ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
(Generate patch)

Comparing BasiliskII/src/Unix/sigsegv.cpp (file contents):
Revision 1.15 by gbeauche, 2002-05-20T16:00:07Z vs.
Revision 1.58 by gbeauche, 2006-01-22T23:14:48Z

# Line 4 | Line 4
4   *  Derived from Bruno Haible's work on his SIGSEGV library for clisp
5   *  <http://clisp.sourceforge.net/>
6   *
7 < *  Basilisk II (C) 1997-2002 Christian Bauer
7 > *  MacOS X support derived from the post by Timothy J. Wood to the
8 > *  omnigroup macosx-dev list:
9 > *    Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10 > *    tjw@omnigroup.com Sun, 4 Jun 2000
11 > *    www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12 > *
13 > *  Basilisk II (C) 1997-2005 Christian Bauer
14   *
15   *  This program is free software; you can redistribute it and/or modify
16   *  it under the terms of the GNU General Public License as published by
# Line 29 | Line 35
35   #include "config.h"
36   #endif
37  
38 + #include <list>
39 + #include <stdio.h>
40   #include <signal.h>
41   #include "sigsegv.h"
42  
43 + #ifndef NO_STD_NAMESPACE
44 + using std::list;
45 + #endif
46 +
47   // Return value type of a signal handler (standard type if not defined)
48   #ifndef RETSIGTYPE
49   #define RETSIGTYPE void
# Line 40 | Line 52
52   // Type of the system signal handler
53   typedef RETSIGTYPE (*signal_handler)(int);
54  
43 // Is the fault to be ignored?
44 static bool sigsegv_ignore_fault = false;
45
55   // User's SIGSEGV handler
56   static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
57  
# Line 57 | Line 66 | static bool sigsegv_do_install_handler(i
66   *  Instruction decoding aids
67   */
68  
60 // Transfer type
61 enum transfer_type_t {
62        TYPE_UNKNOWN,
63        TYPE_LOAD,
64        TYPE_STORE
65 };
66
69   // Transfer size
70   enum transfer_size_t {
71          SIZE_UNKNOWN,
72          SIZE_BYTE,
73 <        SIZE_WORD,
74 <        SIZE_LONG
73 >        SIZE_WORD, // 2 bytes
74 >        SIZE_LONG, // 4 bytes
75 >        SIZE_QUAD, // 8 bytes
76   };
77  
78 + // Transfer type
79 + typedef sigsegv_transfer_type_t transfer_type_t;
80 +
81   #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
82   // Addressing mode
83   enum addressing_mode_t {
# Line 91 | Line 97 | struct instruction_t {
97          char                            ra, rd;
98   };
99  
100 < static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned int * gpr)
100 > static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned long * gpr)
101   {
102          // Get opcode and divide into fields
103 <        unsigned int opcode = *((unsigned int *)nip);
103 >        unsigned int opcode = *((unsigned int *)(unsigned long)nip);
104          unsigned int primop = opcode >> 26;
105          unsigned int exop = (opcode >> 1) & 0x3ff;
106          unsigned int ra = (opcode >> 16) & 0x1f;
# Line 103 | Line 109 | static void powerpc_decode_instruction(i
109          signed int imm = (signed short)(opcode & 0xffff);
110          
111          // Analyze opcode
112 <        transfer_type_t transfer_type = TYPE_UNKNOWN;
112 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
113          transfer_size_t transfer_size = SIZE_UNKNOWN;
114          addressing_mode_t addr_mode = MODE_UNKNOWN;
115          switch (primop) {
116          case 31:
117                  switch (exop) {
118                  case 23:        // lwzx
119 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
119 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
120                  case 55:        // lwzux
121 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
121 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
122                  case 87:        // lbzx
123 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
123 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
124                  case 119:       // lbzux
125 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
125 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
126                  case 151:       // stwx
127 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
127 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
128                  case 183:       // stwux
129 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
129 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
130                  case 215:       // stbx
131 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
131 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
132                  case 247:       // stbux
133 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
133 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
134                  case 279:       // lhzx
135 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
135 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
136                  case 311:       // lhzux
137 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
137 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
138                  case 343:       // lhax
139 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
139 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
140                  case 375:       // lhaux
141 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
141 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
142                  case 407:       // sthx
143 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
143 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
144                  case 439:       // sthux
145 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
145 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
146                  }
147                  break;
148          
149          case 32:        // lwz
150 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
150 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
151          case 33:        // lwzu
152 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
152 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
153          case 34:        // lbz
154 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
154 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
155          case 35:        // lbzu
156 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
156 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
157          case 36:        // stw
158 <                transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
158 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
159          case 37:        // stwu
160 <                transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
160 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
161          case 38:        // stb
162 <                transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
162 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
163          case 39:        // stbu
164 <                transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
164 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
165          case 40:        // lhz
166 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
166 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
167          case 41:        // lhzu
168 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
168 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
169          case 42:        // lha
170 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
170 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
171          case 43:        // lhau
172 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
172 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
173          case 44:        // sth
174 <                transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
174 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
175          case 45:        // sthu
176 <                transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
176 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
177 >        case 58:        // ld, ldu, lwa
178 >                transfer_type = SIGSEGV_TRANSFER_LOAD;
179 >                transfer_size = SIZE_QUAD;
180 >                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
181 >                imm &= ~3;
182 >                break;
183 >        case 62:        // std, stdu, stq
184 >                transfer_type = SIGSEGV_TRANSFER_STORE;
185 >                transfer_size = SIZE_QUAD;
186 >                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
187 >                imm &= ~3;
188 >                break;
189          }
190          
191          // Calculate effective address
# Line 208 | Line 226 | static void powerpc_decode_instruction(i
226  
227   #if HAVE_SIGINFO_T
228   // Generic extended signal handler
229 < #if defined(__NetBSD__) || defined(__FreeBSD__)
229 > #if defined(__FreeBSD__)
230   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
231   #else
232   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
233   #endif
234   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, siginfo_t *sip, void *scp
235 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
236 + #define SIGSEGV_FAULT_HANDLER_ARGS              sip, scp
237   #define SIGSEGV_FAULT_ADDRESS                   sip->si_addr
238 + #if (defined(sgi) || defined(__sgi))
239 + #include <ucontext.h>
240 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
241 + #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)SIGSEGV_CONTEXT_REGS[CTX_EPC]
242 + #if (defined(mips) || defined(__mips))
243 + #define SIGSEGV_REGISTER_FILE                   SIGSEGV_CONTEXT_REGS
244 + #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
245 + #endif
246 + #endif
247 + #if defined(__sun__)
248 + #if (defined(sparc) || defined(__sparc__))
249 + #include <sys/stack.h>
250 + #include <sys/regset.h>
251 + #include <sys/ucontext.h>
252 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
253 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[REG_PC]
254 + #define SIGSEGV_SPARC_GWINDOWS                  (((ucontext_t *)scp)->uc_mcontext.gwins)
255 + #define SIGSEGV_SPARC_RWINDOW                   (struct rwindow *)((char *)SIGSEGV_CONTEXT_REGS[REG_SP] + STACK_BIAS)
256 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)SIGSEGV_CONTEXT_REGS), SIGSEGV_SPARC_GWINDOWS, SIGSEGV_SPARC_RWINDOW
257 + #define SIGSEGV_SKIP_INSTRUCTION                sparc_skip_instruction
258 + #endif
259 + #if defined(__i386__)
260 + #include <sys/regset.h>
261 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
262 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[EIP]
263 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
264 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
265 + #endif
266 + #endif
267 + #if defined(__FreeBSD__) || defined(__OpenBSD__)
268 + #if (defined(i386) || defined(__i386__))
269 + #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_eip)
270 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
271 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
272 + #endif
273 + #endif
274 + #if defined(__NetBSD__)
275 + #if (defined(i386) || defined(__i386__))
276 + #include <sys/ucontext.h>
277 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
278 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_EIP]
279 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
280 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
281 + #endif
282 + #if (defined(powerpc) || defined(__powerpc__))
283 + #include <sys/ucontext.h>
284 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
285 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_PC]
286 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_PC], (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_R0]
287 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
288 + #endif
289 + #endif
290   #if defined(__linux__)
291   #if (defined(i386) || defined(__i386__))
292   #include <sys/ucontext.h>
293   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
294   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
295 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)SIGSEGV_CONTEXT_REGS
295 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
296 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
297 > #endif
298 > #if (defined(x86_64) || defined(__x86_64__))
299 > #include <sys/ucontext.h>
300 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
301 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
302 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
303   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
304   #endif
305   #if (defined(ia64) || defined(__ia64__))
# Line 230 | Line 309 | static void powerpc_decode_instruction(i
309   #include <sys/ucontext.h>
310   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.regs)
311   #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS->nip)
312 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned int *)(SIGSEGV_CONTEXT_REGS->gpr)
312 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned long *)(SIGSEGV_CONTEXT_REGS->gpr)
313   #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
314   #endif
315 + #if (defined(hppa) || defined(__hppa__))
316 + #undef  SIGSEGV_FAULT_ADDRESS
317 + #define SIGSEGV_FAULT_ADDRESS                   sip->si_ptr
318 + #endif
319 + #if (defined(arm) || defined(__arm__))
320 + #include <asm/ucontext.h> /* use kernel structure, glibc may not be in sync */
321 + #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
322 + #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.arm_pc)
323 + #define SIGSEGV_REGISTER_FILE                   (&SIGSEGV_CONTEXT_REGS.arm_r0)
324 + #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
325 + #endif
326   #endif
327   #endif
328  
# Line 243 | Line 333 | static void powerpc_decode_instruction(i
333   #if (defined(i386) || defined(__i386__))
334   #include <asm/sigcontext.h>
335   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext scs
336 < #define SIGSEGV_FAULT_ADDRESS                   scs.cr2
337 < #define SIGSEGV_FAULT_INSTRUCTION               scs.eip
338 < #define SIGSEGV_REGISTER_FILE                   (unsigned long *)(&scs)
336 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
337 > #define SIGSEGV_FAULT_HANDLER_ARGS              &scs
338 > #define SIGSEGV_FAULT_ADDRESS                   scp->cr2
339 > #define SIGSEGV_FAULT_INSTRUCTION               scp->eip
340 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)scp
341   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
342   #endif
343   #if (defined(sparc) || defined(__sparc__))
344   #include <asm/sigcontext.h>
345   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
346 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
347   #define SIGSEGV_FAULT_ADDRESS                   addr
348   #endif
349   #if (defined(powerpc) || defined(__powerpc__))
350   #include <asm/sigcontext.h>
351   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext *scp
352 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, scp
353   #define SIGSEGV_FAULT_ADDRESS                   scp->regs->dar
354   #define SIGSEGV_FAULT_INSTRUCTION               scp->regs->nip
355 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&scp->regs->nip, (unsigned int *)(scp->regs->gpr)
355 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&scp->regs->nip, (unsigned long *)(scp->regs->gpr)
356   #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
357   #endif
358   #if (defined(alpha) || defined(__alpha__))
359   #include <asm/sigcontext.h>
360   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
361 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
362   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
363   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
364 <
365 < // From Boehm's GC 6.0alpha8
366 < static sigsegv_address_t get_fault_address(struct sigcontext *scp)
367 < {
368 <        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
369 <        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
370 <        fault_address += (signed long)(signed short)(instruction & 0xffff);
371 <        return (sigsegv_address_t)fault_address;
372 < }
364 > #endif
365 > #if (defined(arm) || defined(__arm__))
366 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int r1, int r2, int r3, struct sigcontext sc
367 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
368 > #define SIGSEGV_FAULT_HANDLER_ARGS              &sc
369 > #define SIGSEGV_FAULT_ADDRESS                   scp->fault_address
370 > #define SIGSEGV_FAULT_INSTRUCTION               scp->arm_pc
371 > #define SIGSEGV_REGISTER_FILE                   &scp->arm_r0
372 > #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
373   #endif
374   #endif
375  
376   // Irix 5 or 6 on MIPS
377 < #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
377 > #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(_SYSTYPE_SVR4))
378   #include <ucontext.h>
379   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
380 < #define SIGSEGV_FAULT_ADDRESS                   scp->sc_badvaddr
380 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
381 > #define SIGSEGV_FAULT_ADDRESS                   (unsigned long)scp->sc_badvaddr
382 > #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)scp->sc_pc
383   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
384   #endif
385  
386   // HP-UX
387   #if (defined(hpux) || defined(__hpux__))
388   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
389 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
390   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_sl.sl_ss.ss_narrow.ss_cr21
391   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
392   #endif
# Line 297 | Line 395 | static sigsegv_address_t get_fault_addre
395   #if defined(__osf__)
396   #include <ucontext.h>
397   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
398 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
399   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_traparg_a0
400   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
401   #endif
# Line 304 | Line 403 | static sigsegv_address_t get_fault_addre
403   // AIX
404   #if defined(_AIX)
405   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
406 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
407   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_jmpbuf.jmp_context.o_vaddr
408   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
409   #endif
410  
411 < // NetBSD or FreeBSD
412 < #if defined(__NetBSD__) || defined(__FreeBSD__)
411 > // NetBSD
412 > #if defined(__NetBSD__)
413   #if (defined(m68k) || defined(__m68k__))
414   #include <m68k/frame.h>
415   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
416 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
417   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
418   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
419  
# Line 336 | Line 437 | static sigsegv_address_t get_fault_addre
437          }
438          return (sigsegv_address_t)fault_addr;
439   }
440 < #else
441 < #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, void *scp, char *addr
442 < #define SIGSEGV_FAULT_ADDRESS                   addr
440 > #endif
441 > #if (defined(alpha) || defined(__alpha__))
442 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
443 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
444 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
445   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
446   #endif
447 + #if (defined(i386) || defined(__i386__))
448 + #error "FIXME: need to decode instruction and compute EA"
449 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
450 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
451 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
452 + #endif
453 + #endif
454 + #if defined(__FreeBSD__)
455 + #if (defined(i386) || defined(__i386__))
456 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
457 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
458 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
459 + #define SIGSEGV_FAULT_ADDRESS                   addr
460 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_eip
461 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&scp->sc_edi)
462 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
463 + #endif
464 + #if (defined(alpha) || defined(__alpha__))
465 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
466 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, char *addr, struct sigcontext *scp
467 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, addr, scp
468 + #define SIGSEGV_FAULT_ADDRESS                   addr
469 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
470 + #endif
471 + #endif
472 +
473 + // Extract fault address out of a sigcontext
474 + #if (defined(alpha) || defined(__alpha__))
475 + // From Boehm's GC 6.0alpha8
476 + static sigsegv_address_t get_fault_address(struct sigcontext *scp)
477 + {
478 +        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
479 +        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
480 +        fault_address += (signed long)(signed short)(instruction & 0xffff);
481 +        return (sigsegv_address_t)fault_address;
482 + }
483   #endif
484  
485 < // MacOS X
485 >
486 > // MacOS X, not sure which version this works in. Under 10.1
487 > // vm_protect does not appear to work from a signal handler. Under
488 > // 10.2 signal handlers get siginfo type arguments but the si_addr
489 > // field is the address of the faulting instruction and not the
490 > // address that caused the SIGBUS. Maybe this works in 10.0? In any
491 > // case with Mach exception handlers there is a way to do what this
492 > // was meant to do.
493 > #ifndef HAVE_MACH_EXCEPTIONS
494   #if defined(__APPLE__) && defined(__MACH__)
495   #if (defined(ppc) || defined(__ppc__))
496   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
497 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
498   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
499   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_ir
500   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
# Line 366 | Line 514 | static sigsegv_address_t get_fault_addre
514   #endif
515   #endif
516   #endif
517 + #endif
518 +
519 + #if HAVE_WIN32_EXCEPTIONS
520 + #define WIN32_LEAN_AND_MEAN /* avoid including junk */
521 + #include <windows.h>
522 + #include <winerror.h>
523 +
524 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   EXCEPTION_POINTERS *ExceptionInfo
525 + #define SIGSEGV_FAULT_HANDLER_ARGS              ExceptionInfo
526 + #define SIGSEGV_FAULT_ADDRESS                   ExceptionInfo->ExceptionRecord->ExceptionInformation[1]
527 + #define SIGSEGV_CONTEXT_REGS                    ExceptionInfo->ContextRecord
528 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS->Eip
529 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&SIGSEGV_CONTEXT_REGS->Edi)
530 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
531 + #endif
532 +
533 + #if HAVE_MACH_EXCEPTIONS
534 +
535 + // This can easily be extended to other Mach systems, but really who
536 + // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
537 + // Mach 2.5/3.0?
538 + #if defined(__APPLE__) && defined(__MACH__)
539 +
540 + #include <sys/types.h>
541 + #include <stdlib.h>
542 + #include <stdio.h>
543 + #include <pthread.h>
544 +
545 + /*
546 + * If you are familiar with MIG then you will understand the frustration
547 + * that was necessary to get these embedded into C++ code by hand.
548 + */
549 + extern "C" {
550 + #include <mach/mach.h>
551 + #include <mach/mach_error.h>
552 +
553 + extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
554 + extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
555 +        mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
556 + extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
557 +        exception_type_t, exception_data_t, mach_msg_type_number_t);
558 + extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
559 +        exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
560 +        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
561 + extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
562 +        exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
563 +        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
564 + }
565 +
566 + // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
567 + #define HANDLER_COUNT 64
568 +
569 + // structure to tuck away existing exception handlers
570 + typedef struct _ExceptionPorts {
571 +        mach_msg_type_number_t maskCount;
572 +        exception_mask_t masks[HANDLER_COUNT];
573 +        exception_handler_t handlers[HANDLER_COUNT];
574 +        exception_behavior_t behaviors[HANDLER_COUNT];
575 +        thread_state_flavor_t flavors[HANDLER_COUNT];
576 + } ExceptionPorts;
577 +
578 + // exception handler thread
579 + static pthread_t exc_thread;
580 +
581 + // place where old exception handler info is stored
582 + static ExceptionPorts ports;
583 +
584 + // our exception port
585 + static mach_port_t _exceptionPort = MACH_PORT_NULL;
586 +
587 + #define MACH_CHECK_ERROR(name,ret) \
588 + if (ret != KERN_SUCCESS) { \
589 +        mach_error(#name, ret); \
590 +        exit (1); \
591 + }
592 +
593 + #ifdef __ppc__
594 + #define SIGSEGV_THREAD_STATE_TYPE               ppc_thread_state_t
595 + #define SIGSEGV_THREAD_STATE_FLAVOR             PPC_THREAD_STATE
596 + #define SIGSEGV_THREAD_STATE_COUNT              PPC_THREAD_STATE_COUNT
597 + #define SIGSEGV_FAULT_INSTRUCTION               state->srr0
598 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
599 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&state->srr0, (unsigned long *)&state->r0
600 + #endif
601 + #ifdef __i386__
602 + #ifdef i386_SAVED_STATE
603 + #define SIGSEGV_THREAD_STATE_TYPE               struct i386_saved_state
604 + #define SIGSEGV_THREAD_STATE_FLAVOR             i386_SAVED_STATE
605 + #define SIGSEGV_THREAD_STATE_COUNT              i386_SAVED_STATE_COUNT
606 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&state->edi) /* EDI is the first GPR we consider */
607 + #else
608 + #define SIGSEGV_THREAD_STATE_TYPE               struct i386_thread_state
609 + #define SIGSEGV_THREAD_STATE_FLAVOR             i386_THREAD_STATE
610 + #define SIGSEGV_THREAD_STATE_COUNT              i386_THREAD_STATE_COUNT
611 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&state->eax) /* EAX is the first GPR we consider */
612 + #endif
613 + #define SIGSEGV_FAULT_INSTRUCTION               state->eip
614 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
615 + #endif
616 + #define SIGSEGV_FAULT_ADDRESS                   code[1]
617 + #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  ((code[0] == KERN_PROTECTION_FAILURE) ? sigsegv_fault_handler(ADDR, IP) : SIGSEGV_RETURN_FAILURE)
618 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   mach_port_t thread, exception_data_t code, SIGSEGV_THREAD_STATE_TYPE *state
619 + #define SIGSEGV_FAULT_HANDLER_ARGS              thread, code, &state
620 +
621 + // Since there can only be one exception thread running at any time
622 + // this is not a problem.
623 + #define MSG_SIZE 512
624 + static char msgbuf[MSG_SIZE];
625 + static char replybuf[MSG_SIZE];
626 +
627 + /*
628 + * This is the entry point for the exception handler thread. The job
629 + * of this thread is to wait for exception messages on the exception
630 + * port that was setup beforehand and to pass them on to exc_server.
631 + * exc_server is a MIG generated function that is a part of Mach.
632 + * Its job is to decide what to do with the exception message. In our
633 + * case exc_server calls catch_exception_raise on our behalf. After
634 + * exc_server returns, it is our responsibility to send the reply.
635 + */
636 + static void *
637 + handleExceptions(void *priv)
638 + {
639 +        mach_msg_header_t *msg, *reply;
640 +        kern_return_t krc;
641 +
642 +        msg = (mach_msg_header_t *)msgbuf;
643 +        reply = (mach_msg_header_t *)replybuf;
644 +
645 +        for (;;) {
646 +                krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
647 +                                _exceptionPort, 0, MACH_PORT_NULL);
648 +                MACH_CHECK_ERROR(mach_msg, krc);
649 +
650 +                if (!exc_server(msg, reply)) {
651 +                        fprintf(stderr, "exc_server hated the message\n");
652 +                        exit(1);
653 +                }
654 +
655 +                krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
656 +                                 msg->msgh_local_port, 0, MACH_PORT_NULL);
657 +                if (krc != KERN_SUCCESS) {
658 +                        fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
659 +                                krc, mach_error_string(krc));
660 +                        exit(1);
661 +                }
662 +        }
663 + }
664 + #endif
665 + #endif
666  
667  
668   /*
# Line 374 | Line 671 | static sigsegv_address_t get_fault_addre
671  
672   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
673   // Decode and skip X86 instruction
674 < #if (defined(i386) || defined(__i386__))
674 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
675   #if defined(__linux__)
676   enum {
677 + #if (defined(i386) || defined(__i386__))
678          X86_REG_EIP = 14,
679          X86_REG_EAX = 11,
680          X86_REG_ECX = 10,
# Line 386 | Line 684 | enum {
684          X86_REG_EBP = 6,
685          X86_REG_ESI = 5,
686          X86_REG_EDI = 4
687 + #endif
688 + #if defined(__x86_64__)
689 +        X86_REG_R8  = 0,
690 +        X86_REG_R9  = 1,
691 +        X86_REG_R10 = 2,
692 +        X86_REG_R11 = 3,
693 +        X86_REG_R12 = 4,
694 +        X86_REG_R13 = 5,
695 +        X86_REG_R14 = 6,
696 +        X86_REG_R15 = 7,
697 +        X86_REG_EDI = 8,
698 +        X86_REG_ESI = 9,
699 +        X86_REG_EBP = 10,
700 +        X86_REG_EBX = 11,
701 +        X86_REG_EDX = 12,
702 +        X86_REG_EAX = 13,
703 +        X86_REG_ECX = 14,
704 +        X86_REG_ESP = 15,
705 +        X86_REG_EIP = 16
706 + #endif
707 + };
708 + #endif
709 + #if defined(__NetBSD__)
710 + enum {
711 + #if (defined(i386) || defined(__i386__))
712 +        X86_REG_EIP = _REG_EIP,
713 +        X86_REG_EAX = _REG_EAX,
714 +        X86_REG_ECX = _REG_ECX,
715 +        X86_REG_EDX = _REG_EDX,
716 +        X86_REG_EBX = _REG_EBX,
717 +        X86_REG_ESP = _REG_ESP,
718 +        X86_REG_EBP = _REG_EBP,
719 +        X86_REG_ESI = _REG_ESI,
720 +        X86_REG_EDI = _REG_EDI
721 + #endif
722 + };
723 + #endif
724 + #if defined(__FreeBSD__)
725 + enum {
726 + #if (defined(i386) || defined(__i386__))
727 +        X86_REG_EIP = 10,
728 +        X86_REG_EAX = 7,
729 +        X86_REG_ECX = 6,
730 +        X86_REG_EDX = 5,
731 +        X86_REG_EBX = 4,
732 +        X86_REG_ESP = 13,
733 +        X86_REG_EBP = 2,
734 +        X86_REG_ESI = 1,
735 +        X86_REG_EDI = 0
736 + #endif
737 + };
738 + #endif
739 + #if defined(__OpenBSD__)
740 + enum {
741 + #if defined(__i386__)
742 +        // EDI is the first register we consider
743 + #define OREG(REG) offsetof(struct sigcontext, sc_##REG)
744 + #define DREG(REG) ((OREG(REG) - OREG(edi)) / 4)
745 +        X86_REG_EIP = DREG(eip), // 7
746 +        X86_REG_EAX = DREG(eax), // 6
747 +        X86_REG_ECX = DREG(ecx), // 5
748 +        X86_REG_EDX = DREG(edx), // 4
749 +        X86_REG_EBX = DREG(ebx), // 3
750 +        X86_REG_ESP = DREG(esp), // 10
751 +        X86_REG_EBP = DREG(ebp), // 2
752 +        X86_REG_ESI = DREG(esi), // 1
753 +        X86_REG_EDI = DREG(edi)  // 0
754 + #undef DREG
755 + #undef OREG
756 + #endif
757 + };
758 + #endif
759 + #if defined(__sun__)
760 + // Same as for Linux, need to check for x86-64
761 + enum {
762 + #if defined(__i386__)
763 +        X86_REG_EIP = EIP,
764 +        X86_REG_EAX = EAX,
765 +        X86_REG_ECX = ECX,
766 +        X86_REG_EDX = EDX,
767 +        X86_REG_EBX = EBX,
768 +        X86_REG_ESP = ESP,
769 +        X86_REG_EBP = EBP,
770 +        X86_REG_ESI = ESI,
771 +        X86_REG_EDI = EDI
772 + #endif
773 + };
774 + #endif
775 + #if defined(__APPLE__) && defined(__MACH__)
776 + enum {
777 + #ifdef i386_SAVED_STATE
778 +        // same as FreeBSD (in Open Darwin 8.0.1)
779 +        X86_REG_EIP = 10,
780 +        X86_REG_EAX = 7,
781 +        X86_REG_ECX = 6,
782 +        X86_REG_EDX = 5,
783 +        X86_REG_EBX = 4,
784 +        X86_REG_ESP = 13,
785 +        X86_REG_EBP = 2,
786 +        X86_REG_ESI = 1,
787 +        X86_REG_EDI = 0
788 + #else
789 +        // new layout (MacOS X 10.4.4 for x86)
790 +        X86_REG_EIP = 10,
791 +        X86_REG_EAX = 0,
792 +        X86_REG_ECX = 2,
793 +        X86_REG_EDX = 4,
794 +        X86_REG_EBX = 1,
795 +        X86_REG_ESP = 7,
796 +        X86_REG_EBP = 6,
797 +        X86_REG_ESI = 5,
798 +        X86_REG_EDI = 4
799 + #endif
800 + };
801 + #endif
802 + #if defined(_WIN32)
803 + enum {
804 + #if (defined(i386) || defined(__i386__))
805 +        X86_REG_EIP = 7,
806 +        X86_REG_EAX = 5,
807 +        X86_REG_ECX = 4,
808 +        X86_REG_EDX = 3,
809 +        X86_REG_EBX = 2,
810 +        X86_REG_ESP = 10,
811 +        X86_REG_EBP = 6,
812 +        X86_REG_ESI = 1,
813 +        X86_REG_EDI = 0
814 + #endif
815   };
816   #endif
817   // FIXME: this is partly redundant with the instruction decoding phase
# Line 422 | Line 848 | static inline int ix86_step_over_modrm(u
848          return offset;
849   }
850  
851 < static bool ix86_skip_instruction(unsigned int * regs)
851 > static bool ix86_skip_instruction(unsigned long * regs)
852   {
853          unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
854  
855          if (eip == 0)
856                  return false;
857 + #ifdef _WIN32
858 +        if (IsBadCodePtr((FARPROC)eip))
859 +                return false;
860 + #endif
861          
862 <        transfer_type_t transfer_type = TYPE_UNKNOWN;
862 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
863          transfer_size_t transfer_size = SIZE_LONG;
864          
865          int reg = -1;
866          int len = 0;
867 <        
867 >
868 > #if DEBUG
869 >        printf("IP: %p [%02x %02x %02x %02x...]\n",
870 >                   eip, eip[0], eip[1], eip[2], eip[3]);
871 > #endif
872 >
873          // Operand size prefix
874          if (*eip == 0x66) {
875                  eip++;
# Line 442 | Line 877 | static bool ix86_skip_instruction(unsign
877                  transfer_size = SIZE_WORD;
878          }
879  
880 +        // REX prefix
881 + #if defined(__x86_64__)
882 +        struct rex_t {
883 +                unsigned char W;
884 +                unsigned char R;
885 +                unsigned char X;
886 +                unsigned char B;
887 +        };
888 +        rex_t rex = { 0, 0, 0, 0 };
889 +        bool has_rex = false;
890 +        if ((*eip & 0xf0) == 0x40) {
891 +                has_rex = true;
892 +                const unsigned char b = *eip;
893 +                rex.W = b & (1 << 3);
894 +                rex.R = b & (1 << 2);
895 +                rex.X = b & (1 << 1);
896 +                rex.B = b & (1 << 0);
897 + #if DEBUG
898 +                printf("REX: %c,%c,%c,%c\n",
899 +                           rex.W ? 'W' : '_',
900 +                           rex.R ? 'R' : '_',
901 +                           rex.X ? 'X' : '_',
902 +                           rex.B ? 'B' : '_');
903 + #endif
904 +                eip++;
905 +                len++;
906 +                if (rex.W)
907 +                        transfer_size = SIZE_QUAD;
908 +        }
909 + #else
910 +        const bool has_rex = false;
911 + #endif
912 +
913          // Decode instruction
914 +        int target_size = SIZE_UNKNOWN;
915          switch (eip[0]) {
916 +        case 0x0f:
917 +                target_size = transfer_size;
918 +            switch (eip[1]) {
919 +                case 0xbe: // MOVSX r32, r/m8
920 +            case 0xb6: // MOVZX r32, r/m8
921 +                        transfer_size = SIZE_BYTE;
922 +                        goto do_mov_extend;
923 +                case 0xbf: // MOVSX r32, r/m16
924 +            case 0xb7: // MOVZX r32, r/m16
925 +                        transfer_size = SIZE_WORD;
926 +                        goto do_mov_extend;
927 +                  do_mov_extend:
928 +                        switch (eip[2] & 0xc0) {
929 +                        case 0x80:
930 +                                reg = (eip[2] >> 3) & 7;
931 +                                transfer_type = SIGSEGV_TRANSFER_LOAD;
932 +                                break;
933 +                        case 0x40:
934 +                                reg = (eip[2] >> 3) & 7;
935 +                                transfer_type = SIGSEGV_TRANSFER_LOAD;
936 +                                break;
937 +                        case 0x00:
938 +                                reg = (eip[2] >> 3) & 7;
939 +                                transfer_type = SIGSEGV_TRANSFER_LOAD;
940 +                                break;
941 +                        }
942 +                        len += 3 + ix86_step_over_modrm(eip + 2);
943 +                        break;
944 +            }
945 +          break;
946          case 0x8a: // MOV r8, r/m8
947                  transfer_size = SIZE_BYTE;
948          case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
949                  switch (eip[1] & 0xc0) {
950                  case 0x80:
951                          reg = (eip[1] >> 3) & 7;
952 <                        transfer_type = TYPE_LOAD;
952 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
953                          break;
954                  case 0x40:
955                          reg = (eip[1] >> 3) & 7;
956 <                        transfer_type = TYPE_LOAD;
956 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
957                          break;
958                  case 0x00:
959                          reg = (eip[1] >> 3) & 7;
960 <                        transfer_type = TYPE_LOAD;
960 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
961                          break;
962                  }
963                  len += 2 + ix86_step_over_modrm(eip + 1);
# Line 469 | Line 968 | static bool ix86_skip_instruction(unsign
968                  switch (eip[1] & 0xc0) {
969                  case 0x80:
970                          reg = (eip[1] >> 3) & 7;
971 <                        transfer_type = TYPE_STORE;
971 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
972                          break;
973                  case 0x40:
974                          reg = (eip[1] >> 3) & 7;
975 <                        transfer_type = TYPE_STORE;
975 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
976                          break;
977                  case 0x00:
978                          reg = (eip[1] >> 3) & 7;
979 <                        transfer_type = TYPE_STORE;
979 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
980                          break;
981                  }
982                  len += 2 + ix86_step_over_modrm(eip + 1);
983                  break;
984          }
985 +        if (target_size == SIZE_UNKNOWN)
986 +                target_size = transfer_size;
987  
988 <        if (transfer_type == TYPE_UNKNOWN) {
988 >        if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
989                  // Unknown machine code, let it crash. Then patch the decoder
990                  return false;
991          }
992  
993 <        if (transfer_type == TYPE_LOAD && reg != -1) {
994 <                static const int x86_reg_map[8] = {
993 > #if defined(__x86_64__)
994 >        if (rex.R)
995 >                reg += 8;
996 > #endif
997 >
998 >        if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
999 >                static const int x86_reg_map[] = {
1000                          X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
1001 <                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI
1001 >                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI,
1002 > #if defined(__x86_64__)
1003 >                        X86_REG_R8,  X86_REG_R9,  X86_REG_R10, X86_REG_R11,
1004 >                        X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15,
1005 > #endif
1006                  };
1007                  
1008 <                if (reg < 0 || reg >= 8)
1008 >                if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1))
1009                          return false;
1010  
1011 +                // Set 0 to the relevant register part
1012 +                // NOTE: this is only valid for MOV alike instructions
1013                  int rloc = x86_reg_map[reg];
1014 <                switch (transfer_size) {
1014 >                switch (target_size) {
1015                  case SIZE_BYTE:
1016 <                        regs[rloc] = (regs[rloc] & ~0xff);
1016 >                        if (has_rex || reg < 4)
1017 >                                regs[rloc] = (regs[rloc] & ~0x00ffL);
1018 >                        else {
1019 >                                rloc = x86_reg_map[reg - 4];
1020 >                                regs[rloc] = (regs[rloc] & ~0xff00L);
1021 >                        }
1022                          break;
1023                  case SIZE_WORD:
1024 <                        regs[rloc] = (regs[rloc] & ~0xffff);
1024 >                        regs[rloc] = (regs[rloc] & ~0xffffL);
1025                          break;
1026                  case SIZE_LONG:
1027 +                case SIZE_QUAD: // zero-extension
1028                          regs[rloc] = 0;
1029                          break;
1030                  }
# Line 514 | Line 1032 | static bool ix86_skip_instruction(unsign
1032  
1033   #if DEBUG
1034          printf("%08x: %s %s access", regs[X86_REG_EIP],
1035 <                   transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : "long",
1036 <                   transfer_type == TYPE_LOAD ? "read" : "write");
1035 >                   transfer_size == SIZE_BYTE ? "byte" :
1036 >                   transfer_size == SIZE_WORD ? "word" :
1037 >                   transfer_size == SIZE_LONG ? "long" :
1038 >                   transfer_size == SIZE_QUAD ? "quad" : "unknown",
1039 >                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1040          
1041          if (reg != -1) {
1042 <                static const char * x86_reg_str_map[8] = {
1043 <                        "eax", "ecx", "edx", "ebx",
1044 <                        "esp", "ebp", "esi", "edi"
1042 >                static const char * x86_byte_reg_str_map[] = {
1043 >                        "al",   "cl",   "dl",   "bl",
1044 >                        "spl",  "bpl",  "sil",  "dil",
1045 >                        "r8b",  "r9b",  "r10b", "r11b",
1046 >                        "r12b", "r13b", "r14b", "r15b",
1047 >                        "ah",   "ch",   "dh",   "bh",
1048 >                };
1049 >                static const char * x86_word_reg_str_map[] = {
1050 >                        "ax",   "cx",   "dx",   "bx",
1051 >                        "sp",   "bp",   "si",   "di",
1052 >                        "r8w",  "r9w",  "r10w", "r11w",
1053 >                        "r12w", "r13w", "r14w", "r15w",
1054 >                };
1055 >                static const char *x86_long_reg_str_map[] = {
1056 >                        "eax",  "ecx",  "edx",  "ebx",
1057 >                        "esp",  "ebp",  "esi",  "edi",
1058 >                        "r8d",  "r9d",  "r10d", "r11d",
1059 >                        "r12d", "r13d", "r14d", "r15d",
1060                  };
1061 <                printf(" %s register %%%s", transfer_type == TYPE_LOAD ? "to" : "from", x86_reg_str_map[reg]);
1061 >                static const char *x86_quad_reg_str_map[] = {
1062 >                        "rax", "rcx", "rdx", "rbx",
1063 >                        "rsp", "rbp", "rsi", "rdi",
1064 >                        "r8",  "r9",  "r10", "r11",
1065 >                        "r12", "r13", "r14", "r15",
1066 >                };
1067 >                const char * reg_str = NULL;
1068 >                switch (target_size) {
1069 >                case SIZE_BYTE:
1070 >                        reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg];
1071 >                        break;
1072 >                case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break;
1073 >                case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break;
1074 >                case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break;
1075 >                }
1076 >                if (reg_str)
1077 >                        printf(" %s register %%%s",
1078 >                                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from",
1079 >                                   reg_str);
1080          }
1081          printf(", %d bytes instruction\n", len);
1082   #endif
# Line 534 | Line 1088 | static bool ix86_skip_instruction(unsign
1088  
1089   // Decode and skip PPC instruction
1090   #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
1091 < static bool powerpc_skip_instruction(unsigned int * nip_p, unsigned int * regs)
1091 > static bool powerpc_skip_instruction(unsigned long * nip_p, unsigned long * regs)
1092   {
1093          instruction_t instr;
1094          powerpc_decode_instruction(&instr, *nip_p, regs);
1095          
1096 <        if (instr.transfer_type == TYPE_UNKNOWN) {
1096 >        if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1097                  // Unknown machine code, let it crash. Then patch the decoder
1098                  return false;
1099          }
1100  
1101   #if DEBUG
1102          printf("%08x: %s %s access", *nip_p,
1103 <                   instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : "long",
1104 <                   instr.transfer_type == TYPE_LOAD ? "read" : "write");
1103 >                   instr.transfer_size == SIZE_BYTE ? "byte" :
1104 >                   instr.transfer_size == SIZE_WORD ? "word" :
1105 >                   instr.transfer_size == SIZE_LONG ? "long" : "quad",
1106 >                   instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1107          
1108          if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
1109                  printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
1110 <        if (instr.transfer_type == TYPE_LOAD)
1110 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
1111                  printf(" r%d (rd = 0)\n", instr.rd);
1112   #endif
1113          
1114          if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
1115                  regs[instr.ra] = instr.addr;
1116 <        if (instr.transfer_type == TYPE_LOAD)
1116 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
1117                  regs[instr.rd] = 0;
1118          
1119          *nip_p += 4;
1120          return true;
1121   }
1122   #endif
1123 +
1124 + // Decode and skip MIPS instruction
1125 + #if (defined(mips) || defined(__mips))
1126 + enum {
1127 + #if (defined(sgi) || defined(__sgi))
1128 +  MIPS_REG_EPC = 35,
1129 + #endif
1130 + };
1131 + static bool mips_skip_instruction(greg_t * regs)
1132 + {
1133 +  unsigned int * epc = (unsigned int *)(unsigned long)regs[MIPS_REG_EPC];
1134 +
1135 +  if (epc == 0)
1136 +        return false;
1137 +
1138 + #if DEBUG
1139 +  printf("IP: %p [%08x]\n", epc, epc[0]);
1140 + #endif
1141 +
1142 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1143 +  transfer_size_t transfer_size = SIZE_LONG;
1144 +  int direction = 0;
1145 +
1146 +  const unsigned int opcode = epc[0];
1147 +  switch (opcode >> 26) {
1148 +  case 32: // Load Byte
1149 +  case 36: // Load Byte Unsigned
1150 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1151 +        transfer_size = SIZE_BYTE;
1152 +        break;
1153 +  case 33: // Load Halfword
1154 +  case 37: // Load Halfword Unsigned
1155 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1156 +        transfer_size = SIZE_WORD;
1157 +        break;
1158 +  case 35: // Load Word
1159 +  case 39: // Load Word Unsigned
1160 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1161 +        transfer_size = SIZE_LONG;
1162 +        break;
1163 +  case 34: // Load Word Left
1164 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1165 +        transfer_size = SIZE_LONG;
1166 +        direction = -1;
1167 +        break;
1168 +  case 38: // Load Word Right
1169 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1170 +        transfer_size = SIZE_LONG;
1171 +        direction = 1;
1172 +        break;
1173 +  case 55: // Load Doubleword
1174 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1175 +        transfer_size = SIZE_QUAD;
1176 +        break;
1177 +  case 26: // Load Doubleword Left
1178 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1179 +        transfer_size = SIZE_QUAD;
1180 +        direction = -1;
1181 +        break;
1182 +  case 27: // Load Doubleword Right
1183 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1184 +        transfer_size = SIZE_QUAD;
1185 +        direction = 1;
1186 +        break;
1187 +  case 40: // Store Byte
1188 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1189 +        transfer_size = SIZE_BYTE;
1190 +        break;
1191 +  case 41: // Store Halfword
1192 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1193 +        transfer_size = SIZE_WORD;
1194 +        break;
1195 +  case 43: // Store Word
1196 +  case 42: // Store Word Left
1197 +  case 46: // Store Word Right
1198 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1199 +        transfer_size = SIZE_LONG;
1200 +        break;
1201 +  case 63: // Store Doubleword
1202 +  case 44: // Store Doubleword Left
1203 +  case 45: // Store Doubleword Right
1204 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1205 +        transfer_size = SIZE_QUAD;
1206 +        break;
1207 +  /* Misc instructions unlikely to be used within CPU emulators */
1208 +  case 48: // Load Linked Word
1209 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1210 +        transfer_size = SIZE_LONG;
1211 +        break;
1212 +  case 52: // Load Linked Doubleword
1213 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1214 +        transfer_size = SIZE_QUAD;
1215 +        break;
1216 +  case 56: // Store Conditional Word
1217 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1218 +        transfer_size = SIZE_LONG;
1219 +        break;
1220 +  case 60: // Store Conditional Doubleword
1221 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1222 +        transfer_size = SIZE_QUAD;
1223 +        break;
1224 +  }
1225 +
1226 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1227 +        // Unknown machine code, let it crash. Then patch the decoder
1228 +        return false;
1229 +  }
1230 +
1231 +  // Zero target register in case of a load operation
1232 +  const int reg = (opcode >> 16) & 0x1f;
1233 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD) {
1234 +        if (direction == 0)
1235 +          regs[reg] = 0;
1236 +        else {
1237 +          // FIXME: untested code
1238 +          unsigned long ea = regs[(opcode >> 21) & 0x1f];
1239 +          ea += (signed long)(signed int)(signed short)(opcode & 0xffff);
1240 +          const int offset = ea & (transfer_size == SIZE_LONG ? 3 : 7);
1241 +          unsigned long value;
1242 +          if (direction > 0) {
1243 +                const unsigned long rmask = ~((1L << ((offset + 1) * 8)) - 1);
1244 +                value = regs[reg] & rmask;
1245 +          }
1246 +          else {
1247 +                const unsigned long lmask = (1L << (offset * 8)) - 1;
1248 +                value = regs[reg] & lmask;
1249 +          }
1250 +          // restore most significant bits
1251 +          if (transfer_size == SIZE_LONG)
1252 +                value = (signed long)(signed int)value;
1253 +          regs[reg] = value;
1254 +        }
1255 +  }
1256 +
1257 + #if DEBUG
1258 + #if (defined(_ABIN32) || defined(_ABI64))
1259 +  static const char * mips_gpr_names[32] = {
1260 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1261 +        "t0",   "t1",   "t2",   "t3",   "t4",   "t5",   "t6",   "t7",
1262 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1263 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1264 +  };
1265 + #else
1266 +  static const char * mips_gpr_names[32] = {
1267 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1268 +        "a4",   "a5",   "a6",   "a7",   "t0",   "t1",   "t2",   "t3",
1269 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1270 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1271 +  };
1272 + #endif
1273 +  printf("%s %s register %s\n",
1274 +                 transfer_size == SIZE_BYTE ? "byte" :
1275 +                 transfer_size == SIZE_WORD ? "word" :
1276 +                 transfer_size == SIZE_LONG ? "long" :
1277 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1278 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1279 +                 mips_gpr_names[reg]);
1280 + #endif
1281 +
1282 +  regs[MIPS_REG_EPC] += 4;
1283 +  return true;
1284 + }
1285 + #endif
1286 +
1287 + // Decode and skip SPARC instruction
1288 + #if (defined(sparc) || defined(__sparc__))
1289 + enum {
1290 + #if (defined(__sun__))
1291 +  SPARC_REG_G1 = REG_G1,
1292 +  SPARC_REG_O0 = REG_O0,
1293 +  SPARC_REG_PC = REG_PC,
1294 + #endif
1295 + };
1296 + static bool sparc_skip_instruction(unsigned long * regs, gwindows_t * gwins, struct rwindow * rwin)
1297 + {
1298 +  unsigned int * pc = (unsigned int *)regs[SPARC_REG_PC];
1299 +
1300 +  if (pc == 0)
1301 +        return false;
1302 +
1303 + #if DEBUG
1304 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1305 + #endif
1306 +
1307 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1308 +  transfer_size_t transfer_size = SIZE_LONG;
1309 +  bool register_pair = false;
1310 +
1311 +  const unsigned int opcode = pc[0];
1312 +  if ((opcode >> 30) != 3)
1313 +        return false;
1314 +  switch ((opcode >> 19) & 0x3f) {
1315 +  case 9: // Load Signed Byte
1316 +  case 1: // Load Unsigned Byte
1317 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1318 +        transfer_size = SIZE_BYTE;
1319 +        break;
1320 +  case 10:// Load Signed Halfword
1321 +  case 2: // Load Unsigned Word
1322 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1323 +        transfer_size = SIZE_WORD;
1324 +        break;
1325 +  case 8: // Load Word
1326 +  case 0: // Load Unsigned Word
1327 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1328 +        transfer_size = SIZE_LONG;
1329 +        break;
1330 +  case 11:// Load Extended Word
1331 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1332 +        transfer_size = SIZE_QUAD;
1333 +        break;
1334 +  case 3: // Load Doubleword
1335 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1336 +        transfer_size = SIZE_LONG;
1337 +        register_pair = true;
1338 +        break;
1339 +  case 5: // Store Byte
1340 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1341 +        transfer_size = SIZE_BYTE;
1342 +        break;
1343 +  case 6: // Store Halfword
1344 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1345 +        transfer_size = SIZE_WORD;
1346 +        break;
1347 +  case 4: // Store Word
1348 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1349 +        transfer_size = SIZE_LONG;
1350 +        break;
1351 +  case 14:// Store Extended Word
1352 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1353 +        transfer_size = SIZE_QUAD;
1354 +        break;
1355 +  case 7: // Store Doubleword
1356 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1357 +        transfer_size = SIZE_LONG;
1358 +        register_pair = true;
1359 +        break;
1360 +  }
1361 +
1362 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1363 +        // Unknown machine code, let it crash. Then patch the decoder
1364 +        return false;
1365 +  }
1366 +
1367 +  const int reg = (opcode >> 25) & 0x1f;
1368 +
1369 + #if DEBUG
1370 +  static const char * reg_names[] = {
1371 +        "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
1372 +        "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
1373 +        "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
1374 +        "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7"
1375 +  };
1376 +  printf("%s %s register %s\n",
1377 +                 transfer_size == SIZE_BYTE ? "byte" :
1378 +                 transfer_size == SIZE_WORD ? "word" :
1379 +                 transfer_size == SIZE_LONG ? "long" :
1380 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1381 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1382 +                 reg_names[reg]);
1383 + #endif
1384 +
1385 +  // Zero target register in case of a load operation
1386 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != 0) {
1387 + #if defined(__sun__)
1388 +        /*
1389 +         *  NOTE: special trampoline code to zero out the target register
1390 +         *  - The code is not reentrant
1391 +         *  - The ABI specifies that data below %sp is undefined, can we
1392 +         *    really write to it in that case?
1393 +         */
1394 +        static unsigned int code[4];
1395 +        if (sizeof(void *) == 8)
1396 +          code[0] = 0xc05bbff8|(reg << 25);     // ldx  [%sp - 8], %reg
1397 +        else
1398 +          code[0] = 0xc003bff8|(reg << 25);     // ld   [%sp - 8], %reg
1399 +        code[1] = 0x81c00000|(reg << 14);       // jmpl %reg
1400 +        code[2] = 0x80102000|(reg << 25);       // clr  %reg
1401 +        *((unsigned long *)regs[SPARC_REG_O0 + 6]) = regs[SPARC_REG_PC] + 4;
1402 +        regs[SPARC_REG_PC] = (unsigned long)code;
1403 +        return true;
1404 + #else
1405 +        // FIXME: code to handle local & input registers is not tested
1406 +        if (reg >= 1 && reg < 8) {
1407 +          // global registers
1408 +          regs[reg - 1 + SPARC_REG_G1] = 0;
1409 +        }
1410 +        else if (reg >= 8 && reg < 16) {
1411 +          // output registers
1412 +          regs[reg - 8 + SPARC_REG_O0] = 0;
1413 +        }
1414 +        else if (reg >= 16 && reg < 24) {
1415 +          // local registers (in register windows)
1416 +          if (gwins)
1417 +                gwins->wbuf->rw_local[reg - 16] = 0;
1418 +          else
1419 +                rwin->rw_local[reg - 16] = 0;
1420 +        }
1421 +        else {
1422 +          // input registers (in register windows)
1423 +          if (gwins)
1424 +                gwins->wbuf->rw_in[reg - 24] = 0;
1425 +          else
1426 +                rwin->rw_in[reg - 24] = 0;
1427 +        }
1428 + #endif
1429 +  }
1430 +
1431 +  regs[SPARC_REG_PC] += 4;
1432 +  return true;
1433 + }
1434 + #endif
1435 + #endif
1436 +
1437 + // Decode and skip ARM instruction
1438 + #if (defined(arm) || defined(__arm__))
1439 + enum {
1440 + #if (defined(__linux__))
1441 +  ARM_REG_PC = 15,
1442 +  ARM_REG_CPSR = 16
1443 + #endif
1444 + };
1445 + static bool arm_skip_instruction(unsigned long * regs)
1446 + {
1447 +  unsigned int * pc = (unsigned int *)regs[ARM_REG_PC];
1448 +
1449 +  if (pc == 0)
1450 +        return false;
1451 +
1452 + #if DEBUG
1453 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1454 + #endif
1455 +
1456 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1457 +  transfer_size_t transfer_size = SIZE_UNKNOWN;
1458 +  enum { op_sdt = 1, op_sdth = 2 };
1459 +  int op = 0;
1460 +
1461 +  // Handle load/store instructions only
1462 +  const unsigned int opcode = pc[0];
1463 +  switch ((opcode >> 25) & 7) {
1464 +  case 0: // Halfword and Signed Data Transfer (LDRH, STRH, LDRSB, LDRSH)
1465 +        op = op_sdth;
1466 +        // Determine transfer size (S/H bits)
1467 +        switch ((opcode >> 5) & 3) {
1468 +        case 0: // SWP instruction
1469 +          break;
1470 +        case 1: // Unsigned halfwords
1471 +        case 3: // Signed halfwords
1472 +          transfer_size = SIZE_WORD;
1473 +          break;
1474 +        case 2: // Signed byte
1475 +          transfer_size = SIZE_BYTE;
1476 +          break;
1477 +        }
1478 +        break;
1479 +  case 2:
1480 +  case 3: // Single Data Transfer (LDR, STR)
1481 +        op = op_sdt;
1482 +        // Determine transfer size (B bit)
1483 +        if (((opcode >> 22) & 1) == 1)
1484 +          transfer_size = SIZE_BYTE;
1485 +        else
1486 +          transfer_size = SIZE_LONG;
1487 +        break;
1488 +  default:
1489 +        // FIXME: support load/store mutliple?
1490 +        return false;
1491 +  }
1492 +
1493 +  // Check for invalid transfer size (SWP instruction?)
1494 +  if (transfer_size == SIZE_UNKNOWN)
1495 +        return false;
1496 +
1497 +  // Determine transfer type (L bit)
1498 +  if (((opcode >> 20) & 1) == 1)
1499 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1500 +  else
1501 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1502 +
1503 +  // Compute offset
1504 +  int offset;
1505 +  if (((opcode >> 25) & 1) == 0) {
1506 +        if (op == op_sdt)
1507 +          offset = opcode & 0xfff;
1508 +        else if (op == op_sdth) {
1509 +          int rm = opcode & 0xf;
1510 +          if (((opcode >> 22) & 1) == 0) {
1511 +                // register offset
1512 +                offset = regs[rm];
1513 +          }
1514 +          else {
1515 +                // immediate offset
1516 +                offset = ((opcode >> 4) & 0xf0) | (opcode & 0x0f);
1517 +          }
1518 +        }
1519 +  }
1520 +  else {
1521 +        const int rm = opcode & 0xf;
1522 +        const int sh = (opcode >> 7) & 0x1f;
1523 +        if (((opcode >> 4) & 1) == 1) {
1524 +          // we expect only legal load/store instructions
1525 +          printf("FATAL: invalid shift operand\n");
1526 +          return false;
1527 +        }
1528 +        const unsigned int v = regs[rm];
1529 +        switch ((opcode >> 5) & 3) {
1530 +        case 0: // logical shift left
1531 +          offset = sh ? v << sh : v;
1532 +          break;
1533 +        case 1: // logical shift right
1534 +          offset = sh ? v >> sh : 0;
1535 +          break;
1536 +        case 2: // arithmetic shift right
1537 +          if (sh)
1538 +                offset = ((signed int)v) >> sh;
1539 +          else
1540 +                offset = (v & 0x80000000) ? 0xffffffff : 0;
1541 +          break;
1542 +        case 3: // rotate right
1543 +          if (sh)
1544 +                offset = (v >> sh) | (v << (32 - sh));
1545 +          else
1546 +                offset = (v >> 1) | ((regs[ARM_REG_CPSR] << 2) & 0x80000000);
1547 +          break;
1548 +        }
1549 +  }
1550 +  if (((opcode >> 23) & 1) == 0)
1551 +        offset = -offset;
1552 +
1553 +  int rd = (opcode >> 12) & 0xf;
1554 +  int rn = (opcode >> 16) & 0xf;
1555 + #if DEBUG
1556 +  static const char * reg_names[] = {
1557 +        "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1558 +        "r9", "r9", "sl", "fp", "ip", "sp", "lr", "pc"
1559 +  };
1560 +  printf("%s %s register %s\n",
1561 +                 transfer_size == SIZE_BYTE ? "byte" :
1562 +                 transfer_size == SIZE_WORD ? "word" :
1563 +                 transfer_size == SIZE_LONG ? "long" : "unknown",
1564 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1565 +                 reg_names[rd]);
1566 + #endif
1567 +
1568 +  unsigned int base = regs[rn];
1569 +  if (((opcode >> 24) & 1) == 1)
1570 +        base += offset;
1571 +
1572 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD)
1573 +        regs[rd] = 0;
1574 +
1575 +  if (((opcode >> 24) & 1) == 0)                // post-index addressing
1576 +        regs[rn] += offset;
1577 +  else if (((opcode >> 21) & 1) == 1)   // write-back address into base
1578 +        regs[rn] = base;
1579 +
1580 +  regs[ARM_REG_PC] += 4;
1581 +  return true;
1582 + }
1583   #endif
1584  
1585 +
1586   // Fallbacks
1587   #ifndef SIGSEGV_FAULT_INSTRUCTION
1588   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_PC
1589   #endif
1590 + #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
1591 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
1592 + #endif
1593 + #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
1594 + #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  sigsegv_fault_handler(ADDR, IP)
1595 + #endif
1596  
1597   // SIGSEGV recovery supported ?
1598   #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
# Line 581 | Line 1604 | static bool powerpc_skip_instruction(uns
1604   *  SIGSEGV global handler
1605   */
1606  
1607 < #ifdef HAVE_SIGSEGV_RECOVERY
1608 < static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1607 > // This function handles the badaccess to memory.
1608 > // It is called from the signal handler or the exception handler.
1609 > static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
1610   {
1611 + #ifdef HAVE_MACH_EXCEPTIONS
1612 +        // We must match the initial count when writing back the CPU state registers
1613 +        kern_return_t krc;
1614 +        mach_msg_type_number_t count;
1615 +
1616 +        count = SIGSEGV_THREAD_STATE_COUNT;
1617 +        krc = thread_get_state(thread, SIGSEGV_THREAD_STATE_FLAVOR, (thread_state_t)state, &count);
1618 +        MACH_CHECK_ERROR (thread_get_state, krc);
1619 + #endif
1620 +
1621          sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
1622          sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
589        bool fault_recovered = false;
1623          
1624          // Call user's handler and reinstall the global handler, if required
1625 <        if (sigsegv_fault_handler(fault_address, fault_instruction)) {
1626 < #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1627 <                sigsegv_do_install_handler(sig);
1625 >        switch (SIGSEGV_FAULT_HANDLER_INVOKE(fault_address, fault_instruction)) {
1626 >        case SIGSEGV_RETURN_SUCCESS:
1627 >                return true;
1628 >
1629 > #if HAVE_SIGSEGV_SKIP_INSTRUCTION
1630 >        case SIGSEGV_RETURN_SKIP_INSTRUCTION:
1631 >                // Call the instruction skipper with the register file
1632 >                // available
1633 >                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
1634 > #ifdef HAVE_MACH_EXCEPTIONS
1635 >                        // Unlike UNIX signals where the thread state
1636 >                        // is modified off of the stack, in Mach we
1637 >                        // need to actually call thread_set_state to
1638 >                        // have the register values updated.
1639 >                        krc = thread_set_state(thread,
1640 >                                                                   SIGSEGV_THREAD_STATE_FLAVOR, (thread_state_t)state,
1641 >                                                                   count);
1642 >                        MACH_CHECK_ERROR (thread_set_state, krc);
1643   #endif
1644 <                fault_recovered = true;
1644 >                        return true;
1645 >                }
1646 >                break;
1647 > #endif
1648 >        case SIGSEGV_RETURN_FAILURE:
1649 >                // We can't do anything with the fault_address, dump state?
1650 >                if (sigsegv_state_dumper != 0)
1651 >                        sigsegv_state_dumper(fault_address, fault_instruction);
1652 >                break;
1653          }
1654 < #if HAVE_SIGSEGV_SKIP_INSTRUCTION
1655 <        else if (sigsegv_ignore_fault) {
1656 <                // Call the instruction skipper with the register file available
1657 <                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE))
1658 <                        fault_recovered = true;
1654 >
1655 >        return false;
1656 > }
1657 >
1658 >
1659 > /*
1660 > * There are two mechanisms for handling a bad memory access,
1661 > * Mach exceptions and UNIX signals. The implementation specific
1662 > * code appears below. Its reponsibility is to call handle_badaccess
1663 > * which is the routine that handles the fault in an implementation
1664 > * agnostic manner. The implementation specific code below is then
1665 > * reponsible for checking whether handle_badaccess was able
1666 > * to handle the memory access error and perform any implementation
1667 > * specific tasks necessary afterwards.
1668 > */
1669 >
1670 > #ifdef HAVE_MACH_EXCEPTIONS
1671 > /*
1672 > * We need to forward all exceptions that we do not handle.
1673 > * This is important, there are many exceptions that may be
1674 > * handled by other exception handlers. For example debuggers
1675 > * use exceptions and the exception hander is in another
1676 > * process in such a case. (Timothy J. Wood states in his
1677 > * message to the list that he based this code on that from
1678 > * gdb for Darwin.)
1679 > */
1680 > static inline kern_return_t
1681 > forward_exception(mach_port_t thread_port,
1682 >                                  mach_port_t task_port,
1683 >                                  exception_type_t exception_type,
1684 >                                  exception_data_t exception_data,
1685 >                                  mach_msg_type_number_t data_count,
1686 >                                  ExceptionPorts *oldExceptionPorts)
1687 > {
1688 >        kern_return_t kret;
1689 >        unsigned int portIndex;
1690 >        mach_port_t port;
1691 >        exception_behavior_t behavior;
1692 >        thread_state_flavor_t flavor;
1693 >        thread_state_data_t thread_state;
1694 >        mach_msg_type_number_t thread_state_count;
1695 >
1696 >        for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
1697 >                if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
1698 >                        // This handler wants the exception
1699 >                        break;
1700 >                }
1701 >        }
1702 >
1703 >        if (portIndex >= oldExceptionPorts->maskCount) {
1704 >                fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
1705 >                return KERN_FAILURE;
1706 >        }
1707 >
1708 >        port = oldExceptionPorts->handlers[portIndex];
1709 >        behavior = oldExceptionPorts->behaviors[portIndex];
1710 >        flavor = oldExceptionPorts->flavors[portIndex];
1711 >
1712 >        /*
1713 >         fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
1714 >         */
1715 >
1716 >        if (behavior != EXCEPTION_DEFAULT) {
1717 >                thread_state_count = THREAD_STATE_MAX;
1718 >                kret = thread_get_state (thread_port, flavor, thread_state,
1719 >                                                                 &thread_state_count);
1720 >                MACH_CHECK_ERROR (thread_get_state, kret);
1721 >        }
1722 >
1723 >        switch (behavior) {
1724 >        case EXCEPTION_DEFAULT:
1725 >          // fprintf(stderr, "forwarding to exception_raise\n");
1726 >          kret = exception_raise(port, thread_port, task_port, exception_type,
1727 >                                                         exception_data, data_count);
1728 >          MACH_CHECK_ERROR (exception_raise, kret);
1729 >          break;
1730 >        case EXCEPTION_STATE:
1731 >          // fprintf(stderr, "forwarding to exception_raise_state\n");
1732 >          kret = exception_raise_state(port, exception_type, exception_data,
1733 >                                                                   data_count, &flavor,
1734 >                                                                   thread_state, thread_state_count,
1735 >                                                                   thread_state, &thread_state_count);
1736 >          MACH_CHECK_ERROR (exception_raise_state, kret);
1737 >          break;
1738 >        case EXCEPTION_STATE_IDENTITY:
1739 >          // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
1740 >          kret = exception_raise_state_identity(port, thread_port, task_port,
1741 >                                                                                        exception_type, exception_data,
1742 >                                                                                        data_count, &flavor,
1743 >                                                                                        thread_state, thread_state_count,
1744 >                                                                                        thread_state, &thread_state_count);
1745 >          MACH_CHECK_ERROR (exception_raise_state_identity, kret);
1746 >          break;
1747 >        default:
1748 >          fprintf(stderr, "forward_exception got unknown behavior\n");
1749 >          break;
1750          }
1751 +
1752 +        if (behavior != EXCEPTION_DEFAULT) {
1753 +                kret = thread_set_state (thread_port, flavor, thread_state,
1754 +                                                                 thread_state_count);
1755 +                MACH_CHECK_ERROR (thread_set_state, kret);
1756 +        }
1757 +
1758 +        return KERN_SUCCESS;
1759 + }
1760 +
1761 + /*
1762 + * This is the code that actually handles the exception.
1763 + * It is called by exc_server. For Darwin 5 Apple changed
1764 + * this a bit from how this family of functions worked in
1765 + * Mach. If you are familiar with that it is a little
1766 + * different. The main variation that concerns us here is
1767 + * that code is an array of exception specific codes and
1768 + * codeCount is a count of the number of codes in the code
1769 + * array. In typical Mach all exceptions have a code
1770 + * and sub-code. It happens to be the case that for a
1771 + * EXC_BAD_ACCESS exception the first entry is the type of
1772 + * bad access that occurred and the second entry is the
1773 + * faulting address so these entries correspond exactly to
1774 + * how the code and sub-code are used on Mach.
1775 + *
1776 + * This is a MIG interface. No code in Basilisk II should
1777 + * call this directley. This has to have external C
1778 + * linkage because that is what exc_server expects.
1779 + */
1780 + kern_return_t
1781 + catch_exception_raise(mach_port_t exception_port,
1782 +                                          mach_port_t thread,
1783 +                                          mach_port_t task,
1784 +                                          exception_type_t exception,
1785 +                                          exception_data_t code,
1786 +                                          mach_msg_type_number_t codeCount)
1787 + {
1788 +        SIGSEGV_THREAD_STATE_TYPE state;
1789 +        kern_return_t krc;
1790 +
1791 +        if ((exception == EXC_BAD_ACCESS)  && (codeCount >= 2)) {
1792 +                if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
1793 +                        return KERN_SUCCESS;
1794 +        }
1795 +
1796 +        // In Mach we do not need to remove the exception handler.
1797 +        // If we forward the exception, eventually some exception handler
1798 +        // will take care of this exception.
1799 +        krc = forward_exception(thread, task, exception, code, codeCount, &ports);
1800 +
1801 +        return krc;
1802 + }
1803   #endif
1804  
1805 <        if (!fault_recovered) {
1806 <                // FAIL: reinstall default handler for "safe" crash
1805 > #ifdef HAVE_SIGSEGV_RECOVERY
1806 > // Handle bad memory accesses with signal handler
1807 > static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1808 > {
1809 >        // Call handler and reinstall the global handler, if required
1810 >        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
1811 > #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1812 >                sigsegv_do_install_handler(sig);
1813 > #endif
1814 >                return;
1815 >        }
1816 >
1817 >        // Failure: reinstall default handler for "safe" crash
1818   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1819 <                SIGSEGV_ALL_SIGNALS
1819 >        SIGSEGV_ALL_SIGNALS
1820   #undef FAULT_HANDLER
611                
612                // We can't do anything with the fault_address, dump state?
613                if (sigsegv_state_dumper != 0)
614                        sigsegv_state_dumper(fault_address, fault_instruction);
615        }
1821   }
1822   #endif
1823  
# Line 626 | Line 1831 | static bool sigsegv_do_install_handler(i
1831   {
1832          // Setup SIGSEGV handler to process writes to frame buffer
1833   #ifdef HAVE_SIGACTION
1834 <        struct sigaction vosf_sa;
1835 <        sigemptyset(&vosf_sa.sa_mask);
1836 <        vosf_sa.sa_sigaction = sigsegv_handler;
1837 <        vosf_sa.sa_flags = SA_SIGINFO;
1838 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1834 >        struct sigaction sigsegv_sa;
1835 >        sigemptyset(&sigsegv_sa.sa_mask);
1836 >        sigsegv_sa.sa_sigaction = sigsegv_handler;
1837 >        sigsegv_sa.sa_flags = SA_SIGINFO;
1838 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1839   #else
1840          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1841   #endif
# Line 642 | Line 1847 | static bool sigsegv_do_install_handler(i
1847   {
1848          // Setup SIGSEGV handler to process writes to frame buffer
1849   #ifdef HAVE_SIGACTION
1850 <        struct sigaction vosf_sa;
1851 <        sigemptyset(&vosf_sa.sa_mask);
1852 <        vosf_sa.sa_handler = (signal_handler)sigsegv_handler;
1850 >        struct sigaction sigsegv_sa;
1851 >        sigemptyset(&sigsegv_sa.sa_mask);
1852 >        sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
1853 >        sigsegv_sa.sa_flags = 0;
1854   #if !EMULATED_68K && defined(__NetBSD__)
1855 <        sigaddset(&vosf_sa.sa_mask, SIGALRM);
1856 <        vosf_sa.sa_flags = SA_ONSTACK;
651 < #else
652 <        vosf_sa.sa_flags = 0;
1855 >        sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
1856 >        sigsegv_sa.sa_flags |= SA_ONSTACK;
1857   #endif
1858 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1858 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1859   #else
1860          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1861   #endif
1862   }
1863   #endif
1864  
1865 < bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1865 > #if defined(HAVE_MACH_EXCEPTIONS)
1866 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1867   {
1868 < #ifdef HAVE_SIGSEGV_RECOVERY
1868 >        /*
1869 >         * Except for the exception port functions, this should be
1870 >         * pretty much stock Mach. If later you choose to support
1871 >         * other Mach's besides Darwin, just check for __MACH__
1872 >         * here and __APPLE__ where the actual differences are.
1873 >         */
1874 > #if defined(__APPLE__) && defined(__MACH__)
1875 >        if (sigsegv_fault_handler != NULL) {
1876 >                sigsegv_fault_handler = handler;
1877 >                return true;
1878 >        }
1879 >
1880 >        kern_return_t krc;
1881 >
1882 >        // create the the exception port
1883 >        krc = mach_port_allocate(mach_task_self(),
1884 >                          MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
1885 >        if (krc != KERN_SUCCESS) {
1886 >                mach_error("mach_port_allocate", krc);
1887 >                return false;
1888 >        }
1889 >
1890 >        // add a port send right
1891 >        krc = mach_port_insert_right(mach_task_self(),
1892 >                              _exceptionPort, _exceptionPort,
1893 >                              MACH_MSG_TYPE_MAKE_SEND);
1894 >        if (krc != KERN_SUCCESS) {
1895 >                mach_error("mach_port_insert_right", krc);
1896 >                return false;
1897 >        }
1898 >
1899 >        // get the old exception ports
1900 >        ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
1901 >        krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
1902 >                                &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
1903 >        if (krc != KERN_SUCCESS) {
1904 >                mach_error("thread_get_exception_ports", krc);
1905 >                return false;
1906 >        }
1907 >
1908 >        // set the new exception port
1909 >        //
1910 >        // We could have used EXCEPTION_STATE_IDENTITY instead of
1911 >        // EXCEPTION_DEFAULT to get the thread state in the initial
1912 >        // message, but it turns out that in the common case this is not
1913 >        // neccessary. If we need it we can later ask for it from the
1914 >        // suspended thread.
1915 >        //
1916 >        // Even with THREAD_STATE_NONE, Darwin provides the program
1917 >        // counter in the thread state.  The comments in the header file
1918 >        // seem to imply that you can count on the GPR's on an exception
1919 >        // as well but just to be safe I use MACHINE_THREAD_STATE because
1920 >        // you have to ask for all of the GPR's anyway just to get the
1921 >        // program counter. In any case because of update effective
1922 >        // address from immediate and update address from effective
1923 >        // addresses of ra and rb modes (as good an name as any for these
1924 >        // addressing modes) used in PPC instructions, you will need the
1925 >        // GPR state anyway.
1926 >        krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
1927 >                                EXCEPTION_DEFAULT, SIGSEGV_THREAD_STATE_FLAVOR);
1928 >        if (krc != KERN_SUCCESS) {
1929 >                mach_error("thread_set_exception_ports", krc);
1930 >                return false;
1931 >        }
1932 >
1933 >        // create the exception handler thread
1934 >        if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
1935 >                (void)fprintf(stderr, "creation of exception thread failed\n");
1936 >                return false;
1937 >        }
1938 >
1939 >        // do not care about the exception thread any longer, let is run standalone
1940 >        (void)pthread_detach(exc_thread);
1941 >
1942 >        sigsegv_fault_handler = handler;
1943 >        return true;
1944 > #else
1945 >        return false;
1946 > #endif
1947 > }
1948 > #endif
1949 >
1950 > #ifdef HAVE_WIN32_EXCEPTIONS
1951 > static LONG WINAPI main_exception_filter(EXCEPTION_POINTERS *ExceptionInfo)
1952 > {
1953 >        if (sigsegv_fault_handler != NULL
1954 >                && ExceptionInfo->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION
1955 >                && ExceptionInfo->ExceptionRecord->NumberParameters == 2
1956 >                && handle_badaccess(ExceptionInfo))
1957 >                return EXCEPTION_CONTINUE_EXECUTION;
1958 >
1959 >        return EXCEPTION_CONTINUE_SEARCH;
1960 > }
1961 >
1962 > #if defined __CYGWIN__ && defined __i386__
1963 > /* In Cygwin programs, SetUnhandledExceptionFilter has no effect because Cygwin
1964 >   installs a global exception handler.  We have to dig deep in order to install
1965 >   our main_exception_filter.  */
1966 >
1967 > /* Data structures for the current thread's exception handler chain.
1968 >   On the x86 Windows uses register fs, offset 0 to point to the current
1969 >   exception handler; Cygwin mucks with it, so we must do the same... :-/ */
1970 >
1971 > /* Magic taken from winsup/cygwin/include/exceptions.h.  */
1972 >
1973 > struct exception_list {
1974 >    struct exception_list *prev;
1975 >    int (*handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
1976 > };
1977 > typedef struct exception_list exception_list;
1978 >
1979 > /* Magic taken from winsup/cygwin/exceptions.cc.  */
1980 >
1981 > __asm__ (".equ __except_list,0");
1982 >
1983 > extern exception_list *_except_list __asm__ ("%fs:__except_list");
1984 >
1985 > /* For debugging.  _except_list is not otherwise accessible from gdb.  */
1986 > static exception_list *
1987 > debug_get_except_list ()
1988 > {
1989 >  return _except_list;
1990 > }
1991 >
1992 > /* Cygwin's original exception handler.  */
1993 > static int (*cygwin_exception_handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
1994 >
1995 > /* Our exception handler.  */
1996 > static int
1997 > libsigsegv_exception_handler (EXCEPTION_RECORD *exception, void *frame, CONTEXT *context, void *dispatch)
1998 > {
1999 >  EXCEPTION_POINTERS ExceptionInfo;
2000 >  ExceptionInfo.ExceptionRecord = exception;
2001 >  ExceptionInfo.ContextRecord = context;
2002 >  if (main_exception_filter (&ExceptionInfo) == EXCEPTION_CONTINUE_SEARCH)
2003 >    return cygwin_exception_handler (exception, frame, context, dispatch);
2004 >  else
2005 >    return 0;
2006 > }
2007 >
2008 > static void
2009 > do_install_main_exception_filter ()
2010 > {
2011 >  /* We cannot insert any handler into the chain, because such handlers
2012 >     must lie on the stack (?).  Instead, we have to replace(!) Cygwin's
2013 >     global exception handler.  */
2014 >  cygwin_exception_handler = _except_list->handler;
2015 >  _except_list->handler = libsigsegv_exception_handler;
2016 > }
2017 >
2018 > #else
2019 >
2020 > static void
2021 > do_install_main_exception_filter ()
2022 > {
2023 >  SetUnhandledExceptionFilter ((LPTOP_LEVEL_EXCEPTION_FILTER) &main_exception_filter);
2024 > }
2025 > #endif
2026 >
2027 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
2028 > {
2029 >        static bool main_exception_filter_installed = false;
2030 >        if (!main_exception_filter_installed) {
2031 >                do_install_main_exception_filter();
2032 >                main_exception_filter_installed = true;
2033 >        }
2034          sigsegv_fault_handler = handler;
2035 +        return true;
2036 + }
2037 + #endif
2038 +
2039 + bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
2040 + {
2041 + #if defined(HAVE_SIGSEGV_RECOVERY)
2042          bool success = true;
2043   #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
2044          SIGSEGV_ALL_SIGNALS
2045   #undef FAULT_HANDLER
2046 +        if (success)
2047 +            sigsegv_fault_handler = handler;
2048          return success;
2049 + #elif defined(HAVE_MACH_EXCEPTIONS) || defined(HAVE_WIN32_EXCEPTIONS)
2050 +        return sigsegv_do_install_handler(handler);
2051   #else
2052          // FAIL: no siginfo_t nor sigcontext subterfuge is available
2053          return false;
# Line 680 | Line 2061 | bool sigsegv_install_handler(sigsegv_fau
2061  
2062   void sigsegv_deinstall_handler(void)
2063   {
2064 +  // We do nothing for Mach exceptions, the thread would need to be
2065 +  // suspended if not already so, and we might mess with other
2066 +  // exception handlers that came after we registered ours. There is
2067 +  // no need to remove the exception handler, in fact this function is
2068 +  // not called anywhere in Basilisk II.
2069   #ifdef HAVE_SIGSEGV_RECOVERY
2070          sigsegv_fault_handler = 0;
2071   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
2072          SIGSEGV_ALL_SIGNALS
2073   #undef FAULT_HANDLER
2074   #endif
2075 < }
2076 <
2077 <
692 < /*
693 < *  SIGSEGV ignore state modifier
694 < */
695 <
696 < void sigsegv_set_ignore_state(bool ignore_fault)
697 < {
698 <        sigsegv_ignore_fault = ignore_fault;
2075 > #ifdef HAVE_WIN32_EXCEPTIONS
2076 >        sigsegv_fault_handler = NULL;
2077 > #endif
2078   }
2079  
2080  
# Line 717 | Line 2096 | void sigsegv_set_dump_state(sigsegv_stat
2096   #include <stdio.h>
2097   #include <stdlib.h>
2098   #include <fcntl.h>
2099 + #ifdef HAVE_SYS_MMAN_H
2100   #include <sys/mman.h>
2101 + #endif
2102   #include "vm_alloc.h"
2103  
2104 + const int REF_INDEX = 123;
2105 + const int REF_VALUE = 45;
2106 +
2107   static int page_size;
2108   static volatile char * page = 0;
2109   static volatile int handler_called = 0;
2110  
2111 < static bool sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2111 > #ifdef __GNUC__
2112 > // Code range where we expect the fault to come from
2113 > static void *b_region, *e_region;
2114 > #endif
2115 >
2116 > static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2117   {
2118 + #if DEBUG
2119 +        printf("sigsegv_test_handler(%p, %p)\n", fault_address, instruction_address);
2120 +        printf("expected fault at %p\n", page + REF_INDEX);
2121 + #ifdef __GNUC__
2122 +        printf("expected instruction address range: %p-%p\n", b_region, e_region);
2123 + #endif
2124 + #endif
2125          handler_called++;
2126 <        if ((fault_address - 123) != page)
2127 <                exit(1);
2126 >        if ((fault_address - REF_INDEX) != page)
2127 >                exit(10);
2128 > #ifdef __GNUC__
2129 >        // Make sure reported fault instruction address falls into
2130 >        // expected code range
2131 >        if (instruction_address != SIGSEGV_INVALID_PC
2132 >                && ((instruction_address <  (sigsegv_address_t)b_region) ||
2133 >                        (instruction_address >= (sigsegv_address_t)e_region)))
2134 >                exit(11);
2135 > #endif
2136          if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
2137 <                exit(1);
2138 <        return true;
2137 >                exit(12);
2138 >        return SIGSEGV_RETURN_SUCCESS;
2139   }
2140  
2141   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
2142 < static bool sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2142 > static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2143   {
2144 <        return false;
2144 > #if DEBUG
2145 >        printf("sigsegv_insn_handler(%p, %p)\n", fault_address, instruction_address);
2146 > #endif
2147 >        if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
2148 > #ifdef __GNUC__
2149 >                // Make sure reported fault instruction address falls into
2150 >                // expected code range
2151 >                if (instruction_address != SIGSEGV_INVALID_PC
2152 >                        && ((instruction_address <  (sigsegv_address_t)b_region) ||
2153 >                                (instruction_address >= (sigsegv_address_t)e_region)))
2154 >                        return SIGSEGV_RETURN_FAILURE;
2155 > #endif
2156 >                return SIGSEGV_RETURN_SKIP_INSTRUCTION;
2157 >        }
2158 >
2159 >        return SIGSEGV_RETURN_FAILURE;
2160 > }
2161 >
2162 > // More sophisticated tests for instruction skipper
2163 > static bool arch_insn_skipper_tests()
2164 > {
2165 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
2166 >        static const unsigned char code[] = {
2167 >                0x8a, 0x00,                    // mov    (%eax),%al
2168 >                0x8a, 0x2c, 0x18,              // mov    (%eax,%ebx,1),%ch
2169 >                0x88, 0x20,                    // mov    %ah,(%eax)
2170 >                0x88, 0x08,                    // mov    %cl,(%eax)
2171 >                0x66, 0x8b, 0x00,              // mov    (%eax),%ax
2172 >                0x66, 0x8b, 0x0c, 0x18,        // mov    (%eax,%ebx,1),%cx
2173 >                0x66, 0x89, 0x00,              // mov    %ax,(%eax)
2174 >                0x66, 0x89, 0x0c, 0x18,        // mov    %cx,(%eax,%ebx,1)
2175 >                0x8b, 0x00,                    // mov    (%eax),%eax
2176 >                0x8b, 0x0c, 0x18,              // mov    (%eax,%ebx,1),%ecx
2177 >                0x89, 0x00,                    // mov    %eax,(%eax)
2178 >                0x89, 0x0c, 0x18,              // mov    %ecx,(%eax,%ebx,1)
2179 > #if defined(__x86_64__)
2180 >                0x44, 0x8a, 0x00,              // mov    (%rax),%r8b
2181 >                0x44, 0x8a, 0x20,              // mov    (%rax),%r12b
2182 >                0x42, 0x8a, 0x3c, 0x10,        // mov    (%rax,%r10,1),%dil
2183 >                0x44, 0x88, 0x00,              // mov    %r8b,(%rax)
2184 >                0x44, 0x88, 0x20,              // mov    %r12b,(%rax)
2185 >                0x42, 0x88, 0x3c, 0x10,        // mov    %dil,(%rax,%r10,1)
2186 >                0x66, 0x44, 0x8b, 0x00,        // mov    (%rax),%r8w
2187 >                0x66, 0x42, 0x8b, 0x0c, 0x10,  // mov    (%rax,%r10,1),%cx
2188 >                0x66, 0x44, 0x89, 0x00,        // mov    %r8w,(%rax)
2189 >                0x66, 0x42, 0x89, 0x0c, 0x10,  // mov    %cx,(%rax,%r10,1)
2190 >                0x44, 0x8b, 0x00,              // mov    (%rax),%r8d
2191 >                0x42, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%ecx
2192 >                0x44, 0x89, 0x00,              // mov    %r8d,(%rax)
2193 >                0x42, 0x89, 0x0c, 0x10,        // mov    %ecx,(%rax,%r10,1)
2194 >                0x48, 0x8b, 0x08,              // mov    (%rax),%rcx
2195 >                0x4c, 0x8b, 0x18,              // mov    (%rax),%r11
2196 >                0x4a, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%rcx
2197 >                0x4e, 0x8b, 0x1c, 0x10,        // mov    (%rax,%r10,1),%r11
2198 >                0x48, 0x89, 0x08,              // mov    %rcx,(%rax)
2199 >                0x4c, 0x89, 0x18,              // mov    %r11,(%rax)
2200 >                0x4a, 0x89, 0x0c, 0x10,        // mov    %rcx,(%rax,%r10,1)
2201 >                0x4e, 0x89, 0x1c, 0x10,        // mov    %r11,(%rax,%r10,1)
2202 > #endif
2203 >                0                              // end
2204 >        };
2205 >        const int N_REGS = 20;
2206 >        unsigned long regs[N_REGS];
2207 >        for (int i = 0; i < N_REGS; i++)
2208 >                regs[i] = i;
2209 >        const unsigned long start_code = (unsigned long)&code;
2210 >        regs[X86_REG_EIP] = start_code;
2211 >        while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1)
2212 >                   && ix86_skip_instruction(regs))
2213 >                ; /* simply iterate */
2214 >        return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1);
2215 > #endif
2216 >        return true;
2217   }
2218   #endif
2219  
# Line 746 | Line 2222 | int main(void)
2222          if (vm_init() < 0)
2223                  return 1;
2224  
2225 <        page_size = getpagesize();
2225 >        page_size = vm_get_page_size();
2226          if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
2227 <                return 1;
2227 >                return 2;
2228          
2229 +        memset((void *)page, 0, page_size);
2230          if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
2231 <                return 1;
2231 >                return 3;
2232          
2233          if (!sigsegv_install_handler(sigsegv_test_handler))
2234 <                return 1;
758 <        
759 <        page[123] = 45;
760 <        page[123] = 45;
2234 >                return 4;
2235          
2236 + #ifdef __GNUC__
2237 +        b_region = &&L_b_region1;
2238 +        e_region = &&L_e_region1;
2239 + #endif
2240 + L_b_region1:
2241 +        page[REF_INDEX] = REF_VALUE;
2242 +        if (page[REF_INDEX] != REF_VALUE)
2243 +          exit(20);
2244 +        page[REF_INDEX] = REF_VALUE;
2245 + L_e_region1:
2246 +
2247          if (handler_called != 1)
2248 <                return 1;
2248 >                return 5;
2249  
2250   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
2251          if (!sigsegv_install_handler(sigsegv_insn_handler))
2252 <                return 1;
2252 >                return 6;
2253          
2254 <        if (vm_protect((char *)page, page_size, VM_PAGE_WRITE) < 0)
2255 <                return 1;
2254 >        if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
2255 >                return 7;
2256          
2257          for (int i = 0; i < page_size; i++)
2258                  page[i] = (i + 1) % page_size;
2259          
2260          if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
2261 <                return 1;
2261 >                return 8;
2262          
778        sigsegv_set_ignore_state(true);
779
2263   #define TEST_SKIP_INSTRUCTION(TYPE) do {                                \
2264 <                const unsigned int TAG = 0x12345678;                    \
2264 >                const unsigned long TAG = 0x12345678 |                  \
2265 >                (sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0);   \
2266                  TYPE data = *((TYPE *)(page + sizeof(TYPE)));   \
2267 <                volatile unsigned int effect = data + TAG;              \
2267 >                volatile unsigned long effect = data + TAG;             \
2268                  if (effect != TAG)                                                              \
2269 <                        return 1;                                                                       \
2269 >                        return 9;                                                                       \
2270          } while (0)
2271          
2272 + #ifdef __GNUC__
2273 +        b_region = &&L_b_region2;
2274 +        e_region = &&L_e_region2;
2275 + #endif
2276 + L_b_region2:
2277          TEST_SKIP_INSTRUCTION(unsigned char);
2278          TEST_SKIP_INSTRUCTION(unsigned short);
2279          TEST_SKIP_INSTRUCTION(unsigned int);
2280 +        TEST_SKIP_INSTRUCTION(unsigned long);
2281 +        TEST_SKIP_INSTRUCTION(signed char);
2282 +        TEST_SKIP_INSTRUCTION(signed short);
2283 +        TEST_SKIP_INSTRUCTION(signed int);
2284 +        TEST_SKIP_INSTRUCTION(signed long);
2285 + L_e_region2:
2286 +
2287 +        if (!arch_insn_skipper_tests())
2288 +                return 20;
2289   #endif
2290  
2291          vm_exit();

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines