBSD or FreeBSD
405 < #if defined(__NetBSD__) || defined(__FreeBSD__)
404 > // NetBSD
405 > #if defined(__NetBSD__)
406   #if (defined(m68k) || defined(__m68k__))
407   #include <m68k/frame.h>
408   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
409 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
410   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
411   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
412  
# Line 349 | Line 430 | static sigsegv_address_t get_fault_addre
430          }
431          return (sigsegv_address_t)fault_addr;
432   }
433 < #else
434 < #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, void *scp, char *addr
435 < #define SIGSEGV_FAULT_ADDRESS                   addr
433 > #endif
434 > #if (defined(alpha) || defined(__alpha__))
435 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
436 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
437 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
438 > #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
439 > #endif
440 > #if (defined(i386) || defined(__i386__))
441 > #error "FIXME: need to decode instruction and compute EA"
442 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
443 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
444 > #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
445 > #endif
446 > #endif
447 > #if defined(__FreeBSD__)
448 > #if (defined(i386) || defined(__i386__))
449   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
450 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
451 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
452 + #define SIGSEGV_FAULT_ADDRESS                   addr
453 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_eip
454 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&scp->sc_edi)
455 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
456 + #endif
457 + #if (defined(alpha) || defined(__alpha__))
458 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
459 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, char *addr, struct sigcontext *scp
460 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, addr, scp
461 + #define SIGSEGV_FAULT_ADDRESS                   addr
462 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
463   #endif
464   #endif
465  
466 < // MacOS X
466 > // Extract fault address out of a sigcontext
467 > #if (defined(alpha) || defined(__alpha__))
468 > // From Boehm's GC 6.0alpha8
469 > static sigsegv_address_t get_fault_address(struct sigcontext *scp)
470 > {
471 >        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
472 >        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
473 >        fault_address += (signed long)(signed short)(instruction & 0xffff);
474 >        return (sigsegv_address_t)fault_address;
475 > }
476 > #endif
477 >
478 >
479 > // MacOS X, not sure which version this works in. Under 10.1
480 > // vm_protect does not appear to work from a signal handler. Under
481 > // 10.2 signal handlers get siginfo type arguments but the si_addr
482 > // field is the address of the faulting instruction and not the
483 > // address that caused the SIGBUS. Maybe this works in 10.0? In any
484 > // case with Mach exception handlers there is a way to do what this
485 > // was meant to do.
486 > #ifndef HAVE_MACH_EXCEPTIONS
487   #if defined(__APPLE__) && defined(__MACH__)
488   #if (defined(ppc) || defined(__ppc__))
489   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
490 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
491   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
492   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_ir
493   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
# Line 379 | Line 507 | static sigsegv_address_t get_fault_addre
507   #endif
508   #endif
509   #endif
510 + #endif
511 +
512 + #if HAVE_WIN32_EXCEPTIONS
513 + #define WIN32_LEAN_AND_MEAN /* avoid including junk */
514 + #include <windows.h>
515 + #include <winerror.h>
516 +
517 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   EXCEPTION_POINTERS *ExceptionInfo
518 + #define SIGSEGV_FAULT_HANDLER_ARGS              ExceptionInfo
519 + #define SIGSEGV_FAULT_ADDRESS                   ExceptionInfo->ExceptionRecord->ExceptionInformation[1]
520 + #define SIGSEGV_CONTEXT_REGS                    ExceptionInfo->ContextRecord
521 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS->Eip
522 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&SIGSEGV_CONTEXT_REGS->Edi)
523 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
524 + #endif
525 +
526 + #if HAVE_MACH_EXCEPTIONS
527 +
528 + // This can easily be extended to other Mach systems, but really who
529 + // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
530 + // Mach 2.5/3.0?
531 + #if defined(__APPLE__) && defined(__MACH__)
532 +
533 + #include <sys/types.h>
534 + #include <stdlib.h>
535 + #include <stdio.h>
536 + #include <pthread.h>
537 +
538 + /*
539 + * If you are familiar with MIG then you will understand the frustration
540 + * that was necessary to get these embedded into C++ code by hand.
541 + */
542 + extern "C" {
543 + #include <mach/mach.h>
544 + #include <mach/mach_error.h>
545 +
546 + extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
547 + extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
548 +        mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
549 + extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
550 +        exception_type_t, exception_data_t, mach_msg_type_number_t);
551 + extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
552 +        exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
553 +        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
554 + extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
555 +        exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
556 +        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
557 + }
558 +
559 + // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
560 + #define HANDLER_COUNT 64
561 +
562 + // structure to tuck away existing exception handlers
563 + typedef struct _ExceptionPorts {
564 +        mach_msg_type_number_t maskCount;
565 +        exception_mask_t masks[HANDLER_COUNT];
566 +        exception_handler_t handlers[HANDLER_COUNT];
567 +        exception_behavior_t behaviors[HANDLER_COUNT];
568 +        thread_state_flavor_t flavors[HANDLER_COUNT];
569 + } ExceptionPorts;
570 +
571 + // exception handler thread
572 + static pthread_t exc_thread;
573 +
574 + // place where old exception handler info is stored
575 + static ExceptionPorts ports;
576 +
577 + // our exception port
578 + static mach_port_t _exceptionPort = MACH_PORT_NULL;
579 +
580 + #define MACH_CHECK_ERROR(name,ret) \
581 + if (ret != KERN_SUCCESS) { \
582 +        mach_error(#name, ret); \
583 +        exit (1); \
584 + }
585 +
586 + #define SIGSEGV_FAULT_ADDRESS                   code[1]
587 + #define SIGSEGV_FAULT_INSTRUCTION               get_fault_instruction(thread, state)
588 + #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  ((code[0] == KERN_PROTECTION_FAILURE) ? sigsegv_fault_handler(ADDR, IP) : SIGSEGV_RETURN_FAILURE)
589 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   mach_port_t thread, exception_data_t code, ppc_thread_state_t *state
590 + #define SIGSEGV_FAULT_HANDLER_ARGS              thread, code, &state
591 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
592 + #define SIGSEGV_REGISTER_FILE                   &state->srr0, &state->r0
593 +
594 + // Given a suspended thread, stuff the current instruction and
595 + // registers into state.
596 + //
597 + // It would have been nice to have this be ppc/x86 independant which
598 + // could have been done easily with a thread_state_t instead of
599 + // ppc_thread_state_t, but because of the way this is called it is
600 + // easier to do it this way.
601 + #if (defined(ppc) || defined(__ppc__))
602 + static inline sigsegv_address_t get_fault_instruction(mach_port_t thread, ppc_thread_state_t *state)
603 + {
604 +        kern_return_t krc;
605 +        mach_msg_type_number_t count;
606 +
607 +        count = MACHINE_THREAD_STATE_COUNT;
608 +        krc = thread_get_state(thread, MACHINE_THREAD_STATE, (thread_state_t)state, &count);
609 +        MACH_CHECK_ERROR (thread_get_state, krc);
610 +
611 +        return (sigsegv_address_t)state->srr0;
612 + }
613 + #endif
614 +
615 + // Since there can only be one exception thread running at any time
616 + // this is not a problem.
617 + #define MSG_SIZE 512
618 + static char msgbuf[MSG_SIZE];
619 + static char replybuf[MSG_SIZE];
620 +
621 + /*
622 + * This is the entry point for the exception handler thread. The job
623 + * of this thread is to wait for exception messages on the exception
624 + * port that was setup beforehand and to pass them on to exc_server.
625 + * exc_server is a MIG generated function that is a part of Mach.
626 + * Its job is to decide what to do with the exception message. In our
627 + * case exc_server calls catch_exception_raise on our behalf. After
628 + * exc_server returns, it is our responsibility to send the reply.
