ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
(Generate patch)

Comparing BasiliskII/src/Unix/sigsegv.cpp (file contents):
Revision 1.21 by gbeauche, 2002-10-03T15:49:14Z vs.
Revision 1.29 by gbeauche, 2003-10-13T19:43:09Z

# Line 4 | Line 4
4   *  Derived from Bruno Haible's work on his SIGSEGV library for clisp
5   *  <http://clisp.sourceforge.net/>
6   *
7 + *  MacOS X support derived from the post by Timothy J. Wood to the
8 + *  omnigroup macosx-dev list:
9 + *    Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10 + *    tjw@omnigroup.com Sun, 4 Jun 2000
11 + *    www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12 + *
13   *  Basilisk II (C) 1997-2002 Christian Bauer
14   *
15   *  This program is free software; you can redistribute it and/or modify
# Line 29 | Line 35
35   #include "config.h"
36   #endif
37  
38 + #include <list>
39   #include <signal.h>
40   #include "sigsegv.h"
41  
42 + #ifndef NO_STD_NAMESPACE
43 + using std::list;
44 + #endif
45 +
46   // Return value type of a signal handler (standard type if not defined)
47   #ifndef RETSIGTYPE
48   #define RETSIGTYPE void
# Line 40 | Line 51
51   // Type of the system signal handler
52   typedef RETSIGTYPE (*signal_handler)(int);
53  
43 // Is the fault to be ignored?
44 static bool sigsegv_ignore_fault = false;
45
54   // User's SIGSEGV handler
55   static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
56  
# Line 57 | Line 65 | static bool sigsegv_do_install_handler(i
65   *  Instruction decoding aids
66   */
67  
60 // Transfer type
61 enum transfer_type_t {
62        TYPE_UNKNOWN,
63        TYPE_LOAD,
64        TYPE_STORE
65 };
66
68   // Transfer size
69   enum transfer_size_t {
70          SIZE_UNKNOWN,
# Line 72 | Line 73 | enum transfer_size_t {
73          SIZE_LONG
74   };
75  
76 + // Transfer type
77 + typedef sigsegv_transfer_type_t transfer_type_t;
78 +
79   #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
80   // Addressing mode
81   enum addressing_mode_t {
# Line 103 | Line 107 | static void powerpc_decode_instruction(i
107          signed int imm = (signed short)(opcode & 0xffff);
108          
109          // Analyze opcode
110 <        transfer_type_t transfer_type = TYPE_UNKNOWN;
110 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
111          transfer_size_t transfer_size = SIZE_UNKNOWN;
112          addressing_mode_t addr_mode = MODE_UNKNOWN;
113          switch (primop) {
114          case 31:
115                  switch (exop) {
116                  case 23:        // lwzx
117 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
117 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
118                  case 55:        // lwzux
119 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
119 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
120                  case 87:        // lbzx
121 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
121 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
122                  case 119:       // lbzux
123 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
123 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
124                  case 151:       // stwx
125 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
125 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
126                  case 183:       // stwux
127 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
127 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
128                  case 215:       // stbx
129 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
129 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
130                  case 247:       // stbux
131 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
131 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
132                  case 279:       // lhzx
133 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
133 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
134                  case 311:       // lhzux
135 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
135 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
136                  case 343:       // lhax
137 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
137 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
138                  case 375:       // lhaux
139 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
139 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
140                  case 407:       // sthx
141 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
141 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
142                  case 439:       // sthux
143 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
143 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
144                  }
145                  break;
146          
147          case 32:        // lwz
148 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
148 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
149          case 33:        // lwzu
150 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
150 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
151          case 34:        // lbz
152 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
152 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
153          case 35:        // lbzu
154 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
154 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
155          case 36:        // stw
156 <                transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
156 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
157          case 37:        // stwu
158 <                transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
158 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
159          case 38:        // stb
160 <                transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
160 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
161          case 39:        // stbu
162 <                transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
162 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
163          case 40:        // lhz
164 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
164 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
165          case 41:        // lhzu
166 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
166 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
167          case 42:        // lha
168 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
168 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
169          case 43:        // lhau
170 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
170 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
171          case 44:        // sth
172 <                transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
172 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
173          case 45:        // sthu
174 <                transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
174 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
175          }
176          
177          // Calculate effective address
# Line 208 | Line 212 | static void powerpc_decode_instruction(i
212  
213   #if HAVE_SIGINFO_T
214   // Generic extended signal handler
215 + #define SIGSEGV_FAULT_HANDLER                   sigsegv_fault_handler
216   #if defined(__NetBSD__) || defined(__FreeBSD__)
217   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
218   #else
219   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
220   #endif
221   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, siginfo_t *sip, void *scp
222 + #define SIGSEGV_FAULT_HANDLER_ARGS      sig, sip, scp
223   #define SIGSEGV_FAULT_ADDRESS                   sip->si_addr
224   #if defined(__NetBSD__) || defined(__FreeBSD__)
225   #if (defined(i386) || defined(__i386__))
# Line 250 | Line 256 | static void powerpc_decode_instruction(i
256   #endif
257  
258   #if HAVE_SIGCONTEXT_SUBTERFUGE
259 + #define SIGSEGV_FAULT_HANDLER                   sigsegv_fault_handler
260   // Linux kernels prior to 2.4 ?
261   #if defined(__linux__)
262   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
263   #if (defined(i386) || defined(__i386__))
264   #include <asm/sigcontext.h>
265   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext scs
266 + #define SIGSEGV_FAULT_HANDLER_ARGS      sig, scs
267   #define SIGSEGV_FAULT_ADDRESS                   scs.cr2
268   #define SIGSEGV_FAULT_INSTRUCTION               scs.eip
269   #define SIGSEGV_REGISTER_FILE                   (unsigned int *)(&scs)
# Line 264 | Line 272 | static void powerpc_decode_instruction(i
272   #if (defined(sparc) || defined(__sparc__))
273   #include <asm/sigcontext.h>
274   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
275 + #define SIGSEGV_FAULT_HANDLER_ARGS      sig, code, scp, addr
276   #define SIGSEGV_FAULT_ADDRESS                   addr
277   #endif
278   #if (defined(powerpc) || defined(__powerpc__))
279   #include <asm/sigcontext.h>
280   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext *scp
281 + #define SIGSEGV_FAULT_HANDLER_ARGS      sig, scp
282   #define SIGSEGV_FAULT_ADDRESS                   scp->regs->dar
283   #define SIGSEGV_FAULT_INSTRUCTION               scp->regs->nip
284   #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&scp->regs->nip, (unsigned int *)(scp->regs->gpr)
# Line 277 | Line 287 | static void powerpc_decode_instruction(i
287   #if (defined(alpha) || defined(__alpha__))
288   #include <asm/sigcontext.h>
289   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
290 + #define SIGSEGV_FAULT_HANDLER_ARGS      sig, code, scp
291   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
292   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
293  
# Line 295 | Line 306 | static sigsegv_address_t get_fault_addre
306   #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
307   #include <ucontext.h>
308   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
309 + #define SIGSEGV_FAULT_HANDLER_ARGS      sig, code, scp
310   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_badvaddr
311   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
312   #endif
# Line 302 | Line 314 | static sigsegv_address_t get_fault_addre
314   // HP-UX
315   #if (defined(hpux) || defined(__hpux__))
316   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
317 + #define SIGSEGV_FAULT_HANDLER_ARGS      sig, code, scp
318   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_sl.sl_ss.ss_narrow.ss_cr21
319   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
320   #endif
# Line 310 | Line 323 | static sigsegv_address_t get_fault_addre
323   #if defined(__osf__)
324   #include <ucontext.h>
325   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
326 + #define SIGSEGV_FAULT_HANDLER_ARGS      sig, code, scp
327   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_traparg_a0
328   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
329   #endif
# Line 317 | Line 331 | static sigsegv_address_t get_fault_addre
331   // AIX
332   #if defined(_AIX)
333   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
334 + #define SIGSEGV_FAULT_HANDLER_ARGS      sig, code, scp
335   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_jmpbuf.jmp_context.o_vaddr
336   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
337   #endif
# Line 326 | Line 341 | static sigsegv_address_t get_fault_addre
341   #if (defined(m68k) || defined(__m68k__))
342   #include <m68k/frame.h>
343   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
344 + #define SIGSEGV_FAULT_HANDLER_ARGS      sig, code, scp
345   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
346   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
347  
# Line 351 | Line 367 | static sigsegv_address_t get_fault_addre
367   }
368   #else
369   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, void *scp, char *addr
370 + #define SIGSEGV_FAULT_HANDLER_ARGS      sig, code, scp, addr
371   #define SIGSEGV_FAULT_ADDRESS                   addr
372   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
373   #endif
374   #endif
375  
376 < // MacOS X
376 > // MacOS X, not sure which version this works in. Under 10.1
377 > // vm_protect does not appear to work from a signal handler. Under
378 > // 10.2 signal handlers get siginfo type arguments but the si_addr
379 > // field is the address of the faulting instruction and not the
380 > // address that caused the SIGBUS. Maybe this works in 10.0? In any
381 > // case with Mach exception handlers there is a way to do what this
382 > // was meant to do.
383 > #ifndef HAVE_MACH_EXCEPTIONS
384   #if defined(__APPLE__) && defined(__MACH__)
385   #if (defined(ppc) || defined(__ppc__))
386   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
387 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
388   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
389   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_ir
390   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
# Line 379 | Line 404 | static sigsegv_address_t get_fault_addre
404   #endif
405   #endif
406   #endif
407 + #endif
408 +
409 + #if HAVE_MACH_EXCEPTIONS
410 +
411 + // This can easily be extended to other Mach systems, but really who
412 + // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
413 + // Mach 2.5/3.0?
414 + #if defined(__APPLE__) && defined(__MACH__)
415 +
416 + #include <sys/types.h>
417 + #include <stdlib.h>
418 + #include <stdio.h>
419 + #include <pthread.h>
420 +
421 + /*
422 + * If you are familiar with MIG then you will understand the frustration
423 + * that was necessary to get these embedded into C++ code by hand.
424 + */
425 + extern "C" {
426 + #include <mach/mach.h>
427 + #include <mach/mach_error.h>
428 +
429 + extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
430 + extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
431 +        mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
432 + extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
433 +        exception_type_t, exception_data_t, mach_msg_type_number_t);
434 + extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
435 +        exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
436 +        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
437 + extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
438 +        exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
439 +        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
440 + }
441 +
442 + // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
443 + #define HANDLER_COUNT 64
444 +
445 + // structure to tuck away existing exception handlers
446 + typedef struct _ExceptionPorts {
447 +        mach_msg_type_number_t maskCount;
448 +        exception_mask_t masks[HANDLER_COUNT];
449 +        exception_handler_t handlers[HANDLER_COUNT];
450 +        exception_behavior_t behaviors[HANDLER_COUNT];
451 +        thread_state_flavor_t flavors[HANDLER_COUNT];
452 + } ExceptionPorts;
453 +
454 + // exception handler thread
455 + static pthread_t exc_thread;
456 +
457 + // place where old exception handler info is stored
458 + static ExceptionPorts ports;
459 +
460 + // our exception port
461 + static mach_port_t _exceptionPort = MACH_PORT_NULL;
462 +
463 + #define MACH_CHECK_ERROR(name,ret) \
464 + if (ret != KERN_SUCCESS) { \
465 +        mach_error(#name, ret); \
466 +        exit (1); \
467 + }
468 +
469 + #define SIGSEGV_FAULT_ADDRESS                   code[1]
470 + #define SIGSEGV_FAULT_INSTRUCTION               get_fault_instruction(thread, state)
471 + #define SIGSEGV_FAULT_HANDLER                   (code[0] == KERN_PROTECTION_FAILURE) && sigsegv_fault_handler
472 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   mach_port_t thread, exception_data_t code, ppc_thread_state_t *state
473 + #define SIGSEGV_FAULT_HANDLER_ARGS              thread, code, &state
474 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
475 + #define SIGSEGV_REGISTER_FILE                   &state->srr0, &state->r0
476 +
477 + // Given a suspended thread, stuff the current instruction and
478 + // registers into state.
479 + //
480 + // It would have been nice to have this be ppc/x86 independant which
481 + // could have been done easily with a thread_state_t instead of
482 + // ppc_thread_state_t, but because of the way this is called it is
483 + // easier to do it this way.
484 + #if (defined(ppc) || defined(__ppc__))
485 + static inline sigsegv_address_t get_fault_instruction(mach_port_t thread, ppc_thread_state_t *state)
486 + {
487 +        kern_return_t krc;
488 +        mach_msg_type_number_t count;
489 +
490 +        count = MACHINE_THREAD_STATE_COUNT;
491 +        krc = thread_get_state(thread, MACHINE_THREAD_STATE, (thread_state_t)state, &count);
492 +        MACH_CHECK_ERROR (thread_get_state, krc);
493 +
494 +        return (sigsegv_address_t)state->srr0;
495 + }
496 + #endif
497 +
498 + // Since there can only be one exception thread running at any time
499 + // this is not a problem.
500 + #define MSG_SIZE 512
501 + static char msgbuf[MSG_SIZE];
502 + static char replybuf[MSG_SIZE];
503 +
504 + /*
505 + * This is the entry point for the exception handler thread. The job
506 + * of this thread is to wait for exception messages on the exception
507 + * port that was setup beforehand and to pass them on to exc_server.
508 + * exc_server is a MIG generated function that is a part of Mach.
509 + * Its job is to decide what to do with the exception message. In our
510 + * case exc_server calls catch_exception_raise on our behalf. After
511 + * exc_server returns, it is our responsibility to send the reply.
