ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
Revision: 1.32
Committed: 2003-10-21T21:59:41Z (21 years, 1 month ago) by gbeauche
Branch: MAIN
Changes since 1.31: +56 -14 lines
Log Message:
Solaris/SPARC support for SIGSEGV_FAULT_INSTRUCTION

File Contents

# User Rev Content
1 gbeauche 1.1 /*
2     * sigsegv.cpp - SIGSEGV signals support
3     *
4     * Derived from Bruno Haible's work on his SIGSEGV library for clisp
5     * <http://clisp.sourceforge.net/>
6     *
7 gbeauche 1.27 * MacOS X support derived from the post by Timothy J. Wood to the
8     * omnigroup macosx-dev list:
9     * Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10     * tjw@omnigroup.com Sun, 4 Jun 2000
11     * www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12     *
13 cebix 1.7 * Basilisk II (C) 1997-2002 Christian Bauer
14 gbeauche 1.1 *
15     * This program is free software; you can redistribute it and/or modify
16     * it under the terms of the GNU General Public License as published by
17     * the Free Software Foundation; either version 2 of the License, or
18     * (at your option) any later version.
19     *
20     * This program is distributed in the hope that it will be useful,
21     * but WITHOUT ANY WARRANTY; without even the implied warranty of
22     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23     * GNU General Public License for more details.
24     *
25     * You should have received a copy of the GNU General Public License
26     * along with this program; if not, write to the Free Software
27     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
28     */
29    
30     #ifdef HAVE_UNISTD_H
31     #include <unistd.h>
32     #endif
33    
34     #ifdef HAVE_CONFIG_H
35     #include "config.h"
36     #endif
37    
38 gbeauche 1.22 #include <list>
39 gbeauche 1.1 #include <signal.h>
40     #include "sigsegv.h"
41    
42 gbeauche 1.22 #ifndef NO_STD_NAMESPACE
43     using std::list;
44     #endif
45    
46 gbeauche 1.1 // Return value type of a signal handler (standard type if not defined)
47     #ifndef RETSIGTYPE
48     #define RETSIGTYPE void
49     #endif
50    
51     // Type of the system signal handler
52     typedef RETSIGTYPE (*signal_handler)(int);
53    
54     // User's SIGSEGV handler
55 gbeauche 1.12 static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
56 gbeauche 1.1
57 gbeauche 1.10 // Function called to dump state if we can't handle the fault
58 gbeauche 1.12 static sigsegv_state_dumper_t sigsegv_state_dumper = 0;
59 gbeauche 1.10
60 gbeauche 1.1 // Actual SIGSEGV handler installer
61     static bool sigsegv_do_install_handler(int sig);
62    
63    
64     /*
65 gbeauche 1.14 * Instruction decoding aids
66     */
67    
68     // Transfer size
69     enum transfer_size_t {
70     SIZE_UNKNOWN,
71     SIZE_BYTE,
72     SIZE_WORD,
73     SIZE_LONG
74     };
75    
76 gbeauche 1.23 // Transfer type
77     typedef sigsegv_transfer_type_t transfer_type_t;
78    
79 gbeauche 1.14 #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
80     // Addressing mode
81     enum addressing_mode_t {
82     MODE_UNKNOWN,
83     MODE_NORM,
84     MODE_U,
85     MODE_X,
86     MODE_UX
87     };
88    
89     // Decoded instruction
90     struct instruction_t {
91     transfer_type_t transfer_type;
92     transfer_size_t transfer_size;
93     addressing_mode_t addr_mode;
94     unsigned int addr;
95     char ra, rd;
96     };
97    
98     static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned int * gpr)
99     {
100     // Get opcode and divide into fields
101     unsigned int opcode = *((unsigned int *)nip);
102     unsigned int primop = opcode >> 26;
103     unsigned int exop = (opcode >> 1) & 0x3ff;
104     unsigned int ra = (opcode >> 16) & 0x1f;
105     unsigned int rb = (opcode >> 11) & 0x1f;
106     unsigned int rd = (opcode >> 21) & 0x1f;
107     signed int imm = (signed short)(opcode & 0xffff);
108    
109     // Analyze opcode
110 gbeauche 1.22 transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
111 gbeauche 1.14 transfer_size_t transfer_size = SIZE_UNKNOWN;
112     addressing_mode_t addr_mode = MODE_UNKNOWN;
113     switch (primop) {
114     case 31:
115     switch (exop) {
116     case 23: // lwzx
117 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
118 gbeauche 1.14 case 55: // lwzux
119 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
120 gbeauche 1.14 case 87: // lbzx
121 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
122 gbeauche 1.14 case 119: // lbzux
123 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
124 gbeauche 1.14 case 151: // stwx
125 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
126 gbeauche 1.14 case 183: // stwux
127 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
128 gbeauche 1.14 case 215: // stbx
129 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
130 gbeauche 1.14 case 247: // stbux
131 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
132 gbeauche 1.14 case 279: // lhzx
133 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
134 gbeauche 1.14 case 311: // lhzux
135 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
136 gbeauche 1.14 case 343: // lhax
137 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
138 gbeauche 1.14 case 375: // lhaux
139 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
140 gbeauche 1.14 case 407: // sthx
141 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
142 gbeauche 1.14 case 439: // sthux
143 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
144 gbeauche 1.14 }
145     break;
146    
147     case 32: // lwz
148 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
149 gbeauche 1.14 case 33: // lwzu
150 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
151 gbeauche 1.14 case 34: // lbz
152 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
153 gbeauche 1.14 case 35: // lbzu
154 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
155 gbeauche 1.14 case 36: // stw
156 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
157 gbeauche 1.14 case 37: // stwu
158 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
159 gbeauche 1.14 case 38: // stb
160 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
161 gbeauche 1.14 case 39: // stbu
162 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
163 gbeauche 1.14 case 40: // lhz
164 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
165 gbeauche 1.14 case 41: // lhzu
166 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
167 gbeauche 1.14 case 42: // lha
168 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
169 gbeauche 1.14 case 43: // lhau
170 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
171 gbeauche 1.14 case 44: // sth
172 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
173 gbeauche 1.14 case 45: // sthu
174 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
175 gbeauche 1.14 }
176    
177     // Calculate effective address
178     unsigned int addr = 0;
179     switch (addr_mode) {
180     case MODE_X:
181     case MODE_UX:
182     if (ra == 0)
183     addr = gpr[rb];
184     else
185     addr = gpr[ra] + gpr[rb];
186     break;
187     case MODE_NORM:
188     case MODE_U:
189     if (ra == 0)
190     addr = (signed int)(signed short)imm;
191     else
192     addr = gpr[ra] + (signed int)(signed short)imm;
193     break;
194     default:
195     break;
196     }
197    
198     // Commit decoded instruction
199     instruction->addr = addr;
200     instruction->addr_mode = addr_mode;
201     instruction->transfer_type = transfer_type;
202     instruction->transfer_size = transfer_size;
203     instruction->ra = ra;
204     instruction->rd = rd;
205     }
206     #endif
207    
208    
209     /*
210 gbeauche 1.1 * OS-dependant SIGSEGV signals support section
211     */
212    
213     #if HAVE_SIGINFO_T
214     // Generic extended signal handler
215 cebix 1.8 #if defined(__NetBSD__) || defined(__FreeBSD__)
216     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
217     #else
218 gbeauche 1.1 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
219 cebix 1.8 #endif
220 gbeauche 1.5 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, siginfo_t *sip, void *scp
221 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
222     #define SIGSEGV_FAULT_HANDLER_ARGS sip, scp
223 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS sip->si_addr
224 gbeauche 1.32 #if defined(__sun__)
225     #if (defined(sparc) || defined(__sparc__))
226     #include <sys/ucontext.h>
227     #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
228     #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[REG_PC]
229     #endif
230     #endif
231 gbeauche 1.19 #if defined(__NetBSD__) || defined(__FreeBSD__)
232 gbeauche 1.17 #if (defined(i386) || defined(__i386__))
233     #define SIGSEGV_FAULT_INSTRUCTION (((struct sigcontext *)scp)->sc_eip)
234 gbeauche 1.18 #define SIGSEGV_REGISTER_FILE ((unsigned int *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
235 gbeauche 1.17 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
236 gbeauche 1.19 #endif
237 gbeauche 1.17 #endif
238 gbeauche 1.5 #if defined(__linux__)
239 gbeauche 1.6 #if (defined(i386) || defined(__i386__))
240     #include <sys/ucontext.h>
241 gbeauche 1.14 #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
242     #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
243     #define SIGSEGV_REGISTER_FILE (unsigned int *)SIGSEGV_CONTEXT_REGS
244 gbeauche 1.10 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
245 gbeauche 1.6 #endif
246 gbeauche 1.20 #if (defined(x86_64) || defined(__x86_64__))
247     #include <sys/ucontext.h>
248     #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
249     #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
250     #define SIGSEGV_REGISTER_FILE (unsigned long *)SIGSEGV_CONTEXT_REGS
251     #endif
252 gbeauche 1.5 #if (defined(ia64) || defined(__ia64__))
253     #define SIGSEGV_FAULT_INSTRUCTION (((struct sigcontext *)scp)->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
254     #endif
255 gbeauche 1.9 #if (defined(powerpc) || defined(__powerpc__))
256     #include <sys/ucontext.h>
257 gbeauche 1.14 #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.regs)
258     #define SIGSEGV_FAULT_INSTRUCTION (SIGSEGV_CONTEXT_REGS->nip)
259     #define SIGSEGV_REGISTER_FILE (unsigned int *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned int *)(SIGSEGV_CONTEXT_REGS->gpr)
260 gbeauche 1.13 #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
261 gbeauche 1.9 #endif
262 gbeauche 1.5 #endif
263 gbeauche 1.1 #endif
264    
265     #if HAVE_SIGCONTEXT_SUBTERFUGE
266     // Linux kernels prior to 2.4 ?
267     #if defined(__linux__)
268     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
269     #if (defined(i386) || defined(__i386__))
270     #include <asm/sigcontext.h>
271     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, struct sigcontext scs
272 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
273     #define SIGSEGV_FAULT_HANDLER_ARGS &scs
274     #define SIGSEGV_FAULT_ADDRESS scp->cr2
275     #define SIGSEGV_FAULT_INSTRUCTION scp->eip
276     #define SIGSEGV_REGISTER_FILE (unsigned int *)scp
277 gbeauche 1.10 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
278 gbeauche 1.1 #endif
279     #if (defined(sparc) || defined(__sparc__))
280     #include <asm/sigcontext.h>
281 gbeauche 1.5 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp, char *addr
282 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp, addr
283 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS addr
284     #endif
285     #if (defined(powerpc) || defined(__powerpc