629 + */
630 + static void *
631 + handleExceptions(void *priv)
632 + {
633 +        mach_msg_header_t *msg, *reply;
634 +        kern_return_t krc;
635 +
636 +        msg = (mach_msg_header_t *)msgbuf;
637 +        reply = (mach_msg_header_t *)replybuf;
638 +
639 +        for (;;) {
640 +                krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
641 +                                _exceptionPort, 0, MACH_PORT_NULL);
642 +                MACH_CHECK_ERROR(mach_msg, krc);
643 +
644 +                if (!exc_server(msg, reply)) {
645 +                        fprintf(stderr, "exc_server hated the message\n");
646 +                        exit(1);
647 +                }
648 +
649 +                krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
650 +                                 msg->msgh_local_port, 0, MACH_PORT_NULL);
651 +                if (krc != KERN_SUCCESS) {
652 +                        fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
653 +                                krc, mach_error_string(krc));
654 +                        exit(1);
655 +                }
656 +        }
657 + }
658 + #endif
659 + #endif
660  
661  
662   /*
# Line 387 | Line 665 | static sigsegv_address_t get_fault_addre
665  
666   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
667   // Decode and skip X86 instruction
668 < #if (defined(i386) || defined(__i386__))
668 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
669   #if defined(__linux__)
670   enum {
671 + #if (defined(i386) || defined(__i386__))
672          X86_REG_EIP = 14,
673          X86_REG_EAX = 11,
674          X86_REG_ECX = 10,
# Line 399 | Line 678 | enum {
678          X86_REG_EBP = 6,
679          X86_REG_ESI = 5,
680          X86_REG_EDI = 4
681 + #endif
682 + #if defined(__x86_64__)
683 +        X86_REG_R8  = 0,
684 +        X86_REG_R9  = 1,
685 +        X86_REG_R10 = 2,
686 +        X86_REG_R11 = 3,
687 +        X86_REG_R12 = 4,
688 +        X86_REG_R13 = 5,
689 +        X86_REG_R14 = 6,
690 +        X86_REG_R15 = 7,
691 +        X86_REG_EDI = 8,
692 +        X86_REG_ESI = 9,
693 +        X86_REG_EBP = 10,
694 +        X86_REG_EBX = 11,
695 +        X86_REG_EDX = 12,
696 +        X86_REG_EAX = 13,
697 +        X86_REG_ECX = 14,
698 +        X86_REG_ESP = 15,
699 +        X86_REG_EIP = 16
700 + #endif
701 + };
702 + #endif
703 + #if defined(__NetBSD__)
704 + enum {
705 + #if (defined(i386) || defined(__i386__))
706 +        X86_REG_EIP = _REG_EIP,
707 +        X86_REG_EAX = _REG_EAX,
708 +        X86_REG_ECX = _REG_ECX,
709 +        X86_REG_EDX = _REG_EDX,
710 +        X86_REG_EBX = _REG_EBX,
711 +        X86_REG_ESP = _REG_ESP,
712 +        X86_REG_EBP = _REG_EBP,
713 +        X86_REG_ESI = _REG_ESI,
714 +        X86_REG_EDI = _REG_EDI
715 + #endif
716   };
717   #endif
718 < #if defined(__NetBSD__) || defined(__FreeBSD__)
718 > #if defined(__FreeBSD__)
719   enum {
720 + #if (defined(i386) || defined(__i386__))
721          X86_REG_EIP = 10,
722          X86_REG_EAX = 7,
723          X86_REG_ECX = 6,
# Line 412 | Line 727 | enum {
727          X86_REG_EBP = 2,
728          X86_REG_ESI = 1,
729          X86_REG_EDI = 0
730 + #endif
731 + };
732 + #endif
733 + #if defined(_WIN32)
734 + enum {
735 + #if (defined(i386) || defined(__i386__))
736 +        X86_REG_EIP = 7,
737 +        X86_REG_EAX = 5,
738 +        X86_REG_ECX = 4,
739 +        X86_REG_EDX = 3,
740 +        X86_REG_EBX = 2,
741 +        X86_REG_ESP = 10,
742 +        X86_REG_EBP = 6,
743 +        X86_REG_ESI = 1,
744 +        X86_REG_EDI = 0
745 + #endif
746   };
747   #endif
748   // FIXME: this is partly redundant with the instruction decoding phase
# Line 448 | Line 779 | static inline int ix86_step_over_modrm(u
779          return offset;
780   }
781  
782 < static bool ix86_skip_instruction(unsigned int * regs)
782 > static bool ix86_skip_instruction(unsigned long * regs)
783   {
784          unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
785  
786          if (eip == 0)
787                  return false;
788 + #ifdef _WIN32
789 +        if (IsBadCodePtr((FARPROC)eip))
790 +                return false;
791 + #endif
792          
793 <        transfer_type_t transfer_type = TYPE_UNKNOWN;
793 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
794          transfer_size_t transfer_size = SIZE_LONG;
795          
796          int reg = -1;
797          int len = 0;
798 <        
798 >
799 > #if DEBUG
800 >        printf("IP: %p [%02x %02x %02x %02x...]\n",
801 >                   eip, eip[0], eip[1], eip[2], eip[3]);
802 > #endif
803 >
804          // Operand size prefix
805          if (*eip == 0x66) {
806                  eip++;
# Line 468 | Line 808 | static bool ix86_skip_instruction(unsign
808                  transfer_size = SIZE_WORD;
809          }
810  
811 +        // REX prefix
812 + #if defined(__x86_64__)
813 +        struct rex_t {
814 +                unsigned char W;
815 +                unsigned char R;
816 +                unsigned char X;
817 +                unsigned char B;
818 +        };
819 +        rex_t rex = { 0, 0, 0, 0 };
820 +        bool has_rex = false;
821 +        if ((*eip & 0xf0) == 0x40) {
822 +                has_rex = true;
823 +                const unsigned char b = *eip;
824 +                rex.W = b & (1 << 3);
825 +                rex.R = b & (1 << 2);
826 +                rex.X = b & (1 << 1);
827 +                rex.B = b & (1 << 0);
828 + #if DEBUG
829 +                printf("REX: %c,%c,%c,%c\n",
830 +                           rex.W ? 'W' : '_',
831 +                           rex.R ? 'R' : '_',
832 +                           rex.X ? 'X' : '_',
833 +                           rex.B ? 'B' : '_');
834 + #endif
835 +                eip++;
836 +                len++;
837 +                if (rex.W)
838 +                        transfer_size = SIZE_QUAD;
839 +        }
840 + #else
841 +        const bool has_rex = false;
842 + #endif
843 +
844          // Decode instruction
845 +        int target_size = SIZE_UNKNOWN;
846          switch (eip[0]) {
847          case 0x0f:
848 +                target_size = transfer_size;
849              switch (eip[1]) {
850 +                case 0xbe: // MOVSX r32, r/m8
851              case 0xb6: // MOVZX r32, r/m8
852 +                        transfer_size = SIZE_BYTE;
853 +                        goto do_mov_extend;
854 +                case 0xbf: // MOVSX r32, r/m16
855              case 0xb7: // MOVZX r32, r/m16
856 <                switch (eip[2] & 0xc0) {
857 <                case 0x80:
858 <                    reg = (eip[2] >> 3) & 7;
859 <                    transfer_type = TYPE_LOAD;
860 <                    break;
861 <                case 0x40:
862 <                    reg = (eip[2] >> 3) & 7;
863 <                    transfer_type = TYPE_LOAD;
864 <                    break;
865 <                case 0x00:
866 <                    reg = (eip[2] >> 3) & 7;
867 <                    transfer_type = TYPE_LOAD;
868 <                    break;
869 <                }
870 <                len += 3 + ix86_step_over_modrm(eip + 2);
871 <                break;
856 >                        transfer_size = SIZE_WORD;
857 >                        goto do_mov_extend;
858 >                  do_mov_extend:
859 >                        switch (eip[2] & 0xc0) {
860 >                        case 0x80:
861 >                                reg = (eip[2] >> 3) & 7;
862 >                                transfer_type = SIGSEGV_TRANSFER_LOAD;
863 >                                break;
864 >                        case 0x40:
865 >                                reg = (eip[2] >> 3) & 7;
866 >                                transfer_type = SIGSEGV_TRANSFER_LOAD;
867 >                                break;
868 >                        case 0x00:
869 >                                reg = (eip[2] >> 3) & 7;
870 >                                transfer_type = SIGSEGV_TRANSFER_LOAD;
871 >                                break;
872 >                        }
873 >                        len += 3 + ix86_step_over_modrm(eip + 2);
874 >                        break;
875              }
876            break;
877          case 0x8a: // MOV r8, r/m8
# Line 498 | Line 880 | static bool ix86_skip_instruction(unsign
880                  switch (eip[1] & 0xc0) {
881                  case 0x80:
882                          reg = (eip[1] >> 3) & 7;
883 <                        transfer_type = TYPE_LOAD;
883 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
884                          break;
885                  case 0x40:
886                          reg = (eip[1] >> 3) & 7;
887 <                        transfer_type = TYPE_LOAD;
887 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
888                          break;
889                  case 0x00:
890                          reg = (eip[1] >> 3) & 7;
891 <                        transfer_type = TYPE_LOAD;
891 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
892                          break;
893                  }
894                  len += 2 + ix86_step_over_modrm(eip + 1);
# Line 517 | Line 899 | static bool ix86_skip_instruction(unsign
899                  switch (eip[1] & 0xc0) {
900                  case 0x80:
901                          reg = (eip[1] >> 3) & 7;
902 <                        transfer_type = TYPE_STORE;
902 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
903                          break;
904                  case 0x40:
905                          reg = (eip[1] >> 3) & 7;
906 <                        transfer_type = TYPE_STORE;
906 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
907                          break;
908                  case 0x00:
909                          reg = (eip[1] >> 3) & 7;
910 <                        transfer_type = TYPE_STORE;
910 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
911                          break;
912                  }
913                  len += 2 + ix86_step_over_modrm(eip + 1);
914                  break;
915          }
916 +        if (target_size == SIZE_UNKNOWN)
917 +                target_size = transfer_size;
918  
919 <        if (transfer_type == TYPE_UNKNOWN) {
919 >        if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
920                  // Unknown machine code, let it crash. Then patch the decoder
921                  return false;
922          }
923  
924 <        if (transfer_type == TYPE_LOAD && reg != -1) {
925 <                static const int x86_reg_map[8] = {
924 > #if defined(__x86_64__)
925 >        if (rex.R)
926 >                reg += 8;
927 > #endif
928 >
929 >        if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
930 >                static const int x86_reg_map[] = {
931                          X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
932 <                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI
932 >                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI,
933 > #if defined(__x86_64__)
934 >                        X86_REG_R8,  X86_REG_R9,  X86_REG_R10, X86_REG_R11,
935 >                        X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15,
936 > #endif
937                  };
938                  
939 <                if (reg < 0 || reg >= 8)
939 >                if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1))
940                          return false;
941  
942 +                // Set 0 to the relevant register part
943 +                // NOTE: this is only valid for MOV alike instructions
944                  int rloc = x86_reg_map[reg];
945 <                switch (transfer_size) {
945 >                switch (target_size) {
946                  case SIZE_BYTE:
947 <                        regs[rloc] = (regs[rloc] & ~0xff);
947 >                        if (has_rex || reg < 4)
948 >                                regs[rloc] = (regs[rloc] & ~0x00ffL);
949 >                        else {
950 >                                rloc = x86_reg_map[reg - 4];
951 >                                regs[rloc] = (regs[rloc] & ~0xff00L);
952 >                        }
953                          break;
954                  case SIZE_WORD:
955 <                        regs[rloc] = (regs[rloc] & ~0xffff);
955 >                        regs[rloc] = (regs[rloc] & ~0xffffL);
956                          break;
957                  case SIZE_LONG:
958 +                case SIZE_QUAD: // zero-extension
959                          regs[rloc] = 0;
960                          break;
961                  }
# Line 562 | Line 963 | static bool ix86_skip_instruction(unsign
963  
964   #if DEBUG
965          printf("%08x: %s %s access", regs[X86_REG_EIP],
966 <                   transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : "long",
967 <                   transfer_type == TYPE_LOAD ? "read" : "write");
966 >                   transfer_size == SIZE_BYTE ? "byte" :
967 >                   transfer_size == SIZE_WORD ? "word" :
968 >                   transfer_size == SIZE_LONG ? "long" :
969 >                   transfer_size == SIZE_QUAD ? "quad" : "unknown",
970 >                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
971          
972          if (reg != -1) {
973 <                static const char * x86_reg_str_map[8] = {
974 <                        "eax", "ecx", "edx", "ebx",
975 <                        "esp", "ebp", "esi", "edi"
973 >                static const char * x86_byte_reg_str_map[] = {
974 >                        "al",   "cl",   "dl",   "bl",
975 >                        "spl",  "bpl",  "sil",  "dil",
976 >                        "r8b",  "r9b",  "r10b", "r11b",
977 >                        "r12b", "r13b", "r14b", "r15b",
978 >                        "ah",   "ch",   "dh",   "bh",
979 >                };
980 >                static const char * x86_word_reg_str_map[] = {
981 >                        "ax",   "cx",   "dx",   "bx",
982 >                        "sp",   "bp",   "si",   "di",
983 >                        "r8w",  "r9w",  "r10w", "r11w",
984 >                        "r12w", "r13w", "r14w", "r15w",
985                  };
986 <                printf(" %s register %%%s", transfer_type == TYPE_LOAD ? "to" : "from", x86_reg_str_map[reg]);
986 >                static const char *x86_long_reg_str_map[] = {
987 >                        "eax",  "ecx",  "edx",  "ebx",
988 >                        "esp",  "ebp",  "esi",  "edi",
989 >                        "r8d",  "r9d",  "r10d", "r11d",
990 >                        "r12d", "r13d", "r14d", "r15d",
991 >                };
992 >                static const char *x86_quad_reg_str_map[] = {
993 >                        "rax", "rcx", "rdx", "rbx",
994 >                        "rsp", "rbp", "rsi", "rdi",
995 >                        "r8",  "r9",  "r10", "r11",
996 >                        "r12", "r13", "r14", "r15",
997 >                };
998 >                const char * reg_str = NULL;
999 >                switch (target_size) {
1000 >                case SIZE_BYTE:
1001 >                        reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg];
1002 >                        break;
1003 >                case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break;
1004 >                case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break;
1005 >                case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break;
1006 >                }
1007 >                if (reg_str)
1008 >                        printf(" %s register %%%s",
1009 >                                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from",
1010 >                                   reg_str);
1011          }
1012          printf(", %d bytes instruction\n", len);
1013   #endif
# Line 582 | Line 1019 | static bool ix86_skip_instruction(unsign
1019  
1020   // Decode and skip PPC instruction
1021   #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
1022 < static bool powerpc_skip_instruction(unsigned int * nip_p, unsigned int * regs)
1022 > static bool powerpc_skip_instruction(unsigned long * nip_p, unsigned long * regs)
1023   {
1024          instruction_t instr;
1025          powerpc_decode_instruction(&instr, *nip_p, regs);
1026          
1027 <        if (instr.transfer_type == TYPE_UNKNOWN) {
1027 >        if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1028                  // Unknown machine code, let it crash. Then patch the decoder
1029                  return false;
1030          }
1031  
1032   #if DEBUG
1033          printf("%08x: %s %s access", *nip_p,
1034 <                   instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : "long",
1035 <                   instr.transfer_type == TYPE_LOAD ? "read" : "write");
1034 >                   instr.transfer_size == SIZE_BYTE ? "byte" :
1035 >                   instr.transfer_size == SIZE_WORD ? "word" :
1036 >                   instr.transfer_size == SIZE_LONG ? "long" : "quad",
1037 >                   instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1038          
1039          if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
1040                  printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
1041 <        if (instr.transfer_type == TYPE_LOAD)
1041 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
1042                  printf(" r%d (rd = 0)\n", instr.rd);
1043   #endif
1044          
1045          if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
1046                  regs[instr.ra] = instr.addr;
1047 <        if (instr.transfer_type == TYPE_LOAD)
1047 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
1048                  regs[instr.rd] = 0;
1049          
1050          *nip_p += 4;
1051          return true;
1052   }
1053   #endif
1054 +
1055 + // Decode and skip MIPS instruction
1056 + #if (defined(mips) || defined(__mips))
1057 + enum {
1058 + #if (defined(sgi) || defined(__sgi))
1059 +  MIPS_REG_EPC = 35,
1060 + #endif
1061 + };
1062 + static bool mips_skip_instruction(greg_t * regs)
1063 + {
1064 +  unsigned int * epc = (unsigned int *)(unsigned long)regs[MIPS_REG_EPC];
1065 +
1066 +  if (epc == 0)
1067 +        return false;
1068 +
1069 + #if DEBUG
1070 +  printf("IP: %p [%08x]\n", epc, epc[0]);
1071 + #endif
1072 +
1073 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1074 +  transfer_size_t transfer_size = SIZE_LONG;
1075 +  int direction = 0;
1076 +
1077 +  const unsigned int opcode = epc[0];
1078 +  switch (opcode >> 26) {
1079 +  case 32: // Load Byte
1080 +  case 36: // Load Byte Unsigned
1081 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1082 +        transfer_size = SIZE_BYTE;
1083 +        break;
1084 +  case 33: // Load Halfword
1085 +  case 37: // Load Halfword Unsigned
1086 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1087 +        transfer_size = SIZE_WORD;
1088 +        break;
1089 +  case 35: // Load Word
1090 +  case 39: // Load Word Unsigned
1091 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1092 +        transfer_size = SIZE_LONG;
1093 +        break;
1094 +  case 34: // Load Word Left
1095 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1096 +        transfer_size = SIZE_LONG;
1097 +        direction = -1;
1098 +        break;
1099 +  case 38: // Load Word Right
1100 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1101 +        transfer_size = SIZE_LONG;
1102 +        direction = 1;
1103 +        break;
1104 +  case 55: // Load Doubleword
1105 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1106 +        transfer_size = SIZE_QUAD;
1107 +        break;
1108 +  case 26: // Load Doubleword Left
1109 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1110 +        transfer_size = SIZE_QUAD;
1111 +        direction = -1;
1112 +        break;
1113 +  case 27: // Load Doubleword Right
1114 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1115 +        transfer_size = SIZE_QUAD;
1116 +        direction = 1;
1117 +        break;
1118 +  case 40: // Store Byte
1119 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1120 +        transfer_size = SIZE_BYTE;
1121 +        break;
1122 +  case 41: // Store Halfword
1123 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1124 +        transfer_size = SIZE_WORD;
1125 +        break;
1126 +  case 43: // Store Word
1127 +  case 42: // Store Word Left
1128 +  case 46: // Store Word Right
1129 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1130 +        transfer_size = SIZE_LONG;
1131 +        break;
1132 +  case 63: // Store Doubleword
1133 +  case 44: // Store Doubleword Left
1134 +  case 45: // Store Doubleword Right
1135 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1136 +        transfer_size = SIZE_QUAD;
1137 +        break;
1138 +  /* Misc instructions unlikely to be used within CPU emulators */
1139 +  case 48: // Load Linked Word
1140 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1141 +        transfer_size = SIZE_LONG;
1142 +        break;
1143 +  case 52: // Load Linked Doubleword
1144 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1145 +        transfer_size = SIZE_QUAD;
1146 +        break;
1147 +  case 56: // Store Conditional Word
1148 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1149 +        transfer_size = SIZE_LONG;
1150 +        break;
1151 +  case 60: // Store Conditional Doubleword
1152 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1153 +        transfer_size = SIZE_QUAD;
1154 +        break;
1155 +  }
1156 +
1157 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1158 +        // Unknown machine code, let it crash. Then patch the decoder
1159 +        return false;
1160 +  }
1161 +
1162 +  // Zero target register in case of a load operation
1163 +  const int reg = (opcode >> 16) & 0x1f;
1164 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD) {
1165 +        if (direction == 0)
1166 +          regs[reg] = 0;
1167 +        else {
1168 +          // FIXME: untested code
1169 +          unsigned long ea = regs[(opcode >> 21) & 0x1f];
1170 +          ea += (signed long)(signed int)(signed short)(opcode & 0xffff);
1171 +          const int offset = ea & (transfer_size == SIZE_LONG ? 3 : 7);
1172 +          unsigned long value;
1173 +          if (direction > 0) {
1174 +                const unsigned long rmask = ~((1L << ((offset + 1) * 8)) - 1);
1175 +                value = regs[reg] & rmask;
1176 +          }
1177 +          else {
1178 +                const unsigned long lmask = (1L << (offset * 8)) - 1;
1179 +                value = regs[reg] & lmask;
1180 +          }
1181 +          // restore most significant bits
1182 +          if (transfer_size == SIZE_LONG)
1183 +                value = (signed long)(signed int)value;
1184 +          regs[reg] = value;
1185 +        }
1186 +  }
1187 +
1188 + #if DEBUG
1189 + #if (defined(_ABIN32) || defined(_ABI64))
1190 +  static const char * mips_gpr_names[32] = {
1191 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1192 +        "t0",   "t1",   "t2",   "t3",   "t4",   "t5",   "t6",   "t7",
1193 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1194 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1195 +  };
1196 + #else
1197 +  static const char * mips_gpr_names[32] = {
1198 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1199 +        "a4",   "a5",   "a6",   "a7",   "t0",   "t1",   "t2",   "t3",
1200 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1201 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1202 +  };
1203 + #endif
1204 +  printf("%s %s register %s\n",
1205 +                 transfer_size == SIZE_BYTE ? "byte" :
1206 +                 transfer_size == SIZE_WORD ? "word" :
1207 +                 transfer_size == SIZE_LONG ? "long" :
1208 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1209 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1210 +                 mips_gpr_names[reg]);
1211 + #endif
1212 +
1213 +  regs[MIPS_REG_EPC] += 4;
1214 +  return true;
1215 + }
1216 + #endif
1217 +
1218 + // Decode and skip SPARC instruction
1219 + #if (defined(sparc) || defined(__sparc__))
1220 + enum {
1221 + #if (defined(__sun__))
1222 +  SPARC_REG_G1 = REG_G1,
1223 +  SPARC_REG_O0 = REG_O0,
1224 +  SPARC_REG_PC = REG_PC,
1225 + #endif
1226 + };
1227 + static bool sparc_skip_instruction(unsigned long * regs, gwindows_t * gwins, struct rwindow * rwin)
1228 + {
1229 +  unsigned int * pc = (unsigned int *)regs[SPARC_REG_PC];
1230 +
1231 +  if (pc == 0)
1232 +        return false;
1233 +
1234 + #if DEBUG
1235 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1236 + #endif
1237 +
1238 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1239 +  transfer_size_t transfer_size = SIZE_LONG;
1240 +  bool register_pair = false;
1241 +
1242 +  const unsigned int opcode = pc[0];
1243 +  if ((opcode >> 30) != 3)
1244 +        return false;
1245 +  switch ((opcode >> 19) & 0x3f) {
1246 +  case 9: // Load Signed Byte
1247 +  case 1: // Load Unsigned Byte
1248 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1249 +        transfer_size = SIZE_BYTE;
1250 +        break;
1251 +  case 10:// Load Signed Halfword
1252 +  case 2: // Load Unsigned Word
1253 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1254 +        transfer_size = SIZE_WORD;
1255 +        break;
1256 +  case 8: // Load Word
1257 +  case 0: // Load Unsigned Word
1258 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1259 +        transfer_size = SIZE_LONG;
1260 +        break;
1261 +  case 11:// Load Extended Word
1262 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1263 +        transfer_size = SIZE_QUAD;
1264 +        break;
1265 +  case 3: // Load Doubleword
1266 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1267 +        transfer_size = SIZE_LONG;
1268 +        register_pair = true;
1269 +        break;
1270 +  case 5: // Store Byte
1271 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1272 +        transfer_size = SIZE_BYTE;
1273 +        break;
1274 +  case 6: // Store Halfword
1275 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1276 +        transfer_size = SIZE_WORD;
1277 +        break;
1278 +  case 4: // Store Word
1279 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1280 +        transfer_size = SIZE_LONG;
1281 +        break;
1282 +  case 14:// Store Extended Word
1283 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1284 +        transfer_size = SIZE_QUAD;
1285 +        break;
1286 +  case 7: // Store Doubleword
1287 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1288 +        transfer_size = SIZE_WORD;
1289 +        register_pair = true;
1290 +        break;
1291 +  }
1292 +
1293 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1294 +        // Unknown machine code, let it crash. Then patch the decoder
1295 +        return false;
1296 +  }
1297 +
1298 +  // Zero target register in case of a load operation
1299 +  const int reg = (opcode >> 25) & 0x1f;
1300 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != 0) {
1301 +        // FIXME: code to handle local & input registers is not tested
1302 +        if (reg >= 1 && reg <= 7) {
1303 +          // global registers
1304 +          regs[reg - 1 + SPARC_REG_G1] = 0;
1305 +        }
1306 +        else if (reg >= 8 && reg <= 15) {
1307 +          // output registers
1308 +          regs[reg - 8 + SPARC_REG_O0] = 0;
1309 +        }
1310 +        else if (reg >= 16 && reg <= 23) {
1311 +          // local registers (in register windows)
1312 +          if (gwins)
1313 +                gwins->wbuf->rw_local[reg - 16] = 0;
1314 +          else
1315 +                rwin->rw_local[reg - 16] = 0;
1316 +        }
1317 +        else {
1318 +          // input registers (in register windows)
1319 +          if (gwins)
1320 +                gwins->wbuf->rw_in[reg - 24] = 0;
1321 +          else
1322 +                rwin->rw_in[reg - 24] = 0;
1323 +        }
1324 +  }
1325 +
1326 + #if DEBUG
1327 +  static const char * reg_names[] = {
1328 +        "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
1329 +        "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
1330 +        "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
1331 +        "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7"
1332 +  };
1333 +  printf("%s %s register %s\n",
1334 +                 transfer_size == SIZE_BYTE ? "byte" :
1335 +                 transfer_size == SIZE_WORD ? "word" :
1336 +                 transfer_size == SIZE_LONG ? "long" :
1337 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1338 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1339 +                 reg_names[reg]);
1340 + #endif
1341 +
1342 +  regs[SPARC_REG_PC] += 4;
1343 +  return true;
1344 + }
1345 + #endif
1346 + #endif
1347 +
1348 + // Decode and skip ARM instruction
1349 + #if (defined(arm) || defined(__arm__))
1350 + enum {
1351 + #if (defined(__linux__))
1352 +  ARM_REG_PC = 15,
1353 +  ARM_REG_CPSR = 16
1354   #endif
1355 + };
1356 + static bool arm_skip_instruction(unsigned long * regs)
1357 + {
1358 +  unsigned int * pc = (unsigned int *)regs[ARM_REG_PC];
1359 +
1360 +  if (pc == 0)
1361 +        return false;
1362 +
1363 + #if DEBUG
1364 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1365 + #endif
1366 +
1367 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1368 +  transfer_size_t transfer_size = SIZE_UNKNOWN;
1369 +  enum { op_sdt = 1, op_sdth = 2 };
1370 +  int op = 0;
1371 +
1372 +  // Handle load/store instructions only
1373 +  const unsigned int opcode = pc[0];
1374 +  switch ((opcode >> 25) & 7) {
1375 +  case 0: // Halfword and Signed Data Transfer (LDRH, STRH, LDRSB, LDRSH)
1376 +        op = op_sdth;
1377 +        // Determine transfer size (S/H bits)
1378 +        switch ((opcode >> 5) & 3) {
1379 +        case 0: // SWP instruction
1380 +          break;
1381 +        case 1: // Unsigned halfwords
1382 +        case 3: // Signed halfwords
1383 +          transfer_size = SIZE_WORD;
1384 +          break;
1385 +        case 2: // Signed byte
1386 +          transfer_size = SIZE_BYTE;
1387 +          break;
1388 +        }
1389 +        break;
1390 +  case 2:
1391 +  case 3: // Single Data Transfer (LDR, STR)
1392 +        op = op_sdt;
1393 +        // Determine transfer size (B bit)
1394 +        if (((opcode >> 22) & 1) == 1)
1395 +          transfer_size = SIZE_BYTE;
1396 +        else
1397 +          transfer_size = SIZE_LONG;
1398 +        break;
1399 +  default:
1400 +        // FIXME: support load/store mutliple?
1401 +        return false;
1402 +  }
1403 +
1404 +  // Check for invalid transfer size (SWP instruction?)
1405 +  if (transfer_size == SIZE_UNKNOWN)
1406 +        return false;
1407 +
1408 +  // Determine transfer type (L bit)
1409 +  if (((opcode >> 20) & 1) == 1)
1410 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1411 +  else
1412 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1413 +
1414 +  // Compute offset
1415 +  int offset;
1416 +  if (((opcode >> 25) & 1) == 0) {
1417 +        if (op == op_sdt)
1418 +          offset = opcode & 0xfff;
1419 +        else if (op == op_sdth) {
1420 +          int rm = opcode & 0xf;
1421 +          if (((opcode >> 22) & 1) == 0) {
1422 +                // register offset
1423 +                offset = regs[rm];
1424 +          }
1425 +          else {
1426 +                // immediate offset
1427 +                offset = ((opcode >> 4) & 0xf0) | (opcode & 0x0f);
1428 +          }
1429 +        }
1430 +  }
1431 +  else {
1432 +        const int rm = opcode & 0xf;
1433 +        const int sh = (opcode >> 7) & 0x1f;
1434 +        if (((opcode >> 4) & 1) == 1) {
1435 +          // we expect only legal load/store instructions
1436 +          printf("FATAL: invalid shift operand\n");
1437 +          return false;
1438 +        }
1439 +        const unsigned int v = regs[rm];
1440 +        switch ((opcode >> 5) & 3) {
1441 +        case 0: // logical shift left
1442 +          offset = sh ? v << sh : v;
1443 +          break;
1444 +        case 1: // logical shift right
1445 +          offset = sh ? v >> sh : 0;
1446 +          break;
1447 +        case 2: // arithmetic shift right
1448 +          if (sh)
1449 +                offset = ((signed int)v) >> sh;
1450 +          else
1451 +                offset = (v & 0x80000000) ? 0xffffffff : 0;
1452 +          break;
1453 +        case 3: // rotate right
1454 +          if (sh)
1455 +                offset = (v >> sh) | (v << (32 - sh));
1456 +          else
1457 +                offset = (v >> 1) | ((regs[ARM_REG_CPSR] << 2) & 0x80000000);
1458 +          break;
1459 +        }
1460 +  }
1461 +  if (((opcode >> 23) & 1) == 0)
1462 +        offset = -offset;
1463 +
1464 +  int rd = (opcode >> 12) & 0xf;
1465 +  int rn = (opcode >> 16) & 0xf;
1466 + #if DEBUG
1467 +  static const char * reg_names[] = {
1468 +        "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1469 +        "r9", "r9", "sl", "fp", "ip", "sp", "lr", "pc"
1470 +  };
1471 +  printf("%s %s register %s\n",
1472 +                 transfer_size == SIZE_BYTE ? "byte" :
1473 +                 transfer_size == SIZE_WORD ? "word" :
1474 +                 transfer_size == SIZE_LONG ? "long" : "unknown",
1475 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1476 +                 reg_names[rd]);
1477 + #endif
1478 +
1479 +  unsigned int base = regs[rn];
1480 +  if (((opcode >> 24) & 1) == 1)
1481 +        base += offset;
1482 +
1483 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD)
1484 +        regs[rd] = 0;
1485 +
1486 +  if (((opcode >> 24) & 1) == 0)                // post-index addressing
1487 +        regs[rn] += offset;
1488 +  else if (((opcode >> 21) & 1) == 1)   // write-back address into base
1489 +        regs[rn] = base;
1490 +
1491 +  regs[ARM_REG_PC] += 4;
1492 +  return true;
1493 + }
1494 + #endif
1495 +
1496  
1497   // Fallbacks
1498   #ifndef SIGSEGV_FAULT_INSTRUCTION
1499   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_PC
1500   #endif
1501 + #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
1502 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
1503 + #endif
1504 + #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
1505 + #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  sigsegv_fault_handler(ADDR, IP)
1506 + #endif
1507  
1508   // SIGSEGV recovery supported ?
1509   #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
# Line 629 | Line 1515 | static bool powerpc_skip_instruction(uns
1515   *  SIGSEGV global handler
1516   */
1517  
1518 < #ifdef HAVE_SIGSEGV_RECOVERY
1519 < static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1518 > // This function handles the badaccess to memory.
1519 > // It is called from the signal handler or the exception handler.
1520 > static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
1521   {
1522          sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
1523          sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
637        bool fault_recovered = false;
1524          
1525          // Call user's handler and reinstall the global handler, if required
1526 <        if (sigsegv_fault_handler(fault_address, fault_instruction)) {
1527 < #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1528 <                sigsegv_do_install_handler(sig);
1526 >        switch (SIGSEGV_FAULT_HANDLER_INVOKE(fault_address, fault_instruction)) {
1527 >        case SIGSEGV_RETURN_SUCCESS:
1528 >                return true;
1529 >
1530 > #if HAVE_SIGSEGV_SKIP_INSTRUCTION
1531 >        case SIGSEGV_RETURN_SKIP_INSTRUCTION:
1532 >                // Call the instruction skipper with the register file
1533 >                // available
1534 >                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
1535 > #ifdef HAVE_MACH_EXCEPTIONS
1536 >                        // Unlike UNIX signals where the thread state
1537 >                        // is modified off of the stack, in Mach we
1538 >                        // need to actually call thread_set_state to
1539 >                        // have the register values updated.
1540 >                        kern_return_t krc;
1541 >
1542 >                        krc = thread_set_state(thread,
1543 >                                                                   MACHINE_THREAD_STATE, (thread_state_t)state,
1544 >                                                                   MACHINE_THREAD_STATE_COUNT);
1545 >                        MACH_CHECK_ERROR (thread_get_state, krc);
1546   #endif
1547 <                fault_recovered = true;
1547 >                        return true;
1548 >                }
1549 >                break;
1550 > #endif
1551 >        case SIGSEGV_RETURN_FAILURE:
1552 >                // We can't do anything with the fault_address, dump state?
1553 >                if (sigsegv_state_dumper != 0)
1554 >                        sigsegv_state_dumper(fault_address, fault_instruction);
1555 >                break;
1556          }
1557 < #if HAVE_SIGSEGV_SKIP_INSTRUCTION
1558 <        else if (sigsegv_ignore_fault) {
1559 <                // Call the instruction skipper with the register file available
1560 <                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE))
1561 <                        fault_recovered = true;
1557 >
1558 >        return false;
1559 > }
1560 >
1561 >
1562 > /*
1563 > * There are two mechanisms for handling a bad memory access,
1564 > * Mach exceptions and UNIX signals. The implementation specific
1565 > * code appears below. Its reponsibility is to call handle_badaccess
1566 > * which is the routine that handles the fault in an implementation
1567 > * agnostic manner. The implementation specific code below is then
1568 > * reponsible for checking whether handle_badaccess was able
1569 > * to handle the memory access error and perform any implementation
1570 > * specific tasks necessary afterwards.
1571 > */
1572 >
1573 > #ifdef HAVE_MACH_EXCEPTIONS
1574 > /*
1575 > * We need to forward all exceptions that we do not handle.
1576 > * This is important, there are many exceptions that may be
1577 > * handled by other exception handlers. For example debuggers
1578 > * use exceptions and the exception hander is in another
1579 > * process in such a case. (Timothy J. Wood states in his
1580 > * message to the list that he based this code on that from
1581 > * gdb for Darwin.)
1582 > */
1583 > static inline kern_return_t
1584 > forward_exception(mach_port_t thread_port,
1585 >                                  mach_port_t task_port,
1586 >                                  exception_type_t exception_type,
1587 >                                  exception_data_t exception_data,
1588 >                                  mach_msg_type_number_t data_count,
1589 >                                  ExceptionPorts *oldExceptionPorts)
1590 > {
1591 >        kern_return_t kret;
1592 >        unsigned int portIndex;
1593 >        mach_port_t port;
1594 >        exception_behavior_t behavior;
1595 >        thread_state_flavor_t flavor;
1596 >        thread_state_t thread_state;
1597 >        mach_msg_type_number_t thread_state_count;
1598 >
1599 >        for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
1600 >                if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
1601 >                        // This handler wants the exception
1602 >                        break;
1603 >                }
1604 >        }
1605 >
1606 >        if (portIndex >= oldExceptionPorts->maskCount) {
1607 >                fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
1608 >                return KERN_FAILURE;
1609 >        }
1610 >
1611 >        port = oldExceptionPorts->handlers[portIndex];
1612 >        behavior = oldExceptionPorts->behaviors[portIndex];
1613 >        flavor = oldExceptionPorts->flavors[portIndex];
1614 >
1615 >        /*
1616 >         fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
1617 >         */
1618 >
1619 >        if (behavior != EXCEPTION_DEFAULT) {
1620 >                thread_state_count = THREAD_STATE_MAX;
1621 >                kret = thread_get_state (thread_port, flavor, thread_state,
1622 >                                                                 &thread_state_count);
1623 >                MACH_CHECK_ERROR (thread_get_state, kret);
1624 >        }
1625 >
1626 >        switch (behavior) {
1627 >        case EXCEPTION_DEFAULT:
1628 >          // fprintf(stderr, "forwarding to exception_raise\n");
1629 >          kret = exception_raise(port, thread_port, task_port, exception_type,
1630 >                                                         exception_data, data_count);
1631 >          MACH_CHECK_ERROR (exception_raise, kret);
1632 >          break;
1633 >        case EXCEPTION_STATE:
1634 >          // fprintf(stderr, "forwarding to exception_raise_state\n");
1635 >          kret = exception_raise_state(port, exception_type, exception_data,
1636 >                                                                   data_count, &flavor,
1637 >                                                                   thread_state, thread_state_count,
1638 >                                                                   thread_state, &thread_state_count);
1639 >          MACH_CHECK_ERROR (exception_raise_state, kret);
1640 >          break;
1641 >        case EXCEPTION_STATE_IDENTITY:
1642 >          // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
1643 >          kret = exception_raise_state_identity(port, thread_port, task_port,
1644 >                                                                                        exception_type, exception_data,
1645 >                                                                                        data_count, &flavor,
1646 >                                                                                        thread_state, thread_state_count,
1647 >                                                                                        thread_state, &thread_state_count);
1648 >          MACH_CHECK_ERROR (exception_raise_state_identity, kret);
1649 >          break;
1650 >        default:
1651 >          fprintf(stderr, "forward_exception got unknown behavior\n");
1652 >          break;
1653 >        }
1654 >
1655 >        if (behavior != EXCEPTION_DEFAULT) {
1656 >                kret = thread_set_state (thread_port, flavor, thread_state,
1657 >                                                                 thread_state_count);
1658 >                MACH_CHECK_ERROR (thread_set_state, kret);
1659          }
1660 +
1661 +        return KERN_SUCCESS;
1662 + }
1663 +
1664 + /*
1665 + * This is the code that actually handles the exception.
1666 + * It is called by exc_server. For Darwin 5 Apple changed
1667 + * this a bit from how this family of functions worked in
1668 + * Mach. If you are familiar with that it is a little
1669 + * different. The main variation that concerns us here is
1670 + * that code is an array of exception specific codes and
1671 + * codeCount is a count of the number of codes in the code
1672 + * array. In typical Mach all exceptions have a code
1673 + * and sub-code. It happens to be the case that for a
1674 + * EXC_BAD_ACCESS exception the first entry is the type of
1675 + * bad access that occurred and the second entry is the
1676 + * faulting address so these entries correspond exactly to
1677 + * how the code and sub-code are used on Mach.
1678 + *
1679 + * This is a MIG interface. No code in Basilisk II should
1680 + * call this directley. This has to have external C
1681 + * linkage because that is what exc_server expects.
1682 + */
1683 + kern_return_t
1684 + catch_exception_raise(mach_port_t exception_port,
1685 +                                          mach_port_t thread,
1686 +                                          mach_port_t task,
1687 +                                          exception_type_t exception,
1688 +                                          exception_data_t code,
1689 +                                          mach_msg_type_number_t codeCount)
1690 + {
1691 +        ppc_thread_state_t state;
1692 +        kern_return_t krc;
1693 +
1694 +        if ((exception == EXC_BAD_ACCESS)  && (codeCount >= 2)) {
1695 +                if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
1696 +                        return KERN_SUCCESS;
1697 +        }
1698 +
1699 +        // In Mach we do not need to remove the exception handler.
1700 +        // If we forward the exception, eventually some exception handler
1701 +        // will take care of this exception.
1702 +        krc = forward_exception(thread, task, exception, code, codeCount, &ports);
1703 +
1704 +        return krc;
1705 + }
1706 + #endif
1707 +
1708 + #ifdef HAVE_SIGSEGV_RECOVERY
1709 + // Handle bad memory accesses with signal handler
1710 + static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1711 + {
1712 +        // Call handler and reinstall the global handler, if required
1713 +        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
1714 + #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1715 +                sigsegv_do_install_handler(sig);
1716   #endif
1717 +                return;
1718 +        }
1719  
1720 <        if (!fault_recovered) {
655 <                // FAIL: reinstall default handler for "safe" crash
1720 >        // Failure: reinstall default handler for "safe" crash
1721   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1722 <                SIGSEGV_ALL_SIGNALS
1722 >        SIGSEGV_ALL_SIGNALS
1723   #undef FAULT_HANDLER
659                
660                // We can't do anything with the fault_address, dump state?
661                if (sigsegv_state_dumper != 0)
662                        sigsegv_state_dumper(fault_address, fault_instruction);
663        }
1724   }
1725   #endif
1726  
# Line 674 | Line 1734 | static bool sigsegv_do_install_handler(i
1734   {
1735          // Setup SIGSEGV handler to process writes to frame buffer
1736   #ifdef HAVE_SIGACTION
1737 <        struct sigaction vosf_sa;
1738 <        sigemptyset(&vosf_sa.sa_mask);
1739 <        vosf_sa.sa_sigaction = sigsegv_handler;
1740 <        vosf_sa.sa_flags = SA_SIGINFO;
1741 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1737 >        struct sigaction sigsegv_sa;
1738 >        sigemptyset(&sigsegv_sa.sa_mask);
1739 >        sigsegv_sa.sa_sigaction = sigsegv_handler;
1740 >        sigsegv_sa.sa_flags = SA_SIGINFO;
1741 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1742   #else
1743          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1744   #endif
# Line 690 | Line 1750 | static bool sigsegv_do_install_handler(i
1750   {
1751          // Setup SIGSEGV handler to process writes to frame buffer
1752   #ifdef HAVE_SIGACTION
1753 <        struct sigaction vosf_sa;
1754 <        sigemptyset(&vosf_sa.sa_mask);
1755 <        vosf_sa.sa_handler = (signal_handler)sigsegv_handler;
1753 >        struct sigaction sigsegv_sa;
1754 >        sigemptyset(&sigsegv_sa.sa_mask);
1755 >        sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
1756 >        sigsegv_sa.sa_flags = 0;
1757   #if !EMULATED_68K && defined(__NetBSD__)
1758 <        sigaddset(&vosf_sa.sa_mask, SIGALRM);
1759 <        vosf_sa.sa_flags = SA_ONSTACK;
699 < #else
700 <        vosf_sa.sa_flags = 0;
1758 >        sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
1759 >        sigsegv_sa.sa_flags |= SA_ONSTACK;
1760   #endif
1761 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1761 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1762   #else
1763          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1764   #endif
1765   }
1766   #endif
1767  
1768 < bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1768 > #if defined(HAVE_MACH_EXCEPTIONS)
1769 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1770   {
1771 < #ifdef HAVE_SIGSEGV_RECOVERY
1771 >        /*
1772 >         * Except for the exception port functions, this should be
1773 >         * pretty much stock Mach. If later you choose to support
1774 >         * other Mach's besides Darwin, just check for __MACH__
1775 >         * here and __APPLE__ where the actual differences are.
1776 >         */
1777 > #if defined(__APPLE__) && defined(__MACH__)
1778 >        if (sigsegv_fault_handler != NULL) {
1779 >                sigsegv_fault_handler = handler;
1780 >                return true;
1781 >        }
1782 >
1783 >        kern_return_t krc;
1784 >
1785 >        // create the the exception port
1786 >        krc = mach_port_allocate(mach_task_self(),
1787 >                          MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
1788 >        if (krc != KERN_SUCCESS) {
1789 >                mach_error("mach_port_allocate", krc);
1790 >                return false;
1791 >        }
1792 >
1793 >        // add a port send right
1794 >        krc = mach_port_insert_right(mach_task_self(),
1795 >                              _exceptionPort, _exceptionPort,
1796 >                              MACH_MSG_TYPE_MAKE_SEND);
1797 >        if (krc != KERN_SUCCESS) {
1798 >                mach_error("mach_port_insert_right", krc);
1799 >                return false;
1800 >        }
1801 >
1802 >        // get the old exception ports
1803 >        ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
1804 >        krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
1805 >                                &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
1806 >        if (krc != KERN_SUCCESS) {
1807 >                mach_error("thread_get_exception_ports", krc);
1808 >                return false;
1809 >        }
1810 >
1811 >        // set the new exception port
1812 >        //
1813 >        // We could have used EXCEPTION_STATE_IDENTITY instead of
1814 >        // EXCEPTION_DEFAULT to get the thread state in the initial
1815 >        // message, but it turns out that in the common case this is not
1816 >        // neccessary. If we need it we can later ask for it from the
1817 >        // suspended thread.
1818 >        //
1819 >        // Even with THREAD_STATE_NONE, Darwin provides the program
1820 >        // counter in the thread state.  The comments in the header file
1821 >        // seem to imply that you can count on the GPR's on an exception
1822 >        // as well but just to be safe I use MACHINE_THREAD_STATE because
1823 >        // you have to ask for all of the GPR's anyway just to get the
1824 >        // program counter. In any case because of update effective
1825 >        // address from immediate and update address from effective
1826 >        // addresses of ra and rb modes (as good an name as any for these
1827 >        // addressing modes) used in PPC instructions, you will need the
1828 >        // GPR state anyway.
1829 >        krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
1830 >                                EXCEPTION_DEFAULT, MACHINE_THREAD_STATE);
1831 >        if (krc != KERN_SUCCESS) {
1832 >                mach_error("thread_set_exception_ports", krc);
1833 >                return false;
1834 >        }
1835 >
1836 >        // create the exception handler thread
1837 >        if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
1838 >                (void)fprintf(stderr, "creation of exception thread failed\n");
1839 >                return false;
1840 >        }
1841 >
1842 >        // do not care about the exception thread any longer, let is run standalone
1843 >        (void)pthread_detach(exc_thread);
1844 >
1845          sigsegv_fault_handler = handler;
1846 +        return true;
1847 + #else
1848 +        return false;
1849 + #endif
1850 + }
1851 + #endif
1852 +
1853 + #ifdef HAVE_WIN32_EXCEPTIONS
1854 + static LONG WINAPI main_exception_filter(EXCEPTION_POINTERS *ExceptionInfo)
1855 + {
1856 +        if (sigsegv_fault_handler != NULL
1857 +                && ExceptionInfo->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION
1858 +                && ExceptionInfo->ExceptionRecord->NumberParameters == 2
1859 +                && handle_badaccess(ExceptionInfo))
1860 +                return EXCEPTION_CONTINUE_EXECUTION;
1861 +
1862 +        return EXCEPTION_CONTINUE_SEARCH;
1863 + }
1864 +
1865 + #if defined __CYGWIN__ && defined __i386__
1866 + /* In Cygwin programs, SetUnhandledExceptionFilter has no effect because Cygwin
1867 +   installs a global exception handler.  We have to dig deep in order to install
1868 +   our main_exception_filter.  */
1869 +
1870 + /* Data structures for the current thread's exception handler chain.
1871 +   On the x86 Windows uses register fs, offset 0 to point to the current
1872 +   exception handler; Cygwin mucks with it, so we must do the same... :-/ */
1873 +
1874 + /* Magic taken from winsup/cygwin/include/exceptions.h.  */
1875 +
1876 + struct exception_list {
1877 +    struct exception_list *prev;
1878 +    int (*handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
1879 + };
1880 + typedef struct exception_list exception_list;
1881 +
1882 + /* Magic taken from winsup/cygwin/exceptions.cc.  */
1883 +
1884 + __asm__ (".equ __except_list,0");
1885 +
1886 + extern exception_list *_except_list __asm__ ("%fs:__except_list");
1887 +
1888 + /* For debugging.  _except_list is not otherwise accessible from gdb.  */
1889 + static exception_list *
1890 + debug_get_except_list ()
1891 + {
1892 +  return _except_list;
1893 + }
1894 +
1895 + /* Cygwin's original exception handler.  */
1896 + static int (*cygwin_exception_handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
1897 +
1898 + /* Our exception handler.  */
1899 + static int
1900 + libsigsegv_exception_handler (EXCEPTION_RECORD *exception, void *frame, CONTEXT *context, void *dispatch)
1901 + {
1902 +  EXCEPTION_POINTERS ExceptionInfo;
1903 +  ExceptionInfo.ExceptionRecord = exception;
1904 +  ExceptionInfo.ContextRecord = context;
1905 +  if (main_exception_filter (&ExceptionInfo) == EXCEPTION_CONTINUE_SEARCH)
1906 +    return cygwin_exception_handler (exception, frame, context, dispatch);
1907 +  else
1908 +    return 0;
1909 + }
1910 +
1911 + static void
1912 + do_install_main_exception_filter ()
1913 + {
1914 +  /* We cannot insert any handler into the chain, because such handlers
1915 +     must lie on the stack (?).  Instead, we have to replace(!) Cygwin's
1916 +     global exception handler.  */
1917 +  cygwin_exception_handler = _except_list->handler;
1918 +  _except_list->handler = libsigsegv_exception_handler;
1919 + }
1920 +
1921 + #else
1922 +
1923 + static void
1924 + do_install_main_exception_filter ()
1925 + {
1926 +  SetUnhandledExceptionFilter ((LPTOP_LEVEL_EXCEPTION_FILTER) &main_exception_filter);
1927 + }
1928 + #endif
1929 +
1930 + static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1931 + {
1932 +        static bool main_exception_filter_installed = false;
1933 +        if (!main_exception_filter_installed) {
1934 +                do_install_main_exception_filter();
1935 +                main_exception_filter_installed = true;
1936 +        }
1937 +        sigsegv_fault_handler = handler;
1938 +        return true;
1939 + }
1940 + #endif
1941 +
1942 + bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1943 + {
1944 + #if defined(HAVE_SIGSEGV_RECOVERY)
1945          bool success = true;
1946   #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
1947          SIGSEGV_ALL_SIGNALS
1948   #undef FAULT_HANDLER
1949 +        if (success)
1950 +            sigsegv_fault_handler = handler;
1951          return success;
1952 + #elif defined(HAVE_MACH_EXCEPTIONS) || defined(HAVE_WIN32_EXCEPTIONS)
1953 +        return sigsegv_do_install_handler(handler);
1954   #else
1955          // FAIL: no siginfo_t nor sigcontext subterfuge is available
1956          return false;
# Line 728 | Line 1964 | bool sigsegv_install_handler(sigsegv_fau
1964  
1965   void sigsegv_deinstall_handler(void)
1966   {
1967 +  // We do nothing for Mach exceptions, the thread would need to be
1968 +  // suspended if not already so, and we might mess with other
1969 +  // exception handlers that came after we registered ours. There is
1970 +  // no need to remove the exception handler, in fact this function is
1971 +  // not called anywhere in Basilisk II.
1972   #ifdef HAVE_SIGSEGV_RECOVERY
1973          sigsegv_fault_handler = 0;
1974   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1975          SIGSEGV_ALL_SIGNALS
1976   #undef FAULT_HANDLER
1977   #endif
1978 < }
1979 <
1980 <
740 < /*
741 < *  SIGSEGV ignore state modifier
742 < */
743 <
744 < void sigsegv_set_ignore_state(bool ignore_fault)
745 < {
746 <        sigsegv_ignore_fault = ignore_fault;
1978 > #ifdef HAVE_WIN32_EXCEPTIONS
1979 >        sigsegv_fault_handler = NULL;
1980 > #endif
1981   }
1982  
1983  
# Line 765 | Line 1999 | void sigsegv_set_dump_state(sigsegv_stat
1999   #include <stdio.h>
2000   #include <stdlib.h>
2001   #include <fcntl.h>
2002 + #ifdef HAVE_SYS_MMAN_H
2003   #include <sys/mman.h>
2004 + #endif
2005   #include "vm_alloc.h"
2006  
2007 + const int REF_INDEX = 123;
2008 + const int REF_VALUE = 45;
2009 +
2010   static int page_size;
2011   static volatile char * page = 0;
2012   static volatile int handler_called = 0;
2013  
2014 < static bool sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2014 > #ifdef __GNUC__
2015 > // Code range where we expect the fault to come from
2016 > static void *b_region, *e_region;
2017 > #endif
2018 >
2019 > static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2020   {
2021 + #if DEBUG
2022 +        printf("sigsegv_test_handler(%p, %p)\n", fault_address, instruction_address);
2023 +        printf("expected fault at %p\n", page + REF_INDEX);
2024 + #ifdef __GNUC__
2025 +        printf("expected instruction address range: %p-%p\n", b_region, e_region);
2026 + #endif
2027 + #endif
2028          handler_called++;
2029 <        if ((fault_address - 123) != page)
2030 <                exit(1);
2029 >        if ((fault_address - REF_INDEX) != page)
2030 >                exit(10);
2031 > #ifdef __GNUC__
2032 >        // Make sure reported fault instruction address falls into
2033 >        // expected code range
2034 >        if (instruction_address != SIGSEGV_INVALID_PC
2035 >                && ((instruction_address <  (sigsegv_address_t)b_region) ||
2036 >                        (instruction_address >= (sigsegv_address_t)e_region)))
2037 >                exit(11);
2038 > #endif
2039          if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
2040 <                exit(1);
2041 <        return true;
2040 >                exit(12);
2041 >        return SIGSEGV_RETURN_SUCCESS;
2042   }
2043  
2044   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
2045 < static bool sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2045 > static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2046   {
2047 <        return false;
2047 > #if DEBUG
2048 >        printf("sigsegv_insn_handler(%p, %p)\n", fault_address, instruction_address);
2049 > #endif
2050 >        if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
2051 > #ifdef __GNUC__
2052 >                // Make sure reported fault instruction address falls into
2053 >                // expected code range
2054 >                if (instruction_address != SIGSEGV_INVALID_PC
2055 >                        && ((instruction_address <  (sigsegv_address_t)b_region) ||
2056 >                                (instruction_address >= (sigsegv_address_t)e_region)))
2057 >                        return SIGSEGV_RETURN_FAILURE;
2058 > #endif
2059 >                return SIGSEGV_RETURN_SKIP_INSTRUCTION;
2060 >        }
2061 >
2062 >        return SIGSEGV_RETURN_FAILURE;
2063 > }
2064 >
2065 > // More sophisticated tests for instruction skipper
2066 > static bool arch_insn_skipper_tests()
2067 > {
2068 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
2069 >        static const unsigned char code[] = {
2070 >                0x8a, 0x00,                    // mov    (%eax),%al
2071 >                0x8a, 0x2c, 0x18,              // mov    (%eax,%ebx,1),%ch
2072 >                0x88, 0x20,                    // mov    %ah,(%eax)
2073 >                0x88, 0x08,                    // mov    %cl,(%eax)
2074 >                0x66, 0x8b, 0x00,              // mov    (%eax),%ax
2075 >                0x66, 0x8b, 0x0c, 0x18,        // mov    (%eax,%ebx,1),%cx
2076 >                0x66, 0x89, 0x00,              // mov    %ax,(%eax)
2077 >                0x66, 0x89, 0x0c, 0x18,        // mov    %cx,(%eax,%ebx,1)
2078 >                0x8b, 0x00,                    // mov    (%eax),%eax
2079 >                0x8b, 0x0c, 0x18,              // mov    (%eax,%ebx,1),%ecx
2080 >                0x89, 0x00,                    // mov    %eax,(%eax)
2081 >                0x89, 0x0c, 0x18,              // mov    %ecx,(%eax,%ebx,1)
2082 > #if defined(__x86_64__)
2083 >                0x44, 0x8a, 0x00,              // mov    (%rax),%r8b
2084 >                0x44, 0x8a, 0x20,              // mov    (%rax),%r12b
2085 >                0x42, 0x8a, 0x3c, 0x10,        // mov    (%rax,%r10,1),%dil
2086 >                0x44, 0x88, 0x00,              // mov    %r8b,(%rax)
2087 >                0x44, 0x88, 0x20,              // mov    %r12b,(%rax)
2088 >                0x42, 0x88, 0x3c, 0x10,        // mov    %dil,(%rax,%r10,1)
2089 >                0x66, 0x44, 0x8b, 0x00,        // mov    (%rax),%r8w
2090 >                0x66, 0x42, 0x8b, 0x0c, 0x10,  // mov    (%rax,%r10,1),%cx
2091 >                0x66, 0x44, 0x89, 0x00,        // mov    %r8w,(%rax)
2092 >                0x66, 0x42, 0x89, 0x0c, 0x10,  // mov    %cx,(%rax,%r10,1)
2093 >                0x44, 0x8b, 0x00,              // mov    (%rax),%r8d
2094 >                0x42, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%ecx
2095 >                0x44, 0x89, 0x00,              // mov    %r8d,(%rax)
2096 >                0x42, 0x89, 0x0c, 0x10,        // mov    %ecx,(%rax,%r10,1)
2097 >                0x48, 0x8b, 0x08,              // mov    (%rax),%rcx
2098 >                0x4c, 0x8b, 0x18,              // mov    (%rax),%r11
2099 >                0x4a, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%rcx
2100 >                0x4e, 0x8b, 0x1c, 0x10,        // mov    (%rax,%r10,1),%r11
2101 >                0x48, 0x89, 0x08,              // mov    %rcx,(%rax)
2102 >                0x4c, 0x89, 0x18,              // mov    %r11,(%rax)
2103 >                0x4a, 0x89, 0x0c, 0x10,        // mov    %rcx,(%rax,%r10,1)
2104 >                0x4e, 0x89, 0x1c, 0x10,        // mov    %r11,(%rax,%r10,1)
2105 > #endif
2106 >                0                              // end
2107 >        };
2108 >        const int N_REGS = 20;
2109 >        unsigned long regs[N_REGS];
2110 >        for (int i = 0; i < N_REGS; i++)
2111 >                regs[i] = i;
2112 >        const unsigned long start_code = (unsigned long)&code;
2113 >        regs[X86_REG_EIP] = start_code;
2114 >        while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1)
2115 >                   && ix86_skip_instruction(regs))
2116 >                ; /* simply iterate */
2117 >        return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1);
2118 > #endif
2119 >        return true;
2120   }
2121   #endif
2122  
# Line 794 | Line 2125 | int main(void)
2125          if (vm_init() < 0)
2126                  return 1;
2127  
2128 + #ifdef _WIN32
2129 +        page_size = 4096;
2130 + #else
2131          page_size = getpagesize();
2132 + #endif
2133          if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
2134 <                return 1;
2134 >                return 2;
2135          
2136 +        memset((void *)page, 0, page_size);
2137          if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
2138 <                return 1;
2138 >                return 3;
2139          
2140          if (!sigsegv_install_handler(sigsegv_test_handler))
2141 <                return 1;
806 <        
807 <        page[123] = 45;
808 <        page[123] = 45;
2141 >                return 4;
2142          
2143 + #ifdef __GNUC__
2144 +        b_region = &&L_b_region1;
2145 +        e_region = &&L_e_region1;
2146 + #endif
2147 + L_b_region1:
2148 +        page[REF_INDEX] = REF_VALUE;
2149 +        if (page[REF_INDEX] != REF_VALUE)
2150 +          exit(20);
2151 +        page[REF_INDEX] = REF_VALUE;
2152 + L_e_region1:
2153 +
2154          if (handler_called != 1)
2155 <                return 1;
2155 >                return 5;
2156  
2157   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
2158          if (!sigsegv_install_handler(sigsegv_insn_handler))
2159 <                return 1;
2159 >                return 6;
2160          
2161          if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
2162 <                return 1;
2162 >                return 7;
2163          
2164          for (int i = 0; i < page_size; i++)
2165                  page[i] = (i + 1) % page_size;
2166          
2167          if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
2168 <                return 1;
2168 >                return 8;
2169          
826        sigsegv_set_ignore_state(true);
827
2170   #define TEST_SKIP_INSTRUCTION(TYPE) do {                                \
2171 <                const unsigned int TAG = 0x12345678;                    \
2171 >                const unsigned long TAG = 0x12345678 |                  \
2172 >                (sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0);   \
2173                  TYPE data = *((TYPE *)(page + sizeof(TYPE)));   \
2174 <                volatile unsigned int effect = data + TAG;              \
2174 >                volatile unsigned long effect = data + TAG;             \
2175                  if (effect != TAG)                                                              \
2176 <                        return 1;                                                                       \
2176 >                        return 9;                                                                       \
2177          } while (0)
2178          
2179 + #ifdef __GNUC__
2180 +        b_region = &&L_b_region2;
2181 +        e_region = &&L_e_region2;
2182 + #endif
2183 + L_b_region2:
2184          TEST_SKIP_INSTRUCTION(unsigned char);
2185          TEST_SKIP_INSTRUCTION(unsigned short);
2186          TEST_SKIP_INSTRUCTION(unsigned int);
2187 +        TEST_SKIP_INSTRUCTION(unsigned long);
2188 +        TEST_SKIP_INSTRUCTION(signed char);
2189 +        TEST_SKIP_INSTRUCTION(signed short);
2190 +        TEST_SKIP_INSTRUCTION(signed int);
2191 +        TEST_SKIP_INSTRUCTION(signed long);
2192 + L_e_region2:
2193 +
2194 +        if (!arch_insn_skipper_tests())
2195 +                return 20;
2196   #endif
2197  
2198          vm_exit();

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines