ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
Revision: 1.37
Committed: 2003-12-20T07:43:56Z (20 years, 6 months ago) by gbeauche
Branch: MAIN
Changes since 1.36: +8 -2 lines
Log Message:
Fix subterfuge mode on IRIX/mips. Get PC in both modes for Irix too

File Contents

# Content
1 /*
2 * sigsegv.cpp - SIGSEGV signals support
3 *
4 * Derived from Bruno Haible's work on his SIGSEGV library for clisp
5 * <http://clisp.sourceforge.net/>
6 *
7 * MacOS X support derived from the post by Timothy J. Wood to the
8 * omnigroup macosx-dev list:
9 * Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10 * tjw@omnigroup.com Sun, 4 Jun 2000
11 * www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12 *
13 * Basilisk II (C) 1997-2002 Christian Bauer
14 *
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
19 *
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 * GNU General Public License for more details.
24 *
25 * You should have received a copy of the GNU General Public License
26 * along with this program; if not, write to the Free Software
27 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
28 */
29
30 #ifdef HAVE_UNISTD_H
31 #include <unistd.h>
32 #endif
33
34 #ifdef HAVE_CONFIG_H
35 #include "config.h"
36 #endif
37
38 #include <list>
39 #include <signal.h>
40 #include "sigsegv.h"
41
42 #ifndef NO_STD_NAMESPACE
43 using std::list;
44 #endif
45
46 // Return value type of a signal handler (standard type if not defined)
47 #ifndef RETSIGTYPE
48 #define RETSIGTYPE void
49 #endif
50
51 // Type of the system signal handler
52 typedef RETSIGTYPE (*signal_handler)(int);
53
54 // User's SIGSEGV handler
55 static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
56
57 // Function called to dump state if we can't handle the fault
58 static sigsegv_state_dumper_t sigsegv_state_dumper = 0;
59
60 // Actual SIGSEGV handler installer
61 static bool sigsegv_do_install_handler(int sig);
62
63
64 /*
65 * Instruction decoding aids
66 */
67
68 // Transfer size
69 enum transfer_size_t {
70 SIZE_UNKNOWN,
71 SIZE_BYTE,
72 SIZE_WORD, // 2 bytes
73 SIZE_LONG, // 4 bytes
74 SIZE_QUAD, // 8 bytes
75 };
76
77 // Transfer type
78 typedef sigsegv_transfer_type_t transfer_type_t;
79
80 #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
81 // Addressing mode
82 enum addressing_mode_t {
83 MODE_UNKNOWN,
84 MODE_NORM,
85 MODE_U,
86 MODE_X,
87 MODE_UX
88 };
89
90 // Decoded instruction
91 struct instruction_t {
92 transfer_type_t transfer_type;
93 transfer_size_t transfer_size;
94 addressing_mode_t addr_mode;
95 unsigned int addr;
96 char ra, rd;
97 };
98
99 static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned int * gpr)
100 {
101 // Get opcode and divide into fields
102 unsigned int opcode = *((unsigned int *)nip);
103 unsigned int primop = opcode >> 26;
104 unsigned int exop = (opcode >> 1) & 0x3ff;
105 unsigned int ra = (opcode >> 16) & 0x1f;
106 unsigned int rb = (opcode >> 11) & 0x1f;
107 unsigned int rd = (opcode >> 21) & 0x1f;
108 signed int imm = (signed short)(opcode & 0xffff);
109
110 // Analyze opcode
111 transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
112 transfer_size_t transfer_size = SIZE_UNKNOWN;
113 addressing_mode_t addr_mode = MODE_UNKNOWN;
114 switch (primop) {
115 case 31:
116 switch (exop) {
117 case 23: // lwzx
118 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
119 case 55: // lwzux
120 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
121 case 87: // lbzx
122 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
123 case 119: // lbzux
124 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
125 case 151: // stwx
126 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
127 case 183: // stwux
128 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
129 case 215: // stbx
130 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
131 case 247: // stbux
132 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
133 case 279: // lhzx
134 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
135 case 311: // lhzux
136 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
137 case 343: // lhax
138 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
139 case 375: // lhaux
140 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
141 case 407: // sthx
142 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
143 case 439: // sthux
144 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
145 }
146 break;
147
148 case 32: // lwz
149 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
150 case 33: // lwzu
151 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
152 case 34: // lbz
153 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
154 case 35: // lbzu
155 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
156 case 36: // stw
157 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
158 case 37: // stwu
159 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
160 case 38: // stb
161 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
162 case 39: // stbu
163 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
164 case 40: // lhz
165 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
166 case 41: // lhzu
167 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
168 case 42: // lha
169 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
170 case 43: // lhau
171 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
172 case 44: // sth
173 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
174 case 45: // sthu
175 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
176 }
177
178 // Calculate effective address
179 unsigned int addr = 0;
180 switch (addr_mode) {
181 case MODE_X:
182 case MODE_UX:
183 if (ra == 0)
184 addr = gpr[rb];
185 else
186 addr = gpr[ra] + gpr[rb];
187 break;
188 case MODE_NORM:
189 case MODE_U:
190 if (ra == 0)
191 addr = (signed int)(signed short)imm;
192 else
193 addr = gpr[ra] + (signed int)(signed short)imm;
194 break;
195 default:
196 break;
197 }
198
199 // Commit decoded instruction
200 instruction->addr = addr;
201 instruction->addr_mode = addr_mode;
202 instruction->transfer_type = transfer_type;
203 instruction->transfer_size = transfer_size;
204 instruction->ra = ra;
205 instruction->rd = rd;
206 }
207 #endif
208
209
210 /*
211 * OS-dependant SIGSEGV signals support section
212 */
213
214 #if HAVE_SIGINFO_T
215 // Generic extended signal handler
216 #if defined(__NetBSD__) || defined(__FreeBSD__)
217 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
218 #else
219 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
220 #endif
221 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, siginfo_t *sip, void *scp
222 #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
223 #define SIGSEGV_FAULT_HANDLER_ARGS sip, scp
224 #define SIGSEGV_FAULT_ADDRESS sip->si_addr
225 #if (defined(sgi) || defined(__sgi))
226 #include <ucontext.h>
227 #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
228 #define SIGSEGV_FAULT_INSTRUCTION (unsigned long)SIGSEGV_CONTEXT_REGS[CTX_EPC]
229 #endif
230 #if defined(__sun__)
231 #if (defined(sparc) || defined(__sparc__))
232 #include <sys/ucontext.h>
233 #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
234 #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[REG_PC]
235 #endif
236 #endif
237 #if defined(__FreeBSD__)
238 #if (defined(i386) || defined(__i386__))
239 #define SIGSEGV_FAULT_INSTRUCTION (((struct sigcontext *)scp)->sc_eip)
240 #define SIGSEGV_REGISTER_FILE ((unsigned long *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
241 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
242 #endif
243 #endif
244 #if defined(__linux__)
245 #if (defined(i386) || defined(__i386__))
246 #include <sys/ucontext.h>
247 #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
248 #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
249 #define SIGSEGV_REGISTER_FILE (unsigned long *)SIGSEGV_CONTEXT_REGS
250 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
251 #endif
252 #if (defined(x86_64) || defined(__x86_64__))
253 #include <sys/ucontext.h>
254 #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
255 #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
256 #define SIGSEGV_REGISTER_FILE (unsigned long *)SIGSEGV_CONTEXT_REGS
257 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
258 #endif
259 #if (defined(ia64) || defined(__ia64__))
260 #define SIGSEGV_FAULT_INSTRUCTION (((struct sigcontext *)scp)->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
261 #endif
262 #if (defined(powerpc) || defined(__powerpc__))
263 #include <sys/ucontext.h>
264 #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.regs)
265 #define SIGSEGV_FAULT_INSTRUCTION (SIGSEGV_CONTEXT_REGS->nip)
266 #define SIGSEGV_REGISTER_FILE (unsigned int *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned int *)(SIGSEGV_CONTEXT_REGS->gpr)
267 #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
268 #endif
269 #endif
270 #endif
271
272 #if HAVE_SIGCONTEXT_SUBTERFUGE
273 // Linux kernels prior to 2.4 ?
274 #if defined(__linux__)
275 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
276 #if (defined(i386) || defined(__i386__))
277 #include <asm/sigcontext.h>
278 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, struct sigcontext scs
279 #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
280 #define SIGSEGV_FAULT_HANDLER_ARGS &scs
281 #define SIGSEGV_FAULT_ADDRESS scp->cr2
282 #define SIGSEGV_FAULT_INSTRUCTION scp->eip
283 #define SIGSEGV_REGISTER_FILE (unsigned long *)scp
284 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
285 #endif
286 #if (defined(sparc) || defined(__sparc__))
287 #include <asm/sigcontext.h>
288 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp, char *addr
289 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp, addr
290 #define SIGSEGV_FAULT_ADDRESS addr
291 #endif
292 #if (defined(powerpc) || defined(__powerpc__))
293 #include <asm/sigcontext.h>
294 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, struct sigcontext *scp
295 #define SIGSEGV_FAULT_HANDLER_ARGS sig, scp
296 #define SIGSEGV_FAULT_ADDRESS scp->regs->dar
297 #define SIGSEGV_FAULT_INSTRUCTION scp->regs->nip
298 #define SIGSEGV_REGISTER_FILE (unsigned int *)&scp->regs->nip, (unsigned int *)(scp->regs->gpr)
299 #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
300 #endif
301 #if (defined(alpha) || defined(__alpha__))
302 #include <asm/sigcontext.h>
303 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
304 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
305 #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
306 #define SIGSEGV_FAULT_INSTRUCTION scp->sc_pc
307 #endif
308 #endif
309
310 // Irix 5 or 6 on MIPS
311 #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(_SYSTYPE_SVR4))
312 #include <ucontext.h>
313 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
314 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
315 #define SIGSEGV_FAULT_ADDRESS (unsigned long)scp->sc_badvaddr
316 #define SIGSEGV_FAULT_INSTRUCTION (unsigned long)scp->sc_pc
317 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
318 #endif
319
320 // HP-UX
321 #if (defined(hpux) || defined(__hpux__))
322 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
323 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
324 #define SIGSEGV_FAULT_ADDRESS scp->sc_sl.sl_ss.ss_narrow.ss_cr21
325 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
326 #endif
327
328 // OSF/1 on Alpha
329 #if defined(__osf__)
330 #include <ucontext.h>
331 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
332 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
333 #define SIGSEGV_FAULT_ADDRESS scp->sc_traparg_a0
334 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
335 #endif
336
337 // AIX
338 #if defined(_AIX)
339 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
340 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
341 #define SIGSEGV_FAULT_ADDRESS scp->sc_jmpbuf.jmp_context.o_vaddr
342 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
343 #endif
344
345 // NetBSD
346 #if defined(__NetBSD__)
347 #if (defined(m68k) || defined(__m68k__))
348 #include <m68k/frame.h>
349 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
350 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
351 #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
352 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
353
354 // Use decoding scheme from BasiliskII/m68k native
355 static sigsegv_address_t get_fault_address(struct sigcontext *scp)
356 {
357 struct sigstate {
358 int ss_flags;
359 struct frame ss_frame;
360 };
361 struct sigstate *state = (struct sigstate *)scp->sc_ap;
362 char *fault_addr;
363 switch (state->ss_frame.f_format) {
364 case 7: /* 68040 access error */
365 /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */
366 fault_addr = state->ss_frame.f_fmt7.f_fa;
367 break;
368 default:
369 fault_addr = (char *)code;
370 break;
371 }
372 return (sigsegv_address_t)fault_addr;
373 }
374 #endif
375 #if (defined(alpha) || defined(__alpha__))
376 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
377 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
378 #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
379 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
380 #endif
381 #if (defined(i386) || defined(__i386__))
382 #error "FIXME: need to decode instruction and compute EA"
383 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
384 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
385 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
386 #endif
387 #endif
388 #if defined(__FreeBSD__)
389 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
390 #if (defined(i386) || defined(__i386__))
391 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp, char *addr
392 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp, addr
393 #define SIGSEGV_FAULT_ADDRESS addr
394 #define SIGSEGV_FAULT_INSTRUCTION scp->sc_eip
395 #define SIGSEGV_REGISTER_FILE ((unsigned long *)&scp->sc_edi)
396 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
397 #endif
398 #endif
399
400 // Extract fault address out of a sigcontext
401 #if (defined(alpha) || defined(__alpha__))
402 // From Boehm's GC 6.0alpha8
403 static sigsegv_address_t get_fault_address(struct sigcontext *scp)
404 {
405 unsigned int instruction = *((unsigned int *)(scp->sc_pc));
406 unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
407 fault_address += (signed long)(signed short)(instruction & 0xffff);
408 return (sigsegv_address_t)fault_address;
409 }
410 #endif
411
412
413 // MacOS X, not sure which version this works in. Under 10.1
414 // vm_protect does not appear to work from a signal handler. Under
415 // 10.2 signal handlers get siginfo type arguments but the si_addr
416 // field is the address of the faulting instruction and not the
417 // address that caused the SIGBUS. Maybe this works in 10.0? In any
418 // case with Mach exception handlers there is a way to do what this
419 // was meant to do.
420 #ifndef HAVE_MACH_EXCEPTIONS
421 #if defined(__APPLE__) && defined(__MACH__)
422 #if (defined(ppc) || defined(__ppc__))
423 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
424 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
425 #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
426 #define SIGSEGV_FAULT_INSTRUCTION scp->sc_ir
427 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
428 #define SIGSEGV_REGISTER_FILE (unsigned int *)&scp->sc_ir, &((unsigned int *) scp->sc_regs)[2]
429 #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
430
431 // Use decoding scheme from SheepShaver
432 static sigsegv_address_t get_fault_address(struct sigcontext *scp)
433 {
434 unsigned int nip = (unsigned int) scp->sc_ir;
435 unsigned int * gpr = &((unsigned int *) scp->sc_regs)[2];
436 instruction_t instr;
437
438 powerpc_decode_instruction(&instr, nip, gpr);
439 return (sigsegv_address_t)instr.addr;
440 }
441 #endif
442 #endif
443 #endif
444 #endif
445
446 #if HAVE_MACH_EXCEPTIONS
447
448 // This can easily be extended to other Mach systems, but really who
449 // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
450 // Mach 2.5/3.0?
451 #if defined(__APPLE__) && defined(__MACH__)
452
453 #include <sys/types.h>
454 #include <stdlib.h>
455 #include <stdio.h>
456 #include <pthread.h>
457
458 /*
459 * If you are familiar with MIG then you will understand the frustration
460 * that was necessary to get these embedded into C++ code by hand.
461 */
462 extern "C" {
463 #include <mach/mach.h>
464 #include <mach/mach_error.h>
465
466 extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
467 extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
468 mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
469 extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
470 exception_type_t, exception_data_t, mach_msg_type_number_t);
471 extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
472 exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
473 thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
474 extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
475 exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
476 thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
477 }
478
479 // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
480 #define HANDLER_COUNT 64
481
482 // structure to tuck away existing exception handlers
483 typedef struct _ExceptionPorts {
484 mach_msg_type_number_t maskCount;
485 exception_mask_t masks[HANDLER_COUNT];
486 exception_handler_t handlers[HANDLER_COUNT];
487 exception_behavior_t behaviors[HANDLER_COUNT];
488 thread_state_flavor_t flavors[HANDLER_COUNT];
489 } ExceptionPorts;
490
491 // exception handler thread
492 static pthread_t exc_thread;
493
494 // place where old exception handler info is stored
495 static ExceptionPorts ports;
496
497 // our exception port
498 static mach_port_t _exceptionPort = MACH_PORT_NULL;
499
500 #define MACH_CHECK_ERROR(name,ret) \
501 if (ret != KERN_SUCCESS) { \
502 mach_error(#name, ret); \
503 exit (1); \
504 }
505
506 #define SIGSEGV_FAULT_ADDRESS code[1]
507 #define SIGSEGV_FAULT_INSTRUCTION get_fault_instruction(thread, state)
508 #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP) ((code[0] == KERN_PROTECTION_FAILURE) ? sigsegv_fault_handler(ADDR, IP) : SIGSEGV_RETURN_FAILURE)
509 #define SIGSEGV_FAULT_HANDLER_ARGLIST mach_port_t thread, exception_data_t code, ppc_thread_state_t *state
510 #define SIGSEGV_FAULT_HANDLER_ARGS thread, code, &state
511 #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
512 #define SIGSEGV_REGISTER_FILE &state->srr0, &state->r0
513
514 // Given a suspended thread, stuff the current instruction and
515 // registers into state.
516 //
517 // It would have been nice to have this be ppc/x86 independant which
518 // could have been done easily with a thread_state_t instead of
519 // ppc_thread_state_t, but because of the way this is called it is
520 // easier to do it this way.
521 #if (defined(ppc) || defined(__ppc__))
522 static inline sigsegv_address_t get_fault_instruction(mach_port_t thread, ppc_thread_state_t *state)
523 {
524 kern_return_t krc;
525 mach_msg_type_number_t count;
526
527 count = MACHINE_THREAD_STATE_COUNT;
528 krc = thread_get_state(thread, MACHINE_THREAD_STATE, (thread_state_t)state, &count);
529 MACH_CHECK_ERROR (thread_get_state, krc);
530
531 return (sigsegv_address_t)state->srr0;
532 }
533 #endif
534
535 // Since there can only be one exception thread running at any time
536 // this is not a problem.
537 #define MSG_SIZE 512
538 static char msgbuf[MSG_SIZE];
539 static char replybuf[MSG_SIZE];
540
541 /*
542 * This is the entry point for the exception handler thread. The job
543 * of this thread is to wait for exception messages on the exception
544 * port that was setup beforehand and to pass them on to exc_server.
545 * exc_server is a MIG generated function that is a part of Mach.
546 * Its job is to decide what to do with the exception message. In our
547 * case exc_server calls catch_exception_raise on our behalf. After
548 * exc_server returns, it is our responsibility to send the reply.
549 */
550 static void *
551 handleExceptions(void *priv)
552 {
553 mach_msg_header_t *msg, *reply;
554 kern_return_t krc;
555
556 msg = (mach_msg_header_t *)msgbuf;
557 reply = (mach_msg_header_t *)replybuf;
558
559 for (;;) {
560 krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
561 _exceptionPort, 0, MACH_PORT_NULL);
562 MACH_CHECK_ERROR(mach_msg, krc);
563
564 if (!exc_server(msg, reply)) {
565 fprintf(stderr, "exc_server hated the message\n");
566 exit(1);
567 }
568
569 krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
570 msg->msgh_local_port, 0, MACH_PORT_NULL);
571 if (krc != KERN_SUCCESS) {
572 fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
573 krc, mach_error_string(krc));
574 exit(1);
575 }
576 }
577 }
578 #endif
579 #endif
580
581
582 /*
583 * Instruction skipping
584 */
585
586 #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
587 // Decode and skip X86 instruction
588 #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
589 #if defined(__linux__)
590 enum {
591 #if (defined(i386) || defined(__i386__))
592 X86_REG_EIP = 14,
593 X86_REG_EAX = 11,
594 X86_REG_ECX = 10,
595 X86_REG_EDX = 9,
596 X86_REG_EBX = 8,
597 X86_REG_ESP = 7,
598 X86_REG_EBP = 6,
599 X86_REG_ESI = 5,
600 X86_REG_EDI = 4
601 #endif
602 #if defined(__x86_64__)
603 X86_REG_R8 = 0,
604 X86_REG_R9 = 1,
605 X86_REG_R10 = 2,
606 X86_REG_R11 = 3,
607 X86_REG_R12 = 4,
608 X86_REG_R13 = 5,
609 X86_REG_R14 = 6,
610 X86_REG_R15 = 7,
611 X86_REG_EDI = 8,
612 X86_REG_ESI = 9,
613 X86_REG_EBP = 10,
614 X86_REG_EBX = 11,
615 X86_REG_EDX = 12,
616 X86_REG_EAX = 13,
617 X86_REG_ECX = 14,
618 X86_REG_ESP = 15,
619 X86_REG_EIP = 16
620 #endif
621 };
622 #endif
623 #if defined(__NetBSD__) || defined(__FreeBSD__)
624 enum {
625 #if (defined(i386) || defined(__i386__))
626 X86_REG_EIP = 10,
627 X86_REG_EAX = 7,
628 X86_REG_ECX = 6,
629 X86_REG_EDX = 5,
630 X86_REG_EBX = 4,
631 X86_REG_ESP = 13,
632 X86_REG_EBP = 2,
633 X86_REG_ESI = 1,
634 X86_REG_EDI = 0
635 #endif
636 };
637 #endif
638 // FIXME: this is partly redundant with the instruction decoding phase
639 // to discover transfer type and register number
640 static inline int ix86_step_over_modrm(unsigned char * p)
641 {
642 int mod = (p[0] >> 6) & 3;
643 int rm = p[0] & 7;
644 int offset = 0;
645
646 // ModR/M Byte
647 switch (mod) {
648 case 0: // [reg]
649 if (rm == 5) return 4; // disp32
650 break;
651 case 1: // disp8[reg]
652 offset = 1;
653 break;
654 case 2: // disp32[reg]
655 offset = 4;
656 break;
657 case 3: // register
658 return 0;
659 }
660
661 // SIB Byte
662 if (rm == 4) {
663 if (mod == 0 && (p[1] & 7) == 5)
664 offset = 5; // disp32[index]
665 else
666 offset++;
667 }
668
669 return offset;
670 }
671
672 static bool ix86_skip_instruction(unsigned long * regs)
673 {
674 unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
675
676 if (eip == 0)
677 return false;
678
679 transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
680 transfer_size_t transfer_size = SIZE_LONG;
681
682 int reg = -1;
683 int len = 0;
684
685 #if DEBUG
686 printf("IP: %p [%02x %02x %02x %02x...]\n",
687 eip, eip[0], eip[1], eip[2], eip[3]);
688 #endif
689
690 // Operand size prefix
691 if (*eip == 0x66) {
692 eip++;
693 len++;
694 transfer_size = SIZE_WORD;
695 }
696
697 // REX prefix
698 #if defined(__x86_64__)
699 struct rex_t {
700 unsigned char W;
701 unsigned char R;
702 unsigned char X;
703 unsigned char B;
704 };
705 rex_t rex = { 0, 0, 0, 0 };
706 bool has_rex = false;
707 if ((*eip & 0xf0) == 0x40) {
708 has_rex = true;
709 const unsigned char b = *eip;
710 rex.W = b & (1 << 3);
711 rex.R = b & (1 << 2);
712 rex.X = b & (1 << 1);
713 rex.B = b & (1 << 0);
714 #if DEBUG
715 printf("REX: %c,%c,%c,%c\n",
716 rex.W ? 'W' : '_',
717 rex.R ? 'R' : '_',
718 rex.X ? 'X' : '_',
719 rex.B ? 'B' : '_');
720 #endif
721 eip++;
722 len++;
723 if (rex.W)
724 transfer_size = SIZE_QUAD;
725 }
726 #else
727 const bool has_rex = false;
728 #endif
729
730 // Decode instruction
731 switch (eip[0]) {
732 case 0x0f:
733 switch (eip[1]) {
734 case 0xb6: // MOVZX r32, r/m8
735 case 0xb7: // MOVZX r32, r/m16
736 switch (eip[2] & 0xc0) {
737 case 0x80:
738 reg = (eip[2] >> 3) & 7;
739 transfer_type = SIGSEGV_TRANSFER_LOAD;
740 break;
741 case 0x40:
742 reg = (eip[2] >> 3) & 7;
743 transfer_type = SIGSEGV_TRANSFER_LOAD;
744 break;
745 case 0x00:
746 reg = (eip[2] >> 3) & 7;
747 transfer_type = SIGSEGV_TRANSFER_LOAD;
748 break;
749 }
750 len += 3 + ix86_step_over_modrm(eip + 2);
751 break;
752 }
753 break;
754 case 0x8a: // MOV r8, r/m8
755 transfer_size = SIZE_BYTE;
756 case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
757 switch (eip[1] & 0xc0) {
758 case 0x80:
759 reg = (eip[1] >> 3) & 7;
760 transfer_type = SIGSEGV_TRANSFER_LOAD;
761 break;
762 case 0x40:
763 reg = (eip[1] >> 3) & 7;
764 transfer_type = SIGSEGV_TRANSFER_LOAD;
765 break;
766 case 0x00:
767 reg = (eip[1] >> 3) & 7;
768 transfer_type = SIGSEGV_TRANSFER_LOAD;
769 break;
770 }
771 len += 2 + ix86_step_over_modrm(eip + 1);
772 break;
773 case 0x88: // MOV r/m8, r8
774 transfer_size = SIZE_BYTE;
775 case 0x89: // MOV r/m32, r32 (or 16-bit operation)
776 switch (eip[1] & 0xc0) {
777 case 0x80:
778 reg = (eip[1] >> 3) & 7;
779 transfer_type = SIGSEGV_TRANSFER_STORE;
780 break;
781 case 0x40:
782 reg = (eip[1] >> 3) & 7;
783 transfer_type = SIGSEGV_TRANSFER_STORE;
784 break;
785 case 0x00:
786 reg = (eip[1] >> 3) & 7;
787 transfer_type = SIGSEGV_TRANSFER_STORE;
788 break;
789 }
790 len += 2 + ix86_step_over_modrm(eip + 1);
791 break;
792 }
793
794 if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
795 // Unknown machine code, let it crash. Then patch the decoder
796 return false;
797 }
798
799 #if defined(__x86_64__)
800 if (rex.R)
801 reg += 8;
802 #endif
803
804 if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
805 static const int x86_reg_map[] = {
806 X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
807 X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI,
808 #if defined(__x86_64__)
809 X86_REG_R8, X86_REG_R9, X86_REG_R10, X86_REG_R11,
810 X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15,
811 #endif
812 };
813
814 if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1))
815 return false;
816
817 // Set 0 to the relevant register part
818 // NOTE: this is only valid for MOV alike instructions
819 int rloc = x86_reg_map[reg];
820 switch (transfer_size) {
821 case SIZE_BYTE:
822 if (has_rex || reg < 4)
823 regs[rloc] = (regs[rloc] & ~0x00ffL);
824 else {
825 rloc = x86_reg_map[reg - 4];
826 regs[rloc] = (regs[rloc] & ~0xff00L);
827 }
828 break;
829 case SIZE_WORD:
830 regs[rloc] = (regs[rloc] & ~0xffffL);
831 break;
832 case SIZE_LONG:
833 case SIZE_QUAD: // zero-extension
834 regs[rloc] = 0;
835 break;
836 }
837 }
838
839 #if DEBUG
840 printf("%08x: %s %s access", regs[X86_REG_EIP],
841 transfer_size == SIZE_BYTE ? "byte" :
842 transfer_size == SIZE_WORD ? "word" :
843 transfer_size == SIZE_LONG ? "long" :
844 transfer_size == SIZE_QUAD ? "quad" : "unknown",
845 transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
846
847 if (reg != -1) {
848 static const char * x86_byte_reg_str_map[] = {
849 "al", "cl", "dl", "bl",
850 "spl", "bpl", "sil", "dil",
851 "r8b", "r9b", "r10b", "r11b",
852 "r12b", "r13b", "r14b", "r15b",
853 "ah", "ch", "dh", "bh",
854 };
855 static const char * x86_word_reg_str_map[] = {
856 "ax", "cx", "dx", "bx",
857 "sp", "bp", "si", "di",
858 "r8w", "r9w", "r10w", "r11w",
859 "r12w", "r13w", "r14w", "r15w",
860 };
861 static const char *x86_long_reg_str_map[] = {
862 "eax", "ecx", "edx", "ebx",
863 "esp", "ebp", "esi", "edi",
864 "r8d", "r9d", "r10d", "r11d",
865 "r12d", "r13d", "r14d", "r15d",
866 };
867 static const char *x86_quad_reg_str_map[] = {
868 "rax", "rcx", "rdx", "rbx",
869 "rsp", "rbp", "rsi", "rdi",
870 "r8", "r9", "r10", "r11",
871 "r12", "r13", "r14", "r15",
872 };
873 const char * reg_str = NULL;
874 switch (transfer_size) {
875 case SIZE_BYTE:
876 reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg];
877 break;
878 case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break;
879 case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break;
880 case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break;
881 }
882 if (reg_str)
883 printf(" %s register %%%s",
884 transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from",
885 reg_str);
886 }
887 printf(", %d bytes instruction\n", len);
888 #endif
889
890 regs[X86_REG_EIP] += len;
891 return true;
892 }
893 #endif
894
895 // Decode and skip PPC instruction
896 #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
897 static bool powerpc_skip_instruction(unsigned int * nip_p, unsigned int * regs)
898 {
899 instruction_t instr;
900 powerpc_decode_instruction(&instr, *nip_p, regs);
901
902 if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
903 // Unknown machine code, let it crash. Then patch the decoder
904 return false;
905 }
906
907 #if DEBUG
908 printf("%08x: %s %s access", *nip_p,
909 instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : "long",
910 instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
911
912 if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
913 printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
914 if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
915 printf(" r%d (rd = 0)\n", instr.rd);
916 #endif
917
918 if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
919 regs[instr.ra] = instr.addr;
920 if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
921 regs[instr.rd] = 0;
922
923 *nip_p += 4;
924 return true;
925 }
926 #endif
927 #endif
928
929 // Fallbacks
930 #ifndef SIGSEGV_FAULT_INSTRUCTION
931 #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_INVALID_PC
932 #endif
933 #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
934 #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
935 #endif
936 #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
937 #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP) sigsegv_fault_handler(ADDR, IP)
938 #endif
939
940 // SIGSEGV recovery supported ?
941 #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
942 #define HAVE_SIGSEGV_RECOVERY
943 #endif
944
945
946 /*
947 * SIGSEGV global handler
948 */
949
950 #if defined(HAVE_SIGSEGV_RECOVERY) || defined(HAVE_MACH_EXCEPTIONS)
951 // This function handles the badaccess to memory.
952 // It is called from the signal handler or the exception handler.
953 static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
954 {
955 sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
956 sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
957
958 // Call user's handler and reinstall the global handler, if required
959 switch (SIGSEGV_FAULT_HANDLER_INVOKE(fault_address, fault_instruction)) {
960 case SIGSEGV_RETURN_SUCCESS:
961 return true;
962
963 #if HAVE_SIGSEGV_SKIP_INSTRUCTION
964 case SIGSEGV_RETURN_SKIP_INSTRUCTION:
965 // Call the instruction skipper with the register file
966 // available
967 if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
968 #ifdef HAVE_MACH_EXCEPTIONS
969 // Unlike UNIX signals where the thread state
970 // is modified off of the stack, in Mach we
971 // need to actually call thread_set_state to
972 // have the register values updated.
973 kern_return_t krc;
974
975 krc = thread_set_state(thread,
976 MACHINE_THREAD_STATE, (thread_state_t)state,
977 MACHINE_THREAD_STATE_COUNT);
978 MACH_CHECK_ERROR (thread_get_state, krc);
979 #endif
980 return true;
981 }
982 break;
983 #endif
984 }
985
986 // We can't do anything with the fault_address, dump state?
987 if (sigsegv_state_dumper != 0)
988 sigsegv_state_dumper(fault_address, fault_instruction);
989
990 return false;
991 }
992 #endif
993
994
995 /*
996 * There are two mechanisms for handling a bad memory access,
997 * Mach exceptions and UNIX signals. The implementation specific
998 * code appears below. Its reponsibility is to call handle_badaccess
999 * which is the routine that handles the fault in an implementation
1000 * agnostic manner. The implementation specific code below is then
1001 * reponsible for checking whether handle_badaccess was able
1002 * to handle the memory access error and perform any implementation
1003 * specific tasks necessary afterwards.
1004 */
1005
1006 #ifdef HAVE_MACH_EXCEPTIONS
1007 /*
1008 * We need to forward all exceptions that we do not handle.
1009 * This is important, there are many exceptions that may be
1010 * handled by other exception handlers. For example debuggers
1011 * use exceptions and the exception hander is in another
1012 * process in such a case. (Timothy J. Wood states in his
1013 * message to the list that he based this code on that from
1014 * gdb for Darwin.)
1015 */
1016 static inline kern_return_t
1017 forward_exception(mach_port_t thread_port,
1018 mach_port_t task_port,
1019 exception_type_t exception_type,
1020 exception_data_t exception_data,
1021 mach_msg_type_number_t data_count,
1022 ExceptionPorts *oldExceptionPorts)
1023 {
1024 kern_return_t kret;
1025 unsigned int portIndex;
1026 mach_port_t port;
1027 exception_behavior_t behavior;
1028 thread_state_flavor_t flavor;
1029 thread_state_t thread_state;
1030 mach_msg_type_number_t thread_state_count;
1031
1032 for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
1033 if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
1034 // This handler wants the exception
1035 break;
1036 }
1037 }
1038
1039 if (portIndex >= oldExceptionPorts->maskCount) {
1040 fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
1041 return KERN_FAILURE;
1042 }
1043
1044 port = oldExceptionPorts->handlers[portIndex];
1045 behavior = oldExceptionPorts->behaviors[portIndex];
1046 flavor = oldExceptionPorts->flavors[portIndex];
1047
1048 /*
1049 fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
1050 */
1051
1052 if (behavior != EXCEPTION_DEFAULT) {
1053 thread_state_count = THREAD_STATE_MAX;
1054 kret = thread_get_state (thread_port, flavor, thread_state,
1055 &thread_state_count);
1056 MACH_CHECK_ERROR (thread_get_state, kret);
1057 }
1058
1059 switch (behavior) {
1060 case EXCEPTION_DEFAULT:
1061 // fprintf(stderr, "forwarding to exception_raise\n");
1062 kret = exception_raise(port, thread_port, task_port, exception_type,
1063 exception_data, data_count);
1064 MACH_CHECK_ERROR (exception_raise, kret);
1065 break;
1066 case EXCEPTION_STATE:
1067 // fprintf(stderr, "forwarding to exception_raise_state\n");
1068 kret = exception_raise_state(port, exception_type, exception_data,
1069 data_count, &flavor,
1070 thread_state, thread_state_count,
1071 thread_state, &thread_state_count);
1072 MACH_CHECK_ERROR (exception_raise_state, kret);
1073 break;
1074 case EXCEPTION_STATE_IDENTITY:
1075 // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
1076 kret = exception_raise_state_identity(port, thread_port, task_port,
1077 exception_type, exception_data,
1078 data_count, &flavor,
1079 thread_state, thread_state_count,
1080 thread_state, &thread_state_count);
1081 MACH_CHECK_ERROR (exception_raise_state_identity, kret);
1082 break;
1083 default:
1084 fprintf(stderr, "forward_exception got unknown behavior\n");
1085 break;
1086 }
1087
1088 if (behavior != EXCEPTION_DEFAULT) {
1089 kret = thread_set_state (thread_port, flavor, thread_state,
1090 thread_state_count);
1091 MACH_CHECK_ERROR (thread_set_state, kret);
1092 }
1093
1094 return KERN_SUCCESS;
1095 }
1096
1097 /*
1098 * This is the code that actually handles the exception.
1099 * It is called by exc_server. For Darwin 5 Apple changed
1100 * this a bit from how this family of functions worked in
1101 * Mach. If you are familiar with that it is a little
1102 * different. The main variation that concerns us here is
1103 * that code is an array of exception specific codes and
1104 * codeCount is a count of the number of codes in the code
1105 * array. In typical Mach all exceptions have a code
1106 * and sub-code. It happens to be the case that for a
1107 * EXC_BAD_ACCESS exception the first entry is the type of
1108 * bad access that occurred and the second entry is the
1109 * faulting address so these entries correspond exactly to
1110 * how the code and sub-code are used on Mach.
1111 *
1112 * This is a MIG interface. No code in Basilisk II should
1113 * call this directley. This has to have external C
1114 * linkage because that is what exc_server expects.
1115 */
1116 kern_return_t
1117 catch_exception_raise(mach_port_t exception_port,
1118 mach_port_t thread,
1119 mach_port_t task,
1120 exception_type_t exception,
1121 exception_data_t code,
1122 mach_msg_type_number_t codeCount)
1123 {
1124 ppc_thread_state_t state;
1125 kern_return_t krc;
1126
1127 if ((exception == EXC_BAD_ACCESS) && (codeCount >= 2)) {
1128 if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
1129 return KERN_SUCCESS;
1130 }
1131
1132 // In Mach we do not need to remove the exception handler.
1133 // If we forward the exception, eventually some exception handler
1134 // will take care of this exception.
1135 krc = forward_exception(thread, task, exception, code, codeCount, &ports);
1136
1137 return krc;
1138 }
1139 #endif
1140
1141 #ifdef HAVE_SIGSEGV_RECOVERY
1142 // Handle bad memory accesses with signal handler
1143 static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1144 {
1145 // Call handler and reinstall the global handler, if required
1146 if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
1147 #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1148 sigsegv_do_install_handler(sig);
1149 #endif
1150 return;
1151 }
1152
1153 // Failure: reinstall default handler for "safe" crash
1154 #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1155 SIGSEGV_ALL_SIGNALS
1156 #undef FAULT_HANDLER
1157 }
1158 #endif
1159
1160
1161 /*
1162 * SIGSEGV handler initialization
1163 */
1164
1165 #if defined(HAVE_SIGINFO_T)
1166 static bool sigsegv_do_install_handler(int sig)
1167 {
1168 // Setup SIGSEGV handler to process writes to frame buffer
1169 #ifdef HAVE_SIGACTION
1170 struct sigaction sigsegv_sa;
1171 sigemptyset(&sigsegv_sa.sa_mask);
1172 sigsegv_sa.sa_sigaction = sigsegv_handler;
1173 sigsegv_sa.sa_flags = SA_SIGINFO;
1174 return (sigaction(sig, &sigsegv_sa, 0) == 0);
1175 #else
1176 return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1177 #endif
1178 }
1179 #endif
1180
1181 #if defined(HAVE_SIGCONTEXT_SUBTERFUGE)
1182 static bool sigsegv_do_install_handler(int sig)
1183 {
1184 // Setup SIGSEGV handler to process writes to frame buffer
1185 #ifdef HAVE_SIGACTION
1186 struct sigaction sigsegv_sa;
1187 sigemptyset(&sigsegv_sa.sa_mask);
1188 sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
1189 sigsegv_sa.sa_flags = 0;
1190 #if !EMULATED_68K && defined(__NetBSD__)
1191 sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
1192 sigsegv_sa.sa_flags |= SA_ONSTACK;
1193 #endif
1194 return (sigaction(sig, &sigsegv_sa, 0) == 0);
1195 #else
1196 return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1197 #endif
1198 }
1199 #endif
1200
1201 #if defined(HAVE_MACH_EXCEPTIONS)
1202 static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1203 {
1204 /*
1205 * Except for the exception port functions, this should be
1206 * pretty much stock Mach. If later you choose to support
1207 * other Mach's besides Darwin, just check for __MACH__
1208 * here and __APPLE__ where the actual differences are.
1209 */
1210 #if defined(__APPLE__) && defined(__MACH__)
1211 if (sigsegv_fault_handler != NULL) {
1212 sigsegv_fault_handler = handler;
1213 return true;
1214 }
1215
1216 kern_return_t krc;
1217
1218 // create the the exception port
1219 krc = mach_port_allocate(mach_task_self(),
1220 MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
1221 if (krc != KERN_SUCCESS) {
1222 mach_error("mach_port_allocate", krc);
1223 return false;
1224 }
1225
1226 // add a port send right
1227 krc = mach_port_insert_right(mach_task_self(),
1228 _exceptionPort, _exceptionPort,
1229 MACH_MSG_TYPE_MAKE_SEND);
1230 if (krc != KERN_SUCCESS) {
1231 mach_error("mach_port_insert_right", krc);
1232 return false;
1233 }
1234
1235 // get the old exception ports
1236 ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
1237 krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
1238 &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
1239 if (krc != KERN_SUCCESS) {
1240 mach_error("thread_get_exception_ports", krc);
1241 return false;
1242 }
1243
1244 // set the new exception port
1245 //
1246 // We could have used EXCEPTION_STATE_IDENTITY instead of
1247 // EXCEPTION_DEFAULT to get the thread state in the initial
1248 // message, but it turns out that in the common case this is not
1249 // neccessary. If we need it we can later ask for it from the
1250 // suspended thread.
1251 //
1252 // Even with THREAD_STATE_NONE, Darwin provides the program
1253 // counter in the thread state. The comments in the header file
1254 // seem to imply that you can count on the GPR's on an exception
1255 // as well but just to be safe I use MACHINE_THREAD_STATE because
1256 // you have to ask for all of the GPR's anyway just to get the
1257 // program counter. In any case because of update effective
1258 // address from immediate and update address from effective
1259 // addresses of ra and rb modes (as good an name as any for these
1260 // addressing modes) used in PPC instructions, you will need the
1261 // GPR state anyway.
1262 krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
1263 EXCEPTION_DEFAULT, MACHINE_THREAD_STATE);
1264 if (krc != KERN_SUCCESS) {
1265 mach_error("thread_set_exception_ports", krc);
1266 return false;
1267 }
1268
1269 // create the exception handler thread
1270 if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
1271 (void)fprintf(stderr, "creation of exception thread failed\n");
1272 return false;
1273 }
1274
1275 // do not care about the exception thread any longer, let is run standalone
1276 (void)pthread_detach(exc_thread);
1277
1278 sigsegv_fault_handler = handler;
1279 return true;
1280 #else
1281 return false;
1282 #endif
1283 }
1284 #endif
1285
1286 bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1287 {
1288 #if defined(HAVE_SIGSEGV_RECOVERY)
1289 bool success = true;
1290 #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
1291 SIGSEGV_ALL_SIGNALS
1292 #undef FAULT_HANDLER
1293 if (success)
1294 sigsegv_fault_handler = handler;
1295 return success;
1296 #elif defined(HAVE_MACH_EXCEPTIONS)
1297 return sigsegv_do_install_handler(handler);
1298 #else
1299 // FAIL: no siginfo_t nor sigcontext subterfuge is available
1300 return false;
1301 #endif
1302 }
1303
1304
1305 /*
1306 * SIGSEGV handler deinitialization
1307 */
1308
1309 void sigsegv_deinstall_handler(void)
1310 {
1311 // We do nothing for Mach exceptions, the thread would need to be
1312 // suspended if not already so, and we might mess with other
1313 // exception handlers that came after we registered ours. There is
1314 // no need to remove the exception handler, in fact this function is
1315 // not called anywhere in Basilisk II.
1316 #ifdef HAVE_SIGSEGV_RECOVERY
1317 sigsegv_fault_handler = 0;
1318 #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1319 SIGSEGV_ALL_SIGNALS
1320 #undef FAULT_HANDLER
1321 #endif
1322 }
1323
1324
1325 /*
1326 * Set callback function when we cannot handle the fault
1327 */
1328
1329 void sigsegv_set_dump_state(sigsegv_state_dumper_t handler)
1330 {
1331 sigsegv_state_dumper = handler;
1332 }
1333
1334
1335 /*
1336 * Test program used for configure/test
1337 */
1338
1339 #ifdef CONFIGURE_TEST_SIGSEGV_RECOVERY
1340 #include <stdio.h>
1341 #include <stdlib.h>
1342 #include <fcntl.h>
1343 #include <sys/mman.h>
1344 #include "vm_alloc.h"
1345
1346 const int REF_INDEX = 123;
1347 const int REF_VALUE = 45;
1348
1349 static int page_size;
1350 static volatile char * page = 0;
1351 static volatile int handler_called = 0;
1352
1353 #ifdef __GNUC__
1354 // Code range where we expect the fault to come from
1355 static void *b_region, *e_region;
1356 #endif
1357
1358 static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1359 {
1360 handler_called++;
1361 if ((fault_address - REF_INDEX) != page)
1362 exit(10);
1363 #ifdef __GNUC__
1364 // Make sure reported fault instruction address falls into
1365 // expected code range
1366 if (instruction_address != SIGSEGV_INVALID_PC
1367 && ((instruction_address < (sigsegv_address_t)b_region) ||
1368 (instruction_address >= (sigsegv_address_t)e_region)))
1369 exit(11);
1370 #endif
1371 if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
1372 exit(12);
1373 return SIGSEGV_RETURN_SUCCESS;
1374 }
1375
1376 #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1377 static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1378 {
1379 if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
1380 #ifdef __GNUC__
1381 // Make sure reported fault instruction address falls into
1382 // expected code range
1383 if (instruction_address != SIGSEGV_INVALID_PC
1384 && ((instruction_address < (sigsegv_address_t)b_region) ||
1385 (instruction_address >= (sigsegv_address_t)e_region)))
1386 return SIGSEGV_RETURN_FAILURE;
1387 #endif
1388 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
1389 }
1390
1391 return SIGSEGV_RETURN_FAILURE;
1392 }
1393
1394 // More sophisticated tests for instruction skipper
1395 static bool arch_insn_skipper_tests()
1396 {
1397 #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
1398 static const unsigned char code[] = {
1399 0x8a, 0x00, // mov (%eax),%al
1400 0x8a, 0x2c, 0x18, // mov (%eax,%ebx,1),%ch
1401 0x88, 0x20, // mov %ah,(%eax)
1402 0x88, 0x08, // mov %cl,(%eax)
1403 0x66, 0x8b, 0x00, // mov (%eax),%ax
1404 0x66, 0x8b, 0x0c, 0x18, // mov (%eax,%ebx,1),%cx
1405 0x66, 0x89, 0x00, // mov %ax,(%eax)
1406 0x66, 0x89, 0x0c, 0x18, // mov %cx,(%eax,%ebx,1)
1407 0x8b, 0x00, // mov (%eax),%eax
1408 0x8b, 0x0c, 0x18, // mov (%eax,%ebx,1),%ecx
1409 0x89, 0x00, // mov %eax,(%eax)
1410 0x89, 0x0c, 0x18, // mov %ecx,(%eax,%ebx,1)
1411 #if defined(__x86_64__)
1412 0x44, 0x8a, 0x00, // mov (%rax),%r8b
1413 0x44, 0x8a, 0x20, // mov (%rax),%r12b
1414 0x42, 0x8a, 0x3c, 0x10, // mov (%rax,%r10,1),%dil
1415 0x44, 0x88, 0x00, // mov %r8b,(%rax)
1416 0x44, 0x88, 0x20, // mov %r12b,(%rax)
1417 0x42, 0x88, 0x3c, 0x10, // mov %dil,(%rax,%r10,1)
1418 0x66, 0x44, 0x8b, 0x00, // mov (%rax),%r8w
1419 0x66, 0x42, 0x8b, 0x0c, 0x10, // mov (%rax,%r10,1),%cx
1420 0x66, 0x44, 0x89, 0x00, // mov %r8w,(%rax)
1421 0x66, 0x42, 0x89, 0x0c, 0x10, // mov %cx,(%rax,%r10,1)
1422 0x44, 0x8b, 0x00, // mov (%rax),%r8d
1423 0x42, 0x8b, 0x0c, 0x10, // mov (%rax,%r10,1),%ecx
1424 0x44, 0x89, 0x00, // mov %r8d,(%rax)
1425 0x42, 0x89, 0x0c, 0x10, // mov %ecx,(%rax,%r10,1)
1426 0x48, 0x8b, 0x08, // mov (%rax),%rcx
1427 0x4c, 0x8b, 0x18, // mov (%rax),%r11
1428 0x4a, 0x8b, 0x0c, 0x10, // mov (%rax,%r10,1),%rcx
1429 0x4e, 0x8b, 0x1c, 0x10, // mov (%rax,%r10,1),%r11
1430 0x48, 0x89, 0x08, // mov %rcx,(%rax)
1431 0x4c, 0x89, 0x18, // mov %r11,(%rax)
1432 0x4a, 0x89, 0x0c, 0x10, // mov %rcx,(%rax,%r10,1)
1433 0x4e, 0x89, 0x1c, 0x10, // mov %r11,(%rax,%r10,1)
1434 #endif
1435 0 // end
1436 };
1437 const int N_REGS = 20;
1438 unsigned long regs[N_REGS];
1439 for (int i = 0; i < N_REGS; i++)
1440 regs[i] = i;
1441 const unsigned long start_code = (unsigned long)&code;
1442 regs[X86_REG_EIP] = start_code;
1443 while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1)
1444 && ix86_skip_instruction(regs))
1445 ; /* simply iterate */
1446 return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1);
1447 #endif
1448 return true;
1449 }
1450 #endif
1451
1452 int main(void)
1453 {
1454 if (vm_init() < 0)
1455 return 1;
1456
1457 page_size = getpagesize();
1458 if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
1459 return 2;
1460
1461 memset((void *)page, 0, page_size);
1462 if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
1463 return 3;
1464
1465 if (!sigsegv_install_handler(sigsegv_test_handler))
1466 return 4;
1467
1468 #ifdef __GNUC__
1469 b_region = &&L_b_region1;
1470 e_region = &&L_e_region1;
1471 #endif
1472 L_b_region1:
1473 page[REF_INDEX] = REF_VALUE;
1474 if (page[REF_INDEX] != REF_VALUE)
1475 exit(20);
1476 page[REF_INDEX] = REF_VALUE;
1477 L_e_region1:
1478
1479 if (handler_called != 1)
1480 return 5;
1481
1482 #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1483 if (!sigsegv_install_handler(sigsegv_insn_handler))
1484 return 6;
1485
1486 if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
1487 return 7;
1488
1489 for (int i = 0; i < page_size; i++)
1490 page[i] = (i + 1) % page_size;
1491
1492 if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
1493 return 8;
1494
1495 #define TEST_SKIP_INSTRUCTION(TYPE) do { \
1496 const unsigned long TAG = 0x12345678 | \
1497 (sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0); \
1498 TYPE data = *((TYPE *)(page + sizeof(TYPE))); \
1499 volatile unsigned long effect = data + TAG; \
1500 if (effect != TAG) \
1501 return 9; \
1502 } while (0)
1503
1504 #ifdef __GNUC__
1505 b_region = &&L_b_region2;
1506 e_region = &&L_e_region2;
1507 #endif
1508 L_b_region2:
1509 TEST_SKIP_INSTRUCTION(unsigned char);
1510 TEST_SKIP_INSTRUCTION(unsigned short);
1511 TEST_SKIP_INSTRUCTION(unsigned int);
1512 TEST_SKIP_INSTRUCTION(unsigned long);
1513 L_e_region2:
1514
1515 if (!arch_insn_skipper_tests())
1516 return 20;
1517 #endif
1518
1519 vm_exit();
1520 return 0;
1521 }
1522 #endif