ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
Revision: 1.46
Committed: 2004-01-22T00:00:55Z (20 years, 10 months ago) by gbeauche
Branch: MAIN
CVS Tags: nigel-build-16, nigel-build-15
Changes since 1.45: +1 -1 lines
Log Message:
cosmetic fixes when printing movsbq operation summary

File Contents

# User Rev Content
1 gbeauche 1.1 /*
2     * sigsegv.cpp - SIGSEGV signals support
3     *
4     * Derived from Bruno Haible's work on his SIGSEGV library for clisp
5     * <http://clisp.sourceforge.net/>
6     *
7 gbeauche 1.27 * MacOS X support derived from the post by Timothy J. Wood to the
8     * omnigroup macosx-dev list:
9     * Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10     * tjw@omnigroup.com Sun, 4 Jun 2000
11     * www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12     *
13 cebix 1.41 * Basilisk II (C) 1997-2004 Christian Bauer
14 gbeauche 1.1 *
15     * This program is free software; you can redistribute it and/or modify
16     * it under the terms of the GNU General Public License as published by
17     * the Free Software Foundation; either version 2 of the License, or
18     * (at your option) any later version.
19     *
20     * This program is distributed in the hope that it will be useful,
21     * but WITHOUT ANY WARRANTY; without even the implied warranty of
22     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23     * GNU General Public License for more details.
24     *
25     * You should have received a copy of the GNU General Public License
26     * along with this program; if not, write to the Free Software
27     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
28     */
29    
30     #ifdef HAVE_UNISTD_H
31     #include <unistd.h>
32     #endif
33    
34     #ifdef HAVE_CONFIG_H
35     #include "config.h"
36     #endif
37    
38 gbeauche 1.22 #include <list>
39 gbeauche 1.39 #include <stdio.h>
40 gbeauche 1.1 #include <signal.h>
41     #include "sigsegv.h"
42    
43 gbeauche 1.22 #ifndef NO_STD_NAMESPACE
44     using std::list;
45     #endif
46    
47 gbeauche 1.1 // Return value type of a signal handler (standard type if not defined)
48     #ifndef RETSIGTYPE
49     #define RETSIGTYPE void
50     #endif
51    
52     // Type of the system signal handler
53     typedef RETSIGTYPE (*signal_handler)(int);
54    
55     // User's SIGSEGV handler
56 gbeauche 1.12 static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
57 gbeauche 1.1
58 gbeauche 1.10 // Function called to dump state if we can't handle the fault
59 gbeauche 1.12 static sigsegv_state_dumper_t sigsegv_state_dumper = 0;
60 gbeauche 1.10
61 gbeauche 1.1 // Actual SIGSEGV handler installer
62     static bool sigsegv_do_install_handler(int sig);
63    
64    
65     /*
66 gbeauche 1.14 * Instruction decoding aids
67     */
68    
69     // Transfer size
70     enum transfer_size_t {
71     SIZE_UNKNOWN,
72     SIZE_BYTE,
73 gbeauche 1.34 SIZE_WORD, // 2 bytes
74     SIZE_LONG, // 4 bytes
75     SIZE_QUAD, // 8 bytes
76 gbeauche 1.14 };
77    
78 gbeauche 1.23 // Transfer type
79     typedef sigsegv_transfer_type_t transfer_type_t;
80    
81 gbeauche 1.14 #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
82     // Addressing mode
83     enum addressing_mode_t {
84     MODE_UNKNOWN,
85     MODE_NORM,
86     MODE_U,
87     MODE_X,
88     MODE_UX
89     };
90    
91     // Decoded instruction
92     struct instruction_t {
93     transfer_type_t transfer_type;
94     transfer_size_t transfer_size;
95     addressing_mode_t addr_mode;
96     unsigned int addr;
97     char ra, rd;
98     };
99    
100     static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned int * gpr)
101     {
102     // Get opcode and divide into fields
103     unsigned int opcode = *((unsigned int *)nip);
104     unsigned int primop = opcode >> 26;
105     unsigned int exop = (opcode >> 1) & 0x3ff;
106     unsigned int ra = (opcode >> 16) & 0x1f;
107     unsigned int rb = (opcode >> 11) & 0x1f;
108     unsigned int rd = (opcode >> 21) & 0x1f;
109     signed int imm = (signed short)(opcode & 0xffff);
110    
111     // Analyze opcode
112 gbeauche 1.22 transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
113 gbeauche 1.14 transfer_size_t transfer_size = SIZE_UNKNOWN;
114     addressing_mode_t addr_mode = MODE_UNKNOWN;
115     switch (primop) {
116     case 31:
117     switch (exop) {
118     case 23: // lwzx
119 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
120 gbeauche 1.14 case 55: // lwzux
121 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
122 gbeauche 1.14 case 87: // lbzx
123 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
124 gbeauche 1.14 case 119: // lbzux
125 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
126 gbeauche 1.14 case 151: // stwx
127 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
128 gbeauche 1.14 case 183: // stwux
129 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
130 gbeauche 1.14 case 215: // stbx
131 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
132 gbeauche 1.14 case 247: // stbux
133 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
134 gbeauche 1.14 case 279: // lhzx
135 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
136 gbeauche 1.14 case 311: // lhzux
137 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
138 gbeauche 1.14 case 343: // lhax
139 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
140 gbeauche 1.14 case 375: // lhaux
141 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
142 gbeauche 1.14 case 407: // sthx
143 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
144 gbeauche 1.14 case 439: // sthux
145 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
146 gbeauche 1.14 }
147     break;
148    
149     case 32: // lwz
150 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
151 gbeauche 1.14 case 33: // lwzu
152 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
153 gbeauche 1.14 case 34: // lbz
154 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
155 gbeauche 1.14 case 35: // lbzu
156 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
157 gbeauche 1.14 case 36: // stw
158 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
159 gbeauche 1.14 case 37: // stwu
160 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
161 gbeauche 1.14 case 38: // stb
162 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
163 gbeauche 1.14 case 39: // stbu
164 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
165 gbeauche 1.14 case 40: // lhz
166 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
167 gbeauche 1.14 case 41: // lhzu
168 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
169 gbeauche 1.14 case 42: // lha
170 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
171 gbeauche 1.14 case 43: // lhau
172 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
173 gbeauche 1.14 case 44: // sth
174 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
175 gbeauche 1.14 case 45: // sthu
176 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
177 gbeauche 1.14 }
178    
179     // Calculate effective address
180     unsigned int addr = 0;
181     switch (addr_mode) {
182     case MODE_X:
183     case MODE_UX:
184     if (ra == 0)
185     addr = gpr[rb];
186     else
187     addr = gpr[ra] + gpr[rb];
188     break;
189     case MODE_NORM:
190     case MODE_U:
191     if (ra == 0)
192     addr = (signed int)(signed short)imm;
193     else
194     addr = gpr[ra] + (signed int)(signed short)imm;
195     break;
196     default:
197     break;
198     }
199    
200     // Commit decoded instruction
201     instruction->addr = addr;
202     instruction->addr_mode = addr_mode;
203     instruction->transfer_type = transfer_type;
204     instruction->transfer_size = transfer_size;
205     instruction->ra = ra;
206     instruction->rd = rd;
207     }
208     #endif
209    
210    
211     /*
212 gbeauche 1.1 * OS-dependant SIGSEGV signals support section
213     */
214    
215     #if HAVE_SIGINFO_T
216     // Generic extended signal handler
217 cebix 1.8 #if defined(__NetBSD__) || defined(__FreeBSD__)
218     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
219     #else
220 gbeauche 1.1 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
221 cebix 1.8 #endif
222 gbeauche 1.5 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, siginfo_t *sip, void *scp
223 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
224     #define SIGSEGV_FAULT_HANDLER_ARGS sip, scp
225 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS sip->si_addr
226 gbeauche 1.37 #if (defined(sgi) || defined(__sgi))
227     #include <ucontext.h>
228     #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
229     #define SIGSEGV_FAULT_INSTRUCTION (unsigned long)SIGSEGV_CONTEXT_REGS[CTX_EPC]
230 gbeauche 1.38 #if (defined(mips) || defined(__mips))
231     #define SIGSEGV_REGISTER_FILE SIGSEGV_CONTEXT_REGS
232     #define SIGSEGV_SKIP_INSTRUCTION mips_skip_instruction
233     #endif
234 gbeauche 1.37 #endif
235 gbeauche 1.32 #if defined(__sun__)
236     #if (defined(sparc) || defined(__sparc__))
237 gbeauche 1.40 #include <sys/stack.h>
238     #include <sys/regset.h>
239 gbeauche 1.32 #include <sys/ucontext.h>
240     #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
241     #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[REG_PC]
242 gbeauche 1.40 #define SIGSEGV_SPARC_GWINDOWS (((ucontext_t *)scp)->uc_mcontext.gwins)
243     #define SIGSEGV_SPARC_RWINDOW (struct rwindow *)((char *)SIGSEGV_CONTEXT_REGS[REG_SP] + STACK_BIAS)
244     #define SIGSEGV_REGISTER_FILE ((unsigned long *)SIGSEGV_CONTEXT_REGS), SIGSEGV_SPARC_GWINDOWS, SIGSEGV_SPARC_RWINDOW
245     #define SIGSEGV_SKIP_INSTRUCTION sparc_skip_instruction
246 gbeauche 1.32 #endif
247     #endif
248 gbeauche 1.33 #if defined(__FreeBSD__)
249 gbeauche 1.17 #if (defined(i386) || defined(__i386__))
250     #define SIGSEGV_FAULT_INSTRUCTION (((struct sigcontext *)scp)->sc_eip)
251 gbeauche 1.34 #define SIGSEGV_REGISTER_FILE ((unsigned long *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
252 gbeauche 1.17 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
253 gbeauche 1.19 #endif
254 gbeauche 1.17 #endif
255 gbeauche 1.5 #if defined(__linux__)
256 gbeauche 1.6 #if (defined(i386) || defined(__i386__))
257     #include <sys/ucontext.h>
258 gbeauche 1.14 #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
259     #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
260 gbeauche 1.34 #define SIGSEGV_REGISTER_FILE (unsigned long *)SIGSEGV_CONTEXT_REGS
261 gbeauche 1.10 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
262 gbeauche 1.6 #endif
263 gbeauche 1.20 #if (defined(x86_64) || defined(__x86_64__))
264     #include <sys/ucontext.h>
265     #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
266     #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
267     #define SIGSEGV_REGISTER_FILE (unsigned long *)SIGSEGV_CONTEXT_REGS
268 gbeauche 1.34 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
269 gbeauche 1.20 #endif
270 gbeauche 1.5 #if (defined(ia64) || defined(__ia64__))
271     #define SIGSEGV_FAULT_INSTRUCTION (((struct sigcontext *)scp)->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
272     #endif
273 gbeauche 1.9 #if (defined(powerpc) || defined(__powerpc__))
274     #include <sys/ucontext.h>
275 gbeauche 1.14 #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.regs)
276     #define SIGSEGV_FAULT_INSTRUCTION (SIGSEGV_CONTEXT_REGS->nip)
277     #define SIGSEGV_REGISTER_FILE (unsigned int *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned int *)(SIGSEGV_CONTEXT_REGS->gpr)
278 gbeauche 1.13 #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
279 gbeauche 1.9 #endif
280 gbeauche 1.39 #if (defined(hppa) || defined(__hppa__))
281     #undef SIGSEGV_FAULT_ADDRESS
282     #define SIGSEGV_FAULT_ADDRESS sip->si_ptr
283     #endif
284 gbeauche 1.42 #if (defined(arm) || defined(__arm__))
285     #include <asm/ucontext.h> /* use kernel structure, glibc may not be in sync */
286     #define SIGSEGV_CONTEXT_REGS (((struct ucontext *)scp)->uc_mcontext)
287     #define SIGSEGV_FAULT_INSTRUCTION (SIGSEGV_CONTEXT_REGS.arm_pc)
288 gbeauche 1.44 #define SIGSEGV_REGISTER_FILE (&SIGSEGV_CONTEXT_REGS.arm_r0)
289     #define SIGSEGV_SKIP_INSTRUCTION arm_skip_instruction
290 gbeauche 1.42 #endif
291 gbeauche 1.5 #endif
292 gbeauche 1.1 #endif
293    
294     #if HAVE_SIGCONTEXT_SUBTERFUGE
295     // Linux kernels prior to 2.4 ?
296     #if defined(__linux__)
297     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
298     #if (defined(i386) || defined(__i386__))
299     #include <asm/sigcontext.h>
300     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, struct sigcontext scs
301 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
302     #define SIGSEGV_FAULT_HANDLER_ARGS &scs
303     #define SIGSEGV_FAULT_ADDRESS scp->cr2
304     #define SIGSEGV_FAULT_INSTRUCTION scp->eip
305 gbeauche 1.34 #define SIGSEGV_REGISTER_FILE (unsigned long *)scp
306 gbeauche 1.10 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
307 gbeauche 1.1 #endif
308     #if (defined(sparc) || defined(__sparc__))
309     #include <asm/sigcontext.h>
310 gbeauche 1.5 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp, char *addr
311 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp, addr
312 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS addr
313     #endif
314     #if (defined(powerpc) || defined(__powerpc__))
315     #include <asm/sigcontext.h>
316 gbeauche 1.4 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, struct sigcontext *scp
317 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, scp
318 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS scp->regs->dar
319     #define SIGSEGV_FAULT_INSTRUCTION scp->regs->nip
320 gbeauche 1.14 #define SIGSEGV_REGISTER_FILE (unsigned int *)&scp->regs->nip, (unsigned int *)(scp->regs->gpr)
321 gbeauche 1.13 #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
322 gbeauche 1.1 #endif
323 gbeauche 1.4 #if (defined(alpha) || defined(__alpha__))
324     #include <asm/sigcontext.h>
325     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
326 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
327 gbeauche 1.4 #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
328     #define SIGSEGV_FAULT_INSTRUCTION scp->sc_pc
329 gbeauche 1.42 #endif
330     #if (defined(arm) || defined(__arm__))
331     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int r1, int r2, int r3, struct sigcontext sc
332     #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
333     #define SIGSEGV_FAULT_HANDLER_ARGS &sc
334     #define SIGSEGV_FAULT_ADDRESS scp->fault_address
335     #define SIGSEGV_FAULT_INSTRUCTION scp->arm_pc
336 gbeauche 1.44 #define SIGSEGV_REGISTER_FILE &scp->arm_r0
337     #define SIGSEGV_SKIP_INSTRUCTION arm_skip_instruction
338 gbeauche 1.4 #endif
339 gbeauche 1.1 #endif
340    
341     // Irix 5 or 6 on MIPS
342 gbeauche 1.37 #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(_SYSTYPE_SVR4))
343 gbeauche 1.11 #include <ucontext.h>
344 gbeauche 1.1 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
345 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
346 gbeauche 1.37 #define SIGSEGV_FAULT_ADDRESS (unsigned long)scp->sc_badvaddr
347     #define SIGSEGV_FAULT_INSTRUCTION (unsigned long)scp->sc_pc
348 gbeauche 1.1 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
349     #endif
350    
351 gbeauche 1.11 // HP-UX
352     #if (defined(hpux) || defined(__hpux__))
353     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
354 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
355 gbeauche 1.11 #define SIGSEGV_FAULT_ADDRESS scp->sc_sl.sl_ss.ss_narrow.ss_cr21
356     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
357     #endif
358    
359 gbeauche 1.1 // OSF/1 on Alpha
360     #if defined(__osf__)
361 gbeauche 1.11 #include <ucontext.h>
362 gbeauche 1.1 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
363 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
364 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS scp->sc_traparg_a0
365     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
366     #endif
367    
368     // AIX
369     #if defined(_AIX)
370     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
371 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
372 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS scp->sc_jmpbuf.jmp_context.o_vaddr
373     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
374     #endif
375    
376 gbeauche 1.33 // NetBSD
377     #if defined(__NetBSD__)
378 gbeauche 1.1 #if (defined(m68k) || defined(__m68k__))
379     #include <m68k/frame.h>
380     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
381 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
382 gbeauche 1.14 #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
383 gbeauche 1.1 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
384 gbeauche 1.14
385     // Use decoding scheme from BasiliskII/m68k native
386     static sigsegv_address_t get_fault_address(struct sigcontext *scp)
387     {
388     struct sigstate {
389     int ss_flags;
390     struct frame ss_frame;
391     };
392     struct sigstate *state = (struct sigstate *)scp->sc_ap;
393     char *fault_addr;
394     switch (state->ss_frame.f_format) {
395     case 7: /* 68040 access error */
396     /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */
397     fault_addr = state->ss_frame.f_fmt7.f_fa;
398     break;
399     default:
400     fault_addr = (char *)code;
401     break;
402     }
403     return (sigsegv_address_t)fault_addr;
404     }
405 gbeauche 1.33 #endif
406     #if (defined(alpha) || defined(__alpha__))
407     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
408     #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
409     #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
410     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
411     #endif
412     #if (defined(i386) || defined(__i386__))
413     #error "FIXME: need to decode instruction and compute EA"
414     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
415     #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
416     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
417     #endif
418     #endif
419     #if defined(__FreeBSD__)
420 gbeauche 1.39 #if (defined(i386) || defined(__i386__))
421 gbeauche 1.33 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
422     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp, char *addr
423 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp, addr
424 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS addr
425 gbeauche 1.33 #define SIGSEGV_FAULT_INSTRUCTION scp->sc_eip
426 gbeauche 1.34 #define SIGSEGV_REGISTER_FILE ((unsigned long *)&scp->sc_edi)
427 gbeauche 1.33 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
428 gbeauche 1.1 #endif
429 gbeauche 1.39 #if (defined(alpha) || defined(__alpha__))
430     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
431     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, char *addr, struct sigcontext *scp
432     #define SIGSEGV_FAULT_HANDLER_ARGS sig, addr, scp
433     #define SIGSEGV_FAULT_ADDRESS addr
434     #define SIGSEGV_FAULT_INSTRUCTION scp->sc_pc
435     #endif
436 gbeauche 1.1 #endif
437 gbeauche 1.33
438     // Extract fault address out of a sigcontext
439     #if (defined(alpha) || defined(__alpha__))
440     // From Boehm's GC 6.0alpha8
441     static sigsegv_address_t get_fault_address(struct sigcontext *scp)
442     {
443     unsigned int instruction = *((unsigned int *)(scp->sc_pc));
444     unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
445     fault_address += (signed long)(signed short)(instruction & 0xffff);
446     return (sigsegv_address_t)fault_address;
447     }
448     #endif
449    
450 gbeauche 1.4
451 gbeauche 1.27 // MacOS X, not sure which version this works in. Under 10.1
452     // vm_protect does not appear to work from a signal handler. Under
453     // 10.2 signal handlers get siginfo type arguments but the si_addr
454     // field is the address of the faulting instruction and not the
455     // address that caused the SIGBUS. Maybe this works in 10.0? In any
456     // case with Mach exception handlers there is a way to do what this
457     // was meant to do.
458     #ifndef HAVE_MACH_EXCEPTIONS
459 gbeauche 1.4 #if defined(__APPLE__) && defined(__MACH__)
460     #if (defined(ppc) || defined(__ppc__))
461     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
462 gbeauche 1.27 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
463 gbeauche 1.4 #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
464     #define SIGSEGV_FAULT_INSTRUCTION scp->sc_ir
465     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
466 gbeauche 1.14 #define SIGSEGV_REGISTER_FILE (unsigned int *)&scp->sc_ir, &((unsigned int *) scp->sc_regs)[2]
467     #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
468 gbeauche 1.4
469 gbeauche 1.14 // Use decoding scheme from SheepShaver
470 gbeauche 1.4 static sigsegv_address_t get_fault_address(struct sigcontext *scp)
471     {
472 gbeauche 1.14 unsigned int nip = (unsigned int) scp->sc_ir;
473     unsigned int * gpr = &((unsigned int *) scp->sc_regs)[2];
474     instruction_t instr;
475    
476     powerpc_decode_instruction(&instr, nip, gpr);
477     return (sigsegv_address_t)instr.addr;
478 gbeauche 1.4 }
479     #endif
480     #endif
481 gbeauche 1.1 #endif
482 gbeauche 1.27 #endif
483    
484     #if HAVE_MACH_EXCEPTIONS
485    
486     // This can easily be extended to other Mach systems, but really who
487     // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
488     // Mach 2.5/3.0?
489     #if defined(__APPLE__) && defined(__MACH__)
490    
491     #include <sys/types.h>
492     #include <stdlib.h>
493     #include <stdio.h>
494     #include <pthread.h>
495    
496     /*
497     * If you are familiar with MIG then you will understand the frustration
498     * that was necessary to get these embedded into C++ code by hand.
499     */
500     extern "C" {
501     #include <mach/mach.h>
502     #include <mach/mach_error.h>
503    
504     extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
505     extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
506     mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
507     extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
508     exception_type_t, exception_data_t, mach_msg_type_number_t);
509     extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
510     exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
511     thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
512     extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
513     exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
514     thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
515     }
516    
517     // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
518     #define HANDLER_COUNT 64
519    
520     // structure to tuck away existing exception handlers
521     typedef struct _ExceptionPorts {
522     mach_msg_type_number_t maskCount;
523     exception_mask_t masks[HANDLER_COUNT];
524     exception_handler_t handlers[HANDLER_COUNT];
525     exception_behavior_t behaviors[HANDLER_COUNT];
526     thread_state_flavor_t flavors[HANDLER_COUNT];
527     } ExceptionPorts;
528    
529     // exception handler thread
530     static pthread_t exc_thread;
531    
532     // place where old exception handler info is stored
533     static ExceptionPorts ports;
534    
535     // our exception port
536     static mach_port_t _exceptionPort = MACH_PORT_NULL;
537    
538     #define MACH_CHECK_ERROR(name,ret) \
539     if (ret != KERN_SUCCESS) { \
540     mach_error(#name, ret); \
541     exit (1); \
542     }
543    
544     #define SIGSEGV_FAULT_ADDRESS code[1]
545     #define SIGSEGV_FAULT_INSTRUCTION get_fault_instruction(thread, state)
546 gbeauche 1.31 #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP) ((code[0] == KERN_PROTECTION_FAILURE) ? sigsegv_fault_handler(ADDR, IP) : SIGSEGV_RETURN_FAILURE)
547 gbeauche 1.27 #define SIGSEGV_FAULT_HANDLER_ARGLIST mach_port_t thread, exception_data_t code, ppc_thread_state_t *state
548     #define SIGSEGV_FAULT_HANDLER_ARGS thread, code, &state
549     #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
550     #define SIGSEGV_REGISTER_FILE &state->srr0, &state->r0
551    
552     // Given a suspended thread, stuff the current instruction and
553     // registers into state.
554     //
555     // It would have been nice to have this be ppc/x86 independant which
556     // could have been done easily with a thread_state_t instead of
557     // ppc_thread_state_t, but because of the way this is called it is
558     // easier to do it this way.
559     #if (defined(ppc) || defined(__ppc__))
560     static inline sigsegv_address_t get_fault_instruction(mach_port_t thread, ppc_thread_state_t *state)
561     {
562     kern_return_t krc;
563     mach_msg_type_number_t count;
564    
565     count = MACHINE_THREAD_STATE_COUNT;
566     krc = thread_get_state(thread, MACHINE_THREAD_STATE, (thread_state_t)state, &count);
567     MACH_CHECK_ERROR (thread_get_state, krc);
568    
569     return (sigsegv_address_t)state->srr0;
570     }
571     #endif
572    
573     // Since there can only be one exception thread running at any time
574     // this is not a problem.
575     #define MSG_SIZE 512
576     static char msgbuf[MSG_SIZE];
577     static char replybuf[MSG_SIZE];
578    
579     /*
580     * This is the entry point for the exception handler thread. The job
581     * of this thread is to wait for exception messages on the exception
582     * port that was setup beforehand and to pass them on to exc_server.
583     * exc_server is a MIG generated function that is a part of Mach.
584     * Its job is to decide what to do with the exception message. In our
585     * case exc_server calls catch_exception_raise on our behalf. After
586     * exc_server returns, it is our responsibility to send the reply.
587     */
588     static void *
589     handleExceptions(void *priv)
590     {
591     mach_msg_header_t *msg, *reply;
592     kern_return_t krc;
593    
594     msg = (mach_msg_header_t *)msgbuf;
595     reply = (mach_msg_header_t *)replybuf;
596    
597     for (;;) {
598     krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
599     _exceptionPort, 0, MACH_PORT_NULL);
600     MACH_CHECK_ERROR(mach_msg, krc);
601    
602     if (!exc_server(msg, reply)) {
603     fprintf(stderr, "exc_server hated the message\n");
604     exit(1);
605     }
606    
607     krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
608     msg->msgh_local_port, 0, MACH_PORT_NULL);
609     if (krc != KERN_SUCCESS) {
610     fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
611     krc, mach_error_string(krc));
612     exit(1);
613     }
614     }
615     }
616     #endif
617     #endif
618 gbeauche 1.1
619 gbeauche 1.14
620     /*
621     * Instruction skipping
622     */
623    
624 gbeauche 1.10 #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
625     // Decode and skip X86 instruction
626 gbeauche 1.34 #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
627 gbeauche 1.10 #if defined(__linux__)
628     enum {
629 gbeauche 1.34 #if (defined(i386) || defined(__i386__))
630 gbeauche 1.10 X86_REG_EIP = 14,
631     X86_REG_EAX = 11,
632     X86_REG_ECX = 10,
633     X86_REG_EDX = 9,
634     X86_REG_EBX = 8,
635     X86_REG_ESP = 7,
636     X86_REG_EBP = 6,
637     X86_REG_ESI = 5,
638     X86_REG_EDI = 4
639 gbeauche 1.34 #endif
640     #if defined(__x86_64__)
641     X86_REG_R8 = 0,
642     X86_REG_R9 = 1,
643     X86_REG_R10 = 2,
644     X86_REG_R11 = 3,
645     X86_REG_R12 = 4,
646     X86_REG_R13 = 5,
647     X86_REG_R14 = 6,
648     X86_REG_R15 = 7,
649     X86_REG_EDI = 8,
650     X86_REG_ESI = 9,
651     X86_REG_EBP = 10,
652     X86_REG_EBX = 11,
653     X86_REG_EDX = 12,
654     X86_REG_EAX = 13,
655     X86_REG_ECX = 14,
656     X86_REG_ESP = 15,
657     X86_REG_EIP = 16
658     #endif
659 gbeauche 1.10 };
660     #endif
661 gbeauche 1.17 #if defined(__NetBSD__) || defined(__FreeBSD__)
662     enum {
663 gbeauche 1.34 #if (defined(i386) || defined(__i386__))
664 gbeauche 1.17 X86_REG_EIP = 10,
665     X86_REG_EAX = 7,
666     X86_REG_ECX = 6,
667     X86_REG_EDX = 5,
668     X86_REG_EBX = 4,
669     X86_REG_ESP = 13,
670     X86_REG_EBP = 2,
671     X86_REG_ESI = 1,
672     X86_REG_EDI = 0
673 gbeauche 1.34 #endif
674 gbeauche 1.17 };
675     #endif
676 gbeauche 1.10 // FIXME: this is partly redundant with the instruction decoding phase
677     // to discover transfer type and register number
678     static inline int ix86_step_over_modrm(unsigned char * p)
679     {
680     int mod = (p[0] >> 6) & 3;
681     int rm = p[0] & 7;
682     int offset = 0;
683    
684     // ModR/M Byte
685     switch (mod) {
686     case 0: // [reg]
687     if (rm == 5) return 4; // disp32
688     break;
689     case 1: // disp8[reg]
690     offset = 1;
691     break;
692     case 2: // disp32[reg]
693     offset = 4;
694     break;
695     case 3: // register
696     return 0;
697     }
698    
699     // SIB Byte
700     if (rm == 4) {
701     if (mod == 0 && (p[1] & 7) == 5)
702     offset = 5; // disp32[index]
703     else
704     offset++;
705     }
706    
707     return offset;
708     }
709    
710 gbeauche 1.34 static bool ix86_skip_instruction(unsigned long * regs)
711 gbeauche 1.10 {
712 gbeauche 1.14 unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
713 gbeauche 1.10
714     if (eip == 0)
715     return false;
716    
717 gbeauche 1.22 transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
718 gbeauche 1.14 transfer_size_t transfer_size = SIZE_LONG;
719 gbeauche 1.10
720     int reg = -1;
721     int len = 0;
722 gbeauche 1.34
723     #if DEBUG
724     printf("IP: %p [%02x %02x %02x %02x...]\n",
725     eip, eip[0], eip[1], eip[2], eip[3]);
726     #endif
727    
728 gbeauche 1.10 // Operand size prefix
729     if (*eip == 0x66) {
730     eip++;
731     len++;
732     transfer_size = SIZE_WORD;
733     }
734    
735 gbeauche 1.34 // REX prefix
736     #if defined(__x86_64__)
737     struct rex_t {
738     unsigned char W;
739     unsigned char R;
740     unsigned char X;
741     unsigned char B;
742     };
743     rex_t rex = { 0, 0, 0, 0 };
744     bool has_rex = false;
745     if ((*eip & 0xf0) == 0x40) {
746     has_rex = true;
747     const unsigned char b = *eip;
748     rex.W = b & (1 << 3);
749     rex.R = b & (1 << 2);
750     rex.X = b & (1 << 1);
751     rex.B = b & (1 << 0);
752     #if DEBUG
753     printf("REX: %c,%c,%c,%c\n",
754     rex.W ? 'W' : '_',
755     rex.R ? 'R' : '_',
756     rex.X ? 'X' : '_',
757     rex.B ? 'B' : '_');
758     #endif
759     eip++;
760     len++;
761     if (rex.W)
762     transfer_size = SIZE_QUAD;
763     }
764     #else
765     const bool has_rex = false;
766     #endif
767    
768 gbeauche 1.10 // Decode instruction
769 gbeauche 1.45 int target_size = SIZE_UNKNOWN;
770 gbeauche 1.10 switch (eip[0]) {
771 gbeauche 1.17 case 0x0f:
772 gbeauche 1.45 target_size = transfer_size;
773 gbeauche 1.18 switch (eip[1]) {
774 gbeauche 1.45 case 0xbe: // MOVSX r32, r/m8
775 gbeauche 1.18 case 0xb6: // MOVZX r32, r/m8
776 gbeauche 1.45 transfer_size = SIZE_BYTE;
777     goto do_mov_extend;
778 gbeauche 1.18 case 0xb7: // MOVZX r32, r/m16
779 gbeauche 1.45 transfer_size = SIZE_WORD;
780     goto do_mov_extend;
781     do_mov_extend:
782     switch (eip[2] & 0xc0) {
783     case 0x80:
784     reg = (eip[2] >> 3) & 7;
785     transfer_type = SIGSEGV_TRANSFER_LOAD;
786     break;
787     case 0x40:
788     reg = (eip[2] >> 3) & 7;
789     transfer_type = SIGSEGV_TRANSFER_LOAD;
790     break;
791     case 0x00:
792     reg = (eip[2] >> 3) & 7;
793     transfer_type = SIGSEGV_TRANSFER_LOAD;
794     break;
795     }
796     len += 3 + ix86_step_over_modrm(eip + 2);
797     break;
798 gbeauche 1.17 }
799     break;
800 gbeauche 1.10 case 0x8a: // MOV r8, r/m8
801     transfer_size = SIZE_BYTE;
802     case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
803     switch (eip[1] & 0xc0) {
804     case 0x80:
805     reg = (eip[1] >> 3) & 7;
806 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD;
807 gbeauche 1.10 break;
808     case 0x40:
809     reg = (eip[1] >> 3) & 7;
810 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD;
811 gbeauche 1.10 break;
812     case 0x00:
813     reg = (eip[1] >> 3) & 7;
814 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD;
815 gbeauche 1.10 break;
816     }
817     len += 2 + ix86_step_over_modrm(eip + 1);
818     break;
819     case 0x88: // MOV r/m8, r8
820     transfer_size = SIZE_BYTE;
821     case 0x89: // MOV r/m32, r32 (or 16-bit operation)
822     switch (eip[1] & 0xc0) {
823     case 0x80:
824     reg = (eip[1] >> 3) & 7;
825 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE;
826 gbeauche 1.10 break;
827     case 0x40:
828     reg = (eip[1] >> 3) & 7;
829 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE;
830 gbeauche 1.10 break;
831     case 0x00:
832     reg = (eip[1] >> 3) & 7;
833 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE;
834 gbeauche 1.10 break;
835     }
836     len += 2 + ix86_step_over_modrm(eip + 1);
837     break;
838     }
839 gbeauche 1.45 if (target_size == SIZE_UNKNOWN)
840     target_size = transfer_size;
841 gbeauche 1.10
842 gbeauche 1.22 if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
843 gbeauche 1.10 // Unknown machine code, let it crash. Then patch the decoder
844     return false;
845     }
846    
847 gbeauche 1.34 #if defined(__x86_64__)
848     if (rex.R)
849     reg += 8;
850     #endif
851    
852 gbeauche 1.22 if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
853 gbeauche 1.34 static const int x86_reg_map[] = {
854 gbeauche 1.10 X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
855 gbeauche 1.34 X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI,
856     #if defined(__x86_64__)
857     X86_REG_R8, X86_REG_R9, X86_REG_R10, X86_REG_R11,
858     X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15,
859     #endif
860 gbeauche 1.10 };
861    
862 gbeauche 1.34 if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1))
863 gbeauche 1.10 return false;
864    
865 gbeauche 1.34 // Set 0 to the relevant register part
866     // NOTE: this is only valid for MOV alike instructions
867 gbeauche 1.10 int rloc = x86_reg_map[reg];
868 gbeauche 1.45 switch (target_size) {
869 gbeauche 1.10 case SIZE_BYTE:
870 gbeauche 1.36 if (has_rex || reg < 4)
871     regs[rloc] = (regs[rloc] & ~0x00ffL);
872     else {
873     rloc = x86_reg_map[reg - 4];
874     regs[rloc] = (regs[rloc] & ~0xff00L);
875     }
876 gbeauche 1.10 break;
877     case SIZE_WORD:
878 gbeauche 1.34 regs[rloc] = (regs[rloc] & ~0xffffL);
879 gbeauche 1.10 break;
880     case SIZE_LONG:
881 gbeauche 1.34 case SIZE_QUAD: // zero-extension
882 gbeauche 1.10 regs[rloc] = 0;
883     break;
884     }
885     }
886    
887     #if DEBUG
888 gbeauche 1.15 printf("%08x: %s %s access", regs[X86_REG_EIP],
889 gbeauche 1.34 transfer_size == SIZE_BYTE ? "byte" :
890     transfer_size == SIZE_WORD ? "word" :
891     transfer_size == SIZE_LONG ? "long" :
892     transfer_size == SIZE_QUAD ? "quad" : "unknown",
893 gbeauche 1.22 transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
894 gbeauche 1.10
895     if (reg != -1) {
896 gbeauche 1.34 static const char * x86_byte_reg_str_map[] = {
897     "al", "cl", "dl", "bl",
898     "spl", "bpl", "sil", "dil",
899     "r8b", "r9b", "r10b", "r11b",
900     "r12b", "r13b", "r14b", "r15b",
901     "ah", "ch", "dh", "bh",
902     };
903     static const char * x86_word_reg_str_map[] = {
904     "ax", "cx", "dx", "bx",
905     "sp", "bp", "si", "di",
906     "r8w", "r9w", "r10w", "r11w",
907     "r12w", "r13w", "r14w", "r15w",
908     };
909     static const char *x86_long_reg_str_map[] = {
910     "eax", "ecx", "edx", "ebx",
911     "esp", "ebp", "esi", "edi",
912     "r8d", "r9d", "r10d", "r11d",
913     "r12d", "r13d", "r14d", "r15d",
914     };
915     static const char *x86_quad_reg_str_map[] = {
916     "rax", "rcx", "rdx", "rbx",
917     "rsp", "rbp", "rsi", "rdi",
918     "r8", "r9", "r10", "r11",
919     "r12", "r13", "r14", "r15",
920 gbeauche 1.10 };
921 gbeauche 1.34 const char * reg_str = NULL;
922 gbeauche 1.46 switch (target_size) {
923 gbeauche 1.34 case SIZE_BYTE:
924     reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg];
925     break;
926     case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break;
927     case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break;
928     case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break;
929     }
930     if (reg_str)
931     printf(" %s register %%%s",
932     transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from",
933     reg_str);
934 gbeauche 1.10 }
935     printf(", %d bytes instruction\n", len);
936     #endif
937    
938     regs[X86_REG_EIP] += len;
939 gbeauche 1.13 return true;
940     }
941     #endif
942 gbeauche 1.14
943 gbeauche 1.13 // Decode and skip PPC instruction
944 gbeauche 1.14 #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
945     static bool powerpc_skip_instruction(unsigned int * nip_p, unsigned int * regs)
946 gbeauche 1.13 {
947 gbeauche 1.14 instruction_t instr;
948     powerpc_decode_instruction(&instr, *nip_p, regs);
949 gbeauche 1.13
950 gbeauche 1.22 if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
951 gbeauche 1.13 // Unknown machine code, let it crash. Then patch the decoder
952     return false;
953     }
954    
955     #if DEBUG
956 gbeauche 1.14 printf("%08x: %s %s access", *nip_p,
957     instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : "long",
958 gbeauche 1.22 instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
959 gbeauche 1.14
960     if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
961     printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
962 gbeauche 1.22 if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
963 gbeauche 1.14 printf(" r%d (rd = 0)\n", instr.rd);
964     #endif
965    
966     if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
967     regs[instr.ra] = instr.addr;
968 gbeauche 1.22 if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
969 gbeauche 1.14 regs[instr.rd] = 0;
970 gbeauche 1.13
971 gbeauche 1.14 *nip_p += 4;
972 gbeauche 1.10 return true;
973 gbeauche 1.38 }
974     #endif
975    
976     // Decode and skip MIPS instruction
977     #if (defined(mips) || defined(__mips))
978     enum {
979     #if (defined(sgi) || defined(__sgi))
980     MIPS_REG_EPC = 35,
981     #endif
982     };
983     static bool mips_skip_instruction(greg_t * regs)
984     {
985     unsigned int * epc = (unsigned int *)(unsigned long)regs[MIPS_REG_EPC];
986    
987     if (epc == 0)
988     return false;
989    
990     #if DEBUG
991     printf("IP: %p [%08x]\n", epc, epc[0]);
992     #endif
993    
994     transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
995     transfer_size_t transfer_size = SIZE_LONG;
996     int direction = 0;
997    
998     const unsigned int opcode = epc[0];
999     switch (opcode >> 26) {
1000     case 32: // Load Byte
1001     case 36: // Load Byte Unsigned
1002     transfer_type = SIGSEGV_TRANSFER_LOAD;
1003     transfer_size = SIZE_BYTE;
1004     break;
1005     case 33: // Load Halfword
1006     case 37: // Load Halfword Unsigned
1007     transfer_type = SIGSEGV_TRANSFER_LOAD;
1008     transfer_size = SIZE_WORD;
1009     break;
1010     case 35: // Load Word
1011     case 39: // Load Word Unsigned
1012     transfer_type = SIGSEGV_TRANSFER_LOAD;
1013     transfer_size = SIZE_LONG;
1014     break;
1015     case 34: // Load Word Left
1016     transfer_type = SIGSEGV_TRANSFER_LOAD;
1017     transfer_size = SIZE_LONG;
1018     direction = -1;
1019     break;
1020     case 38: // Load Word Right
1021     transfer_type = SIGSEGV_TRANSFER_LOAD;
1022     transfer_size = SIZE_LONG;
1023     direction = 1;
1024     break;
1025     case 55: // Load Doubleword
1026     transfer_type = SIGSEGV_TRANSFER_LOAD;
1027     transfer_size = SIZE_QUAD;
1028     break;
1029     case 26: // Load Doubleword Left
1030     transfer_type = SIGSEGV_TRANSFER_LOAD;
1031     transfer_size = SIZE_QUAD;
1032     direction = -1;
1033     break;
1034     case 27: // Load Doubleword Right
1035     transfer_type = SIGSEGV_TRANSFER_LOAD;
1036     transfer_size = SIZE_QUAD;
1037     direction = 1;
1038     break;
1039     case 40: // Store Byte
1040     transfer_type = SIGSEGV_TRANSFER_STORE;
1041     transfer_size = SIZE_BYTE;
1042     break;
1043     case 41: // Store Halfword
1044     transfer_type = SIGSEGV_TRANSFER_STORE;
1045     transfer_size = SIZE_WORD;
1046     break;
1047     case 43: // Store Word
1048     case 42: // Store Word Left
1049     case 46: // Store Word Right
1050     transfer_type = SIGSEGV_TRANSFER_STORE;
1051     transfer_size = SIZE_LONG;
1052     break;
1053     case 63: // Store Doubleword
1054     case 44: // Store Doubleword Left
1055     case 45: // Store Doubleword Right
1056     transfer_type = SIGSEGV_TRANSFER_STORE;
1057     transfer_size = SIZE_QUAD;
1058     break;
1059     /* Misc instructions unlikely to be used within CPU emulators */
1060     case 48: // Load Linked Word
1061     transfer_type = SIGSEGV_TRANSFER_LOAD;
1062     transfer_size = SIZE_LONG;
1063     break;
1064     case 52: // Load Linked Doubleword
1065     transfer_type = SIGSEGV_TRANSFER_LOAD;
1066     transfer_size = SIZE_QUAD;
1067     break;
1068     case 56: // Store Conditional Word
1069     transfer_type = SIGSEGV_TRANSFER_STORE;
1070     transfer_size = SIZE_LONG;
1071     break;
1072     case 60: // Store Conditional Doubleword
1073     transfer_type = SIGSEGV_TRANSFER_STORE;
1074     transfer_size = SIZE_QUAD;
1075     break;
1076     }
1077    
1078     if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1079     // Unknown machine code, let it crash. Then patch the decoder
1080     return false;
1081     }
1082    
1083     // Zero target register in case of a load operation
1084     const int reg = (opcode >> 16) & 0x1f;
1085     if (transfer_type == SIGSEGV_TRANSFER_LOAD) {
1086     if (direction == 0)
1087     regs[reg] = 0;
1088     else {
1089     // FIXME: untested code
1090     unsigned long ea = regs[(opcode >> 21) & 0x1f];
1091     ea += (signed long)(signed int)(signed short)(opcode & 0xffff);
1092     const int offset = ea & (transfer_size == SIZE_LONG ? 3 : 7);
1093     unsigned long value;
1094     if (direction > 0) {
1095     const unsigned long rmask = ~((1L << ((offset + 1) * 8)) - 1);
1096     value = regs[reg] & rmask;
1097     }
1098     else {
1099     const unsigned long lmask = (1L << (offset * 8)) - 1;
1100     value = regs[reg] & lmask;
1101     }
1102     // restore most significant bits
1103     if (transfer_size == SIZE_LONG)
1104     value = (signed long)(signed int)value;
1105     regs[reg] = value;
1106     }
1107     }
1108    
1109     #if DEBUG
1110     #if (defined(_ABIN32) || defined(_ABI64))
1111     static const char * mips_gpr_names[32] = {
1112     "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
1113     "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
1114     "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
1115     "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
1116     };
1117     #else
1118     static const char * mips_gpr_names[32] = {
1119     "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
1120     "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
1121     "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
1122     "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
1123     };
1124     #endif
1125     printf("%s %s register %s\n",
1126     transfer_size == SIZE_BYTE ? "byte" :
1127     transfer_size == SIZE_WORD ? "word" :
1128     transfer_size == SIZE_LONG ? "long" :
1129     transfer_size == SIZE_QUAD ? "quad" : "unknown",
1130     transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1131     mips_gpr_names[reg]);
1132     #endif
1133    
1134     regs[MIPS_REG_EPC] += 4;
1135 gbeauche 1.40 return true;
1136     }
1137     #endif
1138    
1139     // Decode and skip SPARC instruction
1140     #if (defined(sparc) || defined(__sparc__))
1141     enum {
1142     #if (defined(__sun__))
1143     SPARC_REG_G1 = REG_G1,
1144     SPARC_REG_O0 = REG_O0,
1145     SPARC_REG_PC = REG_PC,
1146     #endif
1147     };
1148     static bool sparc_skip_instruction(unsigned long * regs, gwindows_t * gwins, struct rwindow * rwin)
1149     {
1150     unsigned int * pc = (unsigned int *)regs[SPARC_REG_PC];
1151    
1152     if (pc == 0)
1153     return false;
1154    
1155     #if DEBUG
1156     printf("IP: %p [%08x]\n", pc, pc[0]);
1157     #endif
1158    
1159     transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1160     transfer_size_t transfer_size = SIZE_LONG;
1161     bool register_pair = false;
1162    
1163     const unsigned int opcode = pc[0];
1164     if ((opcode >> 30) != 3)
1165     return false;
1166     switch ((opcode >> 19) & 0x3f) {
1167     case 9: // Load Signed Byte
1168     case 1: // Load Unsigned Byte
1169     transfer_type = SIGSEGV_TRANSFER_LOAD;
1170     transfer_size = SIZE_BYTE;
1171     break;
1172     case 10:// Load Signed Halfword
1173     case 2: // Load Unsigned Word
1174     transfer_type = SIGSEGV_TRANSFER_LOAD;
1175     transfer_size = SIZE_WORD;
1176     break;
1177     case 8: // Load Word
1178     case 0: // Load Unsigned Word
1179     transfer_type = SIGSEGV_TRANSFER_LOAD;
1180     transfer_size = SIZE_LONG;
1181     break;
1182     case 11:// Load Extended Word
1183     transfer_type = SIGSEGV_TRANSFER_LOAD;
1184     transfer_size = SIZE_QUAD;
1185     break;
1186     case 3: // Load Doubleword
1187     transfer_type = SIGSEGV_TRANSFER_LOAD;
1188     transfer_size = SIZE_LONG;
1189     register_pair = true;
1190     break;
1191     case 5: // Store Byte
1192     transfer_type = SIGSEGV_TRANSFER_STORE;
1193     transfer_size = SIZE_BYTE;
1194     break;
1195     case 6: // Store Halfword
1196     transfer_type = SIGSEGV_TRANSFER_STORE;
1197     transfer_size = SIZE_WORD;
1198     break;
1199     case 4: // Store Word
1200     transfer_type = SIGSEGV_TRANSFER_STORE;
1201     transfer_size = SIZE_LONG;
1202     break;
1203     case 14:// Store Extended Word
1204     transfer_type = SIGSEGV_TRANSFER_STORE;
1205     transfer_size = SIZE_QUAD;
1206     break;
1207     case 7: // Store Doubleword
1208     transfer_type = SIGSEGV_TRANSFER_STORE;
1209     transfer_size = SIZE_WORD;
1210     register_pair = true;
1211     break;
1212     }
1213    
1214     if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1215     // Unknown machine code, let it crash. Then patch the decoder
1216     return false;
1217     }
1218    
1219     // Zero target register in case of a load operation
1220     const int reg = (opcode >> 25) & 0x1f;
1221     if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != 0) {
1222     // FIXME: code to handle local & input registers is not tested
1223     if (reg >= 1 && reg <= 7) {
1224     // global registers
1225     regs[reg - 1 + SPARC_REG_G1] = 0;
1226     }
1227     else if (reg >= 8 && reg <= 15) {
1228     // output registers
1229     regs[reg - 8 + SPARC_REG_O0] = 0;
1230     }
1231     else if (reg >= 16 && reg <= 23) {
1232     // local registers (in register windows)
1233     if (gwins)
1234     gwins->wbuf->rw_local[reg - 16] = 0;
1235     else
1236     rwin->rw_local[reg - 16] = 0;
1237     }
1238     else {
1239     // input registers (in register windows)
1240     if (gwins)
1241     gwins->wbuf->rw_in[reg - 24] = 0;
1242     else
1243     rwin->rw_in[reg - 24] = 0;
1244     }
1245     }
1246    
1247     #if DEBUG
1248     static const char * reg_names[] = {
1249     "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
1250     "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
1251     "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
1252     "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7"
1253     };
1254     printf("%s %s register %s\n",
1255     transfer_size == SIZE_BYTE ? "byte" :
1256     transfer_size == SIZE_WORD ? "word" :
1257     transfer_size == SIZE_LONG ? "long" :
1258     transfer_size == SIZE_QUAD ? "quad" : "unknown",
1259     transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1260     reg_names[reg]);
1261     #endif
1262    
1263     regs[SPARC_REG_PC] += 4;
1264 gbeauche 1.38 return true;
1265 gbeauche 1.10 }
1266     #endif
1267     #endif
1268    
1269 gbeauche 1.44 // Decode and skip ARM instruction
1270     #if (defined(arm) || defined(__arm__))
1271     enum {
1272     #if (defined(__linux__))
1273     ARM_REG_PC = 15,
1274     ARM_REG_CPSR = 16
1275     #endif
1276     };
1277     static bool arm_skip_instruction(unsigned long * regs)
1278     {
1279     unsigned int * pc = (unsigned int *)regs[ARM_REG_PC];
1280    
1281     if (pc == 0)
1282     return false;
1283    
1284     #if DEBUG
1285     printf("IP: %p [%08x]\n", pc, pc[0]);
1286     #endif
1287    
1288     transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1289     transfer_size_t transfer_size = SIZE_UNKNOWN;
1290     enum { op_sdt = 1, op_sdth = 2 };
1291     int op = 0;
1292    
1293     // Handle load/store instructions only
1294     const unsigned int opcode = pc[0];
1295     switch ((opcode >> 25) & 7) {
1296     case 0: // Halfword and Signed Data Transfer (LDRH, STRH, LDRSB, LDRSH)
1297     op = op_sdth;
1298     // Determine transfer size (S/H bits)
1299     switch ((opcode >> 5) & 3) {
1300     case 0: // SWP instruction
1301     break;
1302     case 1: // Unsigned halfwords
1303     case 3: // Signed halfwords
1304     transfer_size = SIZE_WORD;
1305     break;
1306     case 2: // Signed byte
1307     transfer_size = SIZE_BYTE;
1308     break;
1309     }
1310     break;
1311     case 2:
1312     case 3: // Single Data Transfer (LDR, STR)
1313     op = op_sdt;
1314     // Determine transfer size (B bit)
1315     if (((opcode >> 22) & 1) == 1)
1316     transfer_size = SIZE_BYTE;
1317     else
1318     transfer_size = SIZE_LONG;
1319     break;
1320     default:
1321     // FIXME: support load/store mutliple?
1322     return false;
1323     }
1324    
1325     // Check for invalid transfer size (SWP instruction?)
1326     if (transfer_size == SIZE_UNKNOWN)
1327     return false;
1328    
1329     // Determine transfer type (L bit)
1330     if (((opcode >> 20) & 1) == 1)
1331     transfer_type = SIGSEGV_TRANSFER_LOAD;
1332     else
1333     transfer_type = SIGSEGV_TRANSFER_STORE;
1334    
1335     // Compute offset
1336     int offset;
1337     if (((opcode >> 25) & 1) == 0) {
1338     if (op == op_sdt)
1339     offset = opcode & 0xfff;
1340     else if (op == op_sdth) {
1341     int rm = opcode & 0xf;
1342     if (((opcode >> 22) & 1) == 0) {
1343     // register offset
1344     offset = regs[rm];
1345     }
1346     else {
1347     // immediate offset
1348     offset = ((opcode >> 4) & 0xf0) | (opcode & 0x0f);
1349     }
1350     }
1351     }
1352     else {
1353     const int rm = opcode & 0xf;
1354     const int sh = (opcode >> 7) & 0x1f;
1355     if (((opcode >> 4) & 1) == 1) {
1356     // we expect only legal load/store instructions
1357     printf("FATAL: invalid shift operand\n");
1358     return false;
1359     }
1360     const unsigned int v = regs[rm];
1361     switch ((opcode >> 5) & 3) {
1362     case 0: // logical shift left
1363     offset = sh ? v << sh : v;
1364     break;
1365     case 1: // logical shift right
1366     offset = sh ? v >> sh : 0;
1367     break;
1368     case 2: // arithmetic shift right
1369     if (sh)
1370     offset = ((signed int)v) >> sh;
1371     else
1372     offset = (v & 0x80000000) ? 0xffffffff : 0;
1373     break;
1374     case 3: // rotate right
1375     if (sh)
1376     offset = (v >> sh) | (v << (32 - sh));
1377     else
1378     offset = (v >> 1) | ((regs[ARM_REG_CPSR] << 2) & 0x80000000);
1379     break;
1380     }
1381     }
1382     if (((opcode >> 23) & 1) == 0)
1383     offset = -offset;
1384    
1385     int rd = (opcode >> 12) & 0xf;
1386     int rn = (opcode >> 16) & 0xf;
1387     #if DEBUG
1388     static const char * reg_names[] = {
1389     "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1390     "r9", "r9", "sl", "fp", "ip", "sp", "lr", "pc"
1391     };
1392     printf("%s %s register %s\n",
1393     transfer_size == SIZE_BYTE ? "byte" :
1394     transfer_size == SIZE_WORD ? "word" :
1395     transfer_size == SIZE_LONG ? "long" : "unknown",
1396     transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1397     reg_names[rd]);
1398     #endif
1399    
1400     unsigned int base = regs[rn];
1401     if (((opcode >> 24) & 1) == 1)
1402     base += offset;
1403    
1404     if (transfer_type == SIGSEGV_TRANSFER_LOAD)
1405     regs[rd] = 0;
1406    
1407     if (((opcode >> 24) & 1) == 0) // post-index addressing
1408     regs[rn] += offset;
1409     else if (((opcode >> 21) & 1) == 1) // write-back address into base
1410     regs[rn] = base;
1411    
1412     regs[ARM_REG_PC] += 4;
1413     return true;
1414     }
1415     #endif
1416    
1417    
1418 gbeauche 1.1 // Fallbacks
1419     #ifndef SIGSEGV_FAULT_INSTRUCTION
1420     #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_INVALID_PC
1421     #endif
1422 gbeauche 1.30 #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
1423     #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
1424     #endif
1425 gbeauche 1.31 #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
1426     #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP) sigsegv_fault_handler(ADDR, IP)
1427     #endif
1428 gbeauche 1.1
1429 gbeauche 1.2 // SIGSEGV recovery supported ?
1430     #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
1431     #define HAVE_SIGSEGV_RECOVERY
1432     #endif
1433    
1434 gbeauche 1.1
1435     /*
1436     * SIGSEGV global handler
1437     */
1438    
1439 gbeauche 1.27 #if defined(HAVE_SIGSEGV_RECOVERY) || defined(HAVE_MACH_EXCEPTIONS)
1440     // This function handles the badaccess to memory.
1441     // It is called from the signal handler or the exception handler.
1442 gbeauche 1.30 static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
1443 gbeauche 1.1 {
1444 gbeauche 1.10 sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
1445     sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
1446    
1447 gbeauche 1.1 // Call user's handler and reinstall the global handler, if required
1448 gbeauche 1.31 switch (SIGSEGV_FAULT_HANDLER_INVOKE(fault_address, fault_instruction)) {
1449 gbeauche 1.24 case SIGSEGV_RETURN_SUCCESS:
1450 gbeauche 1.27 return true;
1451    
1452 gbeauche 1.10 #if HAVE_SIGSEGV_SKIP_INSTRUCTION
1453 gbeauche 1.24 case SIGSEGV_RETURN_SKIP_INSTRUCTION:
1454 gbeauche 1.27 // Call the instruction skipper with the register file
1455     // available
1456     if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
1457     #ifdef HAVE_MACH_EXCEPTIONS
1458     // Unlike UNIX signals where the thread state
1459     // is modified off of the stack, in Mach we
1460     // need to actually call thread_set_state to
1461     // have the register values updated.
1462     kern_return_t krc;
1463    
1464     krc = thread_set_state(thread,
1465     MACHINE_THREAD_STATE, (thread_state_t)state,
1466     MACHINE_THREAD_STATE_COUNT);
1467     MACH_CHECK_ERROR (thread_get_state, krc);
1468     #endif
1469     return true;
1470     }
1471 gbeauche 1.24 break;
1472     #endif
1473 nigel 1.43 case SIGSEGV_RETURN_FAILURE:
1474     return false;
1475 gbeauche 1.10 }
1476 gbeauche 1.27
1477     // We can't do anything with the fault_address, dump state?
1478     if (sigsegv_state_dumper != 0)
1479     sigsegv_state_dumper(fault_address, fault_instruction);
1480    
1481     return false;
1482     }
1483     #endif
1484    
1485    
1486     /*
1487     * There are two mechanisms for handling a bad memory access,
1488     * Mach exceptions and UNIX signals. The implementation specific
1489     * code appears below. Its reponsibility is to call handle_badaccess
1490     * which is the routine that handles the fault in an implementation
1491     * agnostic manner. The implementation specific code below is then
1492     * reponsible for checking whether handle_badaccess was able
1493     * to handle the memory access error and perform any implementation
1494     * specific tasks necessary afterwards.
1495     */
1496    
1497     #ifdef HAVE_MACH_EXCEPTIONS
1498     /*
1499     * We need to forward all exceptions that we do not handle.
1500     * This is important, there are many exceptions that may be
1501     * handled by other exception handlers. For example debuggers
1502     * use exceptions and the exception hander is in another
1503     * process in such a case. (Timothy J. Wood states in his
1504     * message to the list that he based this code on that from
1505     * gdb for Darwin.)
1506     */
1507     static inline kern_return_t
1508     forward_exception(mach_port_t thread_port,
1509     mach_port_t task_port,
1510     exception_type_t exception_type,
1511     exception_data_t exception_data,
1512     mach_msg_type_number_t data_count,
1513     ExceptionPorts *oldExceptionPorts)
1514     {
1515     kern_return_t kret;
1516     unsigned int portIndex;
1517     mach_port_t port;
1518     exception_behavior_t behavior;
1519     thread_state_flavor_t flavor;
1520     thread_state_t thread_state;
1521     mach_msg_type_number_t thread_state_count;
1522    
1523     for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
1524     if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
1525     // This handler wants the exception
1526     break;
1527     }
1528     }
1529    
1530     if (portIndex >= oldExceptionPorts->maskCount) {
1531     fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
1532     return KERN_FAILURE;
1533     }
1534    
1535     port = oldExceptionPorts->handlers[portIndex];
1536     behavior = oldExceptionPorts->behaviors[portIndex];
1537     flavor = oldExceptionPorts->flavors[portIndex];
1538    
1539     /*
1540     fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
1541     */
1542    
1543     if (behavior != EXCEPTION_DEFAULT) {
1544     thread_state_count = THREAD_STATE_MAX;
1545     kret = thread_get_state (thread_port, flavor, thread_state,
1546     &thread_state_count);
1547     MACH_CHECK_ERROR (thread_get_state, kret);
1548     }
1549    
1550     switch (behavior) {
1551     case EXCEPTION_DEFAULT:
1552     // fprintf(stderr, "forwarding to exception_raise\n");
1553     kret = exception_raise(port, thread_port, task_port, exception_type,
1554     exception_data, data_count);
1555     MACH_CHECK_ERROR (exception_raise, kret);
1556     break;
1557     case EXCEPTION_STATE:
1558     // fprintf(stderr, "forwarding to exception_raise_state\n");
1559     kret = exception_raise_state(port, exception_type, exception_data,
1560     data_count, &flavor,
1561     thread_state, thread_state_count,
1562     thread_state, &thread_state_count);
1563     MACH_CHECK_ERROR (exception_raise_state, kret);
1564     break;
1565     case EXCEPTION_STATE_IDENTITY:
1566     // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
1567     kret = exception_raise_state_identity(port, thread_port, task_port,
1568     exception_type, exception_data,
1569     data_count, &flavor,
1570     thread_state, thread_state_count,
1571     thread_state, &thread_state_count);
1572     MACH_CHECK_ERROR (exception_raise_state_identity, kret);
1573     break;
1574     default:
1575     fprintf(stderr, "forward_exception got unknown behavior\n");
1576     break;
1577     }
1578    
1579     if (behavior != EXCEPTION_DEFAULT) {
1580     kret = thread_set_state (thread_port, flavor, thread_state,
1581     thread_state_count);
1582     MACH_CHECK_ERROR (thread_set_state, kret);
1583     }
1584    
1585     return KERN_SUCCESS;
1586     }
1587    
1588     /*
1589     * This is the code that actually handles the exception.
1590     * It is called by exc_server. For Darwin 5 Apple changed
1591     * this a bit from how this family of functions worked in
1592     * Mach. If you are familiar with that it is a little
1593     * different. The main variation that concerns us here is
1594     * that code is an array of exception specific codes and
1595     * codeCount is a count of the number of codes in the code
1596     * array. In typical Mach all exceptions have a code
1597     * and sub-code. It happens to be the case that for a
1598     * EXC_BAD_ACCESS exception the first entry is the type of
1599     * bad access that occurred and the second entry is the
1600     * faulting address so these entries correspond exactly to
1601     * how the code and sub-code are used on Mach.
1602     *
1603     * This is a MIG interface. No code in Basilisk II should
1604     * call this directley. This has to have external C
1605     * linkage because that is what exc_server expects.
1606     */
1607     kern_return_t
1608     catch_exception_raise(mach_port_t exception_port,
1609     mach_port_t thread,
1610     mach_port_t task,
1611     exception_type_t exception,
1612     exception_data_t code,
1613     mach_msg_type_number_t codeCount)
1614     {
1615     ppc_thread_state_t state;
1616     kern_return_t krc;
1617    
1618     if ((exception == EXC_BAD_ACCESS) && (codeCount >= 2)) {
1619     if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
1620     return KERN_SUCCESS;
1621     }
1622    
1623     // In Mach we do not need to remove the exception handler.
1624     // If we forward the exception, eventually some exception handler
1625     // will take care of this exception.
1626     krc = forward_exception(thread, task, exception, code, codeCount, &ports);
1627    
1628     return krc;
1629     }
1630     #endif
1631    
1632     #ifdef HAVE_SIGSEGV_RECOVERY
1633     // Handle bad memory accesses with signal handler
1634     static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1635     {
1636     // Call handler and reinstall the global handler, if required
1637     if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
1638     #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1639     sigsegv_do_install_handler(sig);
1640     #endif
1641     return;
1642     }
1643 gbeauche 1.10
1644 gbeauche 1.27 // Failure: reinstall default handler for "safe" crash
1645 gbeauche 1.1 #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1646 gbeauche 1.27 SIGSEGV_ALL_SIGNALS
1647 gbeauche 1.1 #undef FAULT_HANDLER
1648     }
1649 gbeauche 1.2 #endif
1650 gbeauche 1.1
1651    
1652     /*
1653     * SIGSEGV handler initialization
1654     */
1655    
1656     #if defined(HAVE_SIGINFO_T)
1657     static bool sigsegv_do_install_handler(int sig)
1658     {
1659     // Setup SIGSEGV handler to process writes to frame buffer
1660     #ifdef HAVE_SIGACTION
1661 gbeauche 1.22 struct sigaction sigsegv_sa;
1662     sigemptyset(&sigsegv_sa.sa_mask);
1663     sigsegv_sa.sa_sigaction = sigsegv_handler;
1664     sigsegv_sa.sa_flags = SA_SIGINFO;
1665     return (sigaction(sig, &sigsegv_sa, 0) == 0);
1666 gbeauche 1.1 #else
1667     return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1668     #endif
1669     }
1670 gbeauche 1.2 #endif
1671    
1672     #if defined(HAVE_SIGCONTEXT_SUBTERFUGE)
1673 gbeauche 1.1 static bool sigsegv_do_install_handler(int sig)
1674     {
1675     // Setup SIGSEGV handler to process writes to frame buffer
1676     #ifdef HAVE_SIGACTION
1677 gbeauche 1.22 struct sigaction sigsegv_sa;
1678     sigemptyset(&sigsegv_sa.sa_mask);
1679     sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
1680     sigsegv_sa.sa_flags = 0;
1681 gbeauche 1.1 #if !EMULATED_68K && defined(__NetBSD__)
1682 gbeauche 1.22 sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
1683     sigsegv_sa.sa_flags |= SA_ONSTACK;
1684 gbeauche 1.1 #endif
1685 gbeauche 1.22 return (sigaction(sig, &sigsegv_sa, 0) == 0);
1686 gbeauche 1.1 #else
1687     return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1688     #endif
1689     }
1690     #endif
1691    
1692 gbeauche 1.27 #if defined(HAVE_MACH_EXCEPTIONS)
1693     static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1694     {
1695     /*
1696     * Except for the exception port functions, this should be
1697     * pretty much stock Mach. If later you choose to support
1698     * other Mach's besides Darwin, just check for __MACH__
1699     * here and __APPLE__ where the actual differences are.
1700     */
1701     #if defined(__APPLE__) && defined(__MACH__)
1702     if (sigsegv_fault_handler != NULL) {
1703     sigsegv_fault_handler = handler;
1704     return true;
1705     }
1706    
1707     kern_return_t krc;
1708    
1709     // create the the exception port
1710     krc = mach_port_allocate(mach_task_self(),
1711     MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
1712     if (krc != KERN_SUCCESS) {
1713     mach_error("mach_port_allocate", krc);
1714     return false;
1715     }
1716    
1717     // add a port send right
1718     krc = mach_port_insert_right(mach_task_self(),
1719     _exceptionPort, _exceptionPort,
1720     MACH_MSG_TYPE_MAKE_SEND);
1721     if (krc != KERN_SUCCESS) {
1722     mach_error("mach_port_insert_right", krc);
1723     return false;
1724     }
1725    
1726     // get the old exception ports
1727     ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
1728     krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
1729     &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
1730     if (krc != KERN_SUCCESS) {
1731     mach_error("thread_get_exception_ports", krc);
1732     return false;
1733     }
1734    
1735     // set the new exception port
1736     //
1737     // We could have used EXCEPTION_STATE_IDENTITY instead of
1738     // EXCEPTION_DEFAULT to get the thread state in the initial
1739     // message, but it turns out that in the common case this is not
1740     // neccessary. If we need it we can later ask for it from the
1741     // suspended thread.
1742     //
1743     // Even with THREAD_STATE_NONE, Darwin provides the program
1744     // counter in the thread state. The comments in the header file
1745     // seem to imply that you can count on the GPR's on an exception
1746     // as well but just to be safe I use MACHINE_THREAD_STATE because
1747     // you have to ask for all of the GPR's anyway just to get the
1748     // program counter. In any case because of update effective
1749     // address from immediate and update address from effective
1750     // addresses of ra and rb modes (as good an name as any for these
1751     // addressing modes) used in PPC instructions, you will need the
1752     // GPR state anyway.
1753     krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
1754     EXCEPTION_DEFAULT, MACHINE_THREAD_STATE);
1755     if (krc != KERN_SUCCESS) {
1756     mach_error("thread_set_exception_ports", krc);
1757     return false;
1758     }
1759    
1760     // create the exception handler thread
1761     if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
1762     (void)fprintf(stderr, "creation of exception thread failed\n");
1763     return false;
1764     }
1765    
1766     // do not care about the exception thread any longer, let is run standalone
1767     (void)pthread_detach(exc_thread);
1768    
1769     sigsegv_fault_handler = handler;
1770     return true;
1771     #else
1772     return false;
1773     #endif
1774     }
1775     #endif
1776    
1777 gbeauche 1.12 bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1778 gbeauche 1.1 {
1779 gbeauche 1.27 #if defined(HAVE_SIGSEGV_RECOVERY)
1780 gbeauche 1.1 bool success = true;
1781     #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
1782     SIGSEGV_ALL_SIGNALS
1783     #undef FAULT_HANDLER
1784 gbeauche 1.27 if (success)
1785     sigsegv_fault_handler = handler;
1786 gbeauche 1.1 return success;
1787 gbeauche 1.27 #elif defined(HAVE_MACH_EXCEPTIONS)
1788     return sigsegv_do_install_handler(handler);
1789 gbeauche 1.1 #else
1790     // FAIL: no siginfo_t nor sigcontext subterfuge is available
1791     return false;
1792     #endif
1793     }
1794    
1795    
1796     /*
1797     * SIGSEGV handler deinitialization
1798     */
1799    
1800     void sigsegv_deinstall_handler(void)
1801     {
1802 gbeauche 1.27 // We do nothing for Mach exceptions, the thread would need to be
1803     // suspended if not already so, and we might mess with other
1804     // exception handlers that came after we registered ours. There is
1805     // no need to remove the exception handler, in fact this function is
1806     // not called anywhere in Basilisk II.
1807 gbeauche 1.2 #ifdef HAVE_SIGSEGV_RECOVERY
1808 gbeauche 1.12 sigsegv_fault_handler = 0;
1809 gbeauche 1.1 #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1810     SIGSEGV_ALL_SIGNALS
1811     #undef FAULT_HANDLER
1812 gbeauche 1.2 #endif
1813 gbeauche 1.1 }
1814    
1815 gbeauche 1.10
1816     /*
1817     * Set callback function when we cannot handle the fault
1818     */
1819    
1820 gbeauche 1.12 void sigsegv_set_dump_state(sigsegv_state_dumper_t handler)
1821 gbeauche 1.10 {
1822 gbeauche 1.12 sigsegv_state_dumper = handler;
1823 gbeauche 1.10 }
1824    
1825    
1826 gbeauche 1.1 /*
1827     * Test program used for configure/test
1828     */
1829    
1830 gbeauche 1.4 #ifdef CONFIGURE_TEST_SIGSEGV_RECOVERY
1831 gbeauche 1.1 #include <stdio.h>
1832     #include <stdlib.h>
1833     #include <fcntl.h>
1834     #include <sys/mman.h>
1835 gbeauche 1.4 #include "vm_alloc.h"
1836 gbeauche 1.1
1837 gbeauche 1.32 const int REF_INDEX = 123;
1838     const int REF_VALUE = 45;
1839    
1840 gbeauche 1.1 static int page_size;
1841 gbeauche 1.3 static volatile char * page = 0;
1842     static volatile int handler_called = 0;
1843 gbeauche 1.1
1844 gbeauche 1.32 #ifdef __GNUC__
1845     // Code range where we expect the fault to come from
1846     static void *b_region, *e_region;
1847     #endif
1848    
1849 gbeauche 1.24 static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1850 gbeauche 1.1 {
1851 gbeauche 1.39 #if DEBUG
1852     printf("sigsegv_test_handler(%p, %p)\n", fault_address, instruction_address);
1853     printf("expected fault at %p\n", page + REF_INDEX);
1854     #ifdef __GNUC__
1855     printf("expected instruction address range: %p-%p\n", b_region, e_region);
1856     #endif
1857     #endif
1858 gbeauche 1.1 handler_called++;
1859 gbeauche 1.32 if ((fault_address - REF_INDEX) != page)
1860 gbeauche 1.29 exit(10);
1861 gbeauche 1.32 #ifdef __GNUC__
1862     // Make sure reported fault instruction address falls into
1863     // expected code range
1864     if (instruction_address != SIGSEGV_INVALID_PC
1865     && ((instruction_address < (sigsegv_address_t)b_region) ||
1866     (instruction_address >= (sigsegv_address_t)e_region)))
1867     exit(11);
1868     #endif
1869 gbeauche 1.4 if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
1870 gbeauche 1.32 exit(12);
1871 gbeauche 1.24 return SIGSEGV_RETURN_SUCCESS;
1872 gbeauche 1.1 }
1873    
1874 gbeauche 1.10 #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1875 gbeauche 1.24 static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1876 gbeauche 1.10 {
1877 gbeauche 1.44 #if DEBUG
1878     printf("sigsegv_insn_handler(%p, %p)\n", fault_address, instruction_address);
1879     #endif
1880 gbeauche 1.28 if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
1881     #ifdef __GNUC__
1882     // Make sure reported fault instruction address falls into
1883     // expected code range
1884     if (instruction_address != SIGSEGV_INVALID_PC
1885     && ((instruction_address < (sigsegv_address_t)b_region) ||
1886     (instruction_address >= (sigsegv_address_t)e_region)))
1887     return SIGSEGV_RETURN_FAILURE;
1888     #endif
1889 gbeauche 1.26 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
1890 gbeauche 1.28 }
1891    
1892 gbeauche 1.24 return SIGSEGV_RETURN_FAILURE;
1893 gbeauche 1.10 }
1894 gbeauche 1.34
1895     // More sophisticated tests for instruction skipper
1896     static bool arch_insn_skipper_tests()
1897     {
1898     #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
1899     static const unsigned char code[] = {
1900     0x8a, 0x00, // mov (%eax),%al
1901     0x8a, 0x2c, 0x18, // mov (%eax,%ebx,1),%ch
1902     0x88, 0x20, // mov %ah,(%eax)
1903     0x88, 0x08, // mov %cl,(%eax)
1904     0x66, 0x8b, 0x00, // mov (%eax),%ax
1905     0x66, 0x8b, 0x0c, 0x18, // mov (%eax,%ebx,1),%cx
1906     0x66, 0x89, 0x00, // mov %ax,(%eax)
1907     0x66, 0x89, 0x0c, 0x18, // mov %cx,(%eax,%ebx,1)
1908     0x8b, 0x00, // mov (%eax),%eax
1909     0x8b, 0x0c, 0x18, // mov (%eax,%ebx,1),%ecx
1910     0x89, 0x00, // mov %eax,(%eax)
1911     0x89, 0x0c, 0x18, // mov %ecx,(%eax,%ebx,1)
1912     #if defined(__x86_64__)
1913     0x44, 0x8a, 0x00, // mov (%rax),%r8b
1914     0x44, 0x8a, 0x20, // mov (%rax),%r12b
1915     0x42, 0x8a, 0x3c, 0x10, // mov (%rax,%r10,1),%dil
1916     0x44, 0x88, 0x00, // mov %r8b,(%rax)
1917     0x44, 0x88, 0x20, // mov %r12b,(%rax)
1918     0x42, 0x88, 0x3c, 0x10, // mov %dil,(%rax,%r10,1)
1919     0x66, 0x44, 0x8b, 0x00, // mov (%rax),%r8w
1920     0x66, 0x42, 0x8b, 0x0c, 0x10, // mov (%rax,%r10,1),%cx
1921     0x66, 0x44, 0x89, 0x00, // mov %r8w,(%rax)
1922     0x66, 0x42, 0x89, 0x0c, 0x10, // mov %cx,(%rax,%r10,1)
1923     0x44, 0x8b, 0x00, // mov (%rax),%r8d
1924     0x42, 0x8b, 0x0c, 0x10, // mov (%rax,%r10,1),%ecx
1925     0x44, 0x89, 0x00, // mov %r8d,(%rax)
1926     0x42, 0x89, 0x0c, 0x10, // mov %ecx,(%rax,%r10,1)
1927     0x48, 0x8b, 0x08, // mov (%rax),%rcx
1928     0x4c, 0x8b, 0x18, // mov (%rax),%r11
1929     0x4a, 0x8b, 0x0c, 0x10, // mov (%rax,%r10,1),%rcx
1930     0x4e, 0x8b, 0x1c, 0x10, // mov (%rax,%r10,1),%r11
1931     0x48, 0x89, 0x08, // mov %rcx,(%rax)
1932     0x4c, 0x89, 0x18, // mov %r11,(%rax)
1933     0x4a, 0x89, 0x0c, 0x10, // mov %rcx,(%rax,%r10,1)
1934     0x4e, 0x89, 0x1c, 0x10, // mov %r11,(%rax,%r10,1)
1935     #endif
1936     0 // end
1937     };
1938     const int N_REGS = 20;
1939     unsigned long regs[N_REGS];
1940     for (int i = 0; i < N_REGS; i++)
1941     regs[i] = i;
1942     const unsigned long start_code = (unsigned long)&code;
1943     regs[X86_REG_EIP] = start_code;
1944     while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1)
1945     && ix86_skip_instruction(regs))
1946     ; /* simply iterate */
1947     return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1);
1948     #endif
1949     return true;
1950     }
1951 gbeauche 1.10 #endif
1952    
1953 gbeauche 1.1 int main(void)
1954     {
1955 gbeauche 1.4 if (vm_init() < 0)
1956 gbeauche 1.1 return 1;
1957    
1958     page_size = getpagesize();
1959 gbeauche 1.4 if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
1960 gbeauche 1.29 return 2;
1961 gbeauche 1.4
1962 gbeauche 1.32 memset((void *)page, 0, page_size);
1963 gbeauche 1.4 if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
1964 gbeauche 1.29 return 3;
1965 gbeauche 1.1
1966     if (!sigsegv_install_handler(sigsegv_test_handler))
1967 gbeauche 1.29 return 4;
1968 gbeauche 1.1
1969 gbeauche 1.32 #ifdef __GNUC__
1970     b_region = &&L_b_region1;
1971     e_region = &&L_e_region1;
1972     #endif
1973     L_b_region1:
1974     page[REF_INDEX] = REF_VALUE;
1975     if (page[REF_INDEX] != REF_VALUE)
1976     exit(20);
1977     page[REF_INDEX] = REF_VALUE;
1978     L_e_region1:
1979    
1980 gbeauche 1.1 if (handler_called != 1)
1981 gbeauche 1.29 return 5;
1982 gbeauche 1.10
1983     #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1984     if (!sigsegv_install_handler(sigsegv_insn_handler))
1985 gbeauche 1.29 return 6;
1986 gbeauche 1.10
1987 gbeauche 1.17 if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
1988 gbeauche 1.29 return 7;
1989 gbeauche 1.10
1990     for (int i = 0; i < page_size; i++)
1991     page[i] = (i + 1) % page_size;
1992    
1993     if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
1994 gbeauche 1.29 return 8;
1995 gbeauche 1.10
1996     #define TEST_SKIP_INSTRUCTION(TYPE) do { \
1997 gbeauche 1.34 const unsigned long TAG = 0x12345678 | \
1998     (sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0); \
1999 gbeauche 1.10 TYPE data = *((TYPE *)(page + sizeof(TYPE))); \
2000 gbeauche 1.34 volatile unsigned long effect = data + TAG; \
2001 gbeauche 1.10 if (effect != TAG) \
2002 gbeauche 1.29 return 9; \
2003 gbeauche 1.10 } while (0)
2004    
2005 gbeauche 1.28 #ifdef __GNUC__
2006 gbeauche 1.32 b_region = &&L_b_region2;
2007     e_region = &&L_e_region2;
2008 gbeauche 1.28 #endif
2009 gbeauche 1.32 L_b_region2:
2010 gbeauche 1.10 TEST_SKIP_INSTRUCTION(unsigned char);
2011     TEST_SKIP_INSTRUCTION(unsigned short);
2012     TEST_SKIP_INSTRUCTION(unsigned int);
2013 gbeauche 1.34 TEST_SKIP_INSTRUCTION(unsigned long);
2014 gbeauche 1.44 TEST_SKIP_INSTRUCTION(signed char);
2015     TEST_SKIP_INSTRUCTION(signed short);
2016     TEST_SKIP_INSTRUCTION(signed int);
2017     TEST_SKIP_INSTRUCTION(signed long);
2018 gbeauche 1.32 L_e_region2:
2019 gbeauche 1.1
2020 gbeauche 1.34 if (!arch_insn_skipper_tests())
2021     return 20;
2022 gbeauche 1.35 #endif
2023 gbeauche 1.34
2024 gbeauche 1.4 vm_exit();
2025 gbeauche 1.1 return 0;
2026     }
2027     #endif