512 + */
513 + static void *
514 + handleExceptions(void *priv)
515 + {
516 +        mach_msg_header_t *msg, *reply;
517 +        kern_return_t krc;
518 +
519 +        msg = (mach_msg_header_t *)msgbuf;
520 +        reply = (mach_msg_header_t *)replybuf;
521 +
522 +        for (;;) {
523 +                krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
524 +                                _exceptionPort, 0, MACH_PORT_NULL);
525 +                MACH_CHECK_ERROR(mach_msg, krc);
526 +
527 +                if (!exc_server(msg, reply)) {
528 +                        fprintf(stderr, "exc_server hated the message\n");
529 +                        exit(1);
530 +                }
531 +
532 +                krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
533 +                                 msg->msgh_local_port, 0, MACH_PORT_NULL);
534 +                if (krc != KERN_SUCCESS) {
535 +                        fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
536 +                                krc, mach_error_string(krc));
537 +                        exit(1);
538 +                }
539 +        }
540 + }
541 + #endif
542 + #endif
543  
544  
545   /*
# Line 455 | Line 616 | static bool ix86_skip_instruction(unsign
616          if (eip == 0)
617                  return false;
618          
619 <        transfer_type_t transfer_type = TYPE_UNKNOWN;
619 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
620          transfer_size_t transfer_size = SIZE_LONG;
621          
622          int reg = -1;
# Line 477 | Line 638 | static bool ix86_skip_instruction(unsign
638                  switch (eip[2] & 0xc0) {
639                  case 0x80:
640                      reg = (eip[2] >> 3) & 7;
641 <                    transfer_type = TYPE_LOAD;
641 >                    transfer_type = SIGSEGV_TRANSFER_LOAD;
642                      break;
643                  case 0x40:
644                      reg = (eip[2] >> 3) & 7;
645 <                    transfer_type = TYPE_LOAD;
645 >                    transfer_type = SIGSEGV_TRANSFER_LOAD;
646                      break;
647                  case 0x00:
648                      reg = (eip[2] >> 3) & 7;
649 <                    transfer_type = TYPE_LOAD;
649 >                    transfer_type = SIGSEGV_TRANSFER_LOAD;
650                      break;
651                  }
652                  len += 3 + ix86_step_over_modrm(eip + 2);
# Line 498 | Line 659 | static bool ix86_skip_instruction(unsign
659                  switch (eip[1] & 0xc0) {
660                  case 0x80:
661                          reg = (eip[1] >> 3) & 7;
662 <                        transfer_type = TYPE_LOAD;
662 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
663                          break;
664                  case 0x40:
665                          reg = (eip[1] >> 3) & 7;
666 <                        transfer_type = TYPE_LOAD;
666 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
667                          break;
668                  case 0x00:
669                          reg = (eip[1] >> 3) & 7;
670 <                        transfer_type = TYPE_LOAD;
670 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
671                          break;
672                  }
673                  len += 2 + ix86_step_over_modrm(eip + 1);
# Line 517 | Line 678 | static bool ix86_skip_instruction(unsign
678                  switch (eip[1] & 0xc0) {
679                  case 0x80:
680                          reg = (eip[1] >> 3) & 7;
681 <                        transfer_type = TYPE_STORE;
681 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
682                          break;
683                  case 0x40:
684                          reg = (eip[1] >> 3) & 7;
685 <                        transfer_type = TYPE_STORE;
685 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
686                          break;
687                  case 0x00:
688                          reg = (eip[1] >> 3) & 7;
689 <                        transfer_type = TYPE_STORE;
689 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
690                          break;
691                  }
692                  len += 2 + ix86_step_over_modrm(eip + 1);
693                  break;
694          }
695  
696 <        if (transfer_type == TYPE_UNKNOWN) {
696 >        if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
697                  // Unknown machine code, let it crash. Then patch the decoder
698                  return false;
699          }
700  
701 <        if (transfer_type == TYPE_LOAD && reg != -1) {
701 >        if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
702                  static const int x86_reg_map[8] = {
703                          X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
704                          X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI
# Line 563 | Line 724 | static bool ix86_skip_instruction(unsign
724   #if DEBUG
725          printf("%08x: %s %s access", regs[X86_REG_EIP],
726                     transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : "long",
727 <                   transfer_type == TYPE_LOAD ? "read" : "write");
727 >                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
728          
729          if (reg != -1) {
730                  static const char * x86_reg_str_map[8] = {
731                          "eax", "ecx", "edx", "ebx",
732                          "esp", "ebp", "esi", "edi"
733                  };
734 <                printf(" %s register %%%s", transfer_type == TYPE_LOAD ? "to" : "from", x86_reg_str_map[reg]);
734 >                printf(" %s register %%%s", transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from", x86_reg_str_map[reg]);
735          }
736          printf(", %d bytes instruction\n", len);
737   #endif
# Line 587 | Line 748 | static bool powerpc_skip_instruction(uns
748          instruction_t instr;
749          powerpc_decode_instruction(&instr, *nip_p, regs);
750          
751 <        if (instr.transfer_type == TYPE_UNKNOWN) {
751 >        if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
752                  // Unknown machine code, let it crash. Then patch the decoder
753                  return false;
754          }
# Line 595 | Line 756 | static bool powerpc_skip_instruction(uns
756   #if DEBUG
757          printf("%08x: %s %s access", *nip_p,
758                     instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : "long",
759 <                   instr.transfer_type == TYPE_LOAD ? "read" : "write");
759 >                   instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
760          
761          if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
762                  printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
763 <        if (instr.transfer_type == TYPE_LOAD)
763 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
764                  printf(" r%d (rd = 0)\n", instr.rd);
765   #endif
766          
767          if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
768                  regs[instr.ra] = instr.addr;
769 <        if (instr.transfer_type == TYPE_LOAD)
769 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
770                  regs[instr.rd] = 0;
771          
772          *nip_p += 4;
# Line 629 | Line 790 | static bool powerpc_skip_instruction(uns
790   *  SIGSEGV global handler
791   */
792  
793 < #ifdef HAVE_SIGSEGV_RECOVERY
794 < static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
793 > #if defined(HAVE_SIGSEGV_RECOVERY) || defined(HAVE_MACH_EXCEPTIONS)
794 > // This function handles the badaccess to memory.
795 > // It is called from the signal handler or the exception handler.
796 > static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST)
797   {
798          sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
799          sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
637        bool fault_recovered = false;
800          
801          // Call user's handler and reinstall the global handler, if required
802 <        if (sigsegv_fault_handler(fault_address, fault_instruction)) {
803 < #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
804 <                sigsegv_do_install_handler(sig);
802 >        switch (sigsegv_fault_handler(fault_address, fault_instruction)) {
803 >        case SIGSEGV_RETURN_SUCCESS:
804 >                return true;
805 >
806 > #if HAVE_SIGSEGV_SKIP_INSTRUCTION
807 >        case SIGSEGV_RETURN_SKIP_INSTRUCTION:
808 >                // Call the instruction skipper with the register file
809 >                // available
810 >                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
811 > #ifdef HAVE_MACH_EXCEPTIONS
812 >                        // Unlike UNIX signals where the thread state
813 >                        // is modified off of the stack, in Mach we
814 >                        // need to actually call thread_set_state to
815 >                        // have the register values updated.
816 >                        kern_return_t krc;
817 >
818 >                        krc = thread_set_state(thread,
819 >                                                                   MACHINE_THREAD_STATE, (thread_state_t)state,
820 >                                                                   MACHINE_THREAD_STATE_COUNT);
821 >                        MACH_CHECK_ERROR (thread_get_state, krc);
822 > #endif
823 >                        return true;
824 >                }
825 >                break;
826   #endif
644                fault_recovered = true;
827          }
828 < #if HAVE_SIGSEGV_SKIP_INSTRUCTION
829 <        else if (sigsegv_ignore_fault) {
830 <                // Call the instruction skipper with the register file available
831 <                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE))
832 <                        fault_recovered = true;
828 >        
829 >        // We can't do anything with the fault_address, dump state?
830 >        if (sigsegv_state_dumper != 0)
831 >                sigsegv_state_dumper(fault_address, fault_instruction);
832 >
833 >        return false;
834 > }
835 > #endif
836 >
837 >
838 > /*
839 > * There are two mechanisms for handling a bad memory access,
840 > * Mach exceptions and UNIX signals. The implementation specific
841 > * code appears below. Its reponsibility is to call handle_badaccess
842 > * which is the routine that handles the fault in an implementation
843 > * agnostic manner. The implementation specific code below is then
844 > * reponsible for checking whether handle_badaccess was able
845 > * to handle the memory access error and perform any implementation
846 > * specific tasks necessary afterwards.
847 > */
848 >
849 > #ifdef HAVE_MACH_EXCEPTIONS
850 > /*
851 > * We need to forward all exceptions that we do not handle.
852 > * This is important, there are many exceptions that may be
853 > * handled by other exception handlers. For example debuggers
854 > * use exceptions and the exception hander is in another
855 > * process in such a case. (Timothy J. Wood states in his
856 > * message to the list that he based this code on that from
857 > * gdb for Darwin.)
858 > */
859 > static inline kern_return_t
860 > forward_exception(mach_port_t thread_port,
861 >                                  mach_port_t task_port,
862 >                                  exception_type_t exception_type,
863 >                                  exception_data_t exception_data,
864 >                                  mach_msg_type_number_t data_count,
865 >                                  ExceptionPorts *oldExceptionPorts)
866 > {
867 >        kern_return_t kret;
868 >        unsigned int portIndex;
869 >        mach_port_t port;
870 >        exception_behavior_t behavior;
871 >        thread_state_flavor_t flavor;
872 >        thread_state_t thread_state;
873 >        mach_msg_type_number_t thread_state_count;
874 >
875 >        for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
876 >                if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
877 >                        // This handler wants the exception
878 >                        break;
879 >                }
880 >        }
881 >
882 >        if (portIndex >= oldExceptionPorts->maskCount) {
883 >                fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
884 >                return KERN_FAILURE;
885 >        }
886 >
887 >        port = oldExceptionPorts->handlers[portIndex];
888 >        behavior = oldExceptionPorts->behaviors[portIndex];
889 >        flavor = oldExceptionPorts->flavors[portIndex];
890 >
891 >        /*
892 >         fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
893 >         */
894 >
895 >        if (behavior != EXCEPTION_DEFAULT) {
896 >                thread_state_count = THREAD_STATE_MAX;
897 >                kret = thread_get_state (thread_port, flavor, thread_state,
898 >                                                                 &thread_state_count);
899 >                MACH_CHECK_ERROR (thread_get_state, kret);
900          }
901 +
902 +        switch (behavior) {
903 +        case EXCEPTION_DEFAULT:
904 +          // fprintf(stderr, "forwarding to exception_raise\n");
905 +          kret = exception_raise(port, thread_port, task_port, exception_type,
906 +                                                         exception_data, data_count);
907 +          MACH_CHECK_ERROR (exception_raise, kret);
908 +          break;
909 +        case EXCEPTION_STATE:
910 +          // fprintf(stderr, "forwarding to exception_raise_state\n");
911 +          kret = exception_raise_state(port, exception_type, exception_data,
912 +                                                                   data_count, &flavor,
913 +                                                                   thread_state, thread_state_count,
914 +                                                                   thread_state, &thread_state_count);
915 +          MACH_CHECK_ERROR (exception_raise_state, kret);
916 +          break;
917 +        case EXCEPTION_STATE_IDENTITY:
918 +          // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
919 +          kret = exception_raise_state_identity(port, thread_port, task_port,
920 +                                                                                        exception_type, exception_data,
921 +                                                                                        data_count, &flavor,
922 +                                                                                        thread_state, thread_state_count,
923 +                                                                                        thread_state, &thread_state_count);
924 +          MACH_CHECK_ERROR (exception_raise_state_identity, kret);
925 +          break;
926 +        default:
927 +          fprintf(stderr, "forward_exception got unknown behavior\n");
928 +          break;
929 +        }
930 +
931 +        if (behavior != EXCEPTION_DEFAULT) {
932 +                kret = thread_set_state (thread_port, flavor, thread_state,
933 +                                                                 thread_state_count);
934 +                MACH_CHECK_ERROR (thread_set_state, kret);
935 +        }
936 +
937 +        return KERN_SUCCESS;
938 + }
939 +
940 + /*
941 + * This is the code that actually handles the exception.
942 + * It is called by exc_server. For Darwin 5 Apple changed
943 + * this a bit from how this family of functions worked in
944 + * Mach. If you are familiar with that it is a little
945 + * different. The main variation that concerns us here is
946 + * that code is an array of exception specific codes and
947 + * codeCount is a count of the number of codes in the code
948 + * array. In typical Mach all exceptions have a code
949 + * and sub-code. It happens to be the case that for a
950 + * EXC_BAD_ACCESS exception the first entry is the type of
951 + * bad access that occurred and the second entry is the
952 + * faulting address so these entries correspond exactly to
953 + * how the code and sub-code are used on Mach.
954 + *
955 + * This is a MIG interface. No code in Basilisk II should
956 + * call this directley. This has to have external C
957 + * linkage because that is what exc_server expects.
958 + */
959 + kern_return_t
960 + catch_exception_raise(mach_port_t exception_port,
961 +                                          mach_port_t thread,
962 +                                          mach_port_t task,
963 +                                          exception_type_t exception,
964 +                                          exception_data_t code,
965 +                                          mach_msg_type_number_t codeCount)
966 + {
967 +        ppc_thread_state_t state;
968 +        kern_return_t krc;
969 +
970 +        if ((exception == EXC_BAD_ACCESS)  && (codeCount >= 2)) {
971 +                if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
972 +                        return KERN_SUCCESS;
973 +        }
974 +
975 +        // In Mach we do not need to remove the exception handler.
976 +        // If we forward the exception, eventually some exception handler
977 +        // will take care of this exception.
978 +        krc = forward_exception(thread, task, exception, code, codeCount, &ports);
979 +
980 +        return krc;
981 + }
982 + #endif
983 +
984 + #ifdef HAVE_SIGSEGV_RECOVERY
985 + // Handle bad memory accesses with signal handler
986 + static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
987 + {
988 +        // Call handler and reinstall the global handler, if required
989 +        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
990 + #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
991 +                sigsegv_do_install_handler(sig);
992   #endif
993 +                return;
994 +        }
995  
996 <        if (!fault_recovered) {
655 <                // FAIL: reinstall default handler for "safe" crash
996 >        // Failure: reinstall default handler for "safe" crash
997   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
998 <                SIGSEGV_ALL_SIGNALS
998 >        SIGSEGV_ALL_SIGNALS
999   #undef FAULT_HANDLER
659                
660                // We can't do anything with the fault_address, dump state?
661                if (sigsegv_state_dumper != 0)
662                        sigsegv_state_dumper(fault_address, fault_instruction);
663        }
1000   }
1001   #endif
1002  
# Line 674 | Line 1010 | static bool sigsegv_do_install_handler(i
1010   {
1011          // Setup SIGSEGV handler to process writes to frame buffer
1012   #ifdef HAVE_SIGACTION
1013 <        struct sigaction vosf_sa;
1014 <        sigemptyset(&vosf_sa.sa_mask);
1015 <        vosf_sa.sa_sigaction = sigsegv_handler;
1016 <        vosf_sa.sa_flags = SA_SIGINFO;
1017 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1013 >        struct sigaction sigsegv_sa;
1014 >        sigemptyset(&sigsegv_sa.sa_mask);
1015 >        sigsegv_sa.sa_sigaction = sigsegv_handler;
1016 >        sigsegv_sa.sa_flags = SA_SIGINFO;
1017 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1018   #else
1019          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1020   #endif
# Line 690 | Line 1026 | static bool sigsegv_do_install_handler(i
1026   {
1027          // Setup SIGSEGV handler to process writes to frame buffer
1028   #ifdef HAVE_SIGACTION
1029 <        struct sigaction vosf_sa;
1030 <        sigemptyset(&vosf_sa.sa_mask);
1031 <        vosf_sa.sa_handler = (signal_handler)sigsegv_handler;
1029 >        struct sigaction sigsegv_sa;
1030 >        sigemptyset(&sigsegv_sa.sa_mask);
1031 >        sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
1032 >        sigsegv_sa.sa_flags = 0;
1033   #if !EMULATED_68K && defined(__NetBSD__)
1034 <        sigaddset(&vosf_sa.sa_mask, SIGALRM);
1035 <        vosf_sa.sa_flags = SA_ONSTACK;
699 < #else
700 <        vosf_sa.sa_flags = 0;
1034 >        sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
1035 >        sigsegv_sa.sa_flags |= SA_ONSTACK;
1036   #endif
1037 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1037 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1038   #else
1039          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1040   #endif
1041   }
1042   #endif
1043  
1044 < bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1044 > #if defined(HAVE_MACH_EXCEPTIONS)
1045 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1046   {
1047 < #ifdef HAVE_SIGSEGV_RECOVERY
1047 >        /*
1048 >         * Except for the exception port functions, this should be
1049 >         * pretty much stock Mach. If later you choose to support
1050 >         * other Mach's besides Darwin, just check for __MACH__
1051 >         * here and __APPLE__ where the actual differences are.
1052 >         */
1053 > #if defined(__APPLE__) && defined(__MACH__)
1054 >        if (sigsegv_fault_handler != NULL) {
1055 >                sigsegv_fault_handler = handler;
1056 >                return true;
1057 >        }
1058 >
1059 >        kern_return_t krc;
1060 >
1061 >        // create the the exception port
1062 >        krc = mach_port_allocate(mach_task_self(),
1063 >                          MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
1064 >        if (krc != KERN_SUCCESS) {
1065 >                mach_error("mach_port_allocate", krc);
1066 >                return false;
1067 >        }
1068 >
1069 >        // add a port send right
1070 >        krc = mach_port_insert_right(mach_task_self(),
1071 >                              _exceptionPort, _exceptionPort,
1072 >                              MACH_MSG_TYPE_MAKE_SEND);
1073 >        if (krc != KERN_SUCCESS) {
1074 >                mach_error("mach_port_insert_right", krc);
1075 >                return false;
1076 >        }
1077 >
1078 >        // get the old exception ports
1079 >        ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
1080 >        krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
1081 >                                &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
1082 >        if (krc != KERN_SUCCESS) {
1083 >                mach_error("thread_get_exception_ports", krc);
1084 >                return false;
1085 >        }
1086 >
1087 >        // set the new exception port
1088 >        //
1089 >        // We could have used EXCEPTION_STATE_IDENTITY instead of
1090 >        // EXCEPTION_DEFAULT to get the thread state in the initial
1091 >        // message, but it turns out that in the common case this is not
1092 >        // neccessary. If we need it we can later ask for it from the
1093 >        // suspended thread.
1094 >        //
1095 >        // Even with THREAD_STATE_NONE, Darwin provides the program
1096 >        // counter in the thread state.  The comments in the header file
1097 >        // seem to imply that you can count on the GPR's on an exception
1098 >        // as well but just to be safe I use MACHINE_THREAD_STATE because
1099 >        // you have to ask for all of the GPR's anyway just to get the
1100 >        // program counter. In any case because of update effective
1101 >        // address from immediate and update address from effective
1102 >        // addresses of ra and rb modes (as good an name as any for these
1103 >        // addressing modes) used in PPC instructions, you will need the
1104 >        // GPR state anyway.
1105 >        krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
1106 >                                EXCEPTION_DEFAULT, MACHINE_THREAD_STATE);
1107 >        if (krc != KERN_SUCCESS) {
1108 >                mach_error("thread_set_exception_ports", krc);
1109 >                return false;
1110 >        }
1111 >
1112 >        // create the exception handler thread
1113 >        if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
1114 >                (void)fprintf(stderr, "creation of exception thread failed\n");
1115 >                return false;
1116 >        }
1117 >
1118 >        // do not care about the exception thread any longer, let is run standalone
1119 >        (void)pthread_detach(exc_thread);
1120 >
1121          sigsegv_fault_handler = handler;
1122 +        return true;
1123 + #else
1124 +        return false;
1125 + #endif
1126 + }
1127 + #endif
1128 +
1129 + bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1130 + {
1131 + #if defined(HAVE_SIGSEGV_RECOVERY)
1132          bool success = true;
1133   #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
1134          SIGSEGV_ALL_SIGNALS
1135   #undef FAULT_HANDLER
1136 +        if (success)
1137 +            sigsegv_fault_handler = handler;
1138          return success;
1139 + #elif defined(HAVE_MACH_EXCEPTIONS)
1140 +        return sigsegv_do_install_handler(handler);
1141   #else
1142          // FAIL: no siginfo_t nor sigcontext subterfuge is available
1143          return false;
# Line 728 | Line 1151 | bool sigsegv_install_handler(sigsegv_fau
1151  
1152   void sigsegv_deinstall_handler(void)
1153   {
1154 +  // We do nothing for Mach exceptions, the thread would need to be
1155 +  // suspended if not already so, and we might mess with other
1156 +  // exception handlers that came after we registered ours. There is
1157 +  // no need to remove the exception handler, in fact this function is
1158 +  // not called anywhere in Basilisk II.
1159   #ifdef HAVE_SIGSEGV_RECOVERY
1160          sigsegv_fault_handler = 0;
1161   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
# Line 738 | Line 1166 | void sigsegv_deinstall_handler(void)
1166  
1167  
1168   /*
741 *  SIGSEGV ignore state modifier
742 */
743
744 void sigsegv_set_ignore_state(bool ignore_fault)
745 {
746        sigsegv_ignore_fault = ignore_fault;
747 }
748
749
750 /*
1169   *  Set callback function when we cannot handle the fault
1170   */
1171  
# Line 772 | Line 1190 | static int page_size;
1190   static volatile char * page = 0;
1191   static volatile int handler_called = 0;
1192  
1193 < static bool sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1193 > static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1194   {
1195          handler_called++;
1196          if ((fault_address - 123) != page)
1197 <                exit(1);
1197 >                exit(10);
1198          if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
1199 <                exit(1);
1200 <        return true;
1199 >                exit(11);
1200 >        return SIGSEGV_RETURN_SUCCESS;
1201   }
1202  
1203   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1204 < static bool sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1204 > #ifdef __GNUC__
1205 > // Code range where we expect the fault to come from
1206 > static void *b_region, *e_region;
1207 > #endif
1208 >
1209 > static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1210   {
1211 <        return false;
1211 >        if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
1212 > #ifdef __GNUC__
1213 >                // Make sure reported fault instruction address falls into
1214 >                // expected code range
1215 >                if (instruction_address != SIGSEGV_INVALID_PC
1216 >                        && ((instruction_address <  (sigsegv_address_t)b_region) ||
1217 >                                (instruction_address >= (sigsegv_address_t)e_region)))
1218 >                        return SIGSEGV_RETURN_FAILURE;
1219 > #endif
1220 >                return SIGSEGV_RETURN_SKIP_INSTRUCTION;
1221 >        }
1222 >
1223 >        return SIGSEGV_RETURN_FAILURE;
1224   }
1225   #endif
1226  
# Line 796 | Line 1231 | int main(void)
1231  
1232          page_size = getpagesize();
1233          if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
1234 <                return 1;
1234 >                return 2;
1235          
1236          if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
1237 <                return 1;
1237 >                return 3;
1238          
1239          if (!sigsegv_install_handler(sigsegv_test_handler))
1240 <                return 1;
1240 >                return 4;
1241          
1242          page[123] = 45;
1243          page[123] = 45;
1244          
1245          if (handler_called != 1)
1246 <                return 1;
1246 >                return 5;
1247  
1248   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1249          if (!sigsegv_install_handler(sigsegv_insn_handler))
1250 <                return 1;
1250 >                return 6;
1251          
1252          if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
1253 <                return 1;
1253 >                return 7;
1254          
1255          for (int i = 0; i < page_size; i++)
1256                  page[i] = (i + 1) % page_size;
1257          
1258          if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
1259 <                return 1;
1259 >                return 8;
1260          
826        sigsegv_set_ignore_state(true);
827
1261   #define TEST_SKIP_INSTRUCTION(TYPE) do {                                \
1262                  const unsigned int TAG = 0x12345678;                    \
1263                  TYPE data = *((TYPE *)(page + sizeof(TYPE)));   \
1264                  volatile unsigned int effect = data + TAG;              \
1265                  if (effect != TAG)                                                              \
1266 <                        return 1;                                                                       \
1266 >                        return 9;                                                                       \
1267          } while (0)
1268          
1269 + #ifdef __GNUC__
1270 +        b_region = &&L_b_region;
1271 +        e_region = &&L_e_region;
1272 + #endif
1273 + L_b_region:
1274          TEST_SKIP_INSTRUCTION(unsigned char);
1275          TEST_SKIP_INSTRUCTION(unsigned short);
1276          TEST_SKIP_INSTRUCTION(unsigned int);
1277 + L_e_region:
1278   #endif
1279  
1280          vm_exit();

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines