ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
(Generate patch)

Comparing BasiliskII/src/Unix/sigsegv.cpp (file contents):
Revision 1.21 by gbeauche, 2002-10-03T15:49:14Z vs.
Revision 1.47 by gbeauche, 2004-02-16T16:02:48Z

# Line 4 | Line 4
4   *  Derived from Bruno Haible's work on his SIGSEGV library for clisp
5   *  <http://clisp.sourceforge.net/>
6   *
7 < *  Basilisk II (C) 1997-2002 Christian Bauer
7 > *  MacOS X support derived from the post by Timothy J. Wood to the
8 > *  omnigroup macosx-dev list:
9 > *    Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10 > *    tjw@omnigroup.com Sun, 4 Jun 2000
11 > *    www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12 > *
13 > *  Basilisk II (C) 1997-2004 Christian Bauer
14   *
15   *  This program is free software; you can redistribute it and/or modify
16   *  it under the terms of the GNU General Public License as published by
# Line 29 | Line 35
35   #include "config.h"
36   #endif
37  
38 + #include <list>
39 + #include <stdio.h>
40   #include <signal.h>
41   #include "sigsegv.h"
42  
43 + #ifndef NO_STD_NAMESPACE
44 + using std::list;
45 + #endif
46 +
47   // Return value type of a signal handler (standard type if not defined)
48   #ifndef RETSIGTYPE
49   #define RETSIGTYPE void
# Line 40 | Line 52
52   // Type of the system signal handler
53   typedef RETSIGTYPE (*signal_handler)(int);
54  
43 // Is the fault to be ignored?
44 static bool sigsegv_ignore_fault = false;
45
55   // User's SIGSEGV handler
56   static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
57  
# Line 57 | Line 66 | static bool sigsegv_do_install_handler(i
66   *  Instruction decoding aids
67   */
68  
60 // Transfer type
61 enum transfer_type_t {
62        TYPE_UNKNOWN,
63        TYPE_LOAD,
64        TYPE_STORE
65 };
66
69   // Transfer size
70   enum transfer_size_t {
71          SIZE_UNKNOWN,
72          SIZE_BYTE,
73 <        SIZE_WORD,
74 <        SIZE_LONG
73 >        SIZE_WORD, // 2 bytes
74 >        SIZE_LONG, // 4 bytes
75 >        SIZE_QUAD, // 8 bytes
76   };
77  
78 + // Transfer type
79 + typedef sigsegv_transfer_type_t transfer_type_t;
80 +
81   #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
82   // Addressing mode
83   enum addressing_mode_t {
# Line 103 | Line 109 | static void powerpc_decode_instruction(i
109          signed int imm = (signed short)(opcode & 0xffff);
110          
111          // Analyze opcode
112 <        transfer_type_t transfer_type = TYPE_UNKNOWN;
112 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
113          transfer_size_t transfer_size = SIZE_UNKNOWN;
114          addressing_mode_t addr_mode = MODE_UNKNOWN;
115          switch (primop) {
116          case 31:
117                  switch (exop) {
118                  case 23:        // lwzx
119 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
119 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
120                  case 55:        // lwzux
121 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
121 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
122                  case 87:        // lbzx
123 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
123 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
124                  case 119:       // lbzux
125 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
125 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
126                  case 151:       // stwx
127 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
127 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
128                  case 183:       // stwux
129 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
129 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
130                  case 215:       // stbx
131 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
131 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
132                  case 247:       // stbux
133 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
133 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
134                  case 279:       // lhzx
135 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
135 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
136                  case 311:       // lhzux
137 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
137 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
138                  case 343:       // lhax
139 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
139 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
140                  case 375:       // lhaux
141 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
141 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
142                  case 407:       // sthx
143 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
143 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
144                  case 439:       // sthux
145 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
145 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
146                  }
147                  break;
148          
149          case 32:        // lwz
150 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
150 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
151          case 33:        // lwzu
152 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
152 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
153          case 34:        // lbz
154 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
154 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
155          case 35:        // lbzu
156 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
156 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
157          case 36:        // stw
158 <                transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
158 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
159          case 37:        // stwu
160 <                transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
160 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
161          case 38:        // stb
162 <                transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
162 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
163          case 39:        // stbu
164 <                transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
164 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
165          case 40:        // lhz
166 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
166 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
167          case 41:        // lhzu
168 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
168 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
169          case 42:        // lha
170 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
170 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
171          case 43:        // lhau
172 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
172 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
173          case 44:        // sth
174 <                transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
174 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
175          case 45:        // sthu
176 <                transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
176 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
177          }
178          
179          // Calculate effective address
# Line 214 | Line 220 | static void powerpc_decode_instruction(i
220   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
221   #endif
222   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, siginfo_t *sip, void *scp
223 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
224 + #define SIGSEGV_FAULT_HANDLER_ARGS              sip, scp
225   #define SIGSEGV_FAULT_ADDRESS                   sip->si_addr
226 < #if defined(__NetBSD__) || defined(__FreeBSD__)
226 > #if (defined(sgi) || defined(__sgi))
227 > #include <ucontext.h>
228 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
229 > #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)SIGSEGV_CONTEXT_REGS[CTX_EPC]
230 > #if (defined(mips) || defined(__mips))
231 > #define SIGSEGV_REGISTER_FILE                   SIGSEGV_CONTEXT_REGS
232 > #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
233 > #endif
234 > #endif
235 > #if defined(__sun__)
236 > #if (defined(sparc) || defined(__sparc__))
237 > #include <sys/stack.h>
238 > #include <sys/regset.h>
239 > #include <sys/ucontext.h>
240 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
241 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[REG_PC]
242 > #define SIGSEGV_SPARC_GWINDOWS                  (((ucontext_t *)scp)->uc_mcontext.gwins)
243 > #define SIGSEGV_SPARC_RWINDOW                   (struct rwindow *)((char *)SIGSEGV_CONTEXT_REGS[REG_SP] + STACK_BIAS)
244 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)SIGSEGV_CONTEXT_REGS), SIGSEGV_SPARC_GWINDOWS, SIGSEGV_SPARC_RWINDOW
245 > #define SIGSEGV_SKIP_INSTRUCTION                sparc_skip_instruction
246 > #endif
247 > #endif
248 > #if defined(__FreeBSD__)
249   #if (defined(i386) || defined(__i386__))
250   #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_eip)
251 < #define SIGSEGV_REGISTER_FILE                   ((unsigned int *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
251 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
252   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
253   #endif
254   #endif
# Line 227 | Line 257 | static void powerpc_decode_instruction(i
257   #include <sys/ucontext.h>
258   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
259   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
260 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)SIGSEGV_CONTEXT_REGS
260 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
261   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
262   #endif
263   #if (defined(x86_64) || defined(__x86_64__))
# Line 235 | Line 265 | static void powerpc_decode_instruction(i
265   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
266   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
267   #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
268 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
269   #endif
270   #if (defined(ia64) || defined(__ia64__))
271   #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
# Line 246 | Line 277 | static void powerpc_decode_instruction(i
277   #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned int *)(SIGSEGV_CONTEXT_REGS->gpr)
278   #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
279   #endif
280 + #if (defined(hppa) || defined(__hppa__))
281 + #undef  SIGSEGV_FAULT_ADDRESS
282 + #define SIGSEGV_FAULT_ADDRESS                   sip->si_ptr
283 + #endif
284 + #if (defined(arm) || defined(__arm__))
285 + #include <asm/ucontext.h> /* use kernel structure, glibc may not be in sync */
286 + #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
287 + #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.arm_pc)
288 + #define SIGSEGV_REGISTER_FILE                   (&SIGSEGV_CONTEXT_REGS.arm_r0)
289 + #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
290 + #endif
291   #endif
292   #endif
293  
# Line 256 | Line 298 | static void powerpc_decode_instruction(i
298   #if (defined(i386) || defined(__i386__))
299   #include <asm/sigcontext.h>
300   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext scs
301 < #define SIGSEGV_FAULT_ADDRESS                   scs.cr2
302 < #define SIGSEGV_FAULT_INSTRUCTION               scs.eip
303 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)(&scs)
301 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
302 > #define SIGSEGV_FAULT_HANDLER_ARGS              &scs
303 > #define SIGSEGV_FAULT_ADDRESS                   scp->cr2
304 > #define SIGSEGV_FAULT_INSTRUCTION               scp->eip
305 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)scp
306   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
307   #endif
308   #if (defined(sparc) || defined(__sparc__))
309   #include <asm/sigcontext.h>
310   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
311 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
312   #define SIGSEGV_FAULT_ADDRESS                   addr
313   #endif
314   #if (defined(powerpc) || defined(__powerpc__))
315   #include <asm/sigcontext.h>
316   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext *scp
317 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, scp
318   #define SIGSEGV_FAULT_ADDRESS                   scp->regs->dar
319   #define SIGSEGV_FAULT_INSTRUCTION               scp->regs->nip
320   #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&scp->regs->nip, (unsigned int *)(scp->regs->gpr)
# Line 277 | Line 323 | static void powerpc_decode_instruction(i
323   #if (defined(alpha) || defined(__alpha__))
324   #include <asm/sigcontext.h>
325   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
326 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
327   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
328   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
329 <
330 < // From Boehm's GC 6.0alpha8
331 < static sigsegv_address_t get_fault_address(struct sigcontext *scp)
332 < {
333 <        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
334 <        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
335 <        fault_address += (signed long)(signed short)(instruction & 0xffff);
336 <        return (sigsegv_address_t)fault_address;
337 < }
329 > #endif
330 > #if (defined(arm) || defined(__arm__))
331 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int r1, int r2, int r3, struct sigcontext sc
332 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
333 > #define SIGSEGV_FAULT_HANDLER_ARGS              &sc
334 > #define SIGSEGV_FAULT_ADDRESS                   scp->fault_address
335 > #define SIGSEGV_FAULT_INSTRUCTION               scp->arm_pc
336 > #define SIGSEGV_REGISTER_FILE                   &scp->arm_r0
337 > #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
338   #endif
339   #endif
340  
341   // Irix 5 or 6 on MIPS
342 < #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
342 > #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(_SYSTYPE_SVR4))
343   #include <ucontext.h>
344   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
345 < #define SIGSEGV_FAULT_ADDRESS                   scp->sc_badvaddr
345 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
346 > #define SIGSEGV_FAULT_ADDRESS                   (unsigned long)scp->sc_badvaddr
347 > #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)scp->sc_pc
348   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
349   #endif
350  
351   // HP-UX
352   #if (defined(hpux) || defined(__hpux__))
353   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
354 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
355   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_sl.sl_ss.ss_narrow.ss_cr21
356   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
357   #endif
# Line 310 | Line 360 | static sigsegv_address_t get_fault_addre
360   #if defined(__osf__)
361   #include <ucontext.h>
362   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
363 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
364   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_traparg_a0
365   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
366   #endif
# Line 317 | Line 368 | static sigsegv_address_t get_fault_addre
368   // AIX
369   #if defined(_AIX)
370   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
371 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
372   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_jmpbuf.jmp_context.o_vaddr
373   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
374   #endif
375  
376 < // NetBSD or FreeBSD
377 < #if defined(__NetBSD__) || defined(__FreeBSD__)
376 > // NetBSD
377 > #if defined(__NetBSD__)
378   #if (defined(m68k) || defined(__m68k__))
379   #include <m68k/frame.h>
380   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
381 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
382   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
383   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
384  
# Line 349 | Line 402 | static sigsegv_address_t get_fault_addre
402          }
403          return (sigsegv_address_t)fault_addr;
404   }
405 < #else
406 < #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, void *scp, char *addr
407 < #define SIGSEGV_FAULT_ADDRESS                   addr
405 > #endif
406 > #if (defined(alpha) || defined(__alpha__))
407 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
408 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
409 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
410   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
411   #endif
412 + #if (defined(i386) || defined(__i386__))
413 + #error "FIXME: need to decode instruction and compute EA"
414 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
415 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
416 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
417 + #endif
418 + #endif
419 + #if defined(__FreeBSD__)
420 + #if (defined(i386) || defined(__i386__))
421 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
422 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
423 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
424 + #define SIGSEGV_FAULT_ADDRESS                   addr
425 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_eip
426 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&scp->sc_edi)
427 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
428 + #endif
429 + #if (defined(alpha) || defined(__alpha__))
430 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
431 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, char *addr, struct sigcontext *scp
432 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, addr, scp
433 + #define SIGSEGV_FAULT_ADDRESS                   addr
434 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
435 + #endif
436 + #endif
437 +
438 + // Extract fault address out of a sigcontext
439 + #if (defined(alpha) || defined(__alpha__))
440 + // From Boehm's GC 6.0alpha8
441 + static sigsegv_address_t get_fault_address(struct sigcontext *scp)
442 + {
443 +        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
444 +        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
445 +        fault_address += (signed long)(signed short)(instruction & 0xffff);
446 +        return (sigsegv_address_t)fault_address;
447 + }
448   #endif
449  
450 < // MacOS X
450 >
451 > // MacOS X, not sure which version this works in. Under 10.1
452 > // vm_protect does not appear to work from a signal handler. Under
453 > // 10.2 signal handlers get siginfo type arguments but the si_addr
454 > // field is the address of the faulting instruction and not the
455 > // address that caused the SIGBUS. Maybe this works in 10.0? In any
456 > // case with Mach exception handlers there is a way to do what this
457 > // was meant to do.
458 > #ifndef HAVE_MACH_EXCEPTIONS
459   #if defined(__APPLE__) && defined(__MACH__)
460   #if (defined(ppc) || defined(__ppc__))
461   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
462 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
463   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
464   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_ir
465   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
# Line 379 | Line 479 | static sigsegv_address_t get_fault_addre
479   #endif
480   #endif
481   #endif
482 + #endif
483 +
484 + #if HAVE_MACH_EXCEPTIONS
485 +
486 + // This can easily be extended to other Mach systems, but really who
487 + // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
488 + // Mach 2.5/3.0?
489 + #if defined(__APPLE__) && defined(__MACH__)
490 +
491 + #include <sys/types.h>
492 + #include <stdlib.h>
493 + #include <stdio.h>
494 + #include <pthread.h>
495 +
496 + /*
497 + * If you are familiar with MIG then you will understand the frustration
498 + * that was necessary to get these embedded into C++ code by hand.
499 + */
500 + extern "C" {
501 + #include <mach/mach.h>
502 + #include <mach/mach_error.h>
503 +
504 + extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
505 + extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
506 +        mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
507 + extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
508 +        exception_type_t, exception_data_t, mach_msg_type_number_t);
509 + extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
510 +        exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
511 +        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
512 + extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
513 +        exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
514 +        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
515 + }
516 +
517 + // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
518 + #define HANDLER_COUNT 64
519 +
520 + // structure to tuck away existing exception handlers
521 + typedef struct _ExceptionPorts {
522 +        mach_msg_type_number_t maskCount;
523 +        exception_mask_t masks[HANDLER_COUNT];
524 +        exception_handler_t handlers[HANDLER_COUNT];
525 +        exception_behavior_t behaviors[HANDLER_COUNT];
526 +        thread_state_flavor_t flavors[HANDLER_COUNT];
527 + } ExceptionPorts;
528 +
529 + // exception handler thread
530 + static pthread_t exc_thread;
531 +
532 + // place where old exception handler info is stored
533 + static ExceptionPorts ports;
534 +
535 + // our exception port
536 + static mach_port_t _exceptionPort = MACH_PORT_NULL;
537 +
538 + #define MACH_CHECK_ERROR(name,ret) \
539 + if (ret != KERN_SUCCESS) { \
540 +        mach_error(#name, ret); \
541 +        exit (1); \
542 + }
543 +
544 + #define SIGSEGV_FAULT_ADDRESS                   code[1]
545 + #define SIGSEGV_FAULT_INSTRUCTION               get_fault_instruction(thread, state)
546 + #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  ((code[0] == KERN_PROTECTION_FAILURE) ? sigsegv_fault_handler(ADDR, IP) : SIGSEGV_RETURN_FAILURE)
547 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   mach_port_t thread, exception_data_t code, ppc_thread_state_t *state
548 + #define SIGSEGV_FAULT_HANDLER_ARGS              thread, code, &state
549 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
550 + #define SIGSEGV_REGISTER_FILE                   &state->srr0, &state->r0
551 +
552 + // Given a suspended thread, stuff the current instruction and
553 + // registers into state.
554 + //
555 + // It would have been nice to have this be ppc/x86 independant which
556 + // could have been done easily with a thread_state_t instead of
557 + // ppc_thread_state_t, but because of the way this is called it is
558 + // easier to do it this way.
559 + #if (defined(ppc) || defined(__ppc__))
560 + static inline sigsegv_address_t get_fault_instruction(mach_port_t thread, ppc_thread_state_t *state)
561 + {
562 +        kern_return_t krc;
563 +        mach_msg_type_number_t count;
564 +
565 +        count = MACHINE_THREAD_STATE_COUNT;
566 +        krc = thread_get_state(thread, MACHINE_THREAD_STATE, (thread_state_t)state, &count);
567 +        MACH_CHECK_ERROR (thread_get_state, krc);
568 +
569 +        return (sigsegv_address_t)state->srr0;
570 + }
571 + #endif
572 +
573 + // Since there can only be one exception thread running at any time
574 + // this is not a problem.
575 + #define MSG_SIZE 512
576 + static char msgbuf[MSG_SIZE];
577 + static char replybuf[MSG_SIZE];
578 +
579 + /*
580 + * This is the entry point for the exception handler thread. The job
581 + * of this thread is to wait for exception messages on the exception
582 + * port that was setup beforehand and to pass them on to exc_server.
583 + * exc_server is a MIG generated function that is a part of Mach.
584 + * Its job is to decide what to do with the exception message. In our
585 + * case exc_server calls catch_exception_raise on our behalf. After
586 + * exc_server returns, it is our responsibility to send the reply.
587 + */
588 + static void *
589 + handleExceptions(void *priv)
590 + {
591 +        mach_msg_header_t *msg, *reply;
592 +        kern_return_t krc;
593 +
594 +        msg = (mach_msg_header_t *)msgbuf;
595 +        reply = (mach_msg_header_t *)replybuf;
596 +
597 +        for (;;) {
598 +                krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
599 +                                _exceptionPort, 0, MACH_PORT_NULL);
600 +                MACH_CHECK_ERROR(mach_msg, krc);
601 +
602 +                if (!exc_server(msg, reply)) {
603 +                        fprintf(stderr, "exc_server hated the message\n");
604 +                        exit(1);
605 +                }
606 +
607 +                krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
608 +                                 msg->msgh_local_port, 0, MACH_PORT_NULL);
609 +                if (krc != KERN_SUCCESS) {
610 +                        fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
611 +                                krc, mach_error_string(krc));
612 +                        exit(1);
613 +                }
614 +        }
615 + }
616 + #endif
617 + #endif
618  
619  
620   /*
# Line 387 | Line 623 | static sigsegv_address_t get_fault_addre
623  
624   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
625   // Decode and skip X86 instruction
626 < #if (defined(i386) || defined(__i386__))
626 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
627   #if defined(__linux__)
628   enum {
629 + #if (defined(i386) || defined(__i386__))
630          X86_REG_EIP = 14,
631          X86_REG_EAX = 11,
632          X86_REG_ECX = 10,
# Line 399 | Line 636 | enum {
636          X86_REG_EBP = 6,
637          X86_REG_ESI = 5,
638          X86_REG_EDI = 4
639 + #endif
640 + #if defined(__x86_64__)
641 +        X86_REG_R8  = 0,
642 +        X86_REG_R9  = 1,
643 +        X86_REG_R10 = 2,
644 +        X86_REG_R11 = 3,
645 +        X86_REG_R12 = 4,
646 +        X86_REG_R13 = 5,
647 +        X86_REG_R14 = 6,
648 +        X86_REG_R15 = 7,
649 +        X86_REG_EDI = 8,
650 +        X86_REG_ESI = 9,
651 +        X86_REG_EBP = 10,
652 +        X86_REG_EBX = 11,
653 +        X86_REG_EDX = 12,
654 +        X86_REG_EAX = 13,
655 +        X86_REG_ECX = 14,
656 +        X86_REG_ESP = 15,
657 +        X86_REG_EIP = 16
658 + #endif
659   };
660   #endif
661   #if defined(__NetBSD__) || defined(__FreeBSD__)
662   enum {
663 + #if (defined(i386) || defined(__i386__))
664          X86_REG_EIP = 10,
665          X86_REG_EAX = 7,
666          X86_REG_ECX = 6,
# Line 412 | Line 670 | enum {
670          X86_REG_EBP = 2,
671          X86_REG_ESI = 1,
672          X86_REG_EDI = 0
673 + #endif
674   };
675   #endif
676   // FIXME: this is partly redundant with the instruction decoding phase
# Line 448 | Line 707 | static inline int ix86_step_over_modrm(u
707          return offset;
708   }
709  
710 < static bool ix86_skip_instruction(unsigned int * regs)
710 > static bool ix86_skip_instruction(unsigned long * regs)
711   {
712          unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
713  
714          if (eip == 0)
715                  return false;
716          
717 <        transfer_type_t transfer_type = TYPE_UNKNOWN;
717 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
718          transfer_size_t transfer_size = SIZE_LONG;
719          
720          int reg = -1;
721          int len = 0;
722 <        
722 >
723 > #if DEBUG
724 >        printf("IP: %p [%02x %02x %02x %02x...]\n",
725 >                   eip, eip[0], eip[1], eip[2], eip[3]);
726 > #endif
727 >
728          // Operand size prefix
729          if (*eip == 0x66) {
730                  eip++;
# Line 468 | Line 732 | static bool ix86_skip_instruction(unsign
732                  transfer_size = SIZE_WORD;
733          }
734  
735 +        // REX prefix
736 + #if defined(__x86_64__)
737 +        struct rex_t {
738 +                unsigned char W;
739 +                unsigned char R;
740 +                unsigned char X;
741 +                unsigned char B;
742 +        };
743 +        rex_t rex = { 0, 0, 0, 0 };
744 +        bool has_rex = false;
745 +        if ((*eip & 0xf0) == 0x40) {
746 +                has_rex = true;
747 +                const unsigned char b = *eip;
748 +                rex.W = b & (1 << 3);
749 +                rex.R = b & (1 << 2);
750 +                rex.X = b & (1 << 1);
751 +                rex.B = b & (1 << 0);
752 + #if DEBUG
753 +                printf("REX: %c,%c,%c,%c\n",
754 +                           rex.W ? 'W' : '_',
755 +                           rex.R ? 'R' : '_',
756 +                           rex.X ? 'X' : '_',
757 +                           rex.B ? 'B' : '_');
758 + #endif
759 +                eip++;
760 +                len++;
761 +                if (rex.W)
762 +                        transfer_size = SIZE_QUAD;
763 +        }
764 + #else
765 +        const bool has_rex = false;
766 + #endif
767 +
768          // Decode instruction
769 +        int target_size = SIZE_UNKNOWN;
770          switch (eip[0]) {
771          case 0x0f:
772 +                target_size = transfer_size;
773              switch (eip[1]) {
774 +                case 0xbe: // MOVSX r32, r/m8
775              case 0xb6: // MOVZX r32, r/m8
776 +                        transfer_size = SIZE_BYTE;
777 +                        goto do_mov_extend;
778 +                case 0xbf: // MOVSX r32, r/m16
779              case 0xb7: // MOVZX r32, r/m16
780 <                switch (eip[2] & 0xc0) {
781 <                case 0x80:
782 <                    reg = (eip[2] >> 3) & 7;
783 <                    transfer_type = TYPE_LOAD;
784 <                    break;
785 <                case 0x40:
786 <                    reg = (eip[2] >> 3) & 7;
787 <                    transfer_type = TYPE_LOAD;
788 <                    break;
789 <                case 0x00:
790 <                    reg = (eip[2] >> 3) & 7;
791 <                    transfer_type = TYPE_LOAD;
792 <                    break;
793 <                }
794 <                len += 3 + ix86_step_over_modrm(eip + 2);
795 <                break;
780 >                        transfer_size = SIZE_WORD;
781 >                        goto do_mov_extend;
782 >                  do_mov_extend:
783 >                        switch (eip[2] & 0xc0) {
784 >                        case 0x80:
785 >                                reg = (eip[2] >> 3) & 7;
786 >                                transfer_type = SIGSEGV_TRANSFER_LOAD;
787 >                                break;
788 >                        case 0x40:
789 >                                reg = (eip[2] >> 3) & 7;
790 >                                transfer_type = SIGSEGV_TRANSFER_LOAD;
791 >                                break;
792 >                        case 0x00:
793 >                                reg = (eip[2] >> 3) & 7;
794 >                                transfer_type = SIGSEGV_TRANSFER_LOAD;
795 >                                break;
796 >                        }
797 >                        len += 3 + ix86_step_over_modrm(eip + 2);
798 >                        break;
799              }
800            break;
801          case 0x8a: // MOV r8, r/m8
# Line 498 | Line 804 | static bool ix86_skip_instruction(unsign
804                  switch (eip[1] & 0xc0) {
805                  case 0x80:
806                          reg = (eip[1] >> 3) & 7;
807 <                        transfer_type = TYPE_LOAD;
807 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
808                          break;
809                  case 0x40:
810                          reg = (eip[1] >> 3) & 7;
811 <                        transfer_type = TYPE_LOAD;
811 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
812                          break;
813                  case 0x00:
814                          reg = (eip[1] >> 3) & 7;
815 <                        transfer_type = TYPE_LOAD;
815 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
816                          break;
817                  }
818                  len += 2 + ix86_step_over_modrm(eip + 1);
# Line 517 | Line 823 | static bool ix86_skip_instruction(unsign
823                  switch (eip[1] & 0xc0) {
824                  case 0x80:
825                          reg = (eip[1] >> 3) & 7;
826 <                        transfer_type = TYPE_STORE;
826 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
827                          break;
828                  case 0x40:
829                          reg = (eip[1] >> 3) & 7;
830 <                        transfer_type = TYPE_STORE;
830 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
831                          break;
832                  case 0x00:
833                          reg = (eip[1] >> 3) & 7;
834 <                        transfer_type = TYPE_STORE;
834 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
835                          break;
836                  }
837                  len += 2 + ix86_step_over_modrm(eip + 1);
838                  break;
839          }
840 +        if (target_size == SIZE_UNKNOWN)
841 +                target_size = transfer_size;
842  
843 <        if (transfer_type == TYPE_UNKNOWN) {
843 >        if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
844                  // Unknown machine code, let it crash. Then patch the decoder
845                  return false;
846          }
847  
848 <        if (transfer_type == TYPE_LOAD && reg != -1) {
849 <                static const int x86_reg_map[8] = {
848 > #if defined(__x86_64__)
849 >        if (rex.R)
850 >                reg += 8;
851 > #endif
852 >
853 >        if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
854 >                static const int x86_reg_map[] = {
855                          X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
856 <                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI
856 >                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI,
857 > #if defined(__x86_64__)
858 >                        X86_REG_R8,  X86_REG_R9,  X86_REG_R10, X86_REG_R11,
859 >                        X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15,
860 > #endif
861                  };
862                  
863 <                if (reg < 0 || reg >= 8)
863 >                if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1))
864                          return false;
865  
866 +                // Set 0 to the relevant register part
867 +                // NOTE: this is only valid for MOV alike instructions
868                  int rloc = x86_reg_map[reg];
869 <                switch (transfer_size) {
869 >                switch (target_size) {
870                  case SIZE_BYTE:
871 <                        regs[rloc] = (regs[rloc] & ~0xff);
871 >                        if (has_rex || reg < 4)
872 >                                regs[rloc] = (regs[rloc] & ~0x00ffL);
873 >                        else {
874 >                                rloc = x86_reg_map[reg - 4];
875 >                                regs[rloc] = (regs[rloc] & ~0xff00L);
876 >                        }
877                          break;
878                  case SIZE_WORD:
879 <                        regs[rloc] = (regs[rloc] & ~0xffff);
879 >                        regs[rloc] = (regs[rloc] & ~0xffffL);
880                          break;
881                  case SIZE_LONG:
882 +                case SIZE_QUAD: // zero-extension
883                          regs[rloc] = 0;
884                          break;
885                  }
# Line 562 | Line 887 | static bool ix86_skip_instruction(unsign
887  
888   #if DEBUG
889          printf("%08x: %s %s access", regs[X86_REG_EIP],
890 <                   transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : "long",
891 <                   transfer_type == TYPE_LOAD ? "read" : "write");
890 >                   transfer_size == SIZE_BYTE ? "byte" :
891 >                   transfer_size == SIZE_WORD ? "word" :
892 >                   transfer_size == SIZE_LONG ? "long" :
893 >                   transfer_size == SIZE_QUAD ? "quad" : "unknown",
894 >                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
895          
896          if (reg != -1) {
897 <                static const char * x86_reg_str_map[8] = {
898 <                        "eax", "ecx", "edx", "ebx",
899 <                        "esp", "ebp", "esi", "edi"
897 >                static const char * x86_byte_reg_str_map[] = {
898 >                        "al",   "cl",   "dl",   "bl",
899 >                        "spl",  "bpl",  "sil",  "dil",
900 >                        "r8b",  "r9b",  "r10b", "r11b",
901 >                        "r12b", "r13b", "r14b", "r15b",
902 >                        "ah",   "ch",   "dh",   "bh",
903 >                };
904 >                static const char * x86_word_reg_str_map[] = {
905 >                        "ax",   "cx",   "dx",   "bx",
906 >                        "sp",   "bp",   "si",   "di",
907 >                        "r8w",  "r9w",  "r10w", "r11w",
908 >                        "r12w", "r13w", "r14w", "r15w",
909 >                };
910 >                static const char *x86_long_reg_str_map[] = {
911 >                        "eax",  "ecx",  "edx",  "ebx",
912 >                        "esp",  "ebp",  "esi",  "edi",
913 >                        "r8d",  "r9d",  "r10d", "r11d",
914 >                        "r12d", "r13d", "r14d", "r15d",
915                  };
916 <                printf(" %s register %%%s", transfer_type == TYPE_LOAD ? "to" : "from", x86_reg_str_map[reg]);
916 >                static const char *x86_quad_reg_str_map[] = {
917 >                        "rax", "rcx", "rdx", "rbx",
918 >                        "rsp", "rbp", "rsi", "rdi",
919 >                        "r8",  "r9",  "r10", "r11",
920 >                        "r12", "r13", "r14", "r15",
921 >                };
922 >                const char * reg_str = NULL;
923 >                switch (target_size) {
924 >                case SIZE_BYTE:
925 >                        reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg];
926 >                        break;
927 >                case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break;
928 >                case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break;
929 >                case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break;
930 >                }
931 >                if (reg_str)
932 >                        printf(" %s register %%%s",
933 >                                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from",
934 >                                   reg_str);
935          }
936          printf(", %d bytes instruction\n", len);
937   #endif
# Line 587 | Line 948 | static bool powerpc_skip_instruction(uns
948          instruction_t instr;
949          powerpc_decode_instruction(&instr, *nip_p, regs);
950          
951 <        if (instr.transfer_type == TYPE_UNKNOWN) {
951 >        if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
952                  // Unknown machine code, let it crash. Then patch the decoder
953                  return false;
954          }
# Line 595 | Line 956 | static bool powerpc_skip_instruction(uns
956   #if DEBUG
957          printf("%08x: %s %s access", *nip_p,
958                     instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : "long",
959 <                   instr.transfer_type == TYPE_LOAD ? "read" : "write");
959 >                   instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
960          
961          if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
962                  printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
963 <        if (instr.transfer_type == TYPE_LOAD)
963 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
964                  printf(" r%d (rd = 0)\n", instr.rd);
965   #endif
966          
967          if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
968                  regs[instr.ra] = instr.addr;
969 <        if (instr.transfer_type == TYPE_LOAD)
969 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
970                  regs[instr.rd] = 0;
971          
972          *nip_p += 4;
973          return true;
974   }
975   #endif
976 +
977 + // Decode and skip MIPS instruction
978 + #if (defined(mips) || defined(__mips))
979 + enum {
980 + #if (defined(sgi) || defined(__sgi))
981 +  MIPS_REG_EPC = 35,
982 + #endif
983 + };
984 + static bool mips_skip_instruction(greg_t * regs)
985 + {
986 +  unsigned int * epc = (unsigned int *)(unsigned long)regs[MIPS_REG_EPC];
987 +
988 +  if (epc == 0)
989 +        return false;
990 +
991 + #if DEBUG
992 +  printf("IP: %p [%08x]\n", epc, epc[0]);
993 + #endif
994 +
995 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
996 +  transfer_size_t transfer_size = SIZE_LONG;
997 +  int direction = 0;
998 +
999 +  const unsigned int opcode = epc[0];
1000 +  switch (opcode >> 26) {
1001 +  case 32: // Load Byte
1002 +  case 36: // Load Byte Unsigned
1003 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1004 +        transfer_size = SIZE_BYTE;
1005 +        break;
1006 +  case 33: // Load Halfword
1007 +  case 37: // Load Halfword Unsigned
1008 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1009 +        transfer_size = SIZE_WORD;
1010 +        break;
1011 +  case 35: // Load Word
1012 +  case 39: // Load Word Unsigned
1013 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1014 +        transfer_size = SIZE_LONG;
1015 +        break;
1016 +  case 34: // Load Word Left
1017 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1018 +        transfer_size = SIZE_LONG;
1019 +        direction = -1;
1020 +        break;
1021 +  case 38: // Load Word Right
1022 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1023 +        transfer_size = SIZE_LONG;
1024 +        direction = 1;
1025 +        break;
1026 +  case 55: // Load Doubleword
1027 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1028 +        transfer_size = SIZE_QUAD;
1029 +        break;
1030 +  case 26: // Load Doubleword Left
1031 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1032 +        transfer_size = SIZE_QUAD;
1033 +        direction = -1;
1034 +        break;
1035 +  case 27: // Load Doubleword Right
1036 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1037 +        transfer_size = SIZE_QUAD;
1038 +        direction = 1;
1039 +        break;
1040 +  case 40: // Store Byte
1041 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1042 +        transfer_size = SIZE_BYTE;
1043 +        break;
1044 +  case 41: // Store Halfword
1045 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1046 +        transfer_size = SIZE_WORD;
1047 +        break;
1048 +  case 43: // Store Word
1049 +  case 42: // Store Word Left
1050 +  case 46: // Store Word Right
1051 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1052 +        transfer_size = SIZE_LONG;
1053 +        break;
1054 +  case 63: // Store Doubleword
1055 +  case 44: // Store Doubleword Left
1056 +  case 45: // Store Doubleword Right
1057 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1058 +        transfer_size = SIZE_QUAD;
1059 +        break;
1060 +  /* Misc instructions unlikely to be used within CPU emulators */
1061 +  case 48: // Load Linked Word
1062 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1063 +        transfer_size = SIZE_LONG;
1064 +        break;
1065 +  case 52: // Load Linked Doubleword
1066 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1067 +        transfer_size = SIZE_QUAD;
1068 +        break;
1069 +  case 56: // Store Conditional Word
1070 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1071 +        transfer_size = SIZE_LONG;
1072 +        break;
1073 +  case 60: // Store Conditional Doubleword
1074 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1075 +        transfer_size = SIZE_QUAD;
1076 +        break;
1077 +  }
1078 +
1079 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1080 +        // Unknown machine code, let it crash. Then patch the decoder
1081 +        return false;
1082 +  }
1083 +
1084 +  // Zero target register in case of a load operation
1085 +  const int reg = (opcode >> 16) & 0x1f;
1086 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD) {
1087 +        if (direction == 0)
1088 +          regs[reg] = 0;
1089 +        else {
1090 +          // FIXME: untested code
1091 +          unsigned long ea = regs[(opcode >> 21) & 0x1f];
1092 +          ea += (signed long)(signed int)(signed short)(opcode & 0xffff);
1093 +          const int offset = ea & (transfer_size == SIZE_LONG ? 3 : 7);
1094 +          unsigned long value;
1095 +          if (direction > 0) {
1096 +                const unsigned long rmask = ~((1L << ((offset + 1) * 8)) - 1);
1097 +                value = regs[reg] & rmask;
1098 +          }
1099 +          else {
1100 +                const unsigned long lmask = (1L << (offset * 8)) - 1;
1101 +                value = regs[reg] & lmask;
1102 +          }
1103 +          // restore most significant bits
1104 +          if (transfer_size == SIZE_LONG)
1105 +                value = (signed long)(signed int)value;
1106 +          regs[reg] = value;
1107 +        }
1108 +  }
1109 +
1110 + #if DEBUG
1111 + #if (defined(_ABIN32) || defined(_ABI64))
1112 +  static const char * mips_gpr_names[32] = {
1113 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1114 +        "t0",   "t1",   "t2",   "t3",   "t4",   "t5",   "t6",   "t7",
1115 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1116 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1117 +  };
1118 + #else
1119 +  static const char * mips_gpr_names[32] = {
1120 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1121 +        "a4",   "a5",   "a6",   "a7",   "t0",   "t1",   "t2",   "t3",
1122 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1123 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1124 +  };
1125 + #endif
1126 +  printf("%s %s register %s\n",
1127 +                 transfer_size == SIZE_BYTE ? "byte" :
1128 +                 transfer_size == SIZE_WORD ? "word" :
1129 +                 transfer_size == SIZE_LONG ? "long" :
1130 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1131 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1132 +                 mips_gpr_names[reg]);
1133 + #endif
1134 +
1135 +  regs[MIPS_REG_EPC] += 4;
1136 +  return true;
1137 + }
1138 + #endif
1139 +
1140 + // Decode and skip SPARC instruction
1141 + #if (defined(sparc) || defined(__sparc__))
1142 + enum {
1143 + #if (defined(__sun__))
1144 +  SPARC_REG_G1 = REG_G1,
1145 +  SPARC_REG_O0 = REG_O0,
1146 +  SPARC_REG_PC = REG_PC,
1147 + #endif
1148 + };
1149 + static bool sparc_skip_instruction(unsigned long * regs, gwindows_t * gwins, struct rwindow * rwin)
1150 + {
1151 +  unsigned int * pc = (unsigned int *)regs[SPARC_REG_PC];
1152 +
1153 +  if (pc == 0)
1154 +        return false;
1155 +
1156 + #if DEBUG
1157 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1158 + #endif
1159 +
1160 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1161 +  transfer_size_t transfer_size = SIZE_LONG;
1162 +  bool register_pair = false;
1163 +
1164 +  const unsigned int opcode = pc[0];
1165 +  if ((opcode >> 30) != 3)
1166 +        return false;
1167 +  switch ((opcode >> 19) & 0x3f) {
1168 +  case 9: // Load Signed Byte
1169 +  case 1: // Load Unsigned Byte
1170 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1171 +        transfer_size = SIZE_BYTE;
1172 +        break;
1173 +  case 10:// Load Signed Halfword
1174 +  case 2: // Load Unsigned Word
1175 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1176 +        transfer_size = SIZE_WORD;
1177 +        break;
1178 +  case 8: // Load Word
1179 +  case 0: // Load Unsigned Word
1180 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1181 +        transfer_size = SIZE_LONG;
1182 +        break;
1183 +  case 11:// Load Extended Word
1184 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1185 +        transfer_size = SIZE_QUAD;
1186 +        break;
1187 +  case 3: // Load Doubleword
1188 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1189 +        transfer_size = SIZE_LONG;
1190 +        register_pair = true;
1191 +        break;
1192 +  case 5: // Store Byte
1193 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1194 +        transfer_size = SIZE_BYTE;
1195 +        break;
1196 +  case 6: // Store Halfword
1197 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1198 +        transfer_size = SIZE_WORD;
1199 +        break;
1200 +  case 4: // Store Word
1201 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1202 +        transfer_size = SIZE_LONG;
1203 +        break;
1204 +  case 14:// Store Extended Word
1205 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1206 +        transfer_size = SIZE_QUAD;
1207 +        break;
1208 +  case 7: // Store Doubleword
1209 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1210 +        transfer_size = SIZE_WORD;
1211 +        register_pair = true;
1212 +        break;
1213 +  }
1214 +
1215 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1216 +        // Unknown machine code, let it crash. Then patch the decoder
1217 +        return false;
1218 +  }
1219 +
1220 +  // Zero target register in case of a load operation
1221 +  const int reg = (opcode >> 25) & 0x1f;
1222 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != 0) {
1223 +        // FIXME: code to handle local & input registers is not tested
1224 +        if (reg >= 1 && reg <= 7) {
1225 +          // global registers
1226 +          regs[reg - 1 + SPARC_REG_G1] = 0;
1227 +        }
1228 +        else if (reg >= 8 && reg <= 15) {
1229 +          // output registers
1230 +          regs[reg - 8 + SPARC_REG_O0] = 0;
1231 +        }
1232 +        else if (reg >= 16 && reg <= 23) {
1233 +          // local registers (in register windows)
1234 +          if (gwins)
1235 +                gwins->wbuf->rw_local[reg - 16] = 0;
1236 +          else
1237 +                rwin->rw_local[reg - 16] = 0;
1238 +        }
1239 +        else {
1240 +          // input registers (in register windows)
1241 +          if (gwins)
1242 +                gwins->wbuf->rw_in[reg - 24] = 0;
1243 +          else
1244 +                rwin->rw_in[reg - 24] = 0;
1245 +        }
1246 +  }
1247 +
1248 + #if DEBUG
1249 +  static const char * reg_names[] = {
1250 +        "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
1251 +        "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
1252 +        "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
1253 +        "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7"
1254 +  };
1255 +  printf("%s %s register %s\n",
1256 +                 transfer_size == SIZE_BYTE ? "byte" :
1257 +                 transfer_size == SIZE_WORD ? "word" :
1258 +                 transfer_size == SIZE_LONG ? "long" :
1259 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1260 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1261 +                 reg_names[reg]);
1262 + #endif
1263 +
1264 +  regs[SPARC_REG_PC] += 4;
1265 +  return true;
1266 + }
1267 + #endif
1268   #endif
1269  
1270 + // Decode and skip ARM instruction
1271 + #if (defined(arm) || defined(__arm__))
1272 + enum {
1273 + #if (defined(__linux__))
1274 +  ARM_REG_PC = 15,
1275 +  ARM_REG_CPSR = 16
1276 + #endif
1277 + };
1278 + static bool arm_skip_instruction(unsigned long * regs)
1279 + {
1280 +  unsigned int * pc = (unsigned int *)regs[ARM_REG_PC];
1281 +
1282 +  if (pc == 0)
1283 +        return false;
1284 +
1285 + #if DEBUG
1286 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1287 + #endif
1288 +
1289 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1290 +  transfer_size_t transfer_size = SIZE_UNKNOWN;
1291 +  enum { op_sdt = 1, op_sdth = 2 };
1292 +  int op = 0;
1293 +
1294 +  // Handle load/store instructions only
1295 +  const unsigned int opcode = pc[0];
1296 +  switch ((opcode >> 25) & 7) {
1297 +  case 0: // Halfword and Signed Data Transfer (LDRH, STRH, LDRSB, LDRSH)
1298 +        op = op_sdth;
1299 +        // Determine transfer size (S/H bits)
1300 +        switch ((opcode >> 5) & 3) {
1301 +        case 0: // SWP instruction
1302 +          break;
1303 +        case 1: // Unsigned halfwords
1304 +        case 3: // Signed halfwords
1305 +          transfer_size = SIZE_WORD;
1306 +          break;
1307 +        case 2: // Signed byte
1308 +          transfer_size = SIZE_BYTE;
1309 +          break;
1310 +        }
1311 +        break;
1312 +  case 2:
1313 +  case 3: // Single Data Transfer (LDR, STR)
1314 +        op = op_sdt;
1315 +        // Determine transfer size (B bit)
1316 +        if (((opcode >> 22) & 1) == 1)
1317 +          transfer_size = SIZE_BYTE;
1318 +        else
1319 +          transfer_size = SIZE_LONG;
1320 +        break;
1321 +  default:
1322 +        // FIXME: support load/store mutliple?
1323 +        return false;
1324 +  }
1325 +
1326 +  // Check for invalid transfer size (SWP instruction?)
1327 +  if (transfer_size == SIZE_UNKNOWN)
1328 +        return false;
1329 +
1330 +  // Determine transfer type (L bit)
1331 +  if (((opcode >> 20) & 1) == 1)
1332 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1333 +  else
1334 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1335 +
1336 +  // Compute offset
1337 +  int offset;
1338 +  if (((opcode >> 25) & 1) == 0) {
1339 +        if (op == op_sdt)
1340 +          offset = opcode & 0xfff;
1341 +        else if (op == op_sdth) {
1342 +          int rm = opcode & 0xf;
1343 +          if (((opcode >> 22) & 1) == 0) {
1344 +                // register offset
1345 +                offset = regs[rm];
1346 +          }
1347 +          else {
1348 +                // immediate offset
1349 +                offset = ((opcode >> 4) & 0xf0) | (opcode & 0x0f);
1350 +          }
1351 +        }
1352 +  }
1353 +  else {
1354 +        const int rm = opcode & 0xf;
1355 +        const int sh = (opcode >> 7) & 0x1f;
1356 +        if (((opcode >> 4) & 1) == 1) {
1357 +          // we expect only legal load/store instructions
1358 +          printf("FATAL: invalid shift operand\n");
1359 +          return false;
1360 +        }
1361 +        const unsigned int v = regs[rm];
1362 +        switch ((opcode >> 5) & 3) {
1363 +        case 0: // logical shift left
1364 +          offset = sh ? v << sh : v;
1365 +          break;
1366 +        case 1: // logical shift right
1367 +          offset = sh ? v >> sh : 0;
1368 +          break;
1369 +        case 2: // arithmetic shift right
1370 +          if (sh)
1371 +                offset = ((signed int)v) >> sh;
1372 +          else
1373 +                offset = (v & 0x80000000) ? 0xffffffff : 0;
1374 +          break;
1375 +        case 3: // rotate right
1376 +          if (sh)
1377 +                offset = (v >> sh) | (v << (32 - sh));
1378 +          else
1379 +                offset = (v >> 1) | ((regs[ARM_REG_CPSR] << 2) & 0x80000000);
1380 +          break;
1381 +        }
1382 +  }
1383 +  if (((opcode >> 23) & 1) == 0)
1384 +        offset = -offset;
1385 +
1386 +  int rd = (opcode >> 12) & 0xf;
1387 +  int rn = (opcode >> 16) & 0xf;
1388 + #if DEBUG
1389 +  static const char * reg_names[] = {
1390 +        "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1391 +        "r9", "r9", "sl", "fp", "ip", "sp", "lr", "pc"
1392 +  };
1393 +  printf("%s %s register %s\n",
1394 +                 transfer_size == SIZE_BYTE ? "byte" :
1395 +                 transfer_size == SIZE_WORD ? "word" :
1396 +                 transfer_size == SIZE_LONG ? "long" : "unknown",
1397 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1398 +                 reg_names[rd]);
1399 + #endif
1400 +
1401 +  unsigned int base = regs[rn];
1402 +  if (((opcode >> 24) & 1) == 1)
1403 +        base += offset;
1404 +
1405 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD)
1406 +        regs[rd] = 0;
1407 +
1408 +  if (((opcode >> 24) & 1) == 0)                // post-index addressing
1409 +        regs[rn] += offset;
1410 +  else if (((opcode >> 21) & 1) == 1)   // write-back address into base
1411 +        regs[rn] = base;
1412 +
1413 +  regs[ARM_REG_PC] += 4;
1414 +  return true;
1415 + }
1416 + #endif
1417 +
1418 +
1419   // Fallbacks
1420   #ifndef SIGSEGV_FAULT_INSTRUCTION
1421   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_PC
1422   #endif
1423 + #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
1424 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
1425 + #endif
1426 + #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
1427 + #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  sigsegv_fault_handler(ADDR, IP)
1428 + #endif
1429  
1430   // SIGSEGV recovery supported ?
1431   #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
# Line 629 | Line 1437 | static bool powerpc_skip_instruction(uns
1437   *  SIGSEGV global handler
1438   */
1439  
1440 < #ifdef HAVE_SIGSEGV_RECOVERY
1441 < static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1440 > #if defined(HAVE_SIGSEGV_RECOVERY) || defined(HAVE_MACH_EXCEPTIONS)
1441 > // This function handles the badaccess to memory.
1442 > // It is called from the signal handler or the exception handler.
1443 > static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
1444   {
1445          sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
1446          sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
637        bool fault_recovered = false;
1447          
1448          // Call user's handler and reinstall the global handler, if required
1449 <        if (sigsegv_fault_handler(fault_address, fault_instruction)) {
1450 < #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1451 <                sigsegv_do_install_handler(sig);
1449 >        switch (SIGSEGV_FAULT_HANDLER_INVOKE(fault_address, fault_instruction)) {
1450 >        case SIGSEGV_RETURN_SUCCESS:
1451 >                return true;
1452 >
1453 > #if HAVE_SIGSEGV_SKIP_INSTRUCTION
1454 >        case SIGSEGV_RETURN_SKIP_INSTRUCTION:
1455 >                // Call the instruction skipper with the register file
1456 >                // available
1457 >                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
1458 > #ifdef HAVE_MACH_EXCEPTIONS
1459 >                        // Unlike UNIX signals where the thread state
1460 >                        // is modified off of the stack, in Mach we
1461 >                        // need to actually call thread_set_state to
1462 >                        // have the register values updated.
1463 >                        kern_return_t krc;
1464 >
1465 >                        krc = thread_set_state(thread,
1466 >                                                                   MACHINE_THREAD_STATE, (thread_state_t)state,
1467 >                                                                   MACHINE_THREAD_STATE_COUNT);
1468 >                        MACH_CHECK_ERROR (thread_get_state, krc);
1469   #endif
1470 <                fault_recovered = true;
1470 >                        return true;
1471 >                }
1472 >                break;
1473 > #endif
1474 >        case SIGSEGV_RETURN_FAILURE:
1475 >                return false;
1476          }
1477 < #if HAVE_SIGSEGV_SKIP_INSTRUCTION
1478 <        else if (sigsegv_ignore_fault) {
1479 <                // Call the instruction skipper with the register file available
1480 <                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE))
1481 <                        fault_recovered = true;
1477 >        
1478 >        // We can't do anything with the fault_address, dump state?
1479 >        if (sigsegv_state_dumper != 0)
1480 >                sigsegv_state_dumper(fault_address, fault_instruction);
1481 >
1482 >        return false;
1483 > }
1484 > #endif
1485 >
1486 >
1487 > /*
1488 > * There are two mechanisms for handling a bad memory access,
1489 > * Mach exceptions and UNIX signals. The implementation specific
1490 > * code appears below. Its reponsibility is to call handle_badaccess
1491 > * which is the routine that handles the fault in an implementation
1492 > * agnostic manner. The implementation specific code below is then
1493 > * reponsible for checking whether handle_badaccess was able
1494 > * to handle the memory access error and perform any implementation
1495 > * specific tasks necessary afterwards.
1496 > */
1497 >
1498 > #ifdef HAVE_MACH_EXCEPTIONS
1499 > /*
1500 > * We need to forward all exceptions that we do not handle.
1501 > * This is important, there are many exceptions that may be
1502 > * handled by other exception handlers. For example debuggers
1503 > * use exceptions and the exception hander is in another
1504 > * process in such a case. (Timothy J. Wood states in his
1505 > * message to the list that he based this code on that from
1506 > * gdb for Darwin.)
1507 > */
1508 > static inline kern_return_t
1509 > forward_exception(mach_port_t thread_port,
1510 >                                  mach_port_t task_port,
1511 >                                  exception_type_t exception_type,
1512 >                                  exception_data_t exception_data,
1513 >                                  mach_msg_type_number_t data_count,
1514 >                                  ExceptionPorts *oldExceptionPorts)
1515 > {
1516 >        kern_return_t kret;
1517 >        unsigned int portIndex;
1518 >        mach_port_t port;
1519 >        exception_behavior_t behavior;
1520 >        thread_state_flavor_t flavor;
1521 >        thread_state_t thread_state;
1522 >        mach_msg_type_number_t thread_state_count;
1523 >
1524 >        for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
1525 >                if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
1526 >                        // This handler wants the exception
1527 >                        break;
1528 >                }
1529 >        }
1530 >
1531 >        if (portIndex >= oldExceptionPorts->maskCount) {
1532 >                fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
1533 >                return KERN_FAILURE;
1534 >        }
1535 >
1536 >        port = oldExceptionPorts->handlers[portIndex];
1537 >        behavior = oldExceptionPorts->behaviors[portIndex];
1538 >        flavor = oldExceptionPorts->flavors[portIndex];
1539 >
1540 >        /*
1541 >         fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
1542 >         */
1543 >
1544 >        if (behavior != EXCEPTION_DEFAULT) {
1545 >                thread_state_count = THREAD_STATE_MAX;
1546 >                kret = thread_get_state (thread_port, flavor, thread_state,
1547 >                                                                 &thread_state_count);
1548 >                MACH_CHECK_ERROR (thread_get_state, kret);
1549 >        }
1550 >
1551 >        switch (behavior) {
1552 >        case EXCEPTION_DEFAULT:
1553 >          // fprintf(stderr, "forwarding to exception_raise\n");
1554 >          kret = exception_raise(port, thread_port, task_port, exception_type,
1555 >                                                         exception_data, data_count);
1556 >          MACH_CHECK_ERROR (exception_raise, kret);
1557 >          break;
1558 >        case EXCEPTION_STATE:
1559 >          // fprintf(stderr, "forwarding to exception_raise_state\n");
1560 >          kret = exception_raise_state(port, exception_type, exception_data,
1561 >                                                                   data_count, &flavor,
1562 >                                                                   thread_state, thread_state_count,
1563 >                                                                   thread_state, &thread_state_count);
1564 >          MACH_CHECK_ERROR (exception_raise_state, kret);
1565 >          break;
1566 >        case EXCEPTION_STATE_IDENTITY:
1567 >          // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
1568 >          kret = exception_raise_state_identity(port, thread_port, task_port,
1569 >                                                                                        exception_type, exception_data,
1570 >                                                                                        data_count, &flavor,
1571 >                                                                                        thread_state, thread_state_count,
1572 >                                                                                        thread_state, &thread_state_count);
1573 >          MACH_CHECK_ERROR (exception_raise_state_identity, kret);
1574 >          break;
1575 >        default:
1576 >          fprintf(stderr, "forward_exception got unknown behavior\n");
1577 >          break;
1578          }
1579 +
1580 +        if (behavior != EXCEPTION_DEFAULT) {
1581 +                kret = thread_set_state (thread_port, flavor, thread_state,
1582 +                                                                 thread_state_count);
1583 +                MACH_CHECK_ERROR (thread_set_state, kret);
1584 +        }
1585 +
1586 +        return KERN_SUCCESS;
1587 + }
1588 +
1589 + /*
1590 + * This is the code that actually handles the exception.
1591 + * It is called by exc_server. For Darwin 5 Apple changed
1592 + * this a bit from how this family of functions worked in
1593 + * Mach. If you are familiar with that it is a little
1594 + * different. The main variation that concerns us here is
1595 + * that code is an array of exception specific codes and
1596 + * codeCount is a count of the number of codes in the code
1597 + * array. In typical Mach all exceptions have a code
1598 + * and sub-code. It happens to be the case that for a
1599 + * EXC_BAD_ACCESS exception the first entry is the type of
1600 + * bad access that occurred and the second entry is the
1601 + * faulting address so these entries correspond exactly to
1602 + * how the code and sub-code are used on Mach.
1603 + *
1604 + * This is a MIG interface. No code in Basilisk II should
1605 + * call this directley. This has to have external C
1606 + * linkage because that is what exc_server expects.
1607 + */
1608 + kern_return_t
1609 + catch_exception_raise(mach_port_t exception_port,
1610 +                                          mach_port_t thread,
1611 +                                          mach_port_t task,
1612 +                                          exception_type_t exception,
1613 +                                          exception_data_t code,
1614 +                                          mach_msg_type_number_t codeCount)
1615 + {
1616 +        ppc_thread_state_t state;
1617 +        kern_return_t krc;
1618 +
1619 +        if ((exception == EXC_BAD_ACCESS)  && (codeCount >= 2)) {
1620 +                if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
1621 +                        return KERN_SUCCESS;
1622 +        }
1623 +
1624 +        // In Mach we do not need to remove the exception handler.
1625 +        // If we forward the exception, eventually some exception handler
1626 +        // will take care of this exception.
1627 +        krc = forward_exception(thread, task, exception, code, codeCount, &ports);
1628 +
1629 +        return krc;
1630 + }
1631 + #endif
1632 +
1633 + #ifdef HAVE_SIGSEGV_RECOVERY
1634 + // Handle bad memory accesses with signal handler
1635 + static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1636 + {
1637 +        // Call handler and reinstall the global handler, if required
1638 +        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
1639 + #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1640 +                sigsegv_do_install_handler(sig);
1641   #endif
1642 +                return;
1643 +        }
1644  
1645 <        if (!fault_recovered) {
655 <                // FAIL: reinstall default handler for "safe" crash
1645 >        // Failure: reinstall default handler for "safe" crash
1646   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1647 <                SIGSEGV_ALL_SIGNALS
1647 >        SIGSEGV_ALL_SIGNALS
1648   #undef FAULT_HANDLER
659                
660                // We can't do anything with the fault_address, dump state?
661                if (sigsegv_state_dumper != 0)
662                        sigsegv_state_dumper(fault_address, fault_instruction);
663        }
1649   }
1650   #endif
1651  
# Line 674 | Line 1659 | static bool sigsegv_do_install_handler(i
1659   {
1660          // Setup SIGSEGV handler to process writes to frame buffer
1661   #ifdef HAVE_SIGACTION
1662 <        struct sigaction vosf_sa;
1663 <        sigemptyset(&vosf_sa.sa_mask);
1664 <        vosf_sa.sa_sigaction = sigsegv_handler;
1665 <        vosf_sa.sa_flags = SA_SIGINFO;
1666 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1662 >        struct sigaction sigsegv_sa;
1663 >        sigemptyset(&sigsegv_sa.sa_mask);
1664 >        sigsegv_sa.sa_sigaction = sigsegv_handler;
1665 >        sigsegv_sa.sa_flags = SA_SIGINFO;
1666 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1667   #else
1668          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1669   #endif
# Line 690 | Line 1675 | static bool sigsegv_do_install_handler(i
1675   {
1676          // Setup SIGSEGV handler to process writes to frame buffer
1677   #ifdef HAVE_SIGACTION
1678 <        struct sigaction vosf_sa;
1679 <        sigemptyset(&vosf_sa.sa_mask);
1680 <        vosf_sa.sa_handler = (signal_handler)sigsegv_handler;
1678 >        struct sigaction sigsegv_sa;
1679 >        sigemptyset(&sigsegv_sa.sa_mask);
1680 >        sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
1681 >        sigsegv_sa.sa_flags = 0;
1682   #if !EMULATED_68K && defined(__NetBSD__)
1683 <        sigaddset(&vosf_sa.sa_mask, SIGALRM);
1684 <        vosf_sa.sa_flags = SA_ONSTACK;
699 < #else
700 <        vosf_sa.sa_flags = 0;
1683 >        sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
1684 >        sigsegv_sa.sa_flags |= SA_ONSTACK;
1685   #endif
1686 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1686 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1687   #else
1688          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1689   #endif
1690   }
1691   #endif
1692  
1693 < bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1693 > #if defined(HAVE_MACH_EXCEPTIONS)
1694 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1695   {
1696 < #ifdef HAVE_SIGSEGV_RECOVERY
1696 >        /*
1697 >         * Except for the exception port functions, this should be
1698 >         * pretty much stock Mach. If later you choose to support
1699 >         * other Mach's besides Darwin, just check for __MACH__
1700 >         * here and __APPLE__ where the actual differences are.
1701 >         */
1702 > #if defined(__APPLE__) && defined(__MACH__)
1703 >        if (sigsegv_fault_handler != NULL) {
1704 >                sigsegv_fault_handler = handler;
1705 >                return true;
1706 >        }
1707 >
1708 >        kern_return_t krc;
1709 >
1710 >        // create the the exception port
1711 >        krc = mach_port_allocate(mach_task_self(),
1712 >                          MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
1713 >        if (krc != KERN_SUCCESS) {
1714 >                mach_error("mach_port_allocate", krc);
1715 >                return false;
1716 >        }
1717 >
1718 >        // add a port send right
1719 >        krc = mach_port_insert_right(mach_task_self(),
1720 >                              _exceptionPort, _exceptionPort,
1721 >                              MACH_MSG_TYPE_MAKE_SEND);
1722 >        if (krc != KERN_SUCCESS) {
1723 >                mach_error("mach_port_insert_right", krc);
1724 >                return false;
1725 >        }
1726 >
1727 >        // get the old exception ports
1728 >        ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
1729 >        krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
1730 >                                &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
1731 >        if (krc != KERN_SUCCESS) {
1732 >                mach_error("thread_get_exception_ports", krc);
1733 >                return false;
1734 >        }
1735 >
1736 >        // set the new exception port
1737 >        //
1738 >        // We could have used EXCEPTION_STATE_IDENTITY instead of
1739 >        // EXCEPTION_DEFAULT to get the thread state in the initial
1740 >        // message, but it turns out that in the common case this is not
1741 >        // neccessary. If we need it we can later ask for it from the
1742 >        // suspended thread.
1743 >        //
1744 >        // Even with THREAD_STATE_NONE, Darwin provides the program
1745 >        // counter in the thread state.  The comments in the header file
1746 >        // seem to imply that you can count on the GPR's on an exception
1747 >        // as well but just to be safe I use MACHINE_THREAD_STATE because
1748 >        // you have to ask for all of the GPR's anyway just to get the
1749 >        // program counter. In any case because of update effective
1750 >        // address from immediate and update address from effective
1751 >        // addresses of ra and rb modes (as good an name as any for these
1752 >        // addressing modes) used in PPC instructions, you will need the
1753 >        // GPR state anyway.
1754 >        krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
1755 >                                EXCEPTION_DEFAULT, MACHINE_THREAD_STATE);
1756 >        if (krc != KERN_SUCCESS) {
1757 >                mach_error("thread_set_exception_ports", krc);
1758 >                return false;
1759 >        }
1760 >
1761 >        // create the exception handler thread
1762 >        if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
1763 >                (void)fprintf(stderr, "creation of exception thread failed\n");
1764 >                return false;
1765 >        }
1766 >
1767 >        // do not care about the exception thread any longer, let is run standalone
1768 >        (void)pthread_detach(exc_thread);
1769 >
1770          sigsegv_fault_handler = handler;
1771 +        return true;
1772 + #else
1773 +        return false;
1774 + #endif
1775 + }
1776 + #endif
1777 +
1778 + bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1779 + {
1780 + #if defined(HAVE_SIGSEGV_RECOVERY)
1781          bool success = true;
1782   #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
1783          SIGSEGV_ALL_SIGNALS
1784   #undef FAULT_HANDLER
1785 +        if (success)
1786 +            sigsegv_fault_handler = handler;
1787          return success;
1788 + #elif defined(HAVE_MACH_EXCEPTIONS)
1789 +        return sigsegv_do_install_handler(handler);
1790   #else
1791          // FAIL: no siginfo_t nor sigcontext subterfuge is available
1792          return false;
# Line 728 | Line 1800 | bool sigsegv_install_handler(sigsegv_fau
1800  
1801   void sigsegv_deinstall_handler(void)
1802   {
1803 +  // We do nothing for Mach exceptions, the thread would need to be
1804 +  // suspended if not already so, and we might mess with other
1805 +  // exception handlers that came after we registered ours. There is
1806 +  // no need to remove the exception handler, in fact this function is
1807 +  // not called anywhere in Basilisk II.
1808   #ifdef HAVE_SIGSEGV_RECOVERY
1809          sigsegv_fault_handler = 0;
1810   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
# Line 738 | Line 1815 | void sigsegv_deinstall_handler(void)
1815  
1816  
1817   /*
741 *  SIGSEGV ignore state modifier
742 */
743
744 void sigsegv_set_ignore_state(bool ignore_fault)
745 {
746        sigsegv_ignore_fault = ignore_fault;
747 }
748
749
750 /*
1818   *  Set callback function when we cannot handle the fault
1819   */
1820  
# Line 768 | Line 1835 | void sigsegv_set_dump_state(sigsegv_stat
1835   #include <sys/mman.h>
1836   #include "vm_alloc.h"
1837  
1838 + const int REF_INDEX = 123;
1839 + const int REF_VALUE = 45;
1840 +
1841   static int page_size;
1842   static volatile char * page = 0;
1843   static volatile int handler_called = 0;
1844  
1845 < static bool sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1845 > #ifdef __GNUC__
1846 > // Code range where we expect the fault to come from
1847 > static void *b_region, *e_region;
1848 > #endif
1849 >
1850 > static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1851   {
1852 + #if DEBUG
1853 +        printf("sigsegv_test_handler(%p, %p)\n", fault_address, instruction_address);
1854 +        printf("expected fault at %p\n", page + REF_INDEX);
1855 + #ifdef __GNUC__
1856 +        printf("expected instruction address range: %p-%p\n", b_region, e_region);
1857 + #endif
1858 + #endif
1859          handler_called++;
1860 <        if ((fault_address - 123) != page)
1861 <                exit(1);
1860 >        if ((fault_address - REF_INDEX) != page)
1861 >                exit(10);
1862 > #ifdef __GNUC__
1863 >        // Make sure reported fault instruction address falls into
1864 >        // expected code range
1865 >        if (instruction_address != SIGSEGV_INVALID_PC
1866 >                && ((instruction_address <  (sigsegv_address_t)b_region) ||
1867 >                        (instruction_address >= (sigsegv_address_t)e_region)))
1868 >                exit(11);
1869 > #endif
1870          if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
1871 <                exit(1);
1872 <        return true;
1871 >                exit(12);
1872 >        return SIGSEGV_RETURN_SUCCESS;
1873   }
1874  
1875   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1876 < static bool sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1876 > static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1877   {
1878 <        return false;
1878 > #if DEBUG
1879 >        printf("sigsegv_insn_handler(%p, %p)\n", fault_address, instruction_address);
1880 > #endif
1881 >        if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
1882 > #ifdef __GNUC__
1883 >                // Make sure reported fault instruction address falls into
1884 >                // expected code range
1885 >                if (instruction_address != SIGSEGV_INVALID_PC
1886 >                        && ((instruction_address <  (sigsegv_address_t)b_region) ||
1887 >                                (instruction_address >= (sigsegv_address_t)e_region)))
1888 >                        return SIGSEGV_RETURN_FAILURE;
1889 > #endif
1890 >                return SIGSEGV_RETURN_SKIP_INSTRUCTION;
1891 >        }
1892 >
1893 >        return SIGSEGV_RETURN_FAILURE;
1894 > }
1895 >
1896 > // More sophisticated tests for instruction skipper
1897 > static bool arch_insn_skipper_tests()
1898 > {
1899 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
1900 >        static const unsigned char code[] = {
1901 >                0x8a, 0x00,                    // mov    (%eax),%al
1902 >                0x8a, 0x2c, 0x18,              // mov    (%eax,%ebx,1),%ch
1903 >                0x88, 0x20,                    // mov    %ah,(%eax)
1904 >                0x88, 0x08,                    // mov    %cl,(%eax)
1905 >                0x66, 0x8b, 0x00,              // mov    (%eax),%ax
1906 >                0x66, 0x8b, 0x0c, 0x18,        // mov    (%eax,%ebx,1),%cx
1907 >                0x66, 0x89, 0x00,              // mov    %ax,(%eax)
1908 >                0x66, 0x89, 0x0c, 0x18,        // mov    %cx,(%eax,%ebx,1)
1909 >                0x8b, 0x00,                    // mov    (%eax),%eax
1910 >                0x8b, 0x0c, 0x18,              // mov    (%eax,%ebx,1),%ecx
1911 >                0x89, 0x00,                    // mov    %eax,(%eax)
1912 >                0x89, 0x0c, 0x18,              // mov    %ecx,(%eax,%ebx,1)
1913 > #if defined(__x86_64__)
1914 >                0x44, 0x8a, 0x00,              // mov    (%rax),%r8b
1915 >                0x44, 0x8a, 0x20,              // mov    (%rax),%r12b
1916 >                0x42, 0x8a, 0x3c, 0x10,        // mov    (%rax,%r10,1),%dil
1917 >                0x44, 0x88, 0x00,              // mov    %r8b,(%rax)
1918 >                0x44, 0x88, 0x20,              // mov    %r12b,(%rax)
1919 >                0x42, 0x88, 0x3c, 0x10,        // mov    %dil,(%rax,%r10,1)
1920 >                0x66, 0x44, 0x8b, 0x00,        // mov    (%rax),%r8w
1921 >                0x66, 0x42, 0x8b, 0x0c, 0x10,  // mov    (%rax,%r10,1),%cx
1922 >                0x66, 0x44, 0x89, 0x00,        // mov    %r8w,(%rax)
1923 >                0x66, 0x42, 0x89, 0x0c, 0x10,  // mov    %cx,(%rax,%r10,1)
1924 >                0x44, 0x8b, 0x00,              // mov    (%rax),%r8d
1925 >                0x42, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%ecx
1926 >                0x44, 0x89, 0x00,              // mov    %r8d,(%rax)
1927 >                0x42, 0x89, 0x0c, 0x10,        // mov    %ecx,(%rax,%r10,1)
1928 >                0x48, 0x8b, 0x08,              // mov    (%rax),%rcx
1929 >                0x4c, 0x8b, 0x18,              // mov    (%rax),%r11
1930 >                0x4a, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%rcx
1931 >                0x4e, 0x8b, 0x1c, 0x10,        // mov    (%rax,%r10,1),%r11
1932 >                0x48, 0x89, 0x08,              // mov    %rcx,(%rax)
1933 >                0x4c, 0x89, 0x18,              // mov    %r11,(%rax)
1934 >                0x4a, 0x89, 0x0c, 0x10,        // mov    %rcx,(%rax,%r10,1)
1935 >                0x4e, 0x89, 0x1c, 0x10,        // mov    %r11,(%rax,%r10,1)
1936 > #endif
1937 >                0                              // end
1938 >        };
1939 >        const int N_REGS = 20;
1940 >        unsigned long regs[N_REGS];
1941 >        for (int i = 0; i < N_REGS; i++)
1942 >                regs[i] = i;
1943 >        const unsigned long start_code = (unsigned long)&code;
1944 >        regs[X86_REG_EIP] = start_code;
1945 >        while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1)
1946 >                   && ix86_skip_instruction(regs))
1947 >                ; /* simply iterate */
1948 >        return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1);
1949 > #endif
1950 >        return true;
1951   }
1952   #endif
1953  
# Line 796 | Line 1958 | int main(void)
1958  
1959          page_size = getpagesize();
1960          if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
1961 <                return 1;
1961 >                return 2;
1962          
1963 +        memset((void *)page, 0, page_size);
1964          if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
1965 <                return 1;
1965 >                return 3;
1966          
1967          if (!sigsegv_install_handler(sigsegv_test_handler))
1968 <                return 1;
806 <        
807 <        page[123] = 45;
808 <        page[123] = 45;
1968 >                return 4;
1969          
1970 + #ifdef __GNUC__
1971 +        b_region = &&L_b_region1;
1972 +        e_region = &&L_e_region1;
1973 + #endif
1974 + L_b_region1:
1975 +        page[REF_INDEX] = REF_VALUE;
1976 +        if (page[REF_INDEX] != REF_VALUE)
1977 +          exit(20);
1978 +        page[REF_INDEX] = REF_VALUE;
1979 + L_e_region1:
1980 +
1981          if (handler_called != 1)
1982 <                return 1;
1982 >                return 5;
1983  
1984   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1985          if (!sigsegv_install_handler(sigsegv_insn_handler))
1986 <                return 1;
1986 >                return 6;
1987          
1988          if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
1989 <                return 1;
1989 >                return 7;
1990          
1991          for (int i = 0; i < page_size; i++)
1992                  page[i] = (i + 1) % page_size;
1993          
1994          if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
1995 <                return 1;
1995 >                return 8;
1996          
826        sigsegv_set_ignore_state(true);
827
1997   #define TEST_SKIP_INSTRUCTION(TYPE) do {                                \
1998 <                const unsigned int TAG = 0x12345678;                    \
1998 >                const unsigned long TAG = 0x12345678 |                  \
1999 >                (sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0);   \
2000                  TYPE data = *((TYPE *)(page + sizeof(TYPE)));   \
2001 <                volatile unsigned int effect = data + TAG;              \
2001 >                volatile unsigned long effect = data + TAG;             \
2002                  if (effect != TAG)                                                              \
2003 <                        return 1;                                                                       \
2003 >                        return 9;                                                                       \
2004          } while (0)
2005          
2006 + #ifdef __GNUC__
2007 +        b_region = &&L_b_region2;
2008 +        e_region = &&L_e_region2;
2009 + #endif
2010 + L_b_region2:
2011          TEST_SKIP_INSTRUCTION(unsigned char);
2012          TEST_SKIP_INSTRUCTION(unsigned short);
2013          TEST_SKIP_INSTRUCTION(unsigned int);
2014 +        TEST_SKIP_INSTRUCTION(unsigned long);
2015 +        TEST_SKIP_INSTRUCTION(signed char);
2016 +        TEST_SKIP_INSTRUCTION(signed short);
2017 +        TEST_SKIP_INSTRUCTION(signed int);
2018 +        TEST_SKIP_INSTRUCTION(signed long);
2019 + L_e_region2:
2020 +
2021 +        if (!arch_insn_skipper_tests())
2022 +                return 20;
2023   #endif
2024  
2025          vm_exit();

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines