1 |
gbeauche |
1.1 |
/* |
2 |
|
|
* sigsegv.cpp - SIGSEGV signals support |
3 |
|
|
* |
4 |
|
|
* Derived from Bruno Haible's work on his SIGSEGV library for clisp |
5 |
|
|
* <http://clisp.sourceforge.net/> |
6 |
|
|
* |
7 |
gbeauche |
1.27 |
* MacOS X support derived from the post by Timothy J. Wood to the |
8 |
|
|
* omnigroup macosx-dev list: |
9 |
|
|
* Mach Exception Handlers 101 (Was Re: ptrace, gdb) |
10 |
|
|
* tjw@omnigroup.com Sun, 4 Jun 2000 |
11 |
|
|
* www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html |
12 |
|
|
* |
13 |
cebix |
1.7 |
* Basilisk II (C) 1997-2002 Christian Bauer |
14 |
gbeauche |
1.1 |
* |
15 |
|
|
* This program is free software; you can redistribute it and/or modify |
16 |
|
|
* it under the terms of the GNU General Public License as published by |
17 |
|
|
* the Free Software Foundation; either version 2 of the License, or |
18 |
|
|
* (at your option) any later version. |
19 |
|
|
* |
20 |
|
|
* This program is distributed in the hope that it will be useful, |
21 |
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
22 |
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
23 |
|
|
* GNU General Public License for more details. |
24 |
|
|
* |
25 |
|
|
* You should have received a copy of the GNU General Public License |
26 |
|
|
* along with this program; if not, write to the Free Software |
27 |
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
28 |
|
|
*/ |
29 |
|
|
|
30 |
|
|
#ifdef HAVE_UNISTD_H |
31 |
|
|
#include <unistd.h> |
32 |
|
|
#endif |
33 |
|
|
|
34 |
|
|
#ifdef HAVE_CONFIG_H |
35 |
|
|
#include "config.h" |
36 |
|
|
#endif |
37 |
|
|
|
38 |
gbeauche |
1.22 |
#include <list> |
39 |
gbeauche |
1.1 |
#include <signal.h> |
40 |
|
|
#include "sigsegv.h" |
41 |
|
|
|
42 |
gbeauche |
1.22 |
#ifndef NO_STD_NAMESPACE |
43 |
|
|
using std::list; |
44 |
|
|
#endif |
45 |
|
|
|
46 |
gbeauche |
1.1 |
// Return value type of a signal handler (standard type if not defined) |
47 |
|
|
#ifndef RETSIGTYPE |
48 |
|
|
#define RETSIGTYPE void |
49 |
|
|
#endif |
50 |
|
|
|
51 |
|
|
// Type of the system signal handler |
52 |
|
|
typedef RETSIGTYPE (*signal_handler)(int); |
53 |
|
|
|
54 |
|
|
// User's SIGSEGV handler |
55 |
gbeauche |
1.12 |
static sigsegv_fault_handler_t sigsegv_fault_handler = 0; |
56 |
gbeauche |
1.1 |
|
57 |
gbeauche |
1.10 |
// Function called to dump state if we can't handle the fault |
58 |
gbeauche |
1.12 |
static sigsegv_state_dumper_t sigsegv_state_dumper = 0; |
59 |
gbeauche |
1.10 |
|
60 |
gbeauche |
1.1 |
// Actual SIGSEGV handler installer |
61 |
|
|
static bool sigsegv_do_install_handler(int sig); |
62 |
|
|
|
63 |
|
|
|
64 |
|
|
/* |
65 |
gbeauche |
1.14 |
* Instruction decoding aids |
66 |
|
|
*/ |
67 |
|
|
|
68 |
|
|
// Transfer size |
69 |
|
|
enum transfer_size_t { |
70 |
|
|
SIZE_UNKNOWN, |
71 |
|
|
SIZE_BYTE, |
72 |
gbeauche |
1.34 |
SIZE_WORD, // 2 bytes |
73 |
|
|
SIZE_LONG, // 4 bytes |
74 |
|
|
SIZE_QUAD, // 8 bytes |
75 |
gbeauche |
1.14 |
}; |
76 |
|
|
|
77 |
gbeauche |
1.23 |
// Transfer type |
78 |
|
|
typedef sigsegv_transfer_type_t transfer_type_t; |
79 |
|
|
|
80 |
gbeauche |
1.14 |
#if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__)) |
81 |
|
|
// Addressing mode |
82 |
|
|
enum addressing_mode_t { |
83 |
|
|
MODE_UNKNOWN, |
84 |
|
|
MODE_NORM, |
85 |
|
|
MODE_U, |
86 |
|
|
MODE_X, |
87 |
|
|
MODE_UX |
88 |
|
|
}; |
89 |
|
|
|
90 |
|
|
// Decoded instruction |
91 |
|
|
struct instruction_t { |
92 |
|
|
transfer_type_t transfer_type; |
93 |
|
|
transfer_size_t transfer_size; |
94 |
|
|
addressing_mode_t addr_mode; |
95 |
|
|
unsigned int addr; |
96 |
|
|
char ra, rd; |
97 |
|
|
}; |
98 |
|
|
|
99 |
|
|
static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned int * gpr) |
100 |
|
|
{ |
101 |
|
|
// Get opcode and divide into fields |
102 |
|
|
unsigned int opcode = *((unsigned int *)nip); |
103 |
|
|
unsigned int primop = opcode >> 26; |
104 |
|
|
unsigned int exop = (opcode >> 1) & 0x3ff; |
105 |
|
|
unsigned int ra = (opcode >> 16) & 0x1f; |
106 |
|
|
unsigned int rb = (opcode >> 11) & 0x1f; |
107 |
|
|
unsigned int rd = (opcode >> 21) & 0x1f; |
108 |
|
|
signed int imm = (signed short)(opcode & 0xffff); |
109 |
|
|
|
110 |
|
|
// Analyze opcode |
111 |
gbeauche |
1.22 |
transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN; |
112 |
gbeauche |
1.14 |
transfer_size_t transfer_size = SIZE_UNKNOWN; |
113 |
|
|
addressing_mode_t addr_mode = MODE_UNKNOWN; |
114 |
|
|
switch (primop) { |
115 |
|
|
case 31: |
116 |
|
|
switch (exop) { |
117 |
|
|
case 23: // lwzx |
118 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break; |
119 |
gbeauche |
1.14 |
case 55: // lwzux |
120 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break; |
121 |
gbeauche |
1.14 |
case 87: // lbzx |
122 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break; |
123 |
gbeauche |
1.14 |
case 119: // lbzux |
124 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break; |
125 |
gbeauche |
1.14 |
case 151: // stwx |
126 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break; |
127 |
gbeauche |
1.14 |
case 183: // stwux |
128 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break; |
129 |
gbeauche |
1.14 |
case 215: // stbx |
130 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break; |
131 |
gbeauche |
1.14 |
case 247: // stbux |
132 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break; |
133 |
gbeauche |
1.14 |
case 279: // lhzx |
134 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break; |
135 |
gbeauche |
1.14 |
case 311: // lhzux |
136 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break; |
137 |
gbeauche |
1.14 |
case 343: // lhax |
138 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break; |
139 |
gbeauche |
1.14 |
case 375: // lhaux |
140 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break; |
141 |
gbeauche |
1.14 |
case 407: // sthx |
142 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break; |
143 |
gbeauche |
1.14 |
case 439: // sthux |
144 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break; |
145 |
gbeauche |
1.14 |
} |
146 |
|
|
break; |
147 |
|
|
|
148 |
|
|
case 32: // lwz |
149 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break; |
150 |
gbeauche |
1.14 |
case 33: // lwzu |
151 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break; |
152 |
gbeauche |
1.14 |
case 34: // lbz |
153 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break; |
154 |
gbeauche |
1.14 |
case 35: // lbzu |
155 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break; |
156 |
gbeauche |
1.14 |
case 36: // stw |
157 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break; |
158 |
gbeauche |
1.14 |
case 37: // stwu |
159 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break; |
160 |
gbeauche |
1.14 |
case 38: // stb |
161 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break; |
162 |
gbeauche |
1.14 |
case 39: // stbu |
163 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break; |
164 |
gbeauche |
1.14 |
case 40: // lhz |
165 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break; |
166 |
gbeauche |
1.14 |
case 41: // lhzu |
167 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break; |
168 |
gbeauche |
1.14 |
case 42: // lha |
169 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break; |
170 |
gbeauche |
1.14 |
case 43: // lhau |
171 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break; |
172 |
gbeauche |
1.14 |
case 44: // sth |
173 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break; |
174 |
gbeauche |
1.14 |
case 45: // sthu |
175 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break; |
176 |
gbeauche |
1.14 |
} |
177 |
|
|
|
178 |
|
|
// Calculate effective address |
179 |
|
|
unsigned int addr = 0; |
180 |
|
|
switch (addr_mode) { |
181 |
|
|
case MODE_X: |
182 |
|
|
case MODE_UX: |
183 |
|
|
if (ra == 0) |
184 |
|
|
addr = gpr[rb]; |
185 |
|
|
else |
186 |
|
|
addr = gpr[ra] + gpr[rb]; |
187 |
|
|
break; |
188 |
|
|
case MODE_NORM: |
189 |
|
|
case MODE_U: |
190 |
|
|
if (ra == 0) |
191 |
|
|
addr = (signed int)(signed short)imm; |
192 |
|
|
else |
193 |
|
|
addr = gpr[ra] + (signed int)(signed short)imm; |
194 |
|
|
break; |
195 |
|
|
default: |
196 |
|
|
break; |
197 |
|
|
} |
198 |
|
|
|
199 |
|
|
// Commit decoded instruction |
200 |
|
|
instruction->addr = addr; |
201 |
|
|
instruction->addr_mode = addr_mode; |
202 |
|
|
instruction->transfer_type = transfer_type; |
203 |
|
|
instruction->transfer_size = transfer_size; |
204 |
|
|
instruction->ra = ra; |
205 |
|
|
instruction->rd = rd; |
206 |
|
|
} |
207 |
|
|
#endif |
208 |
|
|
|
209 |
|
|
|
210 |
|
|
/* |
211 |
gbeauche |
1.1 |
* OS-dependant SIGSEGV signals support section |
212 |
|
|
*/ |
213 |
|
|
|
214 |
|
|
#if HAVE_SIGINFO_T |
215 |
|
|
// Generic extended signal handler |
216 |
cebix |
1.8 |
#if defined(__NetBSD__) || defined(__FreeBSD__) |
217 |
|
|
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS) |
218 |
|
|
#else |
219 |
gbeauche |
1.1 |
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) |
220 |
cebix |
1.8 |
#endif |
221 |
gbeauche |
1.5 |
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, siginfo_t *sip, void *scp |
222 |
gbeauche |
1.30 |
#define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp |
223 |
|
|
#define SIGSEGV_FAULT_HANDLER_ARGS sip, scp |
224 |
gbeauche |
1.1 |
#define SIGSEGV_FAULT_ADDRESS sip->si_addr |
225 |
gbeauche |
1.37 |
#if (defined(sgi) || defined(__sgi)) |
226 |
|
|
#include <ucontext.h> |
227 |
|
|
#define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs) |
228 |
|
|
#define SIGSEGV_FAULT_INSTRUCTION (unsigned long)SIGSEGV_CONTEXT_REGS[CTX_EPC] |
229 |
gbeauche |
1.38 |
#if (defined(mips) || defined(__mips)) |
230 |
|
|
#define SIGSEGV_REGISTER_FILE SIGSEGV_CONTEXT_REGS |
231 |
|
|
#define SIGSEGV_SKIP_INSTRUCTION mips_skip_instruction |
232 |
|
|
#endif |
233 |
gbeauche |
1.37 |
#endif |
234 |
gbeauche |
1.32 |
#if defined(__sun__) |
235 |
|
|
#if (defined(sparc) || defined(__sparc__)) |
236 |
|
|
#include <sys/ucontext.h> |
237 |
|
|
#define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs) |
238 |
|
|
#define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[REG_PC] |
239 |
|
|
#endif |
240 |
|
|
#endif |
241 |
gbeauche |
1.33 |
#if defined(__FreeBSD__) |
242 |
gbeauche |
1.17 |
#if (defined(i386) || defined(__i386__)) |
243 |
|
|
#define SIGSEGV_FAULT_INSTRUCTION (((struct sigcontext *)scp)->sc_eip) |
244 |
gbeauche |
1.34 |
#define SIGSEGV_REGISTER_FILE ((unsigned long *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */ |
245 |
gbeauche |
1.17 |
#define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction |
246 |
gbeauche |
1.19 |
#endif |
247 |
gbeauche |
1.17 |
#endif |
248 |
gbeauche |
1.5 |
#if defined(__linux__) |
249 |
gbeauche |
1.6 |
#if (defined(i386) || defined(__i386__)) |
250 |
|
|
#include <sys/ucontext.h> |
251 |
gbeauche |
1.14 |
#define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs) |
252 |
|
|
#define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */ |
253 |
gbeauche |
1.34 |
#define SIGSEGV_REGISTER_FILE (unsigned long *)SIGSEGV_CONTEXT_REGS |
254 |
gbeauche |
1.10 |
#define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction |
255 |
gbeauche |
1.6 |
#endif |
256 |
gbeauche |
1.20 |
#if (defined(x86_64) || defined(__x86_64__)) |
257 |
|
|
#include <sys/ucontext.h> |
258 |
|
|
#define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs) |
259 |
|
|
#define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */ |
260 |
|
|
#define SIGSEGV_REGISTER_FILE (unsigned long *)SIGSEGV_CONTEXT_REGS |
261 |
gbeauche |
1.34 |
#define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction |
262 |
gbeauche |
1.20 |
#endif |
263 |
gbeauche |
1.5 |
#if (defined(ia64) || defined(__ia64__)) |
264 |
|
|
#define SIGSEGV_FAULT_INSTRUCTION (((struct sigcontext *)scp)->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */ |
265 |
|
|
#endif |
266 |
gbeauche |
1.9 |
#if (defined(powerpc) || defined(__powerpc__)) |
267 |
|
|
#include <sys/ucontext.h> |
268 |
gbeauche |
1.14 |
#define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.regs) |
269 |
|
|
#define SIGSEGV_FAULT_INSTRUCTION (SIGSEGV_CONTEXT_REGS->nip) |
270 |
|
|
#define SIGSEGV_REGISTER_FILE (unsigned int *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned int *)(SIGSEGV_CONTEXT_REGS->gpr) |
271 |
gbeauche |
1.13 |
#define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction |
272 |
gbeauche |
1.9 |
#endif |
273 |
gbeauche |
1.5 |
#endif |
274 |
gbeauche |
1.1 |
#endif |
275 |
|
|
|
276 |
|
|
#if HAVE_SIGCONTEXT_SUBTERFUGE |
277 |
|
|
// Linux kernels prior to 2.4 ? |
278 |
|
|
#if defined(__linux__) |
279 |
|
|
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) |
280 |
|
|
#if (defined(i386) || defined(__i386__)) |
281 |
|
|
#include <asm/sigcontext.h> |
282 |
|
|
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, struct sigcontext scs |
283 |
gbeauche |
1.30 |
#define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp |
284 |
|
|
#define SIGSEGV_FAULT_HANDLER_ARGS &scs |
285 |
|
|
#define SIGSEGV_FAULT_ADDRESS scp->cr2 |
286 |
|
|
#define SIGSEGV_FAULT_INSTRUCTION scp->eip |
287 |
gbeauche |
1.34 |
#define SIGSEGV_REGISTER_FILE (unsigned long *)scp |
288 |
gbeauche |
1.10 |
#define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction |
289 |
gbeauche |
1.1 |
#endif |
290 |
|
|
#if (defined(sparc) || defined(__sparc__)) |
291 |
|
|
#include <asm/sigcontext.h> |
292 |
gbeauche |
1.5 |
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp, char *addr |
293 |
gbeauche |
1.30 |
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp, addr |
294 |
gbeauche |
1.1 |
#define SIGSEGV_FAULT_ADDRESS addr |
295 |
|
|
#endif |
296 |
|
|
#if (defined(powerpc) || defined(__powerpc__)) |
297 |
|
|
#include <asm/sigcontext.h> |
298 |
gbeauche |
1.4 |
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, struct sigcontext *scp |
299 |
gbeauche |
1.30 |
#define SIGSEGV_FAULT_HANDLER_ARGS sig, scp |
300 |
gbeauche |
1.1 |
#define SIGSEGV_FAULT_ADDRESS scp->regs->dar |
301 |
|
|
#define SIGSEGV_FAULT_INSTRUCTION scp->regs->nip |
302 |
gbeauche |
1.14 |
#define SIGSEGV_REGISTER_FILE (unsigned int *)&scp->regs->nip, (unsigned int *)(scp->regs->gpr) |
303 |
gbeauche |
1.13 |
#define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction |
304 |
gbeauche |
1.1 |
#endif |
305 |
gbeauche |
1.4 |
#if (defined(alpha) || defined(__alpha__)) |
306 |
|
|
#include <asm/sigcontext.h> |
307 |
|
|
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp |
308 |
gbeauche |
1.30 |
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp |
309 |
gbeauche |
1.4 |
#define SIGSEGV_FAULT_ADDRESS get_fault_address(scp) |
310 |
|
|
#define SIGSEGV_FAULT_INSTRUCTION scp->sc_pc |
311 |
|
|
#endif |
312 |
gbeauche |
1.1 |
#endif |
313 |
|
|
|
314 |
|
|
// Irix 5 or 6 on MIPS |
315 |
gbeauche |
1.37 |
#if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(_SYSTYPE_SVR4)) |
316 |
gbeauche |
1.11 |
#include <ucontext.h> |
317 |
gbeauche |
1.1 |
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp |
318 |
gbeauche |
1.30 |
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp |
319 |
gbeauche |
1.37 |
#define SIGSEGV_FAULT_ADDRESS (unsigned long)scp->sc_badvaddr |
320 |
|
|
#define SIGSEGV_FAULT_INSTRUCTION (unsigned long)scp->sc_pc |
321 |
gbeauche |
1.1 |
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) |
322 |
|
|
#endif |
323 |
|
|
|
324 |
gbeauche |
1.11 |
// HP-UX |
325 |
|
|
#if (defined(hpux) || defined(__hpux__)) |
326 |
|
|
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp |
327 |
gbeauche |
1.30 |
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp |
328 |
gbeauche |
1.11 |
#define SIGSEGV_FAULT_ADDRESS scp->sc_sl.sl_ss.ss_narrow.ss_cr21 |
329 |
|
|
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS) |
330 |
|
|
#endif |
331 |
|
|
|
332 |
gbeauche |
1.1 |
// OSF/1 on Alpha |
333 |
|
|
#if defined(__osf__) |
334 |
gbeauche |
1.11 |
#include <ucontext.h> |
335 |
gbeauche |
1.1 |
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp |
336 |
gbeauche |
1.30 |
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp |
337 |
gbeauche |
1.1 |
#define SIGSEGV_FAULT_ADDRESS scp->sc_traparg_a0 |
338 |
|
|
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) |
339 |
|
|
#endif |
340 |
|
|
|
341 |
|
|
// AIX |
342 |
|
|
#if defined(_AIX) |
343 |
|
|
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp |
344 |
gbeauche |
1.30 |
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp |
345 |
gbeauche |
1.1 |
#define SIGSEGV_FAULT_ADDRESS scp->sc_jmpbuf.jmp_context.o_vaddr |
346 |
|
|
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) |
347 |
|
|
#endif |
348 |
|
|
|
349 |
gbeauche |
1.33 |
// NetBSD |
350 |
|
|
#if defined(__NetBSD__) |
351 |
gbeauche |
1.1 |
#if (defined(m68k) || defined(__m68k__)) |
352 |
|
|
#include <m68k/frame.h> |
353 |
|
|
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp |
354 |
gbeauche |
1.30 |
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp |
355 |
gbeauche |
1.14 |
#define SIGSEGV_FAULT_ADDRESS get_fault_address(scp) |
356 |
gbeauche |
1.1 |
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) |
357 |
gbeauche |
1.14 |
|
358 |
|
|
// Use decoding scheme from BasiliskII/m68k native |
359 |
|
|
static sigsegv_address_t get_fault_address(struct sigcontext *scp) |
360 |
|
|
{ |
361 |
|
|
struct sigstate { |
362 |
|
|
int ss_flags; |
363 |
|
|
struct frame ss_frame; |
364 |
|
|
}; |
365 |
|
|
struct sigstate *state = (struct sigstate *)scp->sc_ap; |
366 |
|
|
char *fault_addr; |
367 |
|
|
switch (state->ss_frame.f_format) { |
368 |
|
|
case 7: /* 68040 access error */ |
369 |
|
|
/* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */ |
370 |
|
|
fault_addr = state->ss_frame.f_fmt7.f_fa; |
371 |
|
|
break; |
372 |
|
|
default: |
373 |
|
|
fault_addr = (char *)code; |
374 |
|
|
break; |
375 |
|
|
} |
376 |
|
|
return (sigsegv_address_t)fault_addr; |
377 |
|
|
} |
378 |
gbeauche |
1.33 |
#endif |
379 |
|
|
#if (defined(alpha) || defined(__alpha__)) |
380 |
|
|
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp |
381 |
|
|
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp |
382 |
|
|
#define SIGSEGV_FAULT_ADDRESS get_fault_address(scp) |
383 |
|
|
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS) |
384 |
|
|
#endif |
385 |
|
|
#if (defined(i386) || defined(__i386__)) |
386 |
|
|
#error "FIXME: need to decode instruction and compute EA" |
387 |
|
|
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp |
388 |
|
|
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp |
389 |
|
|
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) |
390 |
|
|
#endif |
391 |
|
|
#endif |
392 |
|
|
#if defined(__FreeBSD__) |
393 |
|
|
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS) |
394 |
|
|
#if (defined(i386) || defined(__i386__)) |
395 |
|
|
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp, char *addr |
396 |
gbeauche |
1.30 |
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp, addr |
397 |
gbeauche |
1.1 |
#define SIGSEGV_FAULT_ADDRESS addr |
398 |
gbeauche |
1.33 |
#define SIGSEGV_FAULT_INSTRUCTION scp->sc_eip |
399 |
gbeauche |
1.34 |
#define SIGSEGV_REGISTER_FILE ((unsigned long *)&scp->sc_edi) |
400 |
gbeauche |
1.33 |
#define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction |
401 |
gbeauche |
1.1 |
#endif |
402 |
|
|
#endif |
403 |
gbeauche |
1.33 |
|
404 |
|
|
// Extract fault address out of a sigcontext |
405 |
|
|
#if (defined(alpha) || defined(__alpha__)) |
406 |
|
|
// From Boehm's GC 6.0alpha8 |
407 |
|
|
static sigsegv_address_t get_fault_address(struct sigcontext *scp) |
408 |
|
|
{ |
409 |
|
|
unsigned int instruction = *((unsigned int *)(scp->sc_pc)); |
410 |
|
|
unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f]; |
411 |
|
|
fault_address += (signed long)(signed short)(instruction & 0xffff); |
412 |
|
|
return (sigsegv_address_t)fault_address; |
413 |
|
|
} |
414 |
|
|
#endif |
415 |
|
|
|
416 |
gbeauche |
1.4 |
|
417 |
gbeauche |
1.27 |
// MacOS X, not sure which version this works in. Under 10.1 |
418 |
|
|
// vm_protect does not appear to work from a signal handler. Under |
419 |
|
|
// 10.2 signal handlers get siginfo type arguments but the si_addr |
420 |
|
|
// field is the address of the faulting instruction and not the |
421 |
|
|
// address that caused the SIGBUS. Maybe this works in 10.0? In any |
422 |
|
|
// case with Mach exception handlers there is a way to do what this |
423 |
|
|
// was meant to do. |
424 |
|
|
#ifndef HAVE_MACH_EXCEPTIONS |
425 |
gbeauche |
1.4 |
#if defined(__APPLE__) && defined(__MACH__) |
426 |
|
|
#if (defined(ppc) || defined(__ppc__)) |
427 |
|
|
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp |
428 |
gbeauche |
1.27 |
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp |
429 |
gbeauche |
1.4 |
#define SIGSEGV_FAULT_ADDRESS get_fault_address(scp) |
430 |
|
|
#define SIGSEGV_FAULT_INSTRUCTION scp->sc_ir |
431 |
|
|
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS) |
432 |
gbeauche |
1.14 |
#define SIGSEGV_REGISTER_FILE (unsigned int *)&scp->sc_ir, &((unsigned int *) scp->sc_regs)[2] |
433 |
|
|
#define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction |
434 |
gbeauche |
1.4 |
|
435 |
gbeauche |
1.14 |
// Use decoding scheme from SheepShaver |
436 |
gbeauche |
1.4 |
static sigsegv_address_t get_fault_address(struct sigcontext *scp) |
437 |
|
|
{ |
438 |
gbeauche |
1.14 |
unsigned int nip = (unsigned int) scp->sc_ir; |
439 |
|
|
unsigned int * gpr = &((unsigned int *) scp->sc_regs)[2]; |
440 |
|
|
instruction_t instr; |
441 |
|
|
|
442 |
|
|
powerpc_decode_instruction(&instr, nip, gpr); |
443 |
|
|
return (sigsegv_address_t)instr.addr; |
444 |
gbeauche |
1.4 |
} |
445 |
|
|
#endif |
446 |
|
|
#endif |
447 |
gbeauche |
1.1 |
#endif |
448 |
gbeauche |
1.27 |
#endif |
449 |
|
|
|
450 |
|
|
#if HAVE_MACH_EXCEPTIONS |
451 |
|
|
|
452 |
|
|
// This can easily be extended to other Mach systems, but really who |
453 |
|
|
// uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU |
454 |
|
|
// Mach 2.5/3.0? |
455 |
|
|
#if defined(__APPLE__) && defined(__MACH__) |
456 |
|
|
|
457 |
|
|
#include <sys/types.h> |
458 |
|
|
#include <stdlib.h> |
459 |
|
|
#include <stdio.h> |
460 |
|
|
#include <pthread.h> |
461 |
|
|
|
462 |
|
|
/* |
463 |
|
|
* If you are familiar with MIG then you will understand the frustration |
464 |
|
|
* that was necessary to get these embedded into C++ code by hand. |
465 |
|
|
*/ |
466 |
|
|
extern "C" { |
467 |
|
|
#include <mach/mach.h> |
468 |
|
|
#include <mach/mach_error.h> |
469 |
|
|
|
470 |
|
|
extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *); |
471 |
|
|
extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t, |
472 |
|
|
mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t); |
473 |
|
|
extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t, |
474 |
|
|
exception_type_t, exception_data_t, mach_msg_type_number_t); |
475 |
|
|
extern kern_return_t exception_raise_state(mach_port_t, exception_type_t, |
476 |
|
|
exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *, |
477 |
|
|
thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *); |
478 |
|
|
extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t, |
479 |
|
|
exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *, |
480 |
|
|
thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *); |
481 |
|
|
} |
482 |
|
|
|
483 |
|
|
// Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE |
484 |
|
|
#define HANDLER_COUNT 64 |
485 |
|
|
|
486 |
|
|
// structure to tuck away existing exception handlers |
487 |
|
|
typedef struct _ExceptionPorts { |
488 |
|
|
mach_msg_type_number_t maskCount; |
489 |
|
|
exception_mask_t masks[HANDLER_COUNT]; |
490 |
|
|
exception_handler_t handlers[HANDLER_COUNT]; |
491 |
|
|
exception_behavior_t behaviors[HANDLER_COUNT]; |
492 |
|
|
thread_state_flavor_t flavors[HANDLER_COUNT]; |
493 |
|
|
} ExceptionPorts; |
494 |
|
|
|
495 |
|
|
// exception handler thread |
496 |
|
|
static pthread_t exc_thread; |
497 |
|
|
|
498 |
|
|
// place where old exception handler info is stored |
499 |
|
|
static ExceptionPorts ports; |
500 |
|
|
|
501 |
|
|
// our exception port |
502 |
|
|
static mach_port_t _exceptionPort = MACH_PORT_NULL; |
503 |
|
|
|
504 |
|
|
#define MACH_CHECK_ERROR(name,ret) \ |
505 |
|
|
if (ret != KERN_SUCCESS) { \ |
506 |
|
|
mach_error(#name, ret); \ |
507 |
|
|
exit (1); \ |
508 |
|
|
} |
509 |
|
|
|
510 |
|
|
#define SIGSEGV_FAULT_ADDRESS code[1] |
511 |
|
|
#define SIGSEGV_FAULT_INSTRUCTION get_fault_instruction(thread, state) |
512 |
gbeauche |
1.31 |
#define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP) ((code[0] == KERN_PROTECTION_FAILURE) ? sigsegv_fault_handler(ADDR, IP) : SIGSEGV_RETURN_FAILURE) |
513 |
gbeauche |
1.27 |
#define SIGSEGV_FAULT_HANDLER_ARGLIST mach_port_t thread, exception_data_t code, ppc_thread_state_t *state |
514 |
|
|
#define SIGSEGV_FAULT_HANDLER_ARGS thread, code, &state |
515 |
|
|
#define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction |
516 |
|
|
#define SIGSEGV_REGISTER_FILE &state->srr0, &state->r0 |
517 |
|
|
|
518 |
|
|
// Given a suspended thread, stuff the current instruction and |
519 |
|
|
// registers into state. |
520 |
|
|
// |
521 |
|
|
// It would have been nice to have this be ppc/x86 independant which |
522 |
|
|
// could have been done easily with a thread_state_t instead of |
523 |
|
|
// ppc_thread_state_t, but because of the way this is called it is |
524 |
|
|
// easier to do it this way. |
525 |
|
|
#if (defined(ppc) || defined(__ppc__)) |
526 |
|
|
static inline sigsegv_address_t get_fault_instruction(mach_port_t thread, ppc_thread_state_t *state) |
527 |
|
|
{ |
528 |
|
|
kern_return_t krc; |
529 |
|
|
mach_msg_type_number_t count; |
530 |
|
|
|
531 |
|
|
count = MACHINE_THREAD_STATE_COUNT; |
532 |
|
|
krc = thread_get_state(thread, MACHINE_THREAD_STATE, (thread_state_t)state, &count); |
533 |
|
|
MACH_CHECK_ERROR (thread_get_state, krc); |
534 |
|
|
|
535 |
|
|
return (sigsegv_address_t)state->srr0; |
536 |
|
|
} |
537 |
|
|
#endif |
538 |
|
|
|
539 |
|
|
// Since there can only be one exception thread running at any time |
540 |
|
|
// this is not a problem. |
541 |
|
|
#define MSG_SIZE 512 |
542 |
|
|
static char msgbuf[MSG_SIZE]; |
543 |
|
|
static char replybuf[MSG_SIZE]; |
544 |
|
|
|
545 |
|
|
/* |
546 |
|
|
* This is the entry point for the exception handler thread. The job |
547 |
|
|
* of this thread is to wait for exception messages on the exception |
548 |
|
|
* port that was setup beforehand and to pass them on to exc_server. |
549 |
|
|
* exc_server is a MIG generated function that is a part of Mach. |
550 |
|
|
* Its job is to decide what to do with the exception message. In our |
551 |
|
|
* case exc_server calls catch_exception_raise on our behalf. After |
552 |
|
|
* exc_server returns, it is our responsibility to send the reply. |
553 |
|
|
*/ |
554 |
|
|
static void * |
555 |
|
|
handleExceptions(void *priv) |
556 |
|
|
{ |
557 |
|
|
mach_msg_header_t *msg, *reply; |
558 |
|
|
kern_return_t krc; |
559 |
|
|
|
560 |
|
|
msg = (mach_msg_header_t *)msgbuf; |
561 |
|
|
reply = (mach_msg_header_t *)replybuf; |
562 |
|
|
|
563 |
|
|
for (;;) { |
564 |
|
|
krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE, |
565 |
|
|
_exceptionPort, 0, MACH_PORT_NULL); |
566 |
|
|
MACH_CHECK_ERROR(mach_msg, krc); |
567 |
|
|
|
568 |
|
|
if (!exc_server(msg, reply)) { |
569 |
|
|
fprintf(stderr, "exc_server hated the message\n"); |
570 |
|
|
exit(1); |
571 |
|
|
} |
572 |
|
|
|
573 |
|
|
krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0, |
574 |
|
|
msg->msgh_local_port, 0, MACH_PORT_NULL); |
575 |
|
|
if (krc != KERN_SUCCESS) { |
576 |
|
|
fprintf(stderr, "Error sending message to original reply port, krc = %d, %s", |
577 |
|
|
krc, mach_error_string(krc)); |
578 |
|
|
exit(1); |
579 |
|
|
} |
580 |
|
|
} |
581 |
|
|
} |
582 |
|
|
#endif |
583 |
|
|
#endif |
584 |
gbeauche |
1.1 |
|
585 |
gbeauche |
1.14 |
|
586 |
|
|
/* |
587 |
|
|
* Instruction skipping |
588 |
|
|
*/ |
589 |
|
|
|
590 |
gbeauche |
1.10 |
#ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION |
591 |
|
|
// Decode and skip X86 instruction |
592 |
gbeauche |
1.34 |
#if (defined(i386) || defined(__i386__)) || defined(__x86_64__) |
593 |
gbeauche |
1.10 |
#if defined(__linux__) |
594 |
|
|
enum { |
595 |
gbeauche |
1.34 |
#if (defined(i386) || defined(__i386__)) |
596 |
gbeauche |
1.10 |
X86_REG_EIP = 14, |
597 |
|
|
X86_REG_EAX = 11, |
598 |
|
|
X86_REG_ECX = 10, |
599 |
|
|
X86_REG_EDX = 9, |
600 |
|
|
X86_REG_EBX = 8, |
601 |
|
|
X86_REG_ESP = 7, |
602 |
|
|
X86_REG_EBP = 6, |
603 |
|
|
X86_REG_ESI = 5, |
604 |
|
|
X86_REG_EDI = 4 |
605 |
gbeauche |
1.34 |
#endif |
606 |
|
|
#if defined(__x86_64__) |
607 |
|
|
X86_REG_R8 = 0, |
608 |
|
|
X86_REG_R9 = 1, |
609 |
|
|
X86_REG_R10 = 2, |
610 |
|
|
X86_REG_R11 = 3, |
611 |
|
|
X86_REG_R12 = 4, |
612 |
|
|
X86_REG_R13 = 5, |
613 |
|
|
X86_REG_R14 = 6, |
614 |
|
|
X86_REG_R15 = 7, |
615 |
|
|
X86_REG_EDI = 8, |
616 |
|
|
X86_REG_ESI = 9, |
617 |
|
|
X86_REG_EBP = 10, |
618 |
|
|
X86_REG_EBX = 11, |
619 |
|
|
X86_REG_EDX = 12, |
620 |
|
|
X86_REG_EAX = 13, |
621 |
|
|
X86_REG_ECX = 14, |
622 |
|
|
X86_REG_ESP = 15, |
623 |
|
|
X86_REG_EIP = 16 |
624 |
|
|
#endif |
625 |
gbeauche |
1.10 |
}; |
626 |
|
|
#endif |
627 |
gbeauche |
1.17 |
#if defined(__NetBSD__) || defined(__FreeBSD__) |
628 |
|
|
enum { |
629 |
gbeauche |
1.34 |
#if (defined(i386) || defined(__i386__)) |
630 |
gbeauche |
1.17 |
X86_REG_EIP = 10, |
631 |
|
|
X86_REG_EAX = 7, |
632 |
|
|
X86_REG_ECX = 6, |
633 |
|
|
X86_REG_EDX = 5, |
634 |
|
|
X86_REG_EBX = 4, |
635 |
|
|
X86_REG_ESP = 13, |
636 |
|
|
X86_REG_EBP = 2, |
637 |
|
|
X86_REG_ESI = 1, |
638 |
|
|
X86_REG_EDI = 0 |
639 |
gbeauche |
1.34 |
#endif |
640 |
gbeauche |
1.17 |
}; |
641 |
|
|
#endif |
642 |
gbeauche |
1.10 |
// FIXME: this is partly redundant with the instruction decoding phase |
643 |
|
|
// to discover transfer type and register number |
644 |
|
|
static inline int ix86_step_over_modrm(unsigned char * p) |
645 |
|
|
{ |
646 |
|
|
int mod = (p[0] >> 6) & 3; |
647 |
|
|
int rm = p[0] & 7; |
648 |
|
|
int offset = 0; |
649 |
|
|
|
650 |
|
|
// ModR/M Byte |
651 |
|
|
switch (mod) { |
652 |
|
|
case 0: // [reg] |
653 |
|
|
if (rm == 5) return 4; // disp32 |
654 |
|
|
break; |
655 |
|
|
case 1: // disp8[reg] |
656 |
|
|
offset = 1; |
657 |
|
|
break; |
658 |
|
|
case 2: // disp32[reg] |
659 |
|
|
offset = 4; |
660 |
|
|
break; |
661 |
|
|
case 3: // register |
662 |
|
|
return 0; |
663 |
|
|
} |
664 |
|
|
|
665 |
|
|
// SIB Byte |
666 |
|
|
if (rm == 4) { |
667 |
|
|
if (mod == 0 && (p[1] & 7) == 5) |
668 |
|
|
offset = 5; // disp32[index] |
669 |
|
|
else |
670 |
|
|
offset++; |
671 |
|
|
} |
672 |
|
|
|
673 |
|
|
return offset; |
674 |
|
|
} |
675 |
|
|
|
676 |
gbeauche |
1.34 |
static bool ix86_skip_instruction(unsigned long * regs) |
677 |
gbeauche |
1.10 |
{ |
678 |
gbeauche |
1.14 |
unsigned char * eip = (unsigned char *)regs[X86_REG_EIP]; |
679 |
gbeauche |
1.10 |
|
680 |
|
|
if (eip == 0) |
681 |
|
|
return false; |
682 |
|
|
|
683 |
gbeauche |
1.22 |
transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN; |
684 |
gbeauche |
1.14 |
transfer_size_t transfer_size = SIZE_LONG; |
685 |
gbeauche |
1.10 |
|
686 |
|
|
int reg = -1; |
687 |
|
|
int len = 0; |
688 |
gbeauche |
1.34 |
|
689 |
|
|
#if DEBUG |
690 |
|
|
printf("IP: %p [%02x %02x %02x %02x...]\n", |
691 |
|
|
eip, eip[0], eip[1], eip[2], eip[3]); |
692 |
|
|
#endif |
693 |
|
|
|
694 |
gbeauche |
1.10 |
// Operand size prefix |
695 |
|
|
if (*eip == 0x66) { |
696 |
|
|
eip++; |
697 |
|
|
len++; |
698 |
|
|
transfer_size = SIZE_WORD; |
699 |
|
|
} |
700 |
|
|
|
701 |
gbeauche |
1.34 |
// REX prefix |
702 |
|
|
#if defined(__x86_64__) |
703 |
|
|
struct rex_t { |
704 |
|
|
unsigned char W; |
705 |
|
|
unsigned char R; |
706 |
|
|
unsigned char X; |
707 |
|
|
unsigned char B; |
708 |
|
|
}; |
709 |
|
|
rex_t rex = { 0, 0, 0, 0 }; |
710 |
|
|
bool has_rex = false; |
711 |
|
|
if ((*eip & 0xf0) == 0x40) { |
712 |
|
|
has_rex = true; |
713 |
|
|
const unsigned char b = *eip; |
714 |
|
|
rex.W = b & (1 << 3); |
715 |
|
|
rex.R = b & (1 << 2); |
716 |
|
|
rex.X = b & (1 << 1); |
717 |
|
|
rex.B = b & (1 << 0); |
718 |
|
|
#if DEBUG |
719 |
|
|
printf("REX: %c,%c,%c,%c\n", |
720 |
|
|
rex.W ? 'W' : '_', |
721 |
|
|
rex.R ? 'R' : '_', |
722 |
|
|
rex.X ? 'X' : '_', |
723 |
|
|
rex.B ? 'B' : '_'); |
724 |
|
|
#endif |
725 |
|
|
eip++; |
726 |
|
|
len++; |
727 |
|
|
if (rex.W) |
728 |
|
|
transfer_size = SIZE_QUAD; |
729 |
|
|
} |
730 |
|
|
#else |
731 |
|
|
const bool has_rex = false; |
732 |
|
|
#endif |
733 |
|
|
|
734 |
gbeauche |
1.10 |
// Decode instruction |
735 |
|
|
switch (eip[0]) { |
736 |
gbeauche |
1.17 |
case 0x0f: |
737 |
gbeauche |
1.18 |
switch (eip[1]) { |
738 |
|
|
case 0xb6: // MOVZX r32, r/m8 |
739 |
|
|
case 0xb7: // MOVZX r32, r/m16 |
740 |
gbeauche |
1.17 |
switch (eip[2] & 0xc0) { |
741 |
|
|
case 0x80: |
742 |
|
|
reg = (eip[2] >> 3) & 7; |
743 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_LOAD; |
744 |
gbeauche |
1.17 |
break; |
745 |
|
|
case 0x40: |
746 |
|
|
reg = (eip[2] >> 3) & 7; |
747 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_LOAD; |
748 |
gbeauche |
1.17 |
break; |
749 |
|
|
case 0x00: |
750 |
|
|
reg = (eip[2] >> 3) & 7; |
751 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_LOAD; |
752 |
gbeauche |
1.17 |
break; |
753 |
|
|
} |
754 |
|
|
len += 3 + ix86_step_over_modrm(eip + 2); |
755 |
gbeauche |
1.18 |
break; |
756 |
gbeauche |
1.17 |
} |
757 |
|
|
break; |
758 |
gbeauche |
1.10 |
case 0x8a: // MOV r8, r/m8 |
759 |
|
|
transfer_size = SIZE_BYTE; |
760 |
|
|
case 0x8b: // MOV r32, r/m32 (or 16-bit operation) |
761 |
|
|
switch (eip[1] & 0xc0) { |
762 |
|
|
case 0x80: |
763 |
|
|
reg = (eip[1] >> 3) & 7; |
764 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_LOAD; |
765 |
gbeauche |
1.10 |
break; |
766 |
|
|
case 0x40: |
767 |
|
|
reg = (eip[1] >> 3) & 7; |
768 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_LOAD; |
769 |
gbeauche |
1.10 |
break; |
770 |
|
|
case 0x00: |
771 |
|
|
reg = (eip[1] >> 3) & 7; |
772 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_LOAD; |
773 |
gbeauche |
1.10 |
break; |
774 |
|
|
} |
775 |
|
|
len += 2 + ix86_step_over_modrm(eip + 1); |
776 |
|
|
break; |
777 |
|
|
case 0x88: // MOV r/m8, r8 |
778 |
|
|
transfer_size = SIZE_BYTE; |
779 |
|
|
case 0x89: // MOV r/m32, r32 (or 16-bit operation) |
780 |
|
|
switch (eip[1] & 0xc0) { |
781 |
|
|
case 0x80: |
782 |
|
|
reg = (eip[1] >> 3) & 7; |
783 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_STORE; |
784 |
gbeauche |
1.10 |
break; |
785 |
|
|
case 0x40: |
786 |
|
|
reg = (eip[1] >> 3) & 7; |
787 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_STORE; |
788 |
gbeauche |
1.10 |
break; |
789 |
|
|
case 0x00: |
790 |
|
|
reg = (eip[1] >> 3) & 7; |
791 |
gbeauche |
1.22 |
transfer_type = SIGSEGV_TRANSFER_STORE; |
792 |
gbeauche |
1.10 |
break; |
793 |
|
|
} |
794 |
|
|
len += 2 + ix86_step_over_modrm(eip + 1); |
795 |
|
|
break; |
796 |
|
|
} |
797 |
|
|
|
798 |
gbeauche |
1.22 |
if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) { |
799 |
gbeauche |
1.10 |
// Unknown machine code, let it crash. Then patch the decoder |
800 |
|
|
return false; |
801 |
|
|
} |
802 |
|
|
|
803 |
gbeauche |
1.34 |
#if defined(__x86_64__) |
804 |
|
|
if (rex.R) |
805 |
|
|
reg += 8; |
806 |
|
|
#endif |
807 |
|
|
|
808 |
gbeauche |
1.22 |
if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) { |
809 |
gbeauche |
1.34 |
static const int x86_reg_map[] = { |
810 |
gbeauche |
1.10 |
X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX, |
811 |
gbeauche |
1.34 |
X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI, |
812 |
|
|
#if defined(__x86_64__) |
813 |
|
|
X86_REG_R8, X86_REG_R9, X86_REG_R10, X86_REG_R11, |
814 |
|
|
X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15, |
815 |
|
|
#endif |
816 |
gbeauche |
1.10 |
}; |
817 |
|
|
|
818 |
gbeauche |
1.34 |
if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1)) |
819 |
gbeauche |
1.10 |
return false; |
820 |
|
|
|
821 |
gbeauche |
1.34 |
// Set 0 to the relevant register part |
822 |
|
|
// NOTE: this is only valid for MOV alike instructions |
823 |
gbeauche |
1.10 |
int rloc = x86_reg_map[reg]; |
824 |
|
|
switch (transfer_size) { |
825 |
|
|
case SIZE_BYTE: |
826 |
gbeauche |
1.36 |
if (has_rex || reg < 4) |
827 |
|
|
regs[rloc] = (regs[rloc] & ~0x00ffL); |
828 |
|
|
else { |
829 |
|
|
rloc = x86_reg_map[reg - 4]; |
830 |
|
|
regs[rloc] = (regs[rloc] & ~0xff00L); |
831 |
|
|
} |
832 |
gbeauche |
1.10 |
break; |
833 |
|
|
case SIZE_WORD: |
834 |
gbeauche |
1.34 |
regs[rloc] = (regs[rloc] & ~0xffffL); |
835 |
gbeauche |
1.10 |
break; |
836 |
|
|
case SIZE_LONG: |
837 |
gbeauche |
1.34 |
case SIZE_QUAD: // zero-extension |
838 |
gbeauche |
1.10 |
regs[rloc] = 0; |
839 |
|
|
break; |
840 |
|
|
} |
841 |
|
|
} |
842 |
|
|
|
843 |
|
|
#if DEBUG |
844 |
gbeauche |
1.15 |
printf("%08x: %s %s access", regs[X86_REG_EIP], |
845 |
gbeauche |
1.34 |
transfer_size == SIZE_BYTE ? "byte" : |
846 |
|
|
transfer_size == SIZE_WORD ? "word" : |
847 |
|
|
transfer_size == SIZE_LONG ? "long" : |
848 |
|
|
transfer_size == SIZE_QUAD ? "quad" : "unknown", |
849 |
gbeauche |
1.22 |
transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write"); |
850 |
gbeauche |
1.10 |
|
851 |
|
|
if (reg != -1) { |
852 |
gbeauche |
1.34 |
static const char * x86_byte_reg_str_map[] = { |
853 |
|
|
"al", "cl", "dl", "bl", |
854 |
|
|
"spl", "bpl", "sil", "dil", |
855 |
|
|
"r8b", "r9b", "r10b", "r11b", |
856 |
|
|
"r12b", "r13b", "r14b", "r15b", |
857 |
|
|
"ah", "ch", "dh", "bh", |
858 |
|
|
}; |
859 |
|
|
static const char * x86_word_reg_str_map[] = { |
860 |
|
|
"ax", "cx", "dx", "bx", |
861 |
|
|
"sp", "bp", "si", "di", |
862 |
|
|
"r8w", "r9w", "r10w", "r11w", |
863 |
|
|
"r12w", "r13w", "r14w", "r15w", |
864 |
|
|
}; |
865 |
|
|
static const char *x86_long_reg_str_map[] = { |
866 |
|
|
"eax", "ecx", "edx", "ebx", |
867 |
|
|
"esp", "ebp", "esi", "edi", |
868 |
|
|
"r8d", "r9d", "r10d", "r11d", |
869 |
|
|
"r12d", "r13d", "r14d", "r15d", |
870 |
|
|
}; |
871 |
|
|
static const char *x86_quad_reg_str_map[] = { |
872 |
|
|
"rax", "rcx", "rdx", "rbx", |
873 |
|
|
"rsp", "rbp", "rsi", "rdi", |
874 |
|
|
"r8", "r9", "r10", "r11", |
875 |
|
|
"r12", "r13", "r14", "r15", |
876 |
gbeauche |
1.10 |
}; |
877 |
gbeauche |
1.34 |
const char * reg_str = NULL; |
878 |
|
|
switch (transfer_size) { |
879 |
|
|
case SIZE_BYTE: |
880 |
|
|
reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg]; |
881 |
|
|
break; |
882 |
|
|
case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break; |
883 |
|
|
case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break; |
884 |
|
|
case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break; |
885 |
|
|
} |
886 |
|
|
if (reg_str) |
887 |
|
|
printf(" %s register %%%s", |
888 |
|
|
transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from", |
889 |
|
|
reg_str); |
890 |
gbeauche |
1.10 |
} |
891 |
|
|
printf(", %d bytes instruction\n", len); |
892 |
|
|
#endif |
893 |
|
|
|
894 |
|
|
regs[X86_REG_EIP] += len; |
895 |
gbeauche |
1.13 |
return true; |
896 |
|
|
} |
897 |
|
|
#endif |
898 |
gbeauche |
1.14 |
|
899 |
gbeauche |
1.13 |
// Decode and skip PPC instruction |
900 |
gbeauche |
1.14 |
#if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__)) |
901 |
|
|
static bool powerpc_skip_instruction(unsigned int * nip_p, unsigned int * regs) |
902 |
gbeauche |
1.13 |
{ |
903 |
gbeauche |
1.14 |
instruction_t instr; |
904 |
|
|
powerpc_decode_instruction(&instr, *nip_p, regs); |
905 |
gbeauche |
1.13 |
|
906 |
gbeauche |
1.22 |
if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) { |
907 |
gbeauche |
1.13 |
// Unknown machine code, let it crash. Then patch the decoder |
908 |
|
|
return false; |
909 |
|
|
} |
910 |
|
|
|
911 |
|
|
#if DEBUG |
912 |
gbeauche |
1.14 |
printf("%08x: %s %s access", *nip_p, |
913 |
|
|
instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : "long", |
914 |
gbeauche |
1.22 |
instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write"); |
915 |
gbeauche |
1.14 |
|
916 |
|
|
if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX) |
917 |
|
|
printf(" r%d (ra = %08x)\n", instr.ra, instr.addr); |
918 |
gbeauche |
1.22 |
if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD) |
919 |
gbeauche |
1.14 |
printf(" r%d (rd = 0)\n", instr.rd); |
920 |
|
|
#endif |
921 |
|
|
|
922 |
|
|
if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX) |
923 |
|
|
regs[instr.ra] = instr.addr; |
924 |
gbeauche |
1.22 |
if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD) |
925 |
gbeauche |
1.14 |
regs[instr.rd] = 0; |
926 |
gbeauche |
1.13 |
|
927 |
gbeauche |
1.14 |
*nip_p += 4; |
928 |
gbeauche |
1.10 |
return true; |
929 |
gbeauche |
1.38 |
} |
930 |
|
|
#endif |
931 |
|
|
|
932 |
|
|
// Decode and skip MIPS instruction |
933 |
|
|
#if (defined(mips) || defined(__mips)) |
934 |
|
|
enum { |
935 |
|
|
#if (defined(sgi) || defined(__sgi)) |
936 |
|
|
MIPS_REG_EPC = 35, |
937 |
|
|
#endif |
938 |
|
|
}; |
939 |
|
|
static bool mips_skip_instruction(greg_t * regs) |
940 |
|
|
{ |
941 |
|
|
unsigned int * epc = (unsigned int *)(unsigned long)regs[MIPS_REG_EPC]; |
942 |
|
|
|
943 |
|
|
if (epc == 0) |
944 |
|
|
return false; |
945 |
|
|
|
946 |
|
|
#if DEBUG |
947 |
|
|
printf("IP: %p [%08x]\n", epc, epc[0]); |
948 |
|
|
#endif |
949 |
|
|
|
950 |
|
|
transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN; |
951 |
|
|
transfer_size_t transfer_size = SIZE_LONG; |
952 |
|
|
int direction = 0; |
953 |
|
|
|
954 |
|
|
const unsigned int opcode = epc[0]; |
955 |
|
|
switch (opcode >> 26) { |
956 |
|
|
case 32: // Load Byte |
957 |
|
|
case 36: // Load Byte Unsigned |
958 |
|
|
transfer_type = SIGSEGV_TRANSFER_LOAD; |
959 |
|
|
transfer_size = SIZE_BYTE; |
960 |
|
|
break; |
961 |
|
|
case 33: // Load Halfword |
962 |
|
|
case 37: // Load Halfword Unsigned |
963 |
|
|
transfer_type = SIGSEGV_TRANSFER_LOAD; |
964 |
|
|
transfer_size = SIZE_WORD; |
965 |
|
|
break; |
966 |
|
|
case 35: // Load Word |
967 |
|
|
case 39: // Load Word Unsigned |
968 |
|
|
transfer_type = SIGSEGV_TRANSFER_LOAD; |
969 |
|
|
transfer_size = SIZE_LONG; |
970 |
|
|
break; |
971 |
|
|
case 34: // Load Word Left |
972 |
|
|
transfer_type = SIGSEGV_TRANSFER_LOAD; |
973 |
|
|
transfer_size = SIZE_LONG; |
974 |
|
|
direction = -1; |
975 |
|
|
break; |
976 |
|
|
case 38: // Load Word Right |
977 |
|
|
transfer_type = SIGSEGV_TRANSFER_LOAD; |
978 |
|
|
transfer_size = SIZE_LONG; |
979 |
|
|
direction = 1; |
980 |
|
|
break; |
981 |
|
|
case 55: // Load Doubleword |
982 |
|
|
transfer_type = SIGSEGV_TRANSFER_LOAD; |
983 |
|
|
transfer_size = SIZE_QUAD; |
984 |
|
|
break; |
985 |
|
|
case 26: // Load Doubleword Left |
986 |
|
|
transfer_type = SIGSEGV_TRANSFER_LOAD; |
987 |
|
|
transfer_size = SIZE_QUAD; |
988 |
|
|
direction = -1; |
989 |
|
|
break; |
990 |
|
|
case 27: // Load Doubleword Right |
991 |
|
|
transfer_type = SIGSEGV_TRANSFER_LOAD; |
992 |
|
|
transfer_size = SIZE_QUAD; |
993 |
|
|
direction = 1; |
994 |
|
|
break; |
995 |
|
|
case 40: // Store Byte |
996 |
|
|
transfer_type = SIGSEGV_TRANSFER_STORE; |
997 |
|
|
transfer_size = SIZE_BYTE; |
998 |
|
|
break; |
999 |
|
|
case 41: // Store Halfword |
1000 |
|
|
transfer_type = SIGSEGV_TRANSFER_STORE; |
1001 |
|
|
transfer_size = SIZE_WORD; |
1002 |
|
|
break; |
1003 |
|
|
case 43: // Store Word |
1004 |
|
|
case 42: // Store Word Left |
1005 |
|
|
case 46: // Store Word Right |
1006 |
|
|
transfer_type = SIGSEGV_TRANSFER_STORE; |
1007 |
|
|
transfer_size = SIZE_LONG; |
1008 |
|
|
break; |
1009 |
|
|
case 63: // Store Doubleword |
1010 |
|
|
case 44: // Store Doubleword Left |
1011 |
|
|
case 45: // Store Doubleword Right |
1012 |
|
|
transfer_type = SIGSEGV_TRANSFER_STORE; |
1013 |
|
|
transfer_size = SIZE_QUAD; |
1014 |
|
|
break; |
1015 |
|
|
/* Misc instructions unlikely to be used within CPU emulators */ |
1016 |
|
|
case 48: // Load Linked Word |
1017 |
|
|
transfer_type = SIGSEGV_TRANSFER_LOAD; |
1018 |
|
|
transfer_size = SIZE_LONG; |
1019 |
|
|
break; |
1020 |
|
|
case 52: // Load Linked Doubleword |
1021 |
|
|
transfer_type = SIGSEGV_TRANSFER_LOAD; |
1022 |
|
|
transfer_size = SIZE_QUAD; |
1023 |
|
|
break; |
1024 |
|
|
case 56: // Store Conditional Word |
1025 |
|
|
transfer_type = SIGSEGV_TRANSFER_STORE; |
1026 |
|
|
transfer_size = SIZE_LONG; |
1027 |
|
|
break; |
1028 |
|
|
case 60: // Store Conditional Doubleword |
1029 |
|
|
transfer_type = SIGSEGV_TRANSFER_STORE; |
1030 |
|
|
transfer_size = SIZE_QUAD; |
1031 |
|
|
break; |
1032 |
|
|
} |
1033 |
|
|
|
1034 |
|
|
if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) { |
1035 |
|
|
// Unknown machine code, let it crash. Then patch the decoder |
1036 |
|
|
return false; |
1037 |
|
|
} |
1038 |
|
|
|
1039 |
|
|
// Zero target register in case of a load operation |
1040 |
|
|
const int reg = (opcode >> 16) & 0x1f; |
1041 |
|
|
if (transfer_type == SIGSEGV_TRANSFER_LOAD) { |
1042 |
|
|
if (direction == 0) |
1043 |
|
|
regs[reg] = 0; |
1044 |
|
|
else { |
1045 |
|
|
// FIXME: untested code |
1046 |
|
|
unsigned long ea = regs[(opcode >> 21) & 0x1f]; |
1047 |
|
|
ea += (signed long)(signed int)(signed short)(opcode & 0xffff); |
1048 |
|
|
const int offset = ea & (transfer_size == SIZE_LONG ? 3 : 7); |
1049 |
|
|
unsigned long value; |
1050 |
|
|
if (direction > 0) { |
1051 |
|
|
const unsigned long rmask = ~((1L << ((offset + 1) * 8)) - 1); |
1052 |
|
|
value = regs[reg] & rmask; |
1053 |
|
|
} |
1054 |
|
|
else { |
1055 |
|
|
const unsigned long lmask = (1L << (offset * 8)) - 1; |
1056 |
|
|
value = regs[reg] & lmask; |
1057 |
|
|
} |
1058 |
|
|
// restore most significant bits |
1059 |
|
|
if (transfer_size == SIZE_LONG) |
1060 |
|
|
value = (signed long)(signed int)value; |
1061 |
|
|
regs[reg] = value; |
1062 |
|
|
} |
1063 |
|
|
} |
1064 |
|
|
|
1065 |
|
|
#if DEBUG |
1066 |
|
|
#if (defined(_ABIN32) || defined(_ABI64)) |
1067 |
|
|
static const char * mips_gpr_names[32] = { |
1068 |
|
|
"zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", |
1069 |
|
|
"t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", |
1070 |
|
|
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", |
1071 |
|
|
"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra" |
1072 |
|
|
}; |
1073 |
|
|
#else |
1074 |
|
|
static const char * mips_gpr_names[32] = { |
1075 |
|
|
"zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", |
1076 |
|
|
"a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3", |
1077 |
|
|
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", |
1078 |
|
|
"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra" |
1079 |
|
|
}; |
1080 |
|
|
#endif |
1081 |
|
|
printf("%s %s register %s\n", |
1082 |
|
|
transfer_size == SIZE_BYTE ? "byte" : |
1083 |
|
|
transfer_size == SIZE_WORD ? "word" : |
1084 |
|
|
transfer_size == SIZE_LONG ? "long" : |
1085 |
|
|
transfer_size == SIZE_QUAD ? "quad" : "unknown", |
1086 |
|
|
transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from", |
1087 |
|
|
mips_gpr_names[reg]); |
1088 |
|
|
#endif |
1089 |
|
|
|
1090 |
|
|
regs[MIPS_REG_EPC] += 4; |
1091 |
|
|
return true; |
1092 |
gbeauche |
1.10 |
} |
1093 |
|
|
#endif |
1094 |
|
|
#endif |
1095 |
|
|
|
1096 |
gbeauche |
1.1 |
// Fallbacks |
1097 |
|
|
#ifndef SIGSEGV_FAULT_INSTRUCTION |
1098 |
|
|
#define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_INVALID_PC |
1099 |
|
|
#endif |
1100 |
gbeauche |
1.30 |
#ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1 |
1101 |
|
|
#define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST |
1102 |
|
|
#endif |
1103 |
gbeauche |
1.31 |
#ifndef SIGSEGV_FAULT_HANDLER_INVOKE |
1104 |
|
|
#define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP) sigsegv_fault_handler(ADDR, IP) |
1105 |
|
|
#endif |
1106 |
gbeauche |
1.1 |
|
1107 |
gbeauche |
1.2 |
// SIGSEGV recovery supported ? |
1108 |
|
|
#if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS) |
1109 |
|
|
#define HAVE_SIGSEGV_RECOVERY |
1110 |
|
|
#endif |
1111 |
|
|
|
1112 |
gbeauche |
1.1 |
|
1113 |
|
|
/* |
1114 |
|
|
* SIGSEGV global handler |
1115 |
|
|
*/ |
1116 |
|
|
|
1117 |
gbeauche |
1.27 |
#if defined(HAVE_SIGSEGV_RECOVERY) || defined(HAVE_MACH_EXCEPTIONS) |
1118 |
|
|
// This function handles the badaccess to memory. |
1119 |
|
|
// It is called from the signal handler or the exception handler. |
1120 |
gbeauche |
1.30 |
static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1) |
1121 |
gbeauche |
1.1 |
{ |
1122 |
gbeauche |
1.10 |
sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS; |
1123 |
|
|
sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION; |
1124 |
|
|
|
1125 |
gbeauche |
1.1 |
// Call user's handler and reinstall the global handler, if required |
1126 |
gbeauche |
1.31 |
switch (SIGSEGV_FAULT_HANDLER_INVOKE(fault_address, fault_instruction)) { |
1127 |
gbeauche |
1.24 |
case SIGSEGV_RETURN_SUCCESS: |
1128 |
gbeauche |
1.27 |
return true; |
1129 |
|
|
|
1130 |
gbeauche |
1.10 |
#if HAVE_SIGSEGV_SKIP_INSTRUCTION |
1131 |
gbeauche |
1.24 |
case SIGSEGV_RETURN_SKIP_INSTRUCTION: |
1132 |
gbeauche |
1.27 |
// Call the instruction skipper with the register file |
1133 |
|
|
// available |
1134 |
|
|
if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) { |
1135 |
|
|
#ifdef HAVE_MACH_EXCEPTIONS |
1136 |
|
|
// Unlike UNIX signals where the thread state |
1137 |
|
|
// is modified off of the stack, in Mach we |
1138 |
|
|
// need to actually call thread_set_state to |
1139 |
|
|
// have the register values updated. |
1140 |
|
|
kern_return_t krc; |
1141 |
|
|
|
1142 |
|
|
krc = thread_set_state(thread, |
1143 |
|
|
MACHINE_THREAD_STATE, (thread_state_t)state, |
1144 |
|
|
MACHINE_THREAD_STATE_COUNT); |
1145 |
|
|
MACH_CHECK_ERROR (thread_get_state, krc); |
1146 |
|
|
#endif |
1147 |
|
|
return true; |
1148 |
|
|
} |
1149 |
gbeauche |
1.24 |
break; |
1150 |
|
|
#endif |
1151 |
gbeauche |
1.10 |
} |
1152 |
gbeauche |
1.27 |
|
1153 |
|
|
// We can't do anything with the fault_address, dump state? |
1154 |
|
|
if (sigsegv_state_dumper != 0) |
1155 |
|
|
sigsegv_state_dumper(fault_address, fault_instruction); |
1156 |
|
|
|
1157 |
|
|
return false; |
1158 |
|
|
} |
1159 |
|
|
#endif |
1160 |
|
|
|
1161 |
|
|
|
1162 |
|
|
/* |
1163 |
|
|
* There are two mechanisms for handling a bad memory access, |
1164 |
|
|
* Mach exceptions and UNIX signals. The implementation specific |
1165 |
|
|
* code appears below. Its reponsibility is to call handle_badaccess |
1166 |
|
|
* which is the routine that handles the fault in an implementation |
1167 |
|
|
* agnostic manner. The implementation specific code below is then |
1168 |
|
|
* reponsible for checking whether handle_badaccess was able |
1169 |
|
|
* to handle the memory access error and perform any implementation |
1170 |
|
|
* specific tasks necessary afterwards. |
1171 |
|
|
*/ |
1172 |
|
|
|
1173 |
|
|
#ifdef HAVE_MACH_EXCEPTIONS |
1174 |
|
|
/* |
1175 |
|
|
* We need to forward all exceptions that we do not handle. |
1176 |
|
|
* This is important, there are many exceptions that may be |
1177 |
|
|
* handled by other exception handlers. For example debuggers |
1178 |
|
|
* use exceptions and the exception hander is in another |
1179 |
|
|
* process in such a case. (Timothy J. Wood states in his |
1180 |
|
|
* message to the list that he based this code on that from |
1181 |
|
|
* gdb for Darwin.) |
1182 |
|
|
*/ |
1183 |
|
|
static inline kern_return_t |
1184 |
|
|
forward_exception(mach_port_t thread_port, |
1185 |
|
|
mach_port_t task_port, |
1186 |
|
|
exception_type_t exception_type, |
1187 |
|
|
exception_data_t exception_data, |
1188 |
|
|
mach_msg_type_number_t data_count, |
1189 |
|
|
ExceptionPorts *oldExceptionPorts) |
1190 |
|
|
{ |
1191 |
|
|
kern_return_t kret; |
1192 |
|
|
unsigned int portIndex; |
1193 |
|
|
mach_port_t port; |
1194 |
|
|
exception_behavior_t behavior; |
1195 |
|
|
thread_state_flavor_t flavor; |
1196 |
|
|
thread_state_t thread_state; |
1197 |
|
|
mach_msg_type_number_t thread_state_count; |
1198 |
|
|
|
1199 |
|
|
for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) { |
1200 |
|
|
if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) { |
1201 |
|
|
// This handler wants the exception |
1202 |
|
|
break; |
1203 |
|
|
} |
1204 |
|
|
} |
1205 |
|
|
|
1206 |
|
|
if (portIndex >= oldExceptionPorts->maskCount) { |
1207 |
|
|
fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type); |
1208 |
|
|
return KERN_FAILURE; |
1209 |
|
|
} |
1210 |
|
|
|
1211 |
|
|
port = oldExceptionPorts->handlers[portIndex]; |
1212 |
|
|
behavior = oldExceptionPorts->behaviors[portIndex]; |
1213 |
|
|
flavor = oldExceptionPorts->flavors[portIndex]; |
1214 |
|
|
|
1215 |
|
|
/* |
1216 |
|
|
fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor); |
1217 |
|
|
*/ |
1218 |
|
|
|
1219 |
|
|
if (behavior != EXCEPTION_DEFAULT) { |
1220 |
|
|
thread_state_count = THREAD_STATE_MAX; |
1221 |
|
|
kret = thread_get_state (thread_port, flavor, thread_state, |
1222 |
|
|
&thread_state_count); |
1223 |
|
|
MACH_CHECK_ERROR (thread_get_state, kret); |
1224 |
|
|
} |
1225 |
|
|
|
1226 |
|
|
switch (behavior) { |
1227 |
|
|
case EXCEPTION_DEFAULT: |
1228 |
|
|
// fprintf(stderr, "forwarding to exception_raise\n"); |
1229 |
|
|
kret = exception_raise(port, thread_port, task_port, exception_type, |
1230 |
|
|
exception_data, data_count); |
1231 |
|
|
MACH_CHECK_ERROR (exception_raise, kret); |
1232 |
|
|
break; |
1233 |
|
|
case EXCEPTION_STATE: |
1234 |
|
|
// fprintf(stderr, "forwarding to exception_raise_state\n"); |
1235 |
|
|
kret = exception_raise_state(port, exception_type, exception_data, |
1236 |
|
|
data_count, &flavor, |
1237 |
|
|
thread_state, thread_state_count, |
1238 |
|
|
thread_state, &thread_state_count); |
1239 |
|
|
MACH_CHECK_ERROR (exception_raise_state, kret); |
1240 |
|
|
break; |
1241 |
|
|
case EXCEPTION_STATE_IDENTITY: |
1242 |
|
|
// fprintf(stderr, "forwarding to exception_raise_state_identity\n"); |
1243 |
|
|
kret = exception_raise_state_identity(port, thread_port, task_port, |
1244 |
|
|
exception_type, exception_data, |
1245 |
|
|
data_count, &flavor, |
1246 |
|
|
thread_state, thread_state_count, |
1247 |
|
|
thread_state, &thread_state_count); |
1248 |
|
|
MACH_CHECK_ERROR (exception_raise_state_identity, kret); |
1249 |
|
|
break; |
1250 |
|
|
default: |
1251 |
|
|
fprintf(stderr, "forward_exception got unknown behavior\n"); |
1252 |
|
|
break; |
1253 |
|
|
} |
1254 |
|
|
|
1255 |
|
|
if (behavior != EXCEPTION_DEFAULT) { |
1256 |
|
|
kret = thread_set_state (thread_port, flavor, thread_state, |
1257 |
|
|
thread_state_count); |
1258 |
|
|
MACH_CHECK_ERROR (thread_set_state, kret); |
1259 |
|
|
} |
1260 |
|
|
|
1261 |
|
|
return KERN_SUCCESS; |
1262 |
|
|
} |
1263 |
|
|
|
1264 |
|
|
/* |
1265 |
|
|
* This is the code that actually handles the exception. |
1266 |
|
|
* It is called by exc_server. For Darwin 5 Apple changed |
1267 |
|
|
* this a bit from how this family of functions worked in |
1268 |
|
|
* Mach. If you are familiar with that it is a little |
1269 |
|
|
* different. The main variation that concerns us here is |
1270 |
|
|
* that code is an array of exception specific codes and |
1271 |
|
|
* codeCount is a count of the number of codes in the code |
1272 |
|
|
* array. In typical Mach all exceptions have a code |
1273 |
|
|
* and sub-code. It happens to be the case that for a |
1274 |
|
|
* EXC_BAD_ACCESS exception the first entry is the type of |
1275 |
|
|
* bad access that occurred and the second entry is the |
1276 |
|
|
* faulting address so these entries correspond exactly to |
1277 |
|
|
* how the code and sub-code are used on Mach. |
1278 |
|
|
* |
1279 |
|
|
* This is a MIG interface. No code in Basilisk II should |
1280 |
|
|
* call this directley. This has to have external C |
1281 |
|
|
* linkage because that is what exc_server expects. |
1282 |
|
|
*/ |
1283 |
|
|
kern_return_t |
1284 |
|
|
catch_exception_raise(mach_port_t exception_port, |
1285 |
|
|
mach_port_t thread, |
1286 |
|
|
mach_port_t task, |
1287 |
|
|
exception_type_t exception, |
1288 |
|
|
exception_data_t code, |
1289 |
|
|
mach_msg_type_number_t codeCount) |
1290 |
|
|
{ |
1291 |
|
|
ppc_thread_state_t state; |
1292 |
|
|
kern_return_t krc; |
1293 |
|
|
|
1294 |
|
|
if ((exception == EXC_BAD_ACCESS) && (codeCount >= 2)) { |
1295 |
|
|
if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) |
1296 |
|
|
return KERN_SUCCESS; |
1297 |
|
|
} |
1298 |
|
|
|
1299 |
|
|
// In Mach we do not need to remove the exception handler. |
1300 |
|
|
// If we forward the exception, eventually some exception handler |
1301 |
|
|
// will take care of this exception. |
1302 |
|
|
krc = forward_exception(thread, task, exception, code, codeCount, &ports); |
1303 |
|
|
|
1304 |
|
|
return krc; |
1305 |
|
|
} |
1306 |
|
|
#endif |
1307 |
|
|
|
1308 |
|
|
#ifdef HAVE_SIGSEGV_RECOVERY |
1309 |
|
|
// Handle bad memory accesses with signal handler |
1310 |
|
|
static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST) |
1311 |
|
|
{ |
1312 |
|
|
// Call handler and reinstall the global handler, if required |
1313 |
|
|
if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) { |
1314 |
|
|
#if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL)) |
1315 |
|
|
sigsegv_do_install_handler(sig); |
1316 |
|
|
#endif |
1317 |
|
|
return; |
1318 |
|
|
} |
1319 |
gbeauche |
1.10 |
|
1320 |
gbeauche |
1.27 |
// Failure: reinstall default handler for "safe" crash |
1321 |
gbeauche |
1.1 |
#define FAULT_HANDLER(sig) signal(sig, SIG_DFL); |
1322 |
gbeauche |
1.27 |
SIGSEGV_ALL_SIGNALS |
1323 |
gbeauche |
1.1 |
#undef FAULT_HANDLER |
1324 |
|
|
} |
1325 |
gbeauche |
1.2 |
#endif |
1326 |
gbeauche |
1.1 |
|
1327 |
|
|
|
1328 |
|
|
/* |
1329 |
|
|
* SIGSEGV handler initialization |
1330 |
|
|
*/ |
1331 |
|
|
|
1332 |
|
|
#if defined(HAVE_SIGINFO_T) |
1333 |
|
|
static bool sigsegv_do_install_handler(int sig) |
1334 |
|
|
{ |
1335 |
|
|
// Setup SIGSEGV handler to process writes to frame buffer |
1336 |
|
|
#ifdef HAVE_SIGACTION |
1337 |
gbeauche |
1.22 |
struct sigaction sigsegv_sa; |
1338 |
|
|
sigemptyset(&sigsegv_sa.sa_mask); |
1339 |
|
|
sigsegv_sa.sa_sigaction = sigsegv_handler; |
1340 |
|
|
sigsegv_sa.sa_flags = SA_SIGINFO; |
1341 |
|
|
return (sigaction(sig, &sigsegv_sa, 0) == 0); |
1342 |
gbeauche |
1.1 |
#else |
1343 |
|
|
return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR); |
1344 |
|
|
#endif |
1345 |
|
|
} |
1346 |
gbeauche |
1.2 |
#endif |
1347 |
|
|
|
1348 |
|
|
#if defined(HAVE_SIGCONTEXT_SUBTERFUGE) |
1349 |
gbeauche |
1.1 |
static bool sigsegv_do_install_handler(int sig) |
1350 |
|
|
{ |
1351 |
|
|
// Setup SIGSEGV handler to process writes to frame buffer |
1352 |
|
|
#ifdef HAVE_SIGACTION |
1353 |
gbeauche |
1.22 |
struct sigaction sigsegv_sa; |
1354 |
|
|
sigemptyset(&sigsegv_sa.sa_mask); |
1355 |
|
|
sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler; |
1356 |
|
|
sigsegv_sa.sa_flags = 0; |
1357 |
gbeauche |
1.1 |
#if !EMULATED_68K && defined(__NetBSD__) |
1358 |
gbeauche |
1.22 |
sigaddset(&sigsegv_sa.sa_mask, SIGALRM); |
1359 |
|
|
sigsegv_sa.sa_flags |= SA_ONSTACK; |
1360 |
gbeauche |
1.1 |
#endif |
1361 |
gbeauche |
1.22 |
return (sigaction(sig, &sigsegv_sa, 0) == 0); |
1362 |
gbeauche |
1.1 |
#else |
1363 |
|
|
return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR); |
1364 |
|
|
#endif |
1365 |
|
|
} |
1366 |
|
|
#endif |
1367 |
|
|
|
1368 |
gbeauche |
1.27 |
#if defined(HAVE_MACH_EXCEPTIONS) |
1369 |
|
|
static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler) |
1370 |
|
|
{ |
1371 |
|
|
/* |
1372 |
|
|
* Except for the exception port functions, this should be |
1373 |
|
|
* pretty much stock Mach. If later you choose to support |
1374 |
|
|
* other Mach's besides Darwin, just check for __MACH__ |
1375 |
|
|
* here and __APPLE__ where the actual differences are. |
1376 |
|
|
*/ |
1377 |
|
|
#if defined(__APPLE__) && defined(__MACH__) |
1378 |
|
|
if (sigsegv_fault_handler != NULL) { |
1379 |
|
|
sigsegv_fault_handler = handler; |
1380 |
|
|
return true; |
1381 |
|
|
} |
1382 |
|
|
|
1383 |
|
|
kern_return_t krc; |
1384 |
|
|
|
1385 |
|
|
// create the the exception port |
1386 |
|
|
krc = mach_port_allocate(mach_task_self(), |
1387 |
|
|
MACH_PORT_RIGHT_RECEIVE, &_exceptionPort); |
1388 |
|
|
if (krc != KERN_SUCCESS) { |
1389 |
|
|
mach_error("mach_port_allocate", krc); |
1390 |
|
|
return false; |
1391 |
|
|
} |
1392 |
|
|
|
1393 |
|
|
// add a port send right |
1394 |
|
|
krc = mach_port_insert_right(mach_task_self(), |
1395 |
|
|
_exceptionPort, _exceptionPort, |
1396 |
|
|
MACH_MSG_TYPE_MAKE_SEND); |
1397 |
|
|
if (krc != KERN_SUCCESS) { |
1398 |
|
|
mach_error("mach_port_insert_right", krc); |
1399 |
|
|
return false; |
1400 |
|
|
} |
1401 |
|
|
|
1402 |
|
|
// get the old exception ports |
1403 |
|
|
ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]); |
1404 |
|
|
krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks, |
1405 |
|
|
&ports.maskCount, ports.handlers, ports.behaviors, ports.flavors); |
1406 |
|
|
if (krc != KERN_SUCCESS) { |
1407 |
|
|
mach_error("thread_get_exception_ports", krc); |
1408 |
|
|
return false; |
1409 |
|
|
} |
1410 |
|
|
|
1411 |
|
|
// set the new exception port |
1412 |
|
|
// |
1413 |
|
|
// We could have used EXCEPTION_STATE_IDENTITY instead of |
1414 |
|
|
// EXCEPTION_DEFAULT to get the thread state in the initial |
1415 |
|
|
// message, but it turns out that in the common case this is not |
1416 |
|
|
// neccessary. If we need it we can later ask for it from the |
1417 |
|
|
// suspended thread. |
1418 |
|
|
// |
1419 |
|
|
// Even with THREAD_STATE_NONE, Darwin provides the program |
1420 |
|
|
// counter in the thread state. The comments in the header file |
1421 |
|
|
// seem to imply that you can count on the GPR's on an exception |
1422 |
|
|
// as well but just to be safe I use MACHINE_THREAD_STATE because |
1423 |
|
|
// you have to ask for all of the GPR's anyway just to get the |
1424 |
|
|
// program counter. In any case because of update effective |
1425 |
|
|
// address from immediate and update address from effective |
1426 |
|
|
// addresses of ra and rb modes (as good an name as any for these |
1427 |
|
|
// addressing modes) used in PPC instructions, you will need the |
1428 |
|
|
// GPR state anyway. |
1429 |
|
|
krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort, |
1430 |
|
|
EXCEPTION_DEFAULT, MACHINE_THREAD_STATE); |
1431 |
|
|
if (krc != KERN_SUCCESS) { |
1432 |
|
|
mach_error("thread_set_exception_ports", krc); |
1433 |
|
|
return false; |
1434 |
|
|
} |
1435 |
|
|
|
1436 |
|
|
// create the exception handler thread |
1437 |
|
|
if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) { |
1438 |
|
|
(void)fprintf(stderr, "creation of exception thread failed\n"); |
1439 |
|
|
return false; |
1440 |
|
|
} |
1441 |
|
|
|
1442 |
|
|
// do not care about the exception thread any longer, let is run standalone |
1443 |
|
|
(void)pthread_detach(exc_thread); |
1444 |
|
|
|
1445 |
|
|
sigsegv_fault_handler = handler; |
1446 |
|
|
return true; |
1447 |
|
|
#else |
1448 |
|
|
return false; |
1449 |
|
|
#endif |
1450 |
|
|
} |
1451 |
|
|
#endif |
1452 |
|
|
|
1453 |
gbeauche |
1.12 |
bool sigsegv_install_handler(sigsegv_fault_handler_t handler) |
1454 |
gbeauche |
1.1 |
{ |
1455 |
gbeauche |
1.27 |
#if defined(HAVE_SIGSEGV_RECOVERY) |
1456 |
gbeauche |
1.1 |
bool success = true; |
1457 |
|
|
#define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig); |
1458 |
|
|
SIGSEGV_ALL_SIGNALS |
1459 |
|
|
#undef FAULT_HANDLER |
1460 |
gbeauche |
1.27 |
if (success) |
1461 |
|
|
sigsegv_fault_handler = handler; |
1462 |
gbeauche |
1.1 |
return success; |
1463 |
gbeauche |
1.27 |
#elif defined(HAVE_MACH_EXCEPTIONS) |
1464 |
|
|
return sigsegv_do_install_handler(handler); |
1465 |
gbeauche |
1.1 |
#else |
1466 |
|
|
// FAIL: no siginfo_t nor sigcontext subterfuge is available |
1467 |
|
|
return false; |
1468 |
|
|
#endif |
1469 |
|
|
} |
1470 |
|
|
|
1471 |
|
|
|
1472 |
|
|
/* |
1473 |
|
|
* SIGSEGV handler deinitialization |
1474 |
|
|
*/ |
1475 |
|
|
|
1476 |
|
|
void sigsegv_deinstall_handler(void) |
1477 |
|
|
{ |
1478 |
gbeauche |
1.27 |
// We do nothing for Mach exceptions, the thread would need to be |
1479 |
|
|
// suspended if not already so, and we might mess with other |
1480 |
|
|
// exception handlers that came after we registered ours. There is |
1481 |
|
|
// no need to remove the exception handler, in fact this function is |
1482 |
|
|
// not called anywhere in Basilisk II. |
1483 |
gbeauche |
1.2 |
#ifdef HAVE_SIGSEGV_RECOVERY |
1484 |
gbeauche |
1.12 |
sigsegv_fault_handler = 0; |
1485 |
gbeauche |
1.1 |
#define FAULT_HANDLER(sig) signal(sig, SIG_DFL); |
1486 |
|
|
SIGSEGV_ALL_SIGNALS |
1487 |
|
|
#undef FAULT_HANDLER |
1488 |
gbeauche |
1.2 |
#endif |
1489 |
gbeauche |
1.1 |
} |
1490 |
|
|
|
1491 |
gbeauche |
1.10 |
|
1492 |
|
|
/* |
1493 |
|
|
* Set callback function when we cannot handle the fault |
1494 |
|
|
*/ |
1495 |
|
|
|
1496 |
gbeauche |
1.12 |
void sigsegv_set_dump_state(sigsegv_state_dumper_t handler) |
1497 |
gbeauche |
1.10 |
{ |
1498 |
gbeauche |
1.12 |
sigsegv_state_dumper = handler; |
1499 |
gbeauche |
1.10 |
} |
1500 |
|
|
|
1501 |
|
|
|
1502 |
gbeauche |
1.1 |
/* |
1503 |
|
|
* Test program used for configure/test |
1504 |
|
|
*/ |
1505 |
|
|
|
1506 |
gbeauche |
1.4 |
#ifdef CONFIGURE_TEST_SIGSEGV_RECOVERY |
1507 |
gbeauche |
1.1 |
#include <stdio.h> |
1508 |
|
|
#include <stdlib.h> |
1509 |
|
|
#include <fcntl.h> |
1510 |
|
|
#include <sys/mman.h> |
1511 |
gbeauche |
1.4 |
#include "vm_alloc.h" |
1512 |
gbeauche |
1.1 |
|
1513 |
gbeauche |
1.32 |
const int REF_INDEX = 123; |
1514 |
|
|
const int REF_VALUE = 45; |
1515 |
|
|
|
1516 |
gbeauche |
1.1 |
static int page_size; |
1517 |
gbeauche |
1.3 |
static volatile char * page = 0; |
1518 |
|
|
static volatile int handler_called = 0; |
1519 |
gbeauche |
1.1 |
|
1520 |
gbeauche |
1.32 |
#ifdef __GNUC__ |
1521 |
|
|
// Code range where we expect the fault to come from |
1522 |
|
|
static void *b_region, *e_region; |
1523 |
|
|
#endif |
1524 |
|
|
|
1525 |
gbeauche |
1.24 |
static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address) |
1526 |
gbeauche |
1.1 |
{ |
1527 |
|
|
handler_called++; |
1528 |
gbeauche |
1.32 |
if ((fault_address - REF_INDEX) != page) |
1529 |
gbeauche |
1.29 |
exit(10); |
1530 |
gbeauche |
1.32 |
#ifdef __GNUC__ |
1531 |
|
|
// Make sure reported fault instruction address falls into |
1532 |
|
|
// expected code range |
1533 |
|
|
if (instruction_address != SIGSEGV_INVALID_PC |
1534 |
|
|
&& ((instruction_address < (sigsegv_address_t)b_region) || |
1535 |
|
|
(instruction_address >= (sigsegv_address_t)e_region))) |
1536 |
|
|
exit(11); |
1537 |
|
|
#endif |
1538 |
gbeauche |
1.4 |
if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0) |
1539 |
gbeauche |
1.32 |
exit(12); |
1540 |
gbeauche |
1.24 |
return SIGSEGV_RETURN_SUCCESS; |
1541 |
gbeauche |
1.1 |
} |
1542 |
|
|
|
1543 |
gbeauche |
1.10 |
#ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION |
1544 |
gbeauche |
1.24 |
static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address) |
1545 |
gbeauche |
1.10 |
{ |
1546 |
gbeauche |
1.28 |
if (((unsigned long)fault_address - (unsigned long)page) < page_size) { |
1547 |
|
|
#ifdef __GNUC__ |
1548 |
|
|
// Make sure reported fault instruction address falls into |
1549 |
|
|
// expected code range |
1550 |
|
|
if (instruction_address != SIGSEGV_INVALID_PC |
1551 |
|
|
&& ((instruction_address < (sigsegv_address_t)b_region) || |
1552 |
|
|
(instruction_address >= (sigsegv_address_t)e_region))) |
1553 |
|
|
return SIGSEGV_RETURN_FAILURE; |
1554 |
|
|
#endif |
1555 |
gbeauche |
1.26 |
return SIGSEGV_RETURN_SKIP_INSTRUCTION; |
1556 |
gbeauche |
1.28 |
} |
1557 |
|
|
|
1558 |
gbeauche |
1.24 |
return SIGSEGV_RETURN_FAILURE; |
1559 |
gbeauche |
1.10 |
} |
1560 |
gbeauche |
1.34 |
|
1561 |
|
|
// More sophisticated tests for instruction skipper |
1562 |
|
|
static bool arch_insn_skipper_tests() |
1563 |
|
|
{ |
1564 |
|
|
#if (defined(i386) || defined(__i386__)) || defined(__x86_64__) |
1565 |
|
|
static const unsigned char code[] = { |
1566 |
|
|
0x8a, 0x00, // mov (%eax),%al |
1567 |
|
|
0x8a, 0x2c, 0x18, // mov (%eax,%ebx,1),%ch |
1568 |
|
|
0x88, 0x20, // mov %ah,(%eax) |
1569 |
|
|
0x88, 0x08, // mov %cl,(%eax) |
1570 |
|
|
0x66, 0x8b, 0x00, // mov (%eax),%ax |
1571 |
|
|
0x66, 0x8b, 0x0c, 0x18, // mov (%eax,%ebx,1),%cx |
1572 |
|
|
0x66, 0x89, 0x00, // mov %ax,(%eax) |
1573 |
|
|
0x66, 0x89, 0x0c, 0x18, // mov %cx,(%eax,%ebx,1) |
1574 |
|
|
0x8b, 0x00, // mov (%eax),%eax |
1575 |
|
|
0x8b, 0x0c, 0x18, // mov (%eax,%ebx,1),%ecx |
1576 |
|
|
0x89, 0x00, // mov %eax,(%eax) |
1577 |
|
|
0x89, 0x0c, 0x18, // mov %ecx,(%eax,%ebx,1) |
1578 |
|
|
#if defined(__x86_64__) |
1579 |
|
|
0x44, 0x8a, 0x00, // mov (%rax),%r8b |
1580 |
|
|
0x44, 0x8a, 0x20, // mov (%rax),%r12b |
1581 |
|
|
0x42, 0x8a, 0x3c, 0x10, // mov (%rax,%r10,1),%dil |
1582 |
|
|
0x44, 0x88, 0x00, // mov %r8b,(%rax) |
1583 |
|
|
0x44, 0x88, 0x20, // mov %r12b,(%rax) |
1584 |
|
|
0x42, 0x88, 0x3c, 0x10, // mov %dil,(%rax,%r10,1) |
1585 |
|
|
0x66, 0x44, 0x8b, 0x00, // mov (%rax),%r8w |
1586 |
|
|
0x66, 0x42, 0x8b, 0x0c, 0x10, // mov (%rax,%r10,1),%cx |
1587 |
|
|
0x66, 0x44, 0x89, 0x00, // mov %r8w,(%rax) |
1588 |
|
|
0x66, 0x42, 0x89, 0x0c, 0x10, // mov %cx,(%rax,%r10,1) |
1589 |
|
|
0x44, 0x8b, 0x00, // mov (%rax),%r8d |
1590 |
|
|
0x42, 0x8b, 0x0c, 0x10, // mov (%rax,%r10,1),%ecx |
1591 |
|
|
0x44, 0x89, 0x00, // mov %r8d,(%rax) |
1592 |
|
|
0x42, 0x89, 0x0c, 0x10, // mov %ecx,(%rax,%r10,1) |
1593 |
|
|
0x48, 0x8b, 0x08, // mov (%rax),%rcx |
1594 |
|
|
0x4c, 0x8b, 0x18, // mov (%rax),%r11 |
1595 |
|
|
0x4a, 0x8b, 0x0c, 0x10, // mov (%rax,%r10,1),%rcx |
1596 |
|
|
0x4e, 0x8b, 0x1c, 0x10, // mov (%rax,%r10,1),%r11 |
1597 |
|
|
0x48, 0x89, 0x08, // mov %rcx,(%rax) |
1598 |
|
|
0x4c, 0x89, 0x18, // mov %r11,(%rax) |
1599 |
|
|
0x4a, 0x89, 0x0c, 0x10, // mov %rcx,(%rax,%r10,1) |
1600 |
|
|
0x4e, 0x89, 0x1c, 0x10, // mov %r11,(%rax,%r10,1) |
1601 |
|
|
#endif |
1602 |
|
|
0 // end |
1603 |
|
|
}; |
1604 |
|
|
const int N_REGS = 20; |
1605 |
|
|
unsigned long regs[N_REGS]; |
1606 |
|
|
for (int i = 0; i < N_REGS; i++) |
1607 |
|
|
regs[i] = i; |
1608 |
|
|
const unsigned long start_code = (unsigned long)&code; |
1609 |
|
|
regs[X86_REG_EIP] = start_code; |
1610 |
|
|
while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1) |
1611 |
|
|
&& ix86_skip_instruction(regs)) |
1612 |
|
|
; /* simply iterate */ |
1613 |
|
|
return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1); |
1614 |
|
|
#endif |
1615 |
|
|
return true; |
1616 |
|
|
} |
1617 |
gbeauche |
1.10 |
#endif |
1618 |
|
|
|
1619 |
gbeauche |
1.1 |
int main(void) |
1620 |
|
|
{ |
1621 |
gbeauche |
1.4 |
if (vm_init() < 0) |
1622 |
gbeauche |
1.1 |
return 1; |
1623 |
|
|
|
1624 |
|
|
page_size = getpagesize(); |
1625 |
gbeauche |
1.4 |
if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED) |
1626 |
gbeauche |
1.29 |
return 2; |
1627 |
gbeauche |
1.4 |
|
1628 |
gbeauche |
1.32 |
memset((void *)page, 0, page_size); |
1629 |
gbeauche |
1.4 |
if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0) |
1630 |
gbeauche |
1.29 |
return 3; |
1631 |
gbeauche |
1.1 |
|
1632 |
|
|
if (!sigsegv_install_handler(sigsegv_test_handler)) |
1633 |
gbeauche |
1.29 |
return 4; |
1634 |
gbeauche |
1.1 |
|
1635 |
gbeauche |
1.32 |
#ifdef __GNUC__ |
1636 |
|
|
b_region = &&L_b_region1; |
1637 |
|
|
e_region = &&L_e_region1; |
1638 |
|
|
#endif |
1639 |
|
|
L_b_region1: |
1640 |
|
|
page[REF_INDEX] = REF_VALUE; |
1641 |
|
|
if (page[REF_INDEX] != REF_VALUE) |
1642 |
|
|
exit(20); |
1643 |
|
|
page[REF_INDEX] = REF_VALUE; |
1644 |
|
|
L_e_region1: |
1645 |
|
|
|
1646 |
gbeauche |
1.1 |
if (handler_called != 1) |
1647 |
gbeauche |
1.29 |
return 5; |
1648 |
gbeauche |
1.10 |
|
1649 |
|
|
#ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION |
1650 |
|
|
if (!sigsegv_install_handler(sigsegv_insn_handler)) |
1651 |
gbeauche |
1.29 |
return 6; |
1652 |
gbeauche |
1.10 |
|
1653 |
gbeauche |
1.17 |
if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0) |
1654 |
gbeauche |
1.29 |
return 7; |
1655 |
gbeauche |
1.10 |
|
1656 |
|
|
for (int i = 0; i < page_size; i++) |
1657 |
|
|
page[i] = (i + 1) % page_size; |
1658 |
|
|
|
1659 |
|
|
if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0) |
1660 |
gbeauche |
1.29 |
return 8; |
1661 |
gbeauche |
1.10 |
|
1662 |
|
|
#define TEST_SKIP_INSTRUCTION(TYPE) do { \ |
1663 |
gbeauche |
1.34 |
const unsigned long TAG = 0x12345678 | \ |
1664 |
|
|
(sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0); \ |
1665 |
gbeauche |
1.10 |
TYPE data = *((TYPE *)(page + sizeof(TYPE))); \ |
1666 |
gbeauche |
1.34 |
volatile unsigned long effect = data + TAG; \ |
1667 |
gbeauche |
1.10 |
if (effect != TAG) \ |
1668 |
gbeauche |
1.29 |
return 9; \ |
1669 |
gbeauche |
1.10 |
} while (0) |
1670 |
|
|
|
1671 |
gbeauche |
1.28 |
#ifdef __GNUC__ |
1672 |
gbeauche |
1.32 |
b_region = &&L_b_region2; |
1673 |
|
|
e_region = &&L_e_region2; |
1674 |
gbeauche |
1.28 |
#endif |
1675 |
gbeauche |
1.32 |
L_b_region2: |
1676 |
gbeauche |
1.10 |
TEST_SKIP_INSTRUCTION(unsigned char); |
1677 |
|
|
TEST_SKIP_INSTRUCTION(unsigned short); |
1678 |
|
|
TEST_SKIP_INSTRUCTION(unsigned int); |
1679 |
gbeauche |
1.34 |
TEST_SKIP_INSTRUCTION(unsigned long); |
1680 |
gbeauche |
1.32 |
L_e_region2: |
1681 |
gbeauche |
1.1 |
|
1682 |
gbeauche |
1.34 |
if (!arch_insn_skipper_tests()) |
1683 |
|
|
return 20; |
1684 |
gbeauche |
1.35 |
#endif |
1685 |
gbeauche |
1.34 |
|
1686 |
gbeauche |
1.4 |
vm_exit(); |
1687 |
gbeauche |
1.1 |
return 0; |
1688 |
|
|
} |
1689 |
|
|
#endif |