ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
(Generate patch)

Comparing BasiliskII/src/Unix/sigsegv.cpp (file contents):
Revision 1.14 by gbeauche, 2002-05-20T15:56:13Z vs.
Revision 1.46 by gbeauche, 2004-01-22T00:00:55Z

# Line 4 | Line 4
4   *  Derived from Bruno Haible's work on his SIGSEGV library for clisp
5   *  <http://clisp.sourceforge.net/>
6   *
7 < *  Basilisk II (C) 1997-2002 Christian Bauer
7 > *  MacOS X support derived from the post by Timothy J. Wood to the
8 > *  omnigroup macosx-dev list:
9 > *    Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10 > *    tjw@omnigroup.com Sun, 4 Jun 2000
11 > *    www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12 > *
13 > *  Basilisk II (C) 1997-2004 Christian Bauer
14   *
15   *  This program is free software; you can redistribute it and/or modify
16   *  it under the terms of the GNU General Public License as published by
# Line 29 | Line 35
35   #include "config.h"
36   #endif
37  
38 + #include <list>
39 + #include <stdio.h>
40   #include <signal.h>
41   #include "sigsegv.h"
42  
43 + #ifndef NO_STD_NAMESPACE
44 + using std::list;
45 + #endif
46 +
47   // Return value type of a signal handler (standard type if not defined)
48   #ifndef RETSIGTYPE
49   #define RETSIGTYPE void
# Line 40 | Line 52
52   // Type of the system signal handler
53   typedef RETSIGTYPE (*signal_handler)(int);
54  
43 // Is the fault to be ignored?
44 static bool sigsegv_ignore_fault = false;
45
55   // User's SIGSEGV handler
56   static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
57  
# Line 57 | Line 66 | static bool sigsegv_do_install_handler(i
66   *  Instruction decoding aids
67   */
68  
60 // Transfer type
61 enum transfer_type_t {
62        TYPE_UNKNOWN,
63        TYPE_LOAD,
64        TYPE_STORE
65 };
66
69   // Transfer size
70   enum transfer_size_t {
71          SIZE_UNKNOWN,
72          SIZE_BYTE,
73 <        SIZE_WORD,
74 <        SIZE_LONG
73 >        SIZE_WORD, // 2 bytes
74 >        SIZE_LONG, // 4 bytes
75 >        SIZE_QUAD, // 8 bytes
76   };
77  
78 + // Transfer type
79 + typedef sigsegv_transfer_type_t transfer_type_t;
80 +
81   #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
82   // Addressing mode
83   enum addressing_mode_t {
# Line 103 | Line 109 | static void powerpc_decode_instruction(i
109          signed int imm = (signed short)(opcode & 0xffff);
110          
111          // Analyze opcode
112 <        transfer_type_t transfer_type = TYPE_UNKNOWN;
112 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
113          transfer_size_t transfer_size = SIZE_UNKNOWN;
114          addressing_mode_t addr_mode = MODE_UNKNOWN;
115          switch (primop) {
116          case 31:
117                  switch (exop) {
118                  case 23:        // lwzx
119 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
119 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
120                  case 55:        // lwzux
121 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
121 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
122                  case 87:        // lbzx
123 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
123 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
124                  case 119:       // lbzux
125 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
125 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
126                  case 151:       // stwx
127 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
127 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
128                  case 183:       // stwux
129 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
129 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
130                  case 215:       // stbx
131 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
131 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
132                  case 247:       // stbux
133 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
133 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
134                  case 279:       // lhzx
135 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
135 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
136                  case 311:       // lhzux
137 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
137 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
138                  case 343:       // lhax
139 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
139 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
140                  case 375:       // lhaux
141 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
141 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
142                  case 407:       // sthx
143 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
143 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
144                  case 439:       // sthux
145 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
145 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
146                  }
147                  break;
148          
149          case 32:        // lwz
150 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
150 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
151          case 33:        // lwzu
152 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
152 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
153          case 34:        // lbz
154 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
154 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
155          case 35:        // lbzu
156 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
156 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
157          case 36:        // stw
158 <                transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
158 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
159          case 37:        // stwu
160 <                transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
160 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
161          case 38:        // stb
162 <                transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
162 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
163          case 39:        // stbu
164 <                transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
164 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
165          case 40:        // lhz
166 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
166 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
167          case 41:        // lhzu
168 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
168 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
169          case 42:        // lha
170 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
170 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
171          case 43:        // lhau
172 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
172 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
173          case 44:        // sth
174 <                transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
174 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
175          case 45:        // sthu
176 <                transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
176 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
177          }
178          
179          // Calculate effective address
# Line 214 | Line 220 | static void powerpc_decode_instruction(i
220   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
221   #endif
222   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, siginfo_t *sip, void *scp
223 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
224 + #define SIGSEGV_FAULT_HANDLER_ARGS              sip, scp
225   #define SIGSEGV_FAULT_ADDRESS                   sip->si_addr
226 + #if (defined(sgi) || defined(__sgi))
227 + #include <ucontext.h>
228 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
229 + #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)SIGSEGV_CONTEXT_REGS[CTX_EPC]
230 + #if (defined(mips) || defined(__mips))
231 + #define SIGSEGV_REGISTER_FILE                   SIGSEGV_CONTEXT_REGS
232 + #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
233 + #endif
234 + #endif
235 + #if defined(__sun__)
236 + #if (defined(sparc) || defined(__sparc__))
237 + #include <sys/stack.h>
238 + #include <sys/regset.h>
239 + #include <sys/ucontext.h>
240 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
241 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[REG_PC]
242 + #define SIGSEGV_SPARC_GWINDOWS                  (((ucontext_t *)scp)->uc_mcontext.gwins)
243 + #define SIGSEGV_SPARC_RWINDOW                   (struct rwindow *)((char *)SIGSEGV_CONTEXT_REGS[REG_SP] + STACK_BIAS)
244 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)SIGSEGV_CONTEXT_REGS), SIGSEGV_SPARC_GWINDOWS, SIGSEGV_SPARC_RWINDOW
245 + #define SIGSEGV_SKIP_INSTRUCTION                sparc_skip_instruction
246 + #endif
247 + #endif
248 + #if defined(__FreeBSD__)
249 + #if (defined(i386) || defined(__i386__))
250 + #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_eip)
251 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
252 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
253 + #endif
254 + #endif
255   #if defined(__linux__)
256   #if (defined(i386) || defined(__i386__))
257   #include <sys/ucontext.h>
258   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
259   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
260 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)SIGSEGV_CONTEXT_REGS
260 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
261 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
262 > #endif
263 > #if (defined(x86_64) || defined(__x86_64__))
264 > #include <sys/ucontext.h>
265 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
266 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
267 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
268   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
269   #endif
270   #if (defined(ia64) || defined(__ia64__))
# Line 233 | Line 277 | static void powerpc_decode_instruction(i
277   #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned int *)(SIGSEGV_CONTEXT_REGS->gpr)
278   #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
279   #endif
280 + #if (defined(hppa) || defined(__hppa__))
281 + #undef  SIGSEGV_FAULT_ADDRESS
282 + #define SIGSEGV_FAULT_ADDRESS                   sip->si_ptr
283 + #endif
284 + #if (defined(arm) || defined(__arm__))
285 + #include <asm/ucontext.h> /* use kernel structure, glibc may not be in sync */
286 + #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
287 + #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.arm_pc)
288 + #define SIGSEGV_REGISTER_FILE                   (&SIGSEGV_CONTEXT_REGS.arm_r0)
289 + #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
290 + #endif
291   #endif
292   #endif
293  
# Line 243 | Line 298 | static void powerpc_decode_instruction(i
298   #if (defined(i386) || defined(__i386__))
299   #include <asm/sigcontext.h>
300   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext scs
301 < #define SIGSEGV_FAULT_ADDRESS                   scs.cr2
302 < #define SIGSEGV_FAULT_INSTRUCTION               scs.eip
303 < #define SIGSEGV_REGISTER_FILE                   (unsigned long *)(&scs)
301 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
302 > #define SIGSEGV_FAULT_HANDLER_ARGS              &scs
303 > #define SIGSEGV_FAULT_ADDRESS                   scp->cr2
304 > #define SIGSEGV_FAULT_INSTRUCTION               scp->eip
305 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)scp
306   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
307   #endif
308   #if (defined(sparc) || defined(__sparc__))
309   #include <asm/sigcontext.h>
310   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
311 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
312   #define SIGSEGV_FAULT_ADDRESS                   addr
313   #endif
314   #if (defined(powerpc) || defined(__powerpc__))
315   #include <asm/sigcontext.h>
316   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext *scp
317 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, scp
318   #define SIGSEGV_FAULT_ADDRESS                   scp->regs->dar
319   #define SIGSEGV_FAULT_INSTRUCTION               scp->regs->nip
320   #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&scp->regs->nip, (unsigned int *)(scp->regs->gpr)
# Line 264 | Line 323 | static void powerpc_decode_instruction(i
323   #if (defined(alpha) || defined(__alpha__))
324   #include <asm/sigcontext.h>
325   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
326 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
327   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
328   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
329 <
330 < // From Boehm's GC 6.0alpha8
331 < static sigsegv_address_t get_fault_address(struct sigcontext *scp)
332 < {
333 <        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
334 <        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
335 <        fault_address += (signed long)(signed short)(instruction & 0xffff);
336 <        return (sigsegv_address_t)fault_address;
337 < }
329 > #endif
330 > #if (defined(arm) || defined(__arm__))
331 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int r1, int r2, int r3, struct sigcontext sc
332 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
333 > #define SIGSEGV_FAULT_HANDLER_ARGS              &sc
334 > #define SIGSEGV_FAULT_ADDRESS                   scp->fault_address
335 > #define SIGSEGV_FAULT_INSTRUCTION               scp->arm_pc
336 > #define SIGSEGV_REGISTER_FILE                   &scp->arm_r0
337 > #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
338   #endif
339   #endif
340  
341   // Irix 5 or 6 on MIPS
342 < #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
342 > #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(_SYSTYPE_SVR4))
343   #include <ucontext.h>
344   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
345 < #define SIGSEGV_FAULT_ADDRESS                   scp->sc_badvaddr
345 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
346 > #define SIGSEGV_FAULT_ADDRESS                   (unsigned long)scp->sc_badvaddr
347 > #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)scp->sc_pc
348   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
349   #endif
350  
351   // HP-UX
352   #if (defined(hpux) || defined(__hpux__))
353   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
354 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
355   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_sl.sl_ss.ss_narrow.ss_cr21
356   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
357   #endif
# Line 297 | Line 360 | static sigsegv_address_t get_fault_addre
360   #if defined(__osf__)
361   #include <ucontext.h>
362   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
363 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
364   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_traparg_a0
365   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
366   #endif
# Line 304 | Line 368 | static sigsegv_address_t get_fault_addre
368   // AIX
369   #if defined(_AIX)
370   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
371 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
372   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_jmpbuf.jmp_context.o_vaddr
373   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
374   #endif
375  
376 < // NetBSD or FreeBSD
377 < #if defined(__NetBSD__) || defined(__FreeBSD__)
376 > // NetBSD
377 > #if defined(__NetBSD__)
378   #if (defined(m68k) || defined(__m68k__))
379   #include <m68k/frame.h>
380   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
381 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
382   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
383   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
384  
# Line 336 | Line 402 | static sigsegv_address_t get_fault_addre
402          }
403          return (sigsegv_address_t)fault_addr;
404   }
405 < #else
406 < #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, void *scp, char *addr
407 < #define SIGSEGV_FAULT_ADDRESS                   addr
405 > #endif
406 > #if (defined(alpha) || defined(__alpha__))
407 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
408 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
409 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
410   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
411   #endif
412 + #if (defined(i386) || defined(__i386__))
413 + #error "FIXME: need to decode instruction and compute EA"
414 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
415 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
416 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
417 + #endif
418 + #endif
419 + #if defined(__FreeBSD__)
420 + #if (defined(i386) || defined(__i386__))
421 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
422 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
423 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
424 + #define SIGSEGV_FAULT_ADDRESS                   addr
425 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_eip
426 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&scp->sc_edi)
427 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
428 + #endif
429 + #if (defined(alpha) || defined(__alpha__))
430 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
431 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, char *addr, struct sigcontext *scp
432 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, addr, scp
433 + #define SIGSEGV_FAULT_ADDRESS                   addr
434 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
435 + #endif
436   #endif
437  
438 < // MacOS X
438 > // Extract fault address out of a sigcontext
439 > #if (defined(alpha) || defined(__alpha__))
440 > // From Boehm's GC 6.0alpha8
441 > static sigsegv_address_t get_fault_address(struct sigcontext *scp)
442 > {
443 >        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
444 >        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
445 >        fault_address += (signed long)(signed short)(instruction & 0xffff);
446 >        return (sigsegv_address_t)fault_address;
447 > }
448 > #endif
449 >
450 >
451 > // MacOS X, not sure which version this works in. Under 10.1
452 > // vm_protect does not appear to work from a signal handler. Under
453 > // 10.2 signal handlers get siginfo type arguments but the si_addr
454 > // field is the address of the faulting instruction and not the
455 > // address that caused the SIGBUS. Maybe this works in 10.0? In any
456 > // case with Mach exception handlers there is a way to do what this
457 > // was meant to do.
458 > #ifndef HAVE_MACH_EXCEPTIONS
459   #if defined(__APPLE__) && defined(__MACH__)
460   #if (defined(ppc) || defined(__ppc__))
461   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
462 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
463   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
464   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_ir
465   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
# Line 366 | Line 479 | static sigsegv_address_t get_fault_addre
479   #endif
480   #endif
481   #endif
482 + #endif
483 +
484 + #if HAVE_MACH_EXCEPTIONS
485 +
486 + // This can easily be extended to other Mach systems, but really who
487 + // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
488 + // Mach 2.5/3.0?
489 + #if defined(__APPLE__) && defined(__MACH__)
490 +
491 + #include <sys/types.h>
492 + #include <stdlib.h>
493 + #include <stdio.h>
494 + #include <pthread.h>
495 +
496 + /*
497 + * If you are familiar with MIG then you will understand the frustration
498 + * that was necessary to get these embedded into C++ code by hand.
499 + */
500 + extern "C" {
501 + #include <mach/mach.h>
502 + #include <mach/mach_error.h>
503 +
504 + extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
505 + extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
506 +        mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
507 + extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
508 +        exception_type_t, exception_data_t, mach_msg_type_number_t);
509 + extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
510 +        exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
511 +        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
512 + extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
513 +        exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
514 +        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
515 + }
516 +
517 + // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
518 + #define HANDLER_COUNT 64
519 +
520 + // structure to tuck away existing exception handlers
521 + typedef struct _ExceptionPorts {
522 +        mach_msg_type_number_t maskCount;
523 +        exception_mask_t masks[HANDLER_COUNT];
524 +        exception_handler_t handlers[HANDLER_COUNT];
525 +        exception_behavior_t behaviors[HANDLER_COUNT];
526 +        thread_state_flavor_t flavors[HANDLER_COUNT];
527 + } ExceptionPorts;
528 +
529 + // exception handler thread
530 + static pthread_t exc_thread;
531 +
532 + // place where old exception handler info is stored
533 + static ExceptionPorts ports;
534 +
535 + // our exception port
536 + static mach_port_t _exceptionPort = MACH_PORT_NULL;
537 +
538 + #define MACH_CHECK_ERROR(name,ret) \
539 + if (ret != KERN_SUCCESS) { \
540 +        mach_error(#name, ret); \
541 +        exit (1); \
542 + }
543 +
544 + #define SIGSEGV_FAULT_ADDRESS                   code[1]
545 + #define SIGSEGV_FAULT_INSTRUCTION               get_fault_instruction(thread, state)
546 + #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  ((code[0] == KERN_PROTECTION_FAILURE) ? sigsegv_fault_handler(ADDR, IP) : SIGSEGV_RETURN_FAILURE)
547 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   mach_port_t thread, exception_data_t code, ppc_thread_state_t *state
548 + #define SIGSEGV_FAULT_HANDLER_ARGS              thread, code, &state
549 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
550 + #define SIGSEGV_REGISTER_FILE                   &state->srr0, &state->r0
551 +
552 + // Given a suspended thread, stuff the current instruction and
553 + // registers into state.
554 + //
555 + // It would have been nice to have this be ppc/x86 independant which
556 + // could have been done easily with a thread_state_t instead of
557 + // ppc_thread_state_t, but because of the way this is called it is
558 + // easier to do it this way.
559 + #if (defined(ppc) || defined(__ppc__))
560 + static inline sigsegv_address_t get_fault_instruction(mach_port_t thread, ppc_thread_state_t *state)
561 + {
562 +        kern_return_t krc;
563 +        mach_msg_type_number_t count;
564 +
565 +        count = MACHINE_THREAD_STATE_COUNT;
566 +        krc = thread_get_state(thread, MACHINE_THREAD_STATE, (thread_state_t)state, &count);
567 +        MACH_CHECK_ERROR (thread_get_state, krc);
568 +
569 +        return (sigsegv_address_t)state->srr0;
570 + }
571 + #endif
572 +
573 + // Since there can only be one exception thread running at any time
574 + // this is not a problem.
575 + #define MSG_SIZE 512
576 + static char msgbuf[MSG_SIZE];
577 + static char replybuf[MSG_SIZE];
578 +
579 + /*
580 + * This is the entry point for the exception handler thread. The job
581 + * of this thread is to wait for exception messages on the exception
582 + * port that was setup beforehand and to pass them on to exc_server.
583 + * exc_server is a MIG generated function that is a part of Mach.
584 + * Its job is to decide what to do with the exception message. In our
585 + * case exc_server calls catch_exception_raise on our behalf. After
586 + * exc_server returns, it is our responsibility to send the reply.
587 + */
588 + static void *
589 + handleExceptions(void *priv)
590 + {
591 +        mach_msg_header_t *msg, *reply;
592 +        kern_return_t krc;
593 +
594 +        msg = (mach_msg_header_t *)msgbuf;
595 +        reply = (mach_msg_header_t *)replybuf;
596 +
597 +        for (;;) {
598 +                krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
599 +                                _exceptionPort, 0, MACH_PORT_NULL);
600 +                MACH_CHECK_ERROR(mach_msg, krc);
601 +
602 +                if (!exc_server(msg, reply)) {
603 +                        fprintf(stderr, "exc_server hated the message\n");
604 +                        exit(1);
605 +                }
606 +
607 +                krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
608 +                                 msg->msgh_local_port, 0, MACH_PORT_NULL);
609 +                if (krc != KERN_SUCCESS) {
610 +                        fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
611 +                                krc, mach_error_string(krc));
612 +                        exit(1);
613 +                }
614 +        }
615 + }
616 + #endif
617 + #endif
618  
619  
620   /*
# Line 374 | Line 623 | static sigsegv_address_t get_fault_addre
623  
624   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
625   // Decode and skip X86 instruction
626 < #if (defined(i386) || defined(__i386__))
626 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
627   #if defined(__linux__)
628   enum {
629 + #if (defined(i386) || defined(__i386__))
630          X86_REG_EIP = 14,
631          X86_REG_EAX = 11,
632          X86_REG_ECX = 10,
# Line 386 | Line 636 | enum {
636          X86_REG_EBP = 6,
637          X86_REG_ESI = 5,
638          X86_REG_EDI = 4
639 + #endif
640 + #if defined(__x86_64__)
641 +        X86_REG_R8  = 0,
642 +        X86_REG_R9  = 1,
643 +        X86_REG_R10 = 2,
644 +        X86_REG_R11 = 3,
645 +        X86_REG_R12 = 4,
646 +        X86_REG_R13 = 5,
647 +        X86_REG_R14 = 6,
648 +        X86_REG_R15 = 7,
649 +        X86_REG_EDI = 8,
650 +        X86_REG_ESI = 9,
651 +        X86_REG_EBP = 10,
652 +        X86_REG_EBX = 11,
653 +        X86_REG_EDX = 12,
654 +        X86_REG_EAX = 13,
655 +        X86_REG_ECX = 14,
656 +        X86_REG_ESP = 15,
657 +        X86_REG_EIP = 16
658 + #endif
659 + };
660 + #endif
661 + #if defined(__NetBSD__) || defined(__FreeBSD__)
662 + enum {
663 + #if (defined(i386) || defined(__i386__))
664 +        X86_REG_EIP = 10,
665 +        X86_REG_EAX = 7,
666 +        X86_REG_ECX = 6,
667 +        X86_REG_EDX = 5,
668 +        X86_REG_EBX = 4,
669 +        X86_REG_ESP = 13,
670 +        X86_REG_EBP = 2,
671 +        X86_REG_ESI = 1,
672 +        X86_REG_EDI = 0
673 + #endif
674   };
675   #endif
676   // FIXME: this is partly redundant with the instruction decoding phase
# Line 422 | Line 707 | static inline int ix86_step_over_modrm(u
707          return offset;
708   }
709  
710 < static bool ix86_skip_instruction(unsigned int * regs)
710 > static bool ix86_skip_instruction(unsigned long * regs)
711   {
712          unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
713  
714          if (eip == 0)
715                  return false;
716          
717 <        transfer_type_t transfer_type = TYPE_UNKNOWN;
717 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
718          transfer_size_t transfer_size = SIZE_LONG;
719          
720          int reg = -1;
721          int len = 0;
722 <        
722 >
723 > #if DEBUG
724 >        printf("IP: %p [%02x %02x %02x %02x...]\n",
725 >                   eip, eip[0], eip[1], eip[2], eip[3]);
726 > #endif
727 >
728          // Operand size prefix
729          if (*eip == 0x66) {
730                  eip++;
# Line 442 | Line 732 | static bool ix86_skip_instruction(unsign
732                  transfer_size = SIZE_WORD;
733          }
734  
735 +        // REX prefix
736 + #if defined(__x86_64__)
737 +        struct rex_t {
738 +                unsigned char W;
739 +                unsigned char R;
740 +                unsigned char X;
741 +                unsigned char B;
742 +        };
743 +        rex_t rex = { 0, 0, 0, 0 };
744 +        bool has_rex = false;
745 +        if ((*eip & 0xf0) == 0x40) {
746 +                has_rex = true;
747 +                const unsigned char b = *eip;
748 +                rex.W = b & (1 << 3);
749 +                rex.R = b & (1 << 2);
750 +                rex.X = b & (1 << 1);
751 +                rex.B = b & (1 << 0);
752 + #if DEBUG
753 +                printf("REX: %c,%c,%c,%c\n",
754 +                           rex.W ? 'W' : '_',
755 +                           rex.R ? 'R' : '_',
756 +                           rex.X ? 'X' : '_',
757 +                           rex.B ? 'B' : '_');
758 + #endif
759 +                eip++;
760 +                len++;
761 +                if (rex.W)
762 +                        transfer_size = SIZE_QUAD;
763 +        }
764 + #else
765 +        const bool has_rex = false;
766 + #endif
767 +
768          // Decode instruction
769 +        int target_size = SIZE_UNKNOWN;
770          switch (eip[0]) {
771 +        case 0x0f:
772 +                target_size = transfer_size;
773 +            switch (eip[1]) {
774 +                case 0xbe: // MOVSX r32, r/m8
775 +            case 0xb6: // MOVZX r32, r/m8
776 +                        transfer_size = SIZE_BYTE;
777 +                        goto do_mov_extend;
778 +            case 0xb7: // MOVZX r32, r/m16
779 +                        transfer_size = SIZE_WORD;
780 +                        goto do_mov_extend;
781 +                  do_mov_extend:
782 +                        switch (eip[2] & 0xc0) {
783 +                        case 0x80:
784 +                                reg = (eip[2] >> 3) & 7;
785 +                                transfer_type = SIGSEGV_TRANSFER_LOAD;
786 +                                break;
787 +                        case 0x40:
788 +                                reg = (eip[2] >> 3) & 7;
789 +                                transfer_type = SIGSEGV_TRANSFER_LOAD;
790 +                                break;
791 +                        case 0x00:
792 +                                reg = (eip[2] >> 3) & 7;
793 +                                transfer_type = SIGSEGV_TRANSFER_LOAD;
794 +                                break;
795 +                        }
796 +                        len += 3 + ix86_step_over_modrm(eip + 2);
797 +                        break;
798 +            }
799 +          break;
800          case 0x8a: // MOV r8, r/m8
801                  transfer_size = SIZE_BYTE;
802          case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
803                  switch (eip[1] & 0xc0) {
804                  case 0x80:
805                          reg = (eip[1] >> 3) & 7;
806 <                        transfer_type = TYPE_LOAD;
806 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
807                          break;
808                  case 0x40:
809                          reg = (eip[1] >> 3) & 7;
810 <                        transfer_type = TYPE_LOAD;
810 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
811                          break;
812                  case 0x00:
813                          reg = (eip[1] >> 3) & 7;
814 <                        transfer_type = TYPE_LOAD;
814 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
815                          break;
816                  }
817                  len += 2 + ix86_step_over_modrm(eip + 1);
# Line 469 | Line 822 | static bool ix86_skip_instruction(unsign
822                  switch (eip[1] & 0xc0) {
823                  case 0x80:
824                          reg = (eip[1] >> 3) & 7;
825 <                        transfer_type = TYPE_STORE;
825 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
826                          break;
827                  case 0x40:
828                          reg = (eip[1] >> 3) & 7;
829 <                        transfer_type = TYPE_STORE;
829 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
830                          break;
831                  case 0x00:
832                          reg = (eip[1] >> 3) & 7;
833 <                        transfer_type = TYPE_STORE;
833 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
834                          break;
835                  }
836                  len += 2 + ix86_step_over_modrm(eip + 1);
837                  break;
838          }
839 +        if (target_size == SIZE_UNKNOWN)
840 +                target_size = transfer_size;
841  
842 <        if (transfer_type == TYPE_UNKNOWN) {
842 >        if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
843                  // Unknown machine code, let it crash. Then patch the decoder
844                  return false;
845          }
846  
847 <        if (transfer_type == TYPE_LOAD && reg != -1) {
848 <                static const int x86_reg_map[8] = {
847 > #if defined(__x86_64__)
848 >        if (rex.R)
849 >                reg += 8;
850 > #endif
851 >
852 >        if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
853 >                static const int x86_reg_map[] = {
854                          X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
855 <                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI
855 >                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI,
856 > #if defined(__x86_64__)
857 >                        X86_REG_R8,  X86_REG_R9,  X86_REG_R10, X86_REG_R11,
858 >                        X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15,
859 > #endif
860                  };
861                  
862 <                if (reg < 0 || reg >= 8)
862 >                if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1))
863                          return false;
864  
865 +                // Set 0 to the relevant register part
866 +                // NOTE: this is only valid for MOV alike instructions
867                  int rloc = x86_reg_map[reg];
868 <                switch (transfer_size) {
868 >                switch (target_size) {
869                  case SIZE_BYTE:
870 <                        regs[rloc] = (regs[rloc] & ~0xff);
870 >                        if (has_rex || reg < 4)
871 >                                regs[rloc] = (regs[rloc] & ~0x00ffL);
872 >                        else {
873 >                                rloc = x86_reg_map[reg - 4];
874 >                                regs[rloc] = (regs[rloc] & ~0xff00L);
875 >                        }
876                          break;
877                  case SIZE_WORD:
878 <                        regs[rloc] = (regs[rloc] & ~0xffff);
878 >                        regs[rloc] = (regs[rloc] & ~0xffffL);
879                          break;
880                  case SIZE_LONG:
881 +                case SIZE_QUAD: // zero-extension
882                          regs[rloc] = 0;
883                          break;
884                  }
885          }
886  
887   #if DEBUG
888 <        printf("%08x: %s %s access", fault_instruction,
889 <                   transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : "long",
890 <                   transfer_type == TYPE_LOAD ? "read" : "write");
888 >        printf("%08x: %s %s access", regs[X86_REG_EIP],
889 >                   transfer_size == SIZE_BYTE ? "byte" :
890 >                   transfer_size == SIZE_WORD ? "word" :
891 >                   transfer_size == SIZE_LONG ? "long" :
892 >                   transfer_size == SIZE_QUAD ? "quad" : "unknown",
893 >                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
894          
895          if (reg != -1) {
896 <                static const char * x86_reg_str_map[8] = {
897 <                        "eax", "ecx", "edx", "ebx",
898 <                        "esp", "ebp", "esi", "edi"
896 >                static const char * x86_byte_reg_str_map[] = {
897 >                        "al",   "cl",   "dl",   "bl",
898 >                        "spl",  "bpl",  "sil",  "dil",
899 >                        "r8b",  "r9b",  "r10b", "r11b",
900 >                        "r12b", "r13b", "r14b", "r15b",
901 >                        "ah",   "ch",   "dh",   "bh",
902 >                };
903 >                static const char * x86_word_reg_str_map[] = {
904 >                        "ax",   "cx",   "dx",   "bx",
905 >                        "sp",   "bp",   "si",   "di",
906 >                        "r8w",  "r9w",  "r10w", "r11w",
907 >                        "r12w", "r13w", "r14w", "r15w",
908 >                };
909 >                static const char *x86_long_reg_str_map[] = {
910 >                        "eax",  "ecx",  "edx",  "ebx",
911 >                        "esp",  "ebp",  "esi",  "edi",
912 >                        "r8d",  "r9d",  "r10d", "r11d",
913 >                        "r12d", "r13d", "r14d", "r15d",
914                  };
915 <                printf(" %s register %%%s", transfer_type == TYPE_LOAD ? "to" : "from", x86_reg_str_map[reg]);
915 >                static const char *x86_quad_reg_str_map[] = {
916 >                        "rax", "rcx", "rdx", "rbx",
917 >                        "rsp", "rbp", "rsi", "rdi",
918 >                        "r8",  "r9",  "r10", "r11",
919 >                        "r12", "r13", "r14", "r15",
920 >                };
921 >                const char * reg_str = NULL;
922 >                switch (target_size) {
923 >                case SIZE_BYTE:
924 >                        reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg];
925 >                        break;
926 >                case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break;
927 >                case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break;
928 >                case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break;
929 >                }
930 >                if (reg_str)
931 >                        printf(" %s register %%%s",
932 >                                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from",
933 >                                   reg_str);
934          }
935          printf(", %d bytes instruction\n", len);
936   #endif
# Line 539 | Line 947 | static bool powerpc_skip_instruction(uns
947          instruction_t instr;
948          powerpc_decode_instruction(&instr, *nip_p, regs);
949          
950 <        if (instr.transfer_type == TYPE_UNKNOWN) {
950 >        if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
951                  // Unknown machine code, let it crash. Then patch the decoder
952                  return false;
953          }
# Line 547 | Line 955 | static bool powerpc_skip_instruction(uns
955   #if DEBUG
956          printf("%08x: %s %s access", *nip_p,
957                     instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : "long",
958 <                   instr.transfer_type == TYPE_LOAD ? "read" : "write");
958 >                   instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
959          
960          if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
961                  printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
962 <        if (instr.transfer_type == TYPE_LOAD)
962 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
963                  printf(" r%d (rd = 0)\n", instr.rd);
964   #endif
965          
966          if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
967                  regs[instr.ra] = instr.addr;
968 <        if (instr.transfer_type == TYPE_LOAD)
968 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
969                  regs[instr.rd] = 0;
970          
971          *nip_p += 4;
972          return true;
973   }
974   #endif
975 +
976 + // Decode and skip MIPS instruction
977 + #if (defined(mips) || defined(__mips))
978 + enum {
979 + #if (defined(sgi) || defined(__sgi))
980 +  MIPS_REG_EPC = 35,
981 + #endif
982 + };
983 + static bool mips_skip_instruction(greg_t * regs)
984 + {
985 +  unsigned int * epc = (unsigned int *)(unsigned long)regs[MIPS_REG_EPC];
986 +
987 +  if (epc == 0)
988 +        return false;
989 +
990 + #if DEBUG
991 +  printf("IP: %p [%08x]\n", epc, epc[0]);
992   #endif
993  
994 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
995 +  transfer_size_t transfer_size = SIZE_LONG;
996 +  int direction = 0;
997 +
998 +  const unsigned int opcode = epc[0];
999 +  switch (opcode >> 26) {
1000 +  case 32: // Load Byte
1001 +  case 36: // Load Byte Unsigned
1002 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1003 +        transfer_size = SIZE_BYTE;
1004 +        break;
1005 +  case 33: // Load Halfword
1006 +  case 37: // Load Halfword Unsigned
1007 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1008 +        transfer_size = SIZE_WORD;
1009 +        break;
1010 +  case 35: // Load Word
1011 +  case 39: // Load Word Unsigned
1012 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1013 +        transfer_size = SIZE_LONG;
1014 +        break;
1015 +  case 34: // Load Word Left
1016 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1017 +        transfer_size = SIZE_LONG;
1018 +        direction = -1;
1019 +        break;
1020 +  case 38: // Load Word Right
1021 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1022 +        transfer_size = SIZE_LONG;
1023 +        direction = 1;
1024 +        break;
1025 +  case 55: // Load Doubleword
1026 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1027 +        transfer_size = SIZE_QUAD;
1028 +        break;
1029 +  case 26: // Load Doubleword Left
1030 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1031 +        transfer_size = SIZE_QUAD;
1032 +        direction = -1;
1033 +        break;
1034 +  case 27: // Load Doubleword Right
1035 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1036 +        transfer_size = SIZE_QUAD;
1037 +        direction = 1;
1038 +        break;
1039 +  case 40: // Store Byte
1040 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1041 +        transfer_size = SIZE_BYTE;
1042 +        break;
1043 +  case 41: // Store Halfword
1044 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1045 +        transfer_size = SIZE_WORD;
1046 +        break;
1047 +  case 43: // Store Word
1048 +  case 42: // Store Word Left
1049 +  case 46: // Store Word Right
1050 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1051 +        transfer_size = SIZE_LONG;
1052 +        break;
1053 +  case 63: // Store Doubleword
1054 +  case 44: // Store Doubleword Left
1055 +  case 45: // Store Doubleword Right
1056 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1057 +        transfer_size = SIZE_QUAD;
1058 +        break;
1059 +  /* Misc instructions unlikely to be used within CPU emulators */
1060 +  case 48: // Load Linked Word
1061 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1062 +        transfer_size = SIZE_LONG;
1063 +        break;
1064 +  case 52: // Load Linked Doubleword
1065 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1066 +        transfer_size = SIZE_QUAD;
1067 +        break;
1068 +  case 56: // Store Conditional Word
1069 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1070 +        transfer_size = SIZE_LONG;
1071 +        break;
1072 +  case 60: // Store Conditional Doubleword
1073 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1074 +        transfer_size = SIZE_QUAD;
1075 +        break;
1076 +  }
1077 +
1078 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1079 +        // Unknown machine code, let it crash. Then patch the decoder
1080 +        return false;
1081 +  }
1082 +
1083 +  // Zero target register in case of a load operation
1084 +  const int reg = (opcode >> 16) & 0x1f;
1085 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD) {
1086 +        if (direction == 0)
1087 +          regs[reg] = 0;
1088 +        else {
1089 +          // FIXME: untested code
1090 +          unsigned long ea = regs[(opcode >> 21) & 0x1f];
1091 +          ea += (signed long)(signed int)(signed short)(opcode & 0xffff);
1092 +          const int offset = ea & (transfer_size == SIZE_LONG ? 3 : 7);
1093 +          unsigned long value;
1094 +          if (direction > 0) {
1095 +                const unsigned long rmask = ~((1L << ((offset + 1) * 8)) - 1);
1096 +                value = regs[reg] & rmask;
1097 +          }
1098 +          else {
1099 +                const unsigned long lmask = (1L << (offset * 8)) - 1;
1100 +                value = regs[reg] & lmask;
1101 +          }
1102 +          // restore most significant bits
1103 +          if (transfer_size == SIZE_LONG)
1104 +                value = (signed long)(signed int)value;
1105 +          regs[reg] = value;
1106 +        }
1107 +  }
1108 +
1109 + #if DEBUG
1110 + #if (defined(_ABIN32) || defined(_ABI64))
1111 +  static const char * mips_gpr_names[32] = {
1112 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1113 +        "t0",   "t1",   "t2",   "t3",   "t4",   "t5",   "t6",   "t7",
1114 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1115 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1116 +  };
1117 + #else
1118 +  static const char * mips_gpr_names[32] = {
1119 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1120 +        "a4",   "a5",   "a6",   "a7",   "t0",   "t1",   "t2",   "t3",
1121 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1122 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1123 +  };
1124 + #endif
1125 +  printf("%s %s register %s\n",
1126 +                 transfer_size == SIZE_BYTE ? "byte" :
1127 +                 transfer_size == SIZE_WORD ? "word" :
1128 +                 transfer_size == SIZE_LONG ? "long" :
1129 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1130 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1131 +                 mips_gpr_names[reg]);
1132 + #endif
1133 +
1134 +  regs[MIPS_REG_EPC] += 4;
1135 +  return true;
1136 + }
1137 + #endif
1138 +
1139 + // Decode and skip SPARC instruction
1140 + #if (defined(sparc) || defined(__sparc__))
1141 + enum {
1142 + #if (defined(__sun__))
1143 +  SPARC_REG_G1 = REG_G1,
1144 +  SPARC_REG_O0 = REG_O0,
1145 +  SPARC_REG_PC = REG_PC,
1146 + #endif
1147 + };
1148 + static bool sparc_skip_instruction(unsigned long * regs, gwindows_t * gwins, struct rwindow * rwin)
1149 + {
1150 +  unsigned int * pc = (unsigned int *)regs[SPARC_REG_PC];
1151 +
1152 +  if (pc == 0)
1153 +        return false;
1154 +
1155 + #if DEBUG
1156 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1157 + #endif
1158 +
1159 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1160 +  transfer_size_t transfer_size = SIZE_LONG;
1161 +  bool register_pair = false;
1162 +
1163 +  const unsigned int opcode = pc[0];
1164 +  if ((opcode >> 30) != 3)
1165 +        return false;
1166 +  switch ((opcode >> 19) & 0x3f) {
1167 +  case 9: // Load Signed Byte
1168 +  case 1: // Load Unsigned Byte
1169 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1170 +        transfer_size = SIZE_BYTE;
1171 +        break;
1172 +  case 10:// Load Signed Halfword
1173 +  case 2: // Load Unsigned Word
1174 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1175 +        transfer_size = SIZE_WORD;
1176 +        break;
1177 +  case 8: // Load Word
1178 +  case 0: // Load Unsigned Word
1179 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1180 +        transfer_size = SIZE_LONG;
1181 +        break;
1182 +  case 11:// Load Extended Word
1183 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1184 +        transfer_size = SIZE_QUAD;
1185 +        break;
1186 +  case 3: // Load Doubleword
1187 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1188 +        transfer_size = SIZE_LONG;
1189 +        register_pair = true;
1190 +        break;
1191 +  case 5: // Store Byte
1192 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1193 +        transfer_size = SIZE_BYTE;
1194 +        break;
1195 +  case 6: // Store Halfword
1196 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1197 +        transfer_size = SIZE_WORD;
1198 +        break;
1199 +  case 4: // Store Word
1200 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1201 +        transfer_size = SIZE_LONG;
1202 +        break;
1203 +  case 14:// Store Extended Word
1204 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1205 +        transfer_size = SIZE_QUAD;
1206 +        break;
1207 +  case 7: // Store Doubleword
1208 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1209 +        transfer_size = SIZE_WORD;
1210 +        register_pair = true;
1211 +        break;
1212 +  }
1213 +
1214 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1215 +        // Unknown machine code, let it crash. Then patch the decoder
1216 +        return false;
1217 +  }
1218 +
1219 +  // Zero target register in case of a load operation
1220 +  const int reg = (opcode >> 25) & 0x1f;
1221 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != 0) {
1222 +        // FIXME: code to handle local & input registers is not tested
1223 +        if (reg >= 1 && reg <= 7) {
1224 +          // global registers
1225 +          regs[reg - 1 + SPARC_REG_G1] = 0;
1226 +        }
1227 +        else if (reg >= 8 && reg <= 15) {
1228 +          // output registers
1229 +          regs[reg - 8 + SPARC_REG_O0] = 0;
1230 +        }
1231 +        else if (reg >= 16 && reg <= 23) {
1232 +          // local registers (in register windows)
1233 +          if (gwins)
1234 +                gwins->wbuf->rw_local[reg - 16] = 0;
1235 +          else
1236 +                rwin->rw_local[reg - 16] = 0;
1237 +        }
1238 +        else {
1239 +          // input registers (in register windows)
1240 +          if (gwins)
1241 +                gwins->wbuf->rw_in[reg - 24] = 0;
1242 +          else
1243 +                rwin->rw_in[reg - 24] = 0;
1244 +        }
1245 +  }
1246 +
1247 + #if DEBUG
1248 +  static const char * reg_names[] = {
1249 +        "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
1250 +        "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
1251 +        "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
1252 +        "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7"
1253 +  };
1254 +  printf("%s %s register %s\n",
1255 +                 transfer_size == SIZE_BYTE ? "byte" :
1256 +                 transfer_size == SIZE_WORD ? "word" :
1257 +                 transfer_size == SIZE_LONG ? "long" :
1258 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1259 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1260 +                 reg_names[reg]);
1261 + #endif
1262 +
1263 +  regs[SPARC_REG_PC] += 4;
1264 +  return true;
1265 + }
1266 + #endif
1267 + #endif
1268 +
1269 + // Decode and skip ARM instruction
1270 + #if (defined(arm) || defined(__arm__))
1271 + enum {
1272 + #if (defined(__linux__))
1273 +  ARM_REG_PC = 15,
1274 +  ARM_REG_CPSR = 16
1275 + #endif
1276 + };
1277 + static bool arm_skip_instruction(unsigned long * regs)
1278 + {
1279 +  unsigned int * pc = (unsigned int *)regs[ARM_REG_PC];
1280 +
1281 +  if (pc == 0)
1282 +        return false;
1283 +
1284 + #if DEBUG
1285 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1286 + #endif
1287 +
1288 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1289 +  transfer_size_t transfer_size = SIZE_UNKNOWN;
1290 +  enum { op_sdt = 1, op_sdth = 2 };
1291 +  int op = 0;
1292 +
1293 +  // Handle load/store instructions only
1294 +  const unsigned int opcode = pc[0];
1295 +  switch ((opcode >> 25) & 7) {
1296 +  case 0: // Halfword and Signed Data Transfer (LDRH, STRH, LDRSB, LDRSH)
1297 +        op = op_sdth;
1298 +        // Determine transfer size (S/H bits)
1299 +        switch ((opcode >> 5) & 3) {
1300 +        case 0: // SWP instruction
1301 +          break;
1302 +        case 1: // Unsigned halfwords
1303 +        case 3: // Signed halfwords
1304 +          transfer_size = SIZE_WORD;
1305 +          break;
1306 +        case 2: // Signed byte
1307 +          transfer_size = SIZE_BYTE;
1308 +          break;
1309 +        }
1310 +        break;
1311 +  case 2:
1312 +  case 3: // Single Data Transfer (LDR, STR)
1313 +        op = op_sdt;
1314 +        // Determine transfer size (B bit)
1315 +        if (((opcode >> 22) & 1) == 1)
1316 +          transfer_size = SIZE_BYTE;
1317 +        else
1318 +          transfer_size = SIZE_LONG;
1319 +        break;
1320 +  default:
1321 +        // FIXME: support load/store mutliple?
1322 +        return false;
1323 +  }
1324 +
1325 +  // Check for invalid transfer size (SWP instruction?)
1326 +  if (transfer_size == SIZE_UNKNOWN)
1327 +        return false;
1328 +
1329 +  // Determine transfer type (L bit)
1330 +  if (((opcode >> 20) & 1) == 1)
1331 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1332 +  else
1333 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1334 +
1335 +  // Compute offset
1336 +  int offset;
1337 +  if (((opcode >> 25) & 1) == 0) {
1338 +        if (op == op_sdt)
1339 +          offset = opcode & 0xfff;
1340 +        else if (op == op_sdth) {
1341 +          int rm = opcode & 0xf;
1342 +          if (((opcode >> 22) & 1) == 0) {
1343 +                // register offset
1344 +                offset = regs[rm];
1345 +          }
1346 +          else {
1347 +                // immediate offset
1348 +                offset = ((opcode >> 4) & 0xf0) | (opcode & 0x0f);
1349 +          }
1350 +        }
1351 +  }
1352 +  else {
1353 +        const int rm = opcode & 0xf;
1354 +        const int sh = (opcode >> 7) & 0x1f;
1355 +        if (((opcode >> 4) & 1) == 1) {
1356 +          // we expect only legal load/store instructions
1357 +          printf("FATAL: invalid shift operand\n");
1358 +          return false;
1359 +        }
1360 +        const unsigned int v = regs[rm];
1361 +        switch ((opcode >> 5) & 3) {
1362 +        case 0: // logical shift left
1363 +          offset = sh ? v << sh : v;
1364 +          break;
1365 +        case 1: // logical shift right
1366 +          offset = sh ? v >> sh : 0;
1367 +          break;
1368 +        case 2: // arithmetic shift right
1369 +          if (sh)
1370 +                offset = ((signed int)v) >> sh;
1371 +          else
1372 +                offset = (v & 0x80000000) ? 0xffffffff : 0;
1373 +          break;
1374 +        case 3: // rotate right
1375 +          if (sh)
1376 +                offset = (v >> sh) | (v << (32 - sh));
1377 +          else
1378 +                offset = (v >> 1) | ((regs[ARM_REG_CPSR] << 2) & 0x80000000);
1379 +          break;
1380 +        }
1381 +  }
1382 +  if (((opcode >> 23) & 1) == 0)
1383 +        offset = -offset;
1384 +
1385 +  int rd = (opcode >> 12) & 0xf;
1386 +  int rn = (opcode >> 16) & 0xf;
1387 + #if DEBUG
1388 +  static const char * reg_names[] = {
1389 +        "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1390 +        "r9", "r9", "sl", "fp", "ip", "sp", "lr", "pc"
1391 +  };
1392 +  printf("%s %s register %s\n",
1393 +                 transfer_size == SIZE_BYTE ? "byte" :
1394 +                 transfer_size == SIZE_WORD ? "word" :
1395 +                 transfer_size == SIZE_LONG ? "long" : "unknown",
1396 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1397 +                 reg_names[rd]);
1398 + #endif
1399 +
1400 +  unsigned int base = regs[rn];
1401 +  if (((opcode >> 24) & 1) == 1)
1402 +        base += offset;
1403 +
1404 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD)
1405 +        regs[rd] = 0;
1406 +
1407 +  if (((opcode >> 24) & 1) == 0)                // post-index addressing
1408 +        regs[rn] += offset;
1409 +  else if (((opcode >> 21) & 1) == 1)   // write-back address into base
1410 +        regs[rn] = base;
1411 +
1412 +  regs[ARM_REG_PC] += 4;
1413 +  return true;
1414 + }
1415 + #endif
1416 +
1417 +
1418   // Fallbacks
1419   #ifndef SIGSEGV_FAULT_INSTRUCTION
1420   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_PC
1421   #endif
1422 + #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
1423 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
1424 + #endif
1425 + #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
1426 + #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  sigsegv_fault_handler(ADDR, IP)
1427 + #endif
1428  
1429   // SIGSEGV recovery supported ?
1430   #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
# Line 581 | Line 1436 | static bool powerpc_skip_instruction(uns
1436   *  SIGSEGV global handler
1437   */
1438  
1439 < #ifdef HAVE_SIGSEGV_RECOVERY
1440 < static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1439 > #if defined(HAVE_SIGSEGV_RECOVERY) || defined(HAVE_MACH_EXCEPTIONS)
1440 > // This function handles the badaccess to memory.
1441 > // It is called from the signal handler or the exception handler.
1442 > static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
1443   {
1444          sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
1445          sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
589        bool fault_recovered = false;
1446          
1447          // Call user's handler and reinstall the global handler, if required
1448 <        if (sigsegv_fault_handler(fault_address, fault_instruction)) {
1449 < #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1450 <                sigsegv_do_install_handler(sig);
1448 >        switch (SIGSEGV_FAULT_HANDLER_INVOKE(fault_address, fault_instruction)) {
1449 >        case SIGSEGV_RETURN_SUCCESS:
1450 >                return true;
1451 >
1452 > #if HAVE_SIGSEGV_SKIP_INSTRUCTION
1453 >        case SIGSEGV_RETURN_SKIP_INSTRUCTION:
1454 >                // Call the instruction skipper with the register file
1455 >                // available
1456 >                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
1457 > #ifdef HAVE_MACH_EXCEPTIONS
1458 >                        // Unlike UNIX signals where the thread state
1459 >                        // is modified off of the stack, in Mach we
1460 >                        // need to actually call thread_set_state to
1461 >                        // have the register values updated.
1462 >                        kern_return_t krc;
1463 >
1464 >                        krc = thread_set_state(thread,
1465 >                                                                   MACHINE_THREAD_STATE, (thread_state_t)state,
1466 >                                                                   MACHINE_THREAD_STATE_COUNT);
1467 >                        MACH_CHECK_ERROR (thread_get_state, krc);
1468 > #endif
1469 >                        return true;
1470 >                }
1471 >                break;
1472   #endif
1473 <                fault_recovered = true;
1473 >        case SIGSEGV_RETURN_FAILURE:
1474 >                return false;
1475          }
1476 < #if HAVE_SIGSEGV_SKIP_INSTRUCTION
1477 <        else if (sigsegv_ignore_fault) {
1478 <                // Call the instruction skipper with the register file available
1479 <                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE))
1480 <                        fault_recovered = true;
1476 >        
1477 >        // We can't do anything with the fault_address, dump state?
1478 >        if (sigsegv_state_dumper != 0)
1479 >                sigsegv_state_dumper(fault_address, fault_instruction);
1480 >
1481 >        return false;
1482 > }
1483 > #endif
1484 >
1485 >
1486 > /*
1487 > * There are two mechanisms for handling a bad memory access,
1488 > * Mach exceptions and UNIX signals. The implementation specific
1489 > * code appears below. Its reponsibility is to call handle_badaccess
1490 > * which is the routine that handles the fault in an implementation
1491 > * agnostic manner. The implementation specific code below is then
1492 > * reponsible for checking whether handle_badaccess was able
1493 > * to handle the memory access error and perform any implementation
1494 > * specific tasks necessary afterwards.
1495 > */
1496 >
1497 > #ifdef HAVE_MACH_EXCEPTIONS
1498 > /*
1499 > * We need to forward all exceptions that we do not handle.
1500 > * This is important, there are many exceptions that may be
1501 > * handled by other exception handlers. For example debuggers
1502 > * use exceptions and the exception hander is in another
1503 > * process in such a case. (Timothy J. Wood states in his
1504 > * message to the list that he based this code on that from
1505 > * gdb for Darwin.)
1506 > */
1507 > static inline kern_return_t
1508 > forward_exception(mach_port_t thread_port,
1509 >                                  mach_port_t task_port,
1510 >                                  exception_type_t exception_type,
1511 >                                  exception_data_t exception_data,
1512 >                                  mach_msg_type_number_t data_count,
1513 >                                  ExceptionPorts *oldExceptionPorts)
1514 > {
1515 >        kern_return_t kret;
1516 >        unsigned int portIndex;
1517 >        mach_port_t port;
1518 >        exception_behavior_t behavior;
1519 >        thread_state_flavor_t flavor;
1520 >        thread_state_t thread_state;
1521 >        mach_msg_type_number_t thread_state_count;
1522 >
1523 >        for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
1524 >                if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
1525 >                        // This handler wants the exception
1526 >                        break;
1527 >                }
1528          }
1529 +
1530 +        if (portIndex >= oldExceptionPorts->maskCount) {
1531 +                fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
1532 +                return KERN_FAILURE;
1533 +        }
1534 +
1535 +        port = oldExceptionPorts->handlers[portIndex];
1536 +        behavior = oldExceptionPorts->behaviors[portIndex];
1537 +        flavor = oldExceptionPorts->flavors[portIndex];
1538 +
1539 +        /*
1540 +         fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
1541 +         */
1542 +
1543 +        if (behavior != EXCEPTION_DEFAULT) {
1544 +                thread_state_count = THREAD_STATE_MAX;
1545 +                kret = thread_get_state (thread_port, flavor, thread_state,
1546 +                                                                 &thread_state_count);
1547 +                MACH_CHECK_ERROR (thread_get_state, kret);
1548 +        }
1549 +
1550 +        switch (behavior) {
1551 +        case EXCEPTION_DEFAULT:
1552 +          // fprintf(stderr, "forwarding to exception_raise\n");
1553 +          kret = exception_raise(port, thread_port, task_port, exception_type,
1554 +                                                         exception_data, data_count);
1555 +          MACH_CHECK_ERROR (exception_raise, kret);
1556 +          break;
1557 +        case EXCEPTION_STATE:
1558 +          // fprintf(stderr, "forwarding to exception_raise_state\n");
1559 +          kret = exception_raise_state(port, exception_type, exception_data,
1560 +                                                                   data_count, &flavor,
1561 +                                                                   thread_state, thread_state_count,
1562 +                                                                   thread_state, &thread_state_count);
1563 +          MACH_CHECK_ERROR (exception_raise_state, kret);
1564 +          break;
1565 +        case EXCEPTION_STATE_IDENTITY:
1566 +          // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
1567 +          kret = exception_raise_state_identity(port, thread_port, task_port,
1568 +                                                                                        exception_type, exception_data,
1569 +                                                                                        data_count, &flavor,
1570 +                                                                                        thread_state, thread_state_count,
1571 +                                                                                        thread_state, &thread_state_count);
1572 +          MACH_CHECK_ERROR (exception_raise_state_identity, kret);
1573 +          break;
1574 +        default:
1575 +          fprintf(stderr, "forward_exception got unknown behavior\n");
1576 +          break;
1577 +        }
1578 +
1579 +        if (behavior != EXCEPTION_DEFAULT) {
1580 +                kret = thread_set_state (thread_port, flavor, thread_state,
1581 +                                                                 thread_state_count);
1582 +                MACH_CHECK_ERROR (thread_set_state, kret);
1583 +        }
1584 +
1585 +        return KERN_SUCCESS;
1586 + }
1587 +
1588 + /*
1589 + * This is the code that actually handles the exception.
1590 + * It is called by exc_server. For Darwin 5 Apple changed
1591 + * this a bit from how this family of functions worked in
1592 + * Mach. If you are familiar with that it is a little
1593 + * different. The main variation that concerns us here is
1594 + * that code is an array of exception specific codes and
1595 + * codeCount is a count of the number of codes in the code
1596 + * array. In typical Mach all exceptions have a code
1597 + * and sub-code. It happens to be the case that for a
1598 + * EXC_BAD_ACCESS exception the first entry is the type of
1599 + * bad access that occurred and the second entry is the
1600 + * faulting address so these entries correspond exactly to
1601 + * how the code and sub-code are used on Mach.
1602 + *
1603 + * This is a MIG interface. No code in Basilisk II should
1604 + * call this directley. This has to have external C
1605 + * linkage because that is what exc_server expects.
1606 + */
1607 + kern_return_t
1608 + catch_exception_raise(mach_port_t exception_port,
1609 +                                          mach_port_t thread,
1610 +                                          mach_port_t task,
1611 +                                          exception_type_t exception,
1612 +                                          exception_data_t code,
1613 +                                          mach_msg_type_number_t codeCount)
1614 + {
1615 +        ppc_thread_state_t state;
1616 +        kern_return_t krc;
1617 +
1618 +        if ((exception == EXC_BAD_ACCESS)  && (codeCount >= 2)) {
1619 +                if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
1620 +                        return KERN_SUCCESS;
1621 +        }
1622 +
1623 +        // In Mach we do not need to remove the exception handler.
1624 +        // If we forward the exception, eventually some exception handler
1625 +        // will take care of this exception.
1626 +        krc = forward_exception(thread, task, exception, code, codeCount, &ports);
1627 +
1628 +        return krc;
1629 + }
1630 + #endif
1631 +
1632 + #ifdef HAVE_SIGSEGV_RECOVERY
1633 + // Handle bad memory accesses with signal handler
1634 + static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1635 + {
1636 +        // Call handler and reinstall the global handler, if required
1637 +        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
1638 + #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1639 +                sigsegv_do_install_handler(sig);
1640   #endif
1641 +                return;
1642 +        }
1643  
1644 <        if (!fault_recovered) {
607 <                // FAIL: reinstall default handler for "safe" crash
1644 >        // Failure: reinstall default handler for "safe" crash
1645   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1646 <                SIGSEGV_ALL_SIGNALS
1646 >        SIGSEGV_ALL_SIGNALS
1647   #undef FAULT_HANDLER
611                
612                // We can't do anything with the fault_address, dump state?
613                if (sigsegv_state_dumper != 0)
614                        sigsegv_state_dumper(fault_address, fault_instruction);
615        }
1648   }
1649   #endif
1650  
# Line 626 | Line 1658 | static bool sigsegv_do_install_handler(i
1658   {
1659          // Setup SIGSEGV handler to process writes to frame buffer
1660   #ifdef HAVE_SIGACTION
1661 <        struct sigaction vosf_sa;
1662 <        sigemptyset(&vosf_sa.sa_mask);
1663 <        vosf_sa.sa_sigaction = sigsegv_handler;
1664 <        vosf_sa.sa_flags = SA_SIGINFO;
1665 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1661 >        struct sigaction sigsegv_sa;
1662 >        sigemptyset(&sigsegv_sa.sa_mask);
1663 >        sigsegv_sa.sa_sigaction = sigsegv_handler;
1664 >        sigsegv_sa.sa_flags = SA_SIGINFO;
1665 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1666   #else
1667          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1668   #endif
# Line 642 | Line 1674 | static bool sigsegv_do_install_handler(i
1674   {
1675          // Setup SIGSEGV handler to process writes to frame buffer
1676   #ifdef HAVE_SIGACTION
1677 <        struct sigaction vosf_sa;
1678 <        sigemptyset(&vosf_sa.sa_mask);
1679 <        vosf_sa.sa_handler = (signal_handler)sigsegv_handler;
1677 >        struct sigaction sigsegv_sa;
1678 >        sigemptyset(&sigsegv_sa.sa_mask);
1679 >        sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
1680 >        sigsegv_sa.sa_flags = 0;
1681   #if !EMULATED_68K && defined(__NetBSD__)
1682 <        sigaddset(&vosf_sa.sa_mask, SIGALRM);
1683 <        vosf_sa.sa_flags = SA_ONSTACK;
651 < #else
652 <        vosf_sa.sa_flags = 0;
1682 >        sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
1683 >        sigsegv_sa.sa_flags |= SA_ONSTACK;
1684   #endif
1685 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1685 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1686   #else
1687          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1688   #endif
1689   }
1690   #endif
1691  
1692 < bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1692 > #if defined(HAVE_MACH_EXCEPTIONS)
1693 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1694   {
1695 < #ifdef HAVE_SIGSEGV_RECOVERY
1695 >        /*
1696 >         * Except for the exception port functions, this should be
1697 >         * pretty much stock Mach. If later you choose to support
1698 >         * other Mach's besides Darwin, just check for __MACH__
1699 >         * here and __APPLE__ where the actual differences are.
1700 >         */
1701 > #if defined(__APPLE__) && defined(__MACH__)
1702 >        if (sigsegv_fault_handler != NULL) {
1703 >                sigsegv_fault_handler = handler;
1704 >                return true;
1705 >        }
1706 >
1707 >        kern_return_t krc;
1708 >
1709 >        // create the the exception port
1710 >        krc = mach_port_allocate(mach_task_self(),
1711 >                          MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
1712 >        if (krc != KERN_SUCCESS) {
1713 >                mach_error("mach_port_allocate", krc);
1714 >                return false;
1715 >        }
1716 >
1717 >        // add a port send right
1718 >        krc = mach_port_insert_right(mach_task_self(),
1719 >                              _exceptionPort, _exceptionPort,
1720 >                              MACH_MSG_TYPE_MAKE_SEND);
1721 >        if (krc != KERN_SUCCESS) {
1722 >                mach_error("mach_port_insert_right", krc);
1723 >                return false;
1724 >        }
1725 >
1726 >        // get the old exception ports
1727 >        ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
1728 >        krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
1729 >                                &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
1730 >        if (krc != KERN_SUCCESS) {
1731 >                mach_error("thread_get_exception_ports", krc);
1732 >                return false;
1733 >        }
1734 >
1735 >        // set the new exception port
1736 >        //
1737 >        // We could have used EXCEPTION_STATE_IDENTITY instead of
1738 >        // EXCEPTION_DEFAULT to get the thread state in the initial
1739 >        // message, but it turns out that in the common case this is not
1740 >        // neccessary. If we need it we can later ask for it from the
1741 >        // suspended thread.
1742 >        //
1743 >        // Even with THREAD_STATE_NONE, Darwin provides the program
1744 >        // counter in the thread state.  The comments in the header file
1745 >        // seem to imply that you can count on the GPR's on an exception
1746 >        // as well but just to be safe I use MACHINE_THREAD_STATE because
1747 >        // you have to ask for all of the GPR's anyway just to get the
1748 >        // program counter. In any case because of update effective
1749 >        // address from immediate and update address from effective
1750 >        // addresses of ra and rb modes (as good an name as any for these
1751 >        // addressing modes) used in PPC instructions, you will need the
1752 >        // GPR state anyway.
1753 >        krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
1754 >                                EXCEPTION_DEFAULT, MACHINE_THREAD_STATE);
1755 >        if (krc != KERN_SUCCESS) {
1756 >                mach_error("thread_set_exception_ports", krc);
1757 >                return false;
1758 >        }
1759 >
1760 >        // create the exception handler thread
1761 >        if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
1762 >                (void)fprintf(stderr, "creation of exception thread failed\n");
1763 >                return false;
1764 >        }
1765 >
1766 >        // do not care about the exception thread any longer, let is run standalone
1767 >        (void)pthread_detach(exc_thread);
1768 >
1769          sigsegv_fault_handler = handler;
1770 +        return true;
1771 + #else
1772 +        return false;
1773 + #endif
1774 + }
1775 + #endif
1776 +
1777 + bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1778 + {
1779 + #if defined(HAVE_SIGSEGV_RECOVERY)
1780          bool success = true;
1781   #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
1782          SIGSEGV_ALL_SIGNALS
1783   #undef FAULT_HANDLER
1784 +        if (success)
1785 +            sigsegv_fault_handler = handler;
1786          return success;
1787 + #elif defined(HAVE_MACH_EXCEPTIONS)
1788 +        return sigsegv_do_install_handler(handler);
1789   #else
1790          // FAIL: no siginfo_t nor sigcontext subterfuge is available
1791          return false;
# Line 680 | Line 1799 | bool sigsegv_install_handler(sigsegv_fau
1799  
1800   void sigsegv_deinstall_handler(void)
1801   {
1802 +  // We do nothing for Mach exceptions, the thread would need to be
1803 +  // suspended if not already so, and we might mess with other
1804 +  // exception handlers that came after we registered ours. There is
1805 +  // no need to remove the exception handler, in fact this function is
1806 +  // not called anywhere in Basilisk II.
1807   #ifdef HAVE_SIGSEGV_RECOVERY
1808          sigsegv_fault_handler = 0;
1809   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
# Line 690 | Line 1814 | void sigsegv_deinstall_handler(void)
1814  
1815  
1816   /*
693 *  SIGSEGV ignore state modifier
694 */
695
696 void sigsegv_set_ignore_state(bool ignore_fault)
697 {
698        sigsegv_ignore_fault = ignore_fault;
699 }
700
701
702 /*
1817   *  Set callback function when we cannot handle the fault
1818   */
1819  
# Line 720 | Line 1834 | void sigsegv_set_dump_state(sigsegv_stat
1834   #include <sys/mman.h>
1835   #include "vm_alloc.h"
1836  
1837 + const int REF_INDEX = 123;
1838 + const int REF_VALUE = 45;
1839 +
1840   static int page_size;
1841   static volatile char * page = 0;
1842   static volatile int handler_called = 0;
1843  
1844 < static bool sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1844 > #ifdef __GNUC__
1845 > // Code range where we expect the fault to come from
1846 > static void *b_region, *e_region;
1847 > #endif
1848 >
1849 > static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1850   {
1851 + #if DEBUG
1852 +        printf("sigsegv_test_handler(%p, %p)\n", fault_address, instruction_address);
1853 +        printf("expected fault at %p\n", page + REF_INDEX);
1854 + #ifdef __GNUC__
1855 +        printf("expected instruction address range: %p-%p\n", b_region, e_region);
1856 + #endif
1857 + #endif
1858          handler_called++;
1859 <        if ((fault_address - 123) != page)
1860 <                exit(1);
1859 >        if ((fault_address - REF_INDEX) != page)
1860 >                exit(10);
1861 > #ifdef __GNUC__
1862 >        // Make sure reported fault instruction address falls into
1863 >        // expected code range
1864 >        if (instruction_address != SIGSEGV_INVALID_PC
1865 >                && ((instruction_address <  (sigsegv_address_t)b_region) ||
1866 >                        (instruction_address >= (sigsegv_address_t)e_region)))
1867 >                exit(11);
1868 > #endif
1869          if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
1870 <                exit(1);
1871 <        return true;
1870 >                exit(12);
1871 >        return SIGSEGV_RETURN_SUCCESS;
1872   }
1873  
1874   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1875 < static bool sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1875 > static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1876   {
1877 <        return false;
1877 > #if DEBUG
1878 >        printf("sigsegv_insn_handler(%p, %p)\n", fault_address, instruction_address);
1879 > #endif
1880 >        if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
1881 > #ifdef __GNUC__
1882 >                // Make sure reported fault instruction address falls into
1883 >                // expected code range
1884 >                if (instruction_address != SIGSEGV_INVALID_PC
1885 >                        && ((instruction_address <  (sigsegv_address_t)b_region) ||
1886 >                                (instruction_address >= (sigsegv_address_t)e_region)))
1887 >                        return SIGSEGV_RETURN_FAILURE;
1888 > #endif
1889 >                return SIGSEGV_RETURN_SKIP_INSTRUCTION;
1890 >        }
1891 >
1892 >        return SIGSEGV_RETURN_FAILURE;
1893 > }
1894 >
1895 > // More sophisticated tests for instruction skipper
1896 > static bool arch_insn_skipper_tests()
1897 > {
1898 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
1899 >        static const unsigned char code[] = {
1900 >                0x8a, 0x00,                    // mov    (%eax),%al
1901 >                0x8a, 0x2c, 0x18,              // mov    (%eax,%ebx,1),%ch
1902 >                0x88, 0x20,                    // mov    %ah,(%eax)
1903 >                0x88, 0x08,                    // mov    %cl,(%eax)
1904 >                0x66, 0x8b, 0x00,              // mov    (%eax),%ax
1905 >                0x66, 0x8b, 0x0c, 0x18,        // mov    (%eax,%ebx,1),%cx
1906 >                0x66, 0x89, 0x00,              // mov    %ax,(%eax)
1907 >                0x66, 0x89, 0x0c, 0x18,        // mov    %cx,(%eax,%ebx,1)
1908 >                0x8b, 0x00,                    // mov    (%eax),%eax
1909 >                0x8b, 0x0c, 0x18,              // mov    (%eax,%ebx,1),%ecx
1910 >                0x89, 0x00,                    // mov    %eax,(%eax)
1911 >                0x89, 0x0c, 0x18,              // mov    %ecx,(%eax,%ebx,1)
1912 > #if defined(__x86_64__)
1913 >                0x44, 0x8a, 0x00,              // mov    (%rax),%r8b
1914 >                0x44, 0x8a, 0x20,              // mov    (%rax),%r12b
1915 >                0x42, 0x8a, 0x3c, 0x10,        // mov    (%rax,%r10,1),%dil
1916 >                0x44, 0x88, 0x00,              // mov    %r8b,(%rax)
1917 >                0x44, 0x88, 0x20,              // mov    %r12b,(%rax)
1918 >                0x42, 0x88, 0x3c, 0x10,        // mov    %dil,(%rax,%r10,1)
1919 >                0x66, 0x44, 0x8b, 0x00,        // mov    (%rax),%r8w
1920 >                0x66, 0x42, 0x8b, 0x0c, 0x10,  // mov    (%rax,%r10,1),%cx
1921 >                0x66, 0x44, 0x89, 0x00,        // mov    %r8w,(%rax)
1922 >                0x66, 0x42, 0x89, 0x0c, 0x10,  // mov    %cx,(%rax,%r10,1)
1923 >                0x44, 0x8b, 0x00,              // mov    (%rax),%r8d
1924 >                0x42, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%ecx
1925 >                0x44, 0x89, 0x00,              // mov    %r8d,(%rax)
1926 >                0x42, 0x89, 0x0c, 0x10,        // mov    %ecx,(%rax,%r10,1)
1927 >                0x48, 0x8b, 0x08,              // mov    (%rax),%rcx
1928 >                0x4c, 0x8b, 0x18,              // mov    (%rax),%r11
1929 >                0x4a, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%rcx
1930 >                0x4e, 0x8b, 0x1c, 0x10,        // mov    (%rax,%r10,1),%r11
1931 >                0x48, 0x89, 0x08,              // mov    %rcx,(%rax)
1932 >                0x4c, 0x89, 0x18,              // mov    %r11,(%rax)
1933 >                0x4a, 0x89, 0x0c, 0x10,        // mov    %rcx,(%rax,%r10,1)
1934 >                0x4e, 0x89, 0x1c, 0x10,        // mov    %r11,(%rax,%r10,1)
1935 > #endif
1936 >                0                              // end
1937 >        };
1938 >        const int N_REGS = 20;
1939 >        unsigned long regs[N_REGS];
1940 >        for (int i = 0; i < N_REGS; i++)
1941 >                regs[i] = i;
1942 >        const unsigned long start_code = (unsigned long)&code;
1943 >        regs[X86_REG_EIP] = start_code;
1944 >        while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1)
1945 >                   && ix86_skip_instruction(regs))
1946 >                ; /* simply iterate */
1947 >        return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1);
1948 > #endif
1949 >        return true;
1950   }
1951   #endif
1952  
# Line 748 | Line 1957 | int main(void)
1957  
1958          page_size = getpagesize();
1959          if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
1960 <                return 1;
1960 >                return 2;
1961          
1962 +        memset((void *)page, 0, page_size);
1963          if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
1964 <                return 1;
1964 >                return 3;
1965          
1966          if (!sigsegv_install_handler(sigsegv_test_handler))
1967 <                return 1;
758 <        
759 <        page[123] = 45;
760 <        page[123] = 45;
1967 >                return 4;
1968          
1969 + #ifdef __GNUC__
1970 +        b_region = &&L_b_region1;
1971 +        e_region = &&L_e_region1;
1972 + #endif
1973 + L_b_region1:
1974 +        page[REF_INDEX] = REF_VALUE;
1975 +        if (page[REF_INDEX] != REF_VALUE)
1976 +          exit(20);
1977 +        page[REF_INDEX] = REF_VALUE;
1978 + L_e_region1:
1979 +
1980          if (handler_called != 1)
1981 <                return 1;
1981 >                return 5;
1982  
1983   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1984          if (!sigsegv_install_handler(sigsegv_insn_handler))
1985 <                return 1;
1985 >                return 6;
1986          
1987 <        if (vm_protect((char *)page, page_size, VM_PAGE_WRITE) < 0)
1988 <                return 1;
1987 >        if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
1988 >                return 7;
1989          
1990          for (int i = 0; i < page_size; i++)
1991                  page[i] = (i + 1) % page_size;
1992          
1993          if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
1994 <                return 1;
1994 >                return 8;
1995          
778        sigsegv_set_ignore_state(true);
779
1996   #define TEST_SKIP_INSTRUCTION(TYPE) do {                                \
1997 <                const unsigned int TAG = 0x12345678;                    \
1997 >                const unsigned long TAG = 0x12345678 |                  \
1998 >                (sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0);   \
1999                  TYPE data = *((TYPE *)(page + sizeof(TYPE)));   \
2000 <                volatile unsigned int effect = data + TAG;              \
2000 >                volatile unsigned long effect = data + TAG;             \
2001                  if (effect != TAG)                                                              \
2002 <                        return 1;                                                                       \
2002 >                        return 9;                                                                       \
2003          } while (0)
2004          
2005 + #ifdef __GNUC__
2006 +        b_region = &&L_b_region2;
2007 +        e_region = &&L_e_region2;
2008 + #endif
2009 + L_b_region2:
2010          TEST_SKIP_INSTRUCTION(unsigned char);
2011          TEST_SKIP_INSTRUCTION(unsigned short);
2012          TEST_SKIP_INSTRUCTION(unsigned int);
2013 +        TEST_SKIP_INSTRUCTION(unsigned long);
2014 +        TEST_SKIP_INSTRUCTION(signed char);
2015 +        TEST_SKIP_INSTRUCTION(signed short);
2016 +        TEST_SKIP_INSTRUCTION(signed int);
2017 +        TEST_SKIP_INSTRUCTION(signed long);
2018 + L_e_region2:
2019 +
2020 +        if (!arch_insn_skipper_tests())
2021 +                return 20;
2022   #endif
2023  
2024          vm_exit();

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines