ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
Revision: 1.34
Committed: 2003-11-10T23:47:39Z (20 years, 8 months ago) by gbeauche
Branch: MAIN
Changes since 1.33: +197 -36 lines
Log Message:
Extend x86 instruction skipper to AMD64. Add plenty of arch dependent
opcodes to test it. Also fix DEBUG output & writes (zero'ing) to %xH regs

File Contents

# User Rev Content
1 gbeauche 1.1 /*
2     * sigsegv.cpp - SIGSEGV signals support
3     *
4     * Derived from Bruno Haible's work on his SIGSEGV library for clisp
5     * <http://clisp.sourceforge.net/>
6     *
7 gbeauche 1.27 * MacOS X support derived from the post by Timothy J. Wood to the
8     * omnigroup macosx-dev list:
9     * Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10     * tjw@omnigroup.com Sun, 4 Jun 2000
11     * www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12     *
13 cebix 1.7 * Basilisk II (C) 1997-2002 Christian Bauer
14 gbeauche 1.1 *
15     * This program is free software; you can redistribute it and/or modify
16     * it under the terms of the GNU General Public License as published by
17     * the Free Software Foundation; either version 2 of the License, or
18     * (at your option) any later version.
19     *
20     * This program is distributed in the hope that it will be useful,
21     * but WITHOUT ANY WARRANTY; without even the implied warranty of
22     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23     * GNU General Public License for more details.
24     *
25     * You should have received a copy of the GNU General Public License
26     * along with this program; if not, write to the Free Software
27     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
28     */
29    
30     #ifdef HAVE_UNISTD_H
31     #include <unistd.h>
32     #endif
33    
34     #ifdef HAVE_CONFIG_H
35     #include "config.h"
36     #endif
37    
38 gbeauche 1.22 #include <list>
39 gbeauche 1.1 #include <signal.h>
40     #include "sigsegv.h"
41    
42 gbeauche 1.22 #ifndef NO_STD_NAMESPACE
43     using std::list;
44     #endif
45    
46 gbeauche 1.1 // Return value type of a signal handler (standard type if not defined)
47     #ifndef RETSIGTYPE
48     #define RETSIGTYPE void
49     #endif
50    
51     // Type of the system signal handler
52     typedef RETSIGTYPE (*signal_handler)(int);
53    
54     // User's SIGSEGV handler
55 gbeauche 1.12 static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
56 gbeauche 1.1
57 gbeauche 1.10 // Function called to dump state if we can't handle the fault
58 gbeauche 1.12 static sigsegv_state_dumper_t sigsegv_state_dumper = 0;
59 gbeauche 1.10
60 gbeauche 1.1 // Actual SIGSEGV handler installer
61     static bool sigsegv_do_install_handler(int sig);
62    
63    
64     /*
65 gbeauche 1.14 * Instruction decoding aids
66     */
67    
68     // Transfer size
69     enum transfer_size_t {
70     SIZE_UNKNOWN,
71     SIZE_BYTE,
72 gbeauche 1.34 SIZE_WORD, // 2 bytes
73     SIZE_LONG, // 4 bytes
74     SIZE_QUAD, // 8 bytes
75 gbeauche 1.14 };
76    
77 gbeauche 1.23 // Transfer type
78     typedef sigsegv_transfer_type_t transfer_type_t;
79    
80 gbeauche 1.14 #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
81     // Addressing mode
82     enum addressing_mode_t {
83     MODE_UNKNOWN,
84     MODE_NORM,
85     MODE_U,
86     MODE_X,
87     MODE_UX
88     };
89    
90     // Decoded instruction
91     struct instruction_t {
92     transfer_type_t transfer_type;
93     transfer_size_t transfer_size;
94     addressing_mode_t addr_mode;
95     unsigned int addr;
96     char ra, rd;
97     };
98    
99     static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned int * gpr)
100     {
101     // Get opcode and divide into fields
102     unsigned int opcode = *((unsigned int *)nip);
103     unsigned int primop = opcode >> 26;
104     unsigned int exop = (opcode >> 1) & 0x3ff;
105     unsigned int ra = (opcode >> 16) & 0x1f;
106     unsigned int rb = (opcode >> 11) & 0x1f;
107     unsigned int rd = (opcode >> 21) & 0x1f;
108     signed int imm = (signed short)(opcode & 0xffff);
109    
110     // Analyze opcode
111 gbeauche 1.22 transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
112 gbeauche 1.14 transfer_size_t transfer_size = SIZE_UNKNOWN;
113     addressing_mode_t addr_mode = MODE_UNKNOWN;
114     switch (primop) {
115     case 31:
116     switch (exop) {
117     case 23: // lwzx
118 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
119 gbeauche 1.14 case 55: // lwzux
120 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
121 gbeauche 1.14 case 87: // lbzx
122 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
123 gbeauche 1.14 case 119: // lbzux
124 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
125 gbeauche 1.14 case 151: // stwx
126 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
127 gbeauche 1.14 case 183: // stwux
128 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
129 gbeauche 1.14 case 215: // stbx
130 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
131 gbeauche 1.14 case 247: // stbux
132 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
133 gbeauche 1.14 case 279: // lhzx
134 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
135 gbeauche 1.14 case 311: // lhzux
136 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
137 gbeauche 1.14 case 343: // lhax
138 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
139 gbeauche 1.14 case 375: // lhaux
140 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
141 gbeauche 1.14 case 407: // sthx
142 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
143 gbeauche 1.14 case 439: // sthux
144 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
145 gbeauche 1.14 }
146     break;
147    
148     case 32: // lwz
149 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
150 gbeauche 1.14 case 33: // lwzu
151 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
152 gbeauche 1.14 case 34: // lbz
153 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
154 gbeauche 1.14 case 35: // lbzu
155 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
156 gbeauche 1.14 case 36: // stw
157 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
158 gbeauche 1.14 case 37: // stwu
159 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
160 gbeauche 1.14 case 38: // stb
161 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
162 gbeauche 1.14 case 39: // stbu
163 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
164 gbeauche 1.14 case 40: // lhz
165 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
166 gbeauche 1.14 case 41: // lhzu
167 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
168 gbeauche 1.14 case 42: // lha
169 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
170 gbeauche 1.14 case 43: // lhau
171 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
172 gbeauche 1.14 case 44: // sth
173 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
174 gbeauche 1.14 case 45: // sthu
175 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
176 gbeauche 1.14 }
177    
178     // Calculate effective address
179     unsigned int addr = 0;
180     switch (addr_mode) {
181     case MODE_X:
182     case MODE_UX:
183     if (ra == 0)
184     addr = gpr[rb];
185     else
186     addr = gpr[ra] + gpr[rb];
187     break;
188     case MODE_NORM:
189     case MODE_U:
190     if (ra == 0)
191     addr = (signed int)(signed short)imm;
192     else
193     addr = gpr[ra] + (signed int)(signed short)imm;
194     break;
195     default:
196     break;
197     }
198    
199     // Commit decoded instruction
200     instruction->addr = addr;
201     instruction->addr_mode = addr_mode;
202     instruction->transfer_type = transfer_type;
203     instruction->transfer_size = transfer_size;
204     instruction->ra = ra;
205     instruction->rd = rd;
206     }
207     #endif
208    
209    
210     /*
211 gbeauche 1.1 * OS-dependant SIGSEGV signals support section
212     */
213    
214     #if HAVE_SIGINFO_T
215     // Generic extended signal handler
216 cebix 1.8 #if defined(__NetBSD__) || defined(__FreeBSD__)
217     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
218     #else
219 gbeauche 1.1 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
220 cebix 1.8 #endif
221 gbeauche 1.5 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, siginfo_t *sip, void *scp
222 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
223     #define SIGSEGV_FAULT_HANDLER_ARGS sip, scp
224 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS sip->si_addr
225 gbeauche 1.32 #if defined(__sun__)
226     #if (defined(sparc) || defined(__sparc__))
227     #include <sys/ucontext.h>
228     #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
229     #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[REG_PC]
230     #endif
231     #endif
232 gbeauche 1.33 #if defined(__FreeBSD__)
233 gbeauche 1.17 #if (defined(i386) || defined(__i386__))
234     #define SIGSEGV_FAULT_INSTRUCTION (((struct sigcontext *)scp)->sc_eip)
235 gbeauche 1.34 #define SIGSEGV_REGISTER_FILE ((unsigned long *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
236 gbeauche 1.17 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
237 gbeauche 1.19 #endif
238 gbeauche 1.17 #endif
239 gbeauche 1.5 #if defined(__linux__)
240 gbeauche 1.6 #if (defined(i386) || defined(__i386__))
241     #include <sys/ucontext.h>
242 gbeauche 1.14 #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
243     #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
244 gbeauche 1.34 #define SIGSEGV_REGISTER_FILE (unsigned long *)SIGSEGV_CONTEXT_REGS
245 gbeauche 1.10 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
246 gbeauche 1.6 #endif
247 gbeauche 1.20 #if (defined(x86_64) || defined(__x86_64__))
248     #include <sys/ucontext.h>
249     #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
250     #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
251     #define SIGSEGV_REGISTER_FILE (unsigned long *)SIGSEGV_CONTEXT_REGS
252 gbeauche 1.34 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
253 gbeauche 1.20 #endif
254 gbeauche 1.5 #if (defined(ia64) || defined(__ia64__))
255     #define SIGSEGV_FAULT_INSTRUCTION (((struct sigcontext *)scp)->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
256     #endif
257 gbeauche 1.9 #if (defined(powerpc) || defined(__powerpc__))
258     #include <sys/ucontext.h>
259 gbeauche 1.14 #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.regs)
260     #define SIGSEGV_FAULT_INSTRUCTION (SIGSEGV_CONTEXT_REGS->nip)
261     #define SIGSEGV_REGISTER_FILE (unsigned int *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned int *)(SIGSEGV_CONTEXT_REGS->gpr)
262 gbeauche 1.13 #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
263 gbeauche 1.9 #endif
264 gbeauche 1.5 #endif
265 gbeauche 1.1 #endif
266    
267     #if HAVE_SIGCONTEXT_SUBTERFUGE
268     // Linux kernels prior to 2.4 ?
269     #if defined(__linux__)
270     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
271     #if (defined(i386) || defined(__i386__))
272     #include <asm/sigcontext.h>
273     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, struct sigcontext scs
274 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
275     #define SIGSEGV_FAULT_HANDLER_ARGS &scs
276     #define SIGSEGV_FAULT_ADDRESS scp->cr2
277     #define SIGSEGV_FAULT_INSTRUCTION scp->eip
278 gbeauche 1.34 #define SIGSEGV_REGISTER_FILE (unsigned long *)scp
279 gbeauche 1.10 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
280 gbeauche 1.1 #endif
281     #if (defined(sparc) || defined(__sparc__))
282     #include <asm/sigcontext.h>
283 gbeauche 1.5 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp, char *addr
284 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp, addr
285 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS addr
286     #endif
287     #if (defined(powerpc) || defined(__powerpc__))
288     #include <asm/sigcontext.h>
289 gbeauche 1.4 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, struct sigcontext *scp
290 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, scp
291 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS scp->regs->dar
292     #define SIGSEGV_FAULT_INSTRUCTION scp->regs->nip
293 gbeauche 1.14 #define SIGSEGV_REGISTER_FILE (unsigned int *)&scp->regs->nip, (unsigned int *)(scp->regs->gpr)
294 gbeauche 1.13 #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
295 gbeauche 1.1 #endif
296 gbeauche 1.4 #if (defined(alpha) || defined(__alpha__))
297     #include <asm/sigcontext.h>
298     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
299 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
300 gbeauche 1.4 #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
301     #define SIGSEGV_FAULT_INSTRUCTION scp->sc_pc
302     #endif
303 gbeauche 1.1 #endif
304    
305     // Irix 5 or 6 on MIPS
306     #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
307 gbeauche 1.11 #include <ucontext.h>
308 gbeauche 1.1 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
309 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
310 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS scp->sc_badvaddr
311     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
312     #endif
313    
314 gbeauche 1.11 // HP-UX
315     #if (defined(hpux) || defined(__hpux__))
316     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
317 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
318 gbeauche 1.11 #define SIGSEGV_FAULT_ADDRESS scp->sc_sl.sl_ss.ss_narrow.ss_cr21
319     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
320     #endif
321    
322 gbeauche 1.1 // OSF/1 on Alpha
323     #if defined(__osf__)
324 gbeauche 1.11 #include <ucontext.h>
325 gbeauche 1.1 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
326 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
327 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS scp->sc_traparg_a0
328     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
329     #endif
330    
331     // AIX
332     #if defined(_AIX)
333     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
334 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
335 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS scp->sc_jmpbuf.jmp_context.o_vaddr
336     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
337     #endif
338    
339 gbeauche 1.33 // NetBSD
340     #if defined(__NetBSD__)
341 gbeauche 1.1 #if (defined(m68k) || defined(__m68k__))
342     #include <m68k/frame.h>
343     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
344 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
345 gbeauche 1.14 #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
346 gbeauche 1.1 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
347 gbeauche 1.14
348     // Use decoding scheme from BasiliskII/m68k native
349     static sigsegv_address_t get_fault_address(struct sigcontext *scp)
350     {
351     struct sigstate {
352     int ss_flags;
353     struct frame ss_frame;
354     };
355     struct sigstate *state = (struct sigstate *)scp->sc_ap;
356     char *fault_addr;
357     switch (state->ss_frame.f_format) {
358     case 7: /* 68040 access error */
359     /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */
360     fault_addr = state->ss_frame.f_fmt7.f_fa;
361     break;
362     default:
363     fault_addr = (char *)code;
364     break;
365     }
366     return (sigsegv_address_t)fault_addr;
367     }
368 gbeauche 1.33 #endif
369     #if (defined(alpha) || defined(__alpha__))
370     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
371     #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
372     #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
373     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
374     #endif
375     #if (defined(i386) || defined(__i386__))
376     #error "FIXME: need to decode instruction and compute EA"
377     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
378     #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
379     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
380     #endif
381     #endif
382     #if defined(__FreeBSD__)
383     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
384     #if (defined(i386) || defined(__i386__))
385     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp, char *addr
386 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp, addr
387 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS addr
388 gbeauche 1.33 #define SIGSEGV_FAULT_INSTRUCTION scp->sc_eip
389 gbeauche 1.34 #define SIGSEGV_REGISTER_FILE ((unsigned long *)&scp->sc_edi)
390 gbeauche 1.33 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
391 gbeauche 1.1 #endif
392     #endif
393 gbeauche 1.33
394     // Extract fault address out of a sigcontext
395     #if (defined(alpha) || defined(__alpha__))
396     // From Boehm's GC 6.0alpha8
397     static sigsegv_address_t get_fault_address(struct sigcontext *scp)
398     {
399     unsigned int instruction = *((unsigned int *)(scp->sc_pc));
400     unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
401     fault_address += (signed long)(signed short)(instruction & 0xffff);
402     return (sigsegv_address_t)fault_address;
403     }
404     #endif
405    
406 gbeauche 1.4
407 gbeauche 1.27 // MacOS X, not sure which version this works in. Under 10.1
408     // vm_protect does not appear to work from a signal handler. Under
409     // 10.2 signal handlers get siginfo type arguments but the si_addr
410     // field is the address of the faulting instruction and not the
411     // address that caused the SIGBUS. Maybe this works in 10.0? In any
412     // case with Mach exception handlers there is a way to do what this
413     // was meant to do.
414     #ifndef HAVE_MACH_EXCEPTIONS
415 gbeauche 1.4 #if defined(__APPLE__) && defined(__MACH__)
416     #if (defined(ppc) || defined(__ppc__))
417     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
418 gbeauche 1.27 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
419 gbeauche 1.4 #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
420     #define SIGSEGV_FAULT_INSTRUCTION scp->sc_ir
421     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
422 gbeauche 1.14 #define SIGSEGV_REGISTER_FILE (unsigned int *)&scp->sc_ir, &((unsigned int *) scp->sc_regs)[2]
423     #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
424 gbeauche 1.4
425 gbeauche 1.14 // Use decoding scheme from SheepShaver
426 gbeauche 1.4 static sigsegv_address_t get_fault_address(struct sigcontext *scp)
427     {
428 gbeauche 1.14 unsigned int nip = (unsigned int) scp->sc_ir;
429     unsigned int * gpr = &((unsigned int *) scp->sc_regs)[2];
430     instruction_t instr;
431    
432     powerpc_decode_instruction(&instr, nip, gpr);
433     return (sigsegv_address_t)instr.addr;
434 gbeauche 1.4 }
435     #endif
436     #endif
437 gbeauche 1.1 #endif
438 gbeauche 1.27 #endif
439    
440     #if HAVE_MACH_EXCEPTIONS
441    
442     // This can easily be extended to other Mach systems, but really who
443     // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
444     // Mach 2.5/3.0?
445     #if defined(__APPLE__) && defined(__MACH__)
446    
447     #include <sys/types.h>
448     #include <stdlib.h>
449     #include <stdio.h>
450     #include <pthread.h>
451    
452     /*
453     * If you are familiar with MIG then you will understand the frustration
454     * that was necessary to get these embedded into C++ code by hand.
455     */
456     extern "C" {
457     #include <mach/mach.h>
458     #include <mach/mach_error.h>
459    
460     extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
461     extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
462     mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
463     extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
464     exception_type_t, exception_data_t, mach_msg_type_number_t);
465     extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
466     exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
467     thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
468     extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
469     exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
470     thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
471     }
472    
473     // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
474     #define HANDLER_COUNT 64
475    
476     // structure to tuck away existing exception handlers
477     typedef struct _ExceptionPorts {
478     mach_msg_type_number_t maskCount;
479     exception_mask_t masks[HANDLER_COUNT];
480     exception_handler_t handlers[HANDLER_COUNT];
481     exception_behavior_t behaviors[HANDLER_COUNT];
482     thread_state_flavor_t flavors[HANDLER_COUNT];
483     } ExceptionPorts;
484    
485     // exception handler thread
486     static pthread_t exc_thread;
487    
488     // place where old exception handler info is stored
489     static ExceptionPorts ports;
490    
491     // our exception port
492     static mach_port_t _exceptionPort = MACH_PORT_NULL;
493    
494     #define MACH_CHECK_ERROR(name,ret) \
495     if (ret != KERN_SUCCESS) { \
496     mach_error(#name, ret); \
497     exit (1); \
498     }
499    
500     #define SIGSEGV_FAULT_ADDRESS code[1]
501     #define SIGSEGV_FAULT_INSTRUCTION get_fault_instruction(thread, state)
502 gbeauche 1.31 #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP) ((code[0] == KERN_PROTECTION_FAILURE) ? sigsegv_fault_handler(ADDR, IP) : SIGSEGV_RETURN_FAILURE)
503 gbeauche 1.27 #define SIGSEGV_FAULT_HANDLER_ARGLIST mach_port_t thread, exception_data_t code, ppc_thread_state_t *state
504     #define SIGSEGV_FAULT_HANDLER_ARGS thread, code, &state
505     #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
506     #define SIGSEGV_REGISTER_FILE &state->srr0, &state->r0
507    
508     // Given a suspended thread, stuff the current instruction and
509     // registers into state.
510     //
511     // It would have been nice to have this be ppc/x86 independant which
512     // could have been done easily with a thread_state_t instead of
513     // ppc_thread_state_t, but because of the way this is called it is
514     // easier to do it this way.
515     #if (defined(ppc) || defined(__ppc__))
516     static inline sigsegv_address_t get_fault_instruction(mach_port_t thread, ppc_thread_state_t *state)
517     {
518     kern_return_t krc;
519     mach_msg_type_number_t count;
520    
521     count = MACHINE_THREAD_STATE_COUNT;
522     krc = thread_get_state(thread, MACHINE_THREAD_STATE, (thread_state_t)state, &count);
523     MACH_CHECK_ERROR (thread_get_state, krc);
524    
525     return (sigsegv_address_t)state->srr0;
526     }
527     #endif
528    
529     // Since there can only be one exception thread running at any time
530     // this is not a problem.
531     #define MSG_SIZE 512
532     static char msgbuf[MSG_SIZE];
533     static char replybuf[MSG_SIZE];
534    
535     /*
536     * This is the entry point for the exception handler thread. The job
537     * of this thread is to wait for exception messages on the exception
538     * port that was setup beforehand and to pass them on to exc_server.
539     * exc_server is a MIG generated function that is a part of Mach.
540     * Its job is to decide what to do with the exception message. In our
541     * case exc_server calls catch_exception_raise on our behalf. After
542     * exc_server returns, it is our responsibility to send the reply.
543     */
544     static void *
545     handleExceptions(void *priv)
546     {
547     mach_msg_header_t *msg, *reply;
548     kern_return_t krc;
549    
550     msg = (mach_msg_header_t *)msgbuf;
551     reply = (mach_msg_header_t *)replybuf;
552    
553     for (;;) {
554     krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
555     _exceptionPort, 0, MACH_PORT_NULL);
556     MACH_CHECK_ERROR(mach_msg, krc);
557    
558     if (!exc_server(msg, reply)) {
559     fprintf(stderr, "exc_server hated the message\n");
560     exit(1);
561     }
562    
563     krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
564     msg->msgh_local_port, 0, MACH_PORT_NULL);
565     if (krc != KERN_SUCCESS) {
566     fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
567     krc, mach_error_string(krc));
568     exit(1);
569     }
570     }
571     }
572     #endif
573     #endif
574 gbeauche 1.1
575 gbeauche 1.14
576     /*
577     * Instruction skipping
578     */
579    
580 gbeauche 1.10 #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
581     // Decode and skip X86 instruction
582 gbeauche 1.34 #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
583 gbeauche 1.10 #if defined(__linux__)
584     enum {
585 gbeauche 1.34 #if (defined(i386) || defined(__i386__))
586 gbeauche 1.10 X86_REG_EIP = 14,
587     X86_REG_EAX = 11,
588     X86_REG_ECX = 10,
589     X86_REG_EDX = 9,
590     X86_REG_EBX = 8,
591     X86_REG_ESP = 7,
592     X86_REG_EBP = 6,
593     X86_REG_ESI = 5,
594     X86_REG_EDI = 4
595 gbeauche 1.34 #endif
596     #if defined(__x86_64__)
597     X86_REG_R8 = 0,
598     X86_REG_R9 = 1,
599     X86_REG_R10 = 2,
600     X86_REG_R11 = 3,
601     X86_REG_R12 = 4,
602     X86_REG_R13 = 5,
603     X86_REG_R14 = 6,
604     X86_REG_R15 = 7,
605     X86_REG_EDI = 8,
606     X86_REG_ESI = 9,
607     X86_REG_EBP = 10,
608     X86_REG_EBX = 11,
609     X86_REG_EDX = 12,
610     X86_REG_EAX = 13,
611     X86_REG_ECX = 14,
612     X86_REG_ESP = 15,
613     X86_REG_EIP = 16
614     #endif
615 gbeauche 1.10 };
616     #endif
617 gbeauche 1.17 #if defined(__NetBSD__) || defined(__FreeBSD__)
618     enum {
619 gbeauche 1.34 #if (defined(i386) || defined(__i386__))
620 gbeauche 1.17 X86_REG_EIP = 10,
621     X86_REG_EAX = 7,
622     X86_REG_ECX = 6,
623     X86_REG_EDX = 5,
624     X86_REG_EBX = 4,
625     X86_REG_ESP = 13,
626     X86_REG_EBP = 2,
627     X86_REG_ESI = 1,
628     X86_REG_EDI = 0
629 gbeauche 1.34 #endif
630 gbeauche 1.17 };
631     #endif
632 gbeauche 1.10 // FIXME: this is partly redundant with the instruction decoding phase
633     // to discover transfer type and register number
634     static inline int ix86_step_over_modrm(unsigned char * p)
635     {
636     int mod = (p[0] >> 6) & 3;
637     int rm = p[0] & 7;
638     int offset = 0;
639    
640     // ModR/M Byte
641     switch (mod) {
642     case 0: // [reg]
643     if (rm == 5) return 4; // disp32
644     break;
645     case 1: // disp8[reg]
646     offset = 1;
647     break;
648     case 2: // disp32[reg]
649     offset = 4;
650     break;
651     case 3: // register
652     return 0;
653     }
654    
655     // SIB Byte
656     if (rm == 4) {
657     if (mod == 0 && (p[1] & 7) == 5)
658     offset = 5; // disp32[index]
659     else
660     offset++;
661     }
662    
663     return offset;
664     }
665    
666 gbeauche 1.34 static bool ix86_skip_instruction(unsigned long * regs)
667 gbeauche 1.10 {
668 gbeauche 1.14 unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
669 gbeauche 1.10
670     if (eip == 0)
671     return false;
672    
673 gbeauche 1.22 transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
674 gbeauche 1.14 transfer_size_t transfer_size = SIZE_LONG;
675 gbeauche 1.10
676     int reg = -1;
677     int len = 0;
678 gbeauche 1.34
679     #if DEBUG
680     printf("IP: %p [%02x %02x %02x %02x...]\n",
681     eip, eip[0], eip[1], eip[2], eip[3]);
682     #endif
683    
684 gbeauche 1.10 // Operand size prefix
685     if (*eip == 0x66) {
686     eip++;
687     len++;
688     transfer_size = SIZE_WORD;
689     }
690    
691 gbeauche 1.34 // REX prefix
692     #if defined(__x86_64__)
693     struct rex_t {
694     unsigned char W;
695     unsigned char R;
696     unsigned char X;
697     unsigned char B;
698     };
699     rex_t rex = { 0, 0, 0, 0 };
700     bool has_rex = false;
701     if ((*eip & 0xf0) == 0x40) {
702     has_rex = true;
703     const unsigned char b = *eip;
704     rex.W = b & (1 << 3);
705     rex.R = b & (1 << 2);
706     rex.X = b & (1 << 1);
707     rex.B = b & (1 << 0);
708     #if DEBUG
709     printf("REX: %c,%c,%c,%c\n",
710     rex.W ? 'W' : '_',
711     rex.R ? 'R' : '_',
712     rex.X ? 'X' : '_',
713     rex.B ? 'B' : '_');
714     #endif
715     eip++;
716     len++;
717     if (rex.W)
718     transfer_size = SIZE_QUAD;
719     }
720     #else
721     const bool has_rex = false;
722     #endif
723    
724 gbeauche 1.10 // Decode instruction
725     switch (eip[0]) {
726 gbeauche 1.17 case 0x0f:
727 gbeauche 1.18 switch (eip[1]) {
728     case 0xb6: // MOVZX r32, r/m8
729     case 0xb7: // MOVZX r32, r/m16
730 gbeauche 1.17 switch (eip[2] & 0xc0) {
731     case 0x80:
732     reg = (eip[2] >> 3) & 7;
733 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD;
734 gbeauche 1.17 break;
735     case 0x40:
736     reg = (eip[2] >> 3) & 7;
737 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD;
738 gbeauche 1.17 break;
739     case 0x00:
740     reg = (eip[2] >> 3) & 7;
741 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD;
742 gbeauche 1.17 break;
743     }
744     len += 3 + ix86_step_over_modrm(eip + 2);
745 gbeauche 1.18 break;
746 gbeauche 1.17 }
747     break;
748 gbeauche 1.10 case 0x8a: // MOV r8, r/m8
749     transfer_size = SIZE_BYTE;
750     case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
751     switch (eip[1] & 0xc0) {
752     case 0x80:
753     reg = (eip[1] >> 3) & 7;
754 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD;
755 gbeauche 1.10 break;
756     case 0x40:
757     reg = (eip[1] >> 3) & 7;
758 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD;
759 gbeauche 1.10 break;
760     case 0x00:
761     reg = (eip[1] >> 3) & 7;
762 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD;
763 gbeauche 1.10 break;
764     }
765     len += 2 + ix86_step_over_modrm(eip + 1);
766     break;
767     case 0x88: // MOV r/m8, r8
768     transfer_size = SIZE_BYTE;
769     case 0x89: // MOV r/m32, r32 (or 16-bit operation)
770     switch (eip[1] & 0xc0) {
771     case 0x80:
772     reg = (eip[1] >> 3) & 7;
773 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE;
774 gbeauche 1.10 break;
775     case 0x40:
776     reg = (eip[1] >> 3) & 7;
777 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE;
778 gbeauche 1.10 break;
779     case 0x00:
780     reg = (eip[1] >> 3) & 7;
781 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE;
782 gbeauche 1.10 break;
783     }
784     len += 2 + ix86_step_over_modrm(eip + 1);
785     break;
786     }
787    
788 gbeauche 1.22 if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
789 gbeauche 1.10 // Unknown machine code, let it crash. Then patch the decoder
790     return false;
791     }
792    
793 gbeauche 1.34 #if defined(__x86_64__)
794     if (rex.R)
795     reg += 8;
796     #endif
797    
798 gbeauche 1.22 if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
799 gbeauche 1.34 static const int x86_reg_map[] = {
800 gbeauche 1.10 X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
801 gbeauche 1.34 X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI,
802     #if defined(__x86_64__)
803     X86_REG_R8, X86_REG_R9, X86_REG_R10, X86_REG_R11,
804     X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15,
805     #endif
806 gbeauche 1.10 };
807    
808 gbeauche 1.34 if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1))
809 gbeauche 1.10 return false;
810    
811 gbeauche 1.34 // Set 0 to the relevant register part
812     // NOTE: this is only valid for MOV alike instructions
813 gbeauche 1.10 int rloc = x86_reg_map[reg];
814     switch (transfer_size) {
815     case SIZE_BYTE:
816 gbeauche 1.34 if (!has_rex && reg >= 4)
817     regs[rloc - 4] = (regs[rloc - 4] & ~0xff00L);
818     else
819     regs[rloc] = (regs[rloc] & ~0xffL);
820 gbeauche 1.10 break;
821     case SIZE_WORD:
822 gbeauche 1.34 regs[rloc] = (regs[rloc] & ~0xffffL);
823 gbeauche 1.10 break;
824     case SIZE_LONG:
825 gbeauche 1.34 case SIZE_QUAD: // zero-extension
826 gbeauche 1.10 regs[rloc] = 0;
827     break;
828     }
829     }
830    
831     #if DEBUG
832 gbeauche 1.15 printf("%08x: %s %s access", regs[X86_REG_EIP],
833 gbeauche 1.34 transfer_size == SIZE_BYTE ? "byte" :
834     transfer_size == SIZE_WORD ? "word" :
835     transfer_size == SIZE_LONG ? "long" :
836     transfer_size == SIZE_QUAD ? "quad" : "unknown",
837 gbeauche 1.22 transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
838 gbeauche 1.10
839     if (reg != -1) {
840 gbeauche 1.34 static const char * x86_byte_reg_str_map[] = {
841     "al", "cl", "dl", "bl",
842     "spl", "bpl", "sil", "dil",
843     "r8b", "r9b", "r10b", "r11b",
844     "r12b", "r13b", "r14b", "r15b",
845     "ah", "ch", "dh", "bh",
846     };
847     static const char * x86_word_reg_str_map[] = {
848     "ax", "cx", "dx", "bx",
849     "sp", "bp", "si", "di",
850     "r8w", "r9w", "r10w", "r11w",
851     "r12w", "r13w", "r14w", "r15w",
852     };
853     static const char *x86_long_reg_str_map[] = {
854     "eax", "ecx", "edx", "ebx",
855     "esp", "ebp", "esi", "edi",
856     "r8d", "r9d", "r10d", "r11d",
857     "r12d", "r13d", "r14d", "r15d",
858     };
859     static const char *x86_quad_reg_str_map[] = {
860     "rax", "rcx", "rdx", "rbx",
861     "rsp", "rbp", "rsi", "rdi",
862     "r8", "r9", "r10", "r11",
863     "r12", "r13", "r14", "r15",
864 gbeauche 1.10 };
865 gbeauche 1.34 const char * reg_str = NULL;
866     switch (transfer_size) {
867     case SIZE_BYTE:
868     reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg];
869     break;
870     case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break;
871     case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break;
872     case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break;
873     }
874     if (reg_str)
875     printf(" %s register %%%s",
876     transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from",
877     reg_str);
878 gbeauche 1.10 }
879     printf(", %d bytes instruction\n", len);
880     #endif
881    
882     regs[X86_REG_EIP] += len;
883 gbeauche 1.13 return true;
884     }
885     #endif
886 gbeauche 1.14
887 gbeauche 1.13 // Decode and skip PPC instruction
888 gbeauche 1.14 #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
889     static bool powerpc_skip_instruction(unsigned int * nip_p, unsigned int * regs)
890 gbeauche 1.13 {
891 gbeauche 1.14 instruction_t instr;
892     powerpc_decode_instruction(&instr, *nip_p, regs);
893 gbeauche 1.13
894 gbeauche 1.22 if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
895 gbeauche 1.13 // Unknown machine code, let it crash. Then patch the decoder
896     return false;
897     }
898    
899     #if DEBUG
900 gbeauche 1.14 printf("%08x: %s %s access", *nip_p,
901     instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : "long",
902 gbeauche 1.22 instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
903 gbeauche 1.14
904     if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
905     printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
906 gbeauche 1.22 if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
907 gbeauche 1.14 printf(" r%d (rd = 0)\n", instr.rd);
908     #endif
909    
910     if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
911     regs[instr.ra] = instr.addr;
912 gbeauche 1.22 if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
913 gbeauche 1.14 regs[instr.rd] = 0;
914 gbeauche 1.13
915 gbeauche 1.14 *nip_p += 4;
916 gbeauche 1.10 return true;
917     }
918     #endif
919     #endif
920    
921 gbeauche 1.1 // Fallbacks
922     #ifndef SIGSEGV_FAULT_INSTRUCTION
923     #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_INVALID_PC
924     #endif
925 gbeauche 1.30 #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
926     #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
927     #endif
928 gbeauche 1.31 #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
929     #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP) sigsegv_fault_handler(ADDR, IP)
930     #endif
931 gbeauche 1.1
932 gbeauche 1.2 // SIGSEGV recovery supported ?
933     #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
934     #define HAVE_SIGSEGV_RECOVERY
935     #endif
936    
937 gbeauche 1.1
938     /*
939     * SIGSEGV global handler
940     */
941    
942 gbeauche 1.27 #if defined(HAVE_SIGSEGV_RECOVERY) || defined(HAVE_MACH_EXCEPTIONS)
943     // This function handles the badaccess to memory.
944     // It is called from the signal handler or the exception handler.
945 gbeauche 1.30 static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
946 gbeauche 1.1 {
947 gbeauche 1.10 sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
948     sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
949    
950 gbeauche 1.1 // Call user's handler and reinstall the global handler, if required
951 gbeauche 1.31 switch (SIGSEGV_FAULT_HANDLER_INVOKE(fault_address, fault_instruction)) {
952 gbeauche 1.24 case SIGSEGV_RETURN_SUCCESS:
953 gbeauche 1.27 return true;
954    
955 gbeauche 1.10 #if HAVE_SIGSEGV_SKIP_INSTRUCTION
956 gbeauche 1.24 case SIGSEGV_RETURN_SKIP_INSTRUCTION:
957 gbeauche 1.27 // Call the instruction skipper with the register file
958     // available
959     if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
960     #ifdef HAVE_MACH_EXCEPTIONS
961     // Unlike UNIX signals where the thread state
962     // is modified off of the stack, in Mach we
963     // need to actually call thread_set_state to
964     // have the register values updated.
965     kern_return_t krc;
966    
967     krc = thread_set_state(thread,
968     MACHINE_THREAD_STATE, (thread_state_t)state,
969     MACHINE_THREAD_STATE_COUNT);
970     MACH_CHECK_ERROR (thread_get_state, krc);
971     #endif
972     return true;
973     }
974 gbeauche 1.24 break;
975     #endif
976 gbeauche 1.10 }
977 gbeauche 1.27
978     // We can't do anything with the fault_address, dump state?
979     if (sigsegv_state_dumper != 0)
980     sigsegv_state_dumper(fault_address, fault_instruction);
981    
982     return false;
983     }
984     #endif
985    
986    
987     /*
988     * There are two mechanisms for handling a bad memory access,
989     * Mach exceptions and UNIX signals. The implementation specific
990     * code appears below. Its reponsibility is to call handle_badaccess
991     * which is the routine that handles the fault in an implementation
992     * agnostic manner. The implementation specific code below is then
993     * reponsible for checking whether handle_badaccess was able
994     * to handle the memory access error and perform any implementation
995     * specific tasks necessary afterwards.
996     */
997    
998     #ifdef HAVE_MACH_EXCEPTIONS
999     /*
1000     * We need to forward all exceptions that we do not handle.
1001     * This is important, there are many exceptions that may be
1002     * handled by other exception handlers. For example debuggers
1003     * use exceptions and the exception hander is in another
1004     * process in such a case. (Timothy J. Wood states in his
1005     * message to the list that he based this code on that from
1006     * gdb for Darwin.)
1007     */
1008     static inline kern_return_t
1009     forward_exception(mach_port_t thread_port,
1010     mach_port_t task_port,
1011     exception_type_t exception_type,
1012     exception_data_t exception_data,
1013     mach_msg_type_number_t data_count,
1014     ExceptionPorts *oldExceptionPorts)
1015     {
1016     kern_return_t kret;
1017     unsigned int portIndex;
1018     mach_port_t port;
1019     exception_behavior_t behavior;
1020     thread_state_flavor_t flavor;
1021     thread_state_t thread_state;
1022     mach_msg_type_number_t thread_state_count;
1023    
1024     for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
1025     if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
1026     // This handler wants the exception
1027     break;
1028     }
1029     }
1030    
1031     if (portIndex >= oldExceptionPorts->maskCount) {
1032     fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
1033     return KERN_FAILURE;
1034     }
1035    
1036     port = oldExceptionPorts->handlers[portIndex];
1037     behavior = oldExceptionPorts->behaviors[portIndex];
1038     flavor = oldExceptionPorts->flavors[portIndex];
1039    
1040     /*
1041     fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
1042     */
1043    
1044     if (behavior != EXCEPTION_DEFAULT) {
1045     thread_state_count = THREAD_STATE_MAX;
1046     kret = thread_get_state (thread_port, flavor, thread_state,
1047     &thread_state_count);
1048     MACH_CHECK_ERROR (thread_get_state, kret);
1049     }
1050    
1051     switch (behavior) {
1052     case EXCEPTION_DEFAULT:
1053     // fprintf(stderr, "forwarding to exception_raise\n");
1054     kret = exception_raise(port, thread_port, task_port, exception_type,
1055     exception_data, data_count);
1056     MACH_CHECK_ERROR (exception_raise, kret);
1057     break;
1058     case EXCEPTION_STATE:
1059     // fprintf(stderr, "forwarding to exception_raise_state\n");
1060     kret = exception_raise_state(port, exception_type, exception_data,
1061     data_count, &flavor,
1062     thread_state, thread_state_count,
1063     thread_state, &thread_state_count);
1064     MACH_CHECK_ERROR (exception_raise_state, kret);
1065     break;
1066     case EXCEPTION_STATE_IDENTITY:
1067     // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
1068     kret = exception_raise_state_identity(port, thread_port, task_port,
1069     exception_type, exception_data,
1070     data_count, &flavor,
1071     thread_state, thread_state_count,
1072     thread_state, &thread_state_count);
1073     MACH_CHECK_ERROR (exception_raise_state_identity, kret);
1074     break;
1075     default:
1076     fprintf(stderr, "forward_exception got unknown behavior\n");
1077     break;
1078     }
1079    
1080     if (behavior != EXCEPTION_DEFAULT) {
1081     kret = thread_set_state (thread_port, flavor, thread_state,
1082     thread_state_count);
1083     MACH_CHECK_ERROR (thread_set_state, kret);
1084     }
1085    
1086     return KERN_SUCCESS;
1087     }
1088    
1089     /*
1090     * This is the code that actually handles the exception.
1091     * It is called by exc_server. For Darwin 5 Apple changed
1092     * this a bit from how this family of functions worked in
1093     * Mach. If you are familiar with that it is a little
1094     * different. The main variation that concerns us here is
1095     * that code is an array of exception specific codes and
1096     * codeCount is a count of the number of codes in the code
1097     * array. In typical Mach all exceptions have a code
1098     * and sub-code. It happens to be the case that for a
1099     * EXC_BAD_ACCESS exception the first entry is the type of
1100     * bad access that occurred and the second entry is the
1101     * faulting address so these entries correspond exactly to
1102     * how the code and sub-code are used on Mach.
1103     *
1104     * This is a MIG interface. No code in Basilisk II should
1105     * call this directley. This has to have external C
1106     * linkage because that is what exc_server expects.
1107     */
1108     kern_return_t
1109     catch_exception_raise(mach_port_t exception_port,
1110     mach_port_t thread,
1111     mach_port_t task,
1112     exception_type_t exception,
1113     exception_data_t code,
1114     mach_msg_type_number_t codeCount)
1115     {
1116     ppc_thread_state_t state;
1117     kern_return_t krc;
1118    
1119     if ((exception == EXC_BAD_ACCESS) && (codeCount >= 2)) {
1120     if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
1121     return KERN_SUCCESS;
1122     }
1123    
1124     // In Mach we do not need to remove the exception handler.
1125     // If we forward the exception, eventually some exception handler
1126     // will take care of this exception.
1127     krc = forward_exception(thread, task, exception, code, codeCount, &ports);
1128    
1129     return krc;
1130     }
1131     #endif
1132    
1133     #ifdef HAVE_SIGSEGV_RECOVERY
1134     // Handle bad memory accesses with signal handler
1135     static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1136     {
1137     // Call handler and reinstall the global handler, if required
1138     if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
1139     #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1140     sigsegv_do_install_handler(sig);
1141     #endif
1142     return;
1143     }
1144 gbeauche 1.10
1145 gbeauche 1.27 // Failure: reinstall default handler for "safe" crash
1146 gbeauche 1.1 #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1147 gbeauche 1.27 SIGSEGV_ALL_SIGNALS
1148 gbeauche 1.1 #undef FAULT_HANDLER
1149     }
1150 gbeauche 1.2 #endif
1151 gbeauche 1.1
1152    
1153     /*
1154     * SIGSEGV handler initialization
1155     */
1156    
1157     #if defined(HAVE_SIGINFO_T)
1158     static bool sigsegv_do_install_handler(int sig)
1159     {
1160     // Setup SIGSEGV handler to process writes to frame buffer
1161     #ifdef HAVE_SIGACTION
1162 gbeauche 1.22 struct sigaction sigsegv_sa;
1163     sigemptyset(&sigsegv_sa.sa_mask);
1164     sigsegv_sa.sa_sigaction = sigsegv_handler;
1165     sigsegv_sa.sa_flags = SA_SIGINFO;
1166     return (sigaction(sig, &sigsegv_sa, 0) == 0);
1167 gbeauche 1.1 #else
1168     return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1169     #endif
1170     }
1171 gbeauche 1.2 #endif
1172    
1173     #if defined(HAVE_SIGCONTEXT_SUBTERFUGE)
1174 gbeauche 1.1 static bool sigsegv_do_install_handler(int sig)
1175     {
1176     // Setup SIGSEGV handler to process writes to frame buffer
1177     #ifdef HAVE_SIGACTION
1178 gbeauche 1.22 struct sigaction sigsegv_sa;
1179     sigemptyset(&sigsegv_sa.sa_mask);
1180     sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
1181     sigsegv_sa.sa_flags = 0;
1182 gbeauche 1.1 #if !EMULATED_68K && defined(__NetBSD__)
1183 gbeauche 1.22 sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
1184     sigsegv_sa.sa_flags |= SA_ONSTACK;
1185 gbeauche 1.1 #endif
1186 gbeauche 1.22 return (sigaction(sig, &sigsegv_sa, 0) == 0);
1187 gbeauche 1.1 #else
1188     return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1189     #endif
1190     }
1191     #endif
1192    
1193 gbeauche 1.27 #if defined(HAVE_MACH_EXCEPTIONS)
1194     static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1195     {
1196     /*
1197     * Except for the exception port functions, this should be
1198     * pretty much stock Mach. If later you choose to support
1199     * other Mach's besides Darwin, just check for __MACH__
1200     * here and __APPLE__ where the actual differences are.
1201     */
1202     #if defined(__APPLE__) && defined(__MACH__)
1203     if (sigsegv_fault_handler != NULL) {
1204     sigsegv_fault_handler = handler;
1205     return true;
1206     }
1207    
1208     kern_return_t krc;
1209    
1210     // create the the exception port
1211     krc = mach_port_allocate(mach_task_self(),
1212     MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
1213     if (krc != KERN_SUCCESS) {
1214     mach_error("mach_port_allocate", krc);
1215     return false;
1216     }
1217    
1218     // add a port send right
1219     krc = mach_port_insert_right(mach_task_self(),
1220     _exceptionPort, _exceptionPort,
1221     MACH_MSG_TYPE_MAKE_SEND);
1222     if (krc != KERN_SUCCESS) {
1223     mach_error("mach_port_insert_right", krc);
1224     return false;
1225     }
1226    
1227     // get the old exception ports
1228     ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
1229     krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
1230     &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
1231     if (krc != KERN_SUCCESS) {
1232     mach_error("thread_get_exception_ports", krc);
1233     return false;
1234     }
1235    
1236     // set the new exception port
1237     //
1238     // We could have used EXCEPTION_STATE_IDENTITY instead of
1239     // EXCEPTION_DEFAULT to get the thread state in the initial
1240     // message, but it turns out that in the common case this is not
1241     // neccessary. If we need it we can later ask for it from the
1242     // suspended thread.
1243     //
1244     // Even with THREAD_STATE_NONE, Darwin provides the program
1245     // counter in the thread state. The comments in the header file
1246     // seem to imply that you can count on the GPR's on an exception
1247     // as well but just to be safe I use MACHINE_THREAD_STATE because
1248     // you have to ask for all of the GPR's anyway just to get the
1249     // program counter. In any case because of update effective
1250     // address from immediate and update address from effective
1251     // addresses of ra and rb modes (as good an name as any for these
1252     // addressing modes) used in PPC instructions, you will need the
1253     // GPR state anyway.
1254     krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
1255     EXCEPTION_DEFAULT, MACHINE_THREAD_STATE);
1256     if (krc != KERN_SUCCESS) {
1257     mach_error("thread_set_exception_ports", krc);
1258     return false;
1259     }
1260    
1261     // create the exception handler thread
1262     if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
1263     (void)fprintf(stderr, "creation of exception thread failed\n");
1264     return false;
1265     }
1266    
1267     // do not care about the exception thread any longer, let is run standalone
1268     (void)pthread_detach(exc_thread);
1269    
1270     sigsegv_fault_handler = handler;
1271     return true;
1272     #else
1273     return false;
1274     #endif
1275     }
1276     #endif
1277    
1278 gbeauche 1.12 bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1279 gbeauche 1.1 {
1280 gbeauche 1.27 #if defined(HAVE_SIGSEGV_RECOVERY)
1281 gbeauche 1.1 bool success = true;
1282     #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
1283     SIGSEGV_ALL_SIGNALS
1284     #undef FAULT_HANDLER
1285 gbeauche 1.27 if (success)
1286     sigsegv_fault_handler = handler;
1287 gbeauche 1.1 return success;
1288 gbeauche 1.27 #elif defined(HAVE_MACH_EXCEPTIONS)
1289     return sigsegv_do_install_handler(handler);
1290 gbeauche 1.1 #else
1291     // FAIL: no siginfo_t nor sigcontext subterfuge is available
1292     return false;
1293     #endif
1294     }
1295    
1296    
1297     /*
1298     * SIGSEGV handler deinitialization
1299     */
1300    
1301     void sigsegv_deinstall_handler(void)
1302     {
1303 gbeauche 1.27 // We do nothing for Mach exceptions, the thread would need to be
1304     // suspended if not already so, and we might mess with other
1305     // exception handlers that came after we registered ours. There is
1306     // no need to remove the exception handler, in fact this function is
1307     // not called anywhere in Basilisk II.
1308 gbeauche 1.2 #ifdef HAVE_SIGSEGV_RECOVERY
1309 gbeauche 1.12 sigsegv_fault_handler = 0;
1310 gbeauche 1.1 #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1311     SIGSEGV_ALL_SIGNALS
1312     #undef FAULT_HANDLER
1313 gbeauche 1.2 #endif
1314 gbeauche 1.1 }
1315    
1316 gbeauche 1.10
1317     /*
1318     * Set callback function when we cannot handle the fault
1319     */
1320    
1321 gbeauche 1.12 void sigsegv_set_dump_state(sigsegv_state_dumper_t handler)
1322 gbeauche 1.10 {
1323 gbeauche 1.12 sigsegv_state_dumper = handler;
1324 gbeauche 1.10 }
1325    
1326    
1327 gbeauche 1.1 /*
1328     * Test program used for configure/test
1329     */
1330    
1331 gbeauche 1.4 #ifdef CONFIGURE_TEST_SIGSEGV_RECOVERY
1332 gbeauche 1.1 #include <stdio.h>
1333     #include <stdlib.h>
1334     #include <fcntl.h>
1335     #include <sys/mman.h>
1336 gbeauche 1.4 #include "vm_alloc.h"
1337 gbeauche 1.1
1338 gbeauche 1.32 const int REF_INDEX = 123;
1339     const int REF_VALUE = 45;
1340    
1341 gbeauche 1.1 static int page_size;
1342 gbeauche 1.3 static volatile char * page = 0;
1343     static volatile int handler_called = 0;
1344 gbeauche 1.1
1345 gbeauche 1.32 #ifdef __GNUC__
1346     // Code range where we expect the fault to come from
1347     static void *b_region, *e_region;
1348     #endif
1349    
1350 gbeauche 1.24 static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1351 gbeauche 1.1 {
1352     handler_called++;
1353 gbeauche 1.32 if ((fault_address - REF_INDEX) != page)
1354 gbeauche 1.29 exit(10);
1355 gbeauche 1.32 #ifdef __GNUC__
1356     // Make sure reported fault instruction address falls into
1357     // expected code range
1358     if (instruction_address != SIGSEGV_INVALID_PC
1359     && ((instruction_address < (sigsegv_address_t)b_region) ||
1360     (instruction_address >= (sigsegv_address_t)e_region)))
1361     exit(11);
1362     #endif
1363 gbeauche 1.4 if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
1364 gbeauche 1.32 exit(12);
1365 gbeauche 1.24 return SIGSEGV_RETURN_SUCCESS;
1366 gbeauche 1.1 }
1367    
1368 gbeauche 1.10 #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1369 gbeauche 1.24 static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1370 gbeauche 1.10 {
1371 gbeauche 1.28 if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
1372     #ifdef __GNUC__
1373     // Make sure reported fault instruction address falls into
1374     // expected code range
1375     if (instruction_address != SIGSEGV_INVALID_PC
1376     && ((instruction_address < (sigsegv_address_t)b_region) ||
1377     (instruction_address >= (sigsegv_address_t)e_region)))
1378     return SIGSEGV_RETURN_FAILURE;
1379     #endif
1380 gbeauche 1.26 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
1381 gbeauche 1.28 }
1382    
1383 gbeauche 1.24 return SIGSEGV_RETURN_FAILURE;
1384 gbeauche 1.10 }
1385 gbeauche 1.34
1386     // More sophisticated tests for instruction skipper
1387     static bool arch_insn_skipper_tests()
1388     {
1389     #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
1390     static const unsigned char code[] = {
1391     0x8a, 0x00, // mov (%eax),%al
1392     0x8a, 0x2c, 0x18, // mov (%eax,%ebx,1),%ch
1393     0x88, 0x20, // mov %ah,(%eax)
1394     0x88, 0x08, // mov %cl,(%eax)
1395     0x66, 0x8b, 0x00, // mov (%eax),%ax
1396     0x66, 0x8b, 0x0c, 0x18, // mov (%eax,%ebx,1),%cx
1397     0x66, 0x89, 0x00, // mov %ax,(%eax)
1398     0x66, 0x89, 0x0c, 0x18, // mov %cx,(%eax,%ebx,1)
1399     0x8b, 0x00, // mov (%eax),%eax
1400     0x8b, 0x0c, 0x18, // mov (%eax,%ebx,1),%ecx
1401     0x89, 0x00, // mov %eax,(%eax)
1402     0x89, 0x0c, 0x18, // mov %ecx,(%eax,%ebx,1)
1403     #if defined(__x86_64__)
1404     0x44, 0x8a, 0x00, // mov (%rax),%r8b
1405     0x44, 0x8a, 0x20, // mov (%rax),%r12b
1406     0x42, 0x8a, 0x3c, 0x10, // mov (%rax,%r10,1),%dil
1407     0x44, 0x88, 0x00, // mov %r8b,(%rax)
1408     0x44, 0x88, 0x20, // mov %r12b,(%rax)
1409     0x42, 0x88, 0x3c, 0x10, // mov %dil,(%rax,%r10,1)
1410     0x66, 0x44, 0x8b, 0x00, // mov (%rax),%r8w
1411     0x66, 0x42, 0x8b, 0x0c, 0x10, // mov (%rax,%r10,1),%cx
1412     0x66, 0x44, 0x89, 0x00, // mov %r8w,(%rax)
1413     0x66, 0x42, 0x89, 0x0c, 0x10, // mov %cx,(%rax,%r10,1)
1414     0x44, 0x8b, 0x00, // mov (%rax),%r8d
1415     0x42, 0x8b, 0x0c, 0x10, // mov (%rax,%r10,1),%ecx
1416     0x44, 0x89, 0x00, // mov %r8d,(%rax)
1417     0x42, 0x89, 0x0c, 0x10, // mov %ecx,(%rax,%r10,1)
1418     0x48, 0x8b, 0x08, // mov (%rax),%rcx
1419     0x4c, 0x8b, 0x18, // mov (%rax),%r11
1420     0x4a, 0x8b, 0x0c, 0x10, // mov (%rax,%r10,1),%rcx
1421     0x4e, 0x8b, 0x1c, 0x10, // mov (%rax,%r10,1),%r11
1422     0x48, 0x89, 0x08, // mov %rcx,(%rax)
1423     0x4c, 0x89, 0x18, // mov %r11,(%rax)
1424     0x4a, 0x89, 0x0c, 0x10, // mov %rcx,(%rax,%r10,1)
1425     0x4e, 0x89, 0x1c, 0x10, // mov %r11,(%rax,%r10,1)
1426     #endif
1427     0 // end
1428     };
1429     const int N_REGS = 20;
1430     unsigned long regs[N_REGS];
1431     for (int i = 0; i < N_REGS; i++)
1432     regs[i] = i;
1433     const unsigned long start_code = (unsigned long)&code;
1434     regs[X86_REG_EIP] = start_code;
1435     while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1)
1436     && ix86_skip_instruction(regs))
1437     ; /* simply iterate */
1438     return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1);
1439     #endif
1440     return true;
1441     }
1442 gbeauche 1.10 #endif
1443    
1444 gbeauche 1.1 int main(void)
1445     {
1446 gbeauche 1.4 if (vm_init() < 0)
1447 gbeauche 1.1 return 1;
1448    
1449     page_size = getpagesize();
1450 gbeauche 1.4 if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
1451 gbeauche 1.29 return 2;
1452 gbeauche 1.4
1453 gbeauche 1.32 memset((void *)page, 0, page_size);
1454 gbeauche 1.4 if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
1455 gbeauche 1.29 return 3;
1456 gbeauche 1.1
1457     if (!sigsegv_install_handler(sigsegv_test_handler))
1458 gbeauche 1.29 return 4;
1459 gbeauche 1.1
1460 gbeauche 1.32 #ifdef __GNUC__
1461     b_region = &&L_b_region1;
1462     e_region = &&L_e_region1;
1463     #endif
1464     L_b_region1:
1465     page[REF_INDEX] = REF_VALUE;
1466     if (page[REF_INDEX] != REF_VALUE)
1467     exit(20);
1468     page[REF_INDEX] = REF_VALUE;
1469     L_e_region1:
1470    
1471 gbeauche 1.1 if (handler_called != 1)
1472 gbeauche 1.29 return 5;
1473 gbeauche 1.10
1474     #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1475     if (!sigsegv_install_handler(sigsegv_insn_handler))
1476 gbeauche 1.29 return 6;
1477 gbeauche 1.10
1478 gbeauche 1.17 if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
1479 gbeauche 1.29 return 7;
1480 gbeauche 1.10
1481     for (int i = 0; i < page_size; i++)
1482     page[i] = (i + 1) % page_size;
1483    
1484     if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
1485 gbeauche 1.29 return 8;
1486 gbeauche 1.10
1487     #define TEST_SKIP_INSTRUCTION(TYPE) do { \
1488 gbeauche 1.34 const unsigned long TAG = 0x12345678 | \
1489     (sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0); \
1490 gbeauche 1.10 TYPE data = *((TYPE *)(page + sizeof(TYPE))); \
1491 gbeauche 1.34 volatile unsigned long effect = data + TAG; \
1492 gbeauche 1.10 if (effect != TAG) \
1493 gbeauche 1.29 return 9; \
1494 gbeauche 1.10 } while (0)
1495    
1496 gbeauche 1.28 #ifdef __GNUC__
1497 gbeauche 1.32 b_region = &&L_b_region2;
1498     e_region = &&L_e_region2;
1499 gbeauche 1.28 #endif
1500 gbeauche 1.32 L_b_region2:
1501 gbeauche 1.10 TEST_SKIP_INSTRUCTION(unsigned char);
1502     TEST_SKIP_INSTRUCTION(unsigned short);
1503     TEST_SKIP_INSTRUCTION(unsigned int);
1504 gbeauche 1.34 TEST_SKIP_INSTRUCTION(unsigned long);
1505 gbeauche 1.32 L_e_region2:
1506 gbeauche 1.10 #endif
1507 gbeauche 1.1
1508 gbeauche 1.34 if (!arch_insn_skipper_tests())
1509     return 20;
1510    
1511 gbeauche 1.4 vm_exit();
1512 gbeauche 1.1 return 0;
1513     }
1514     #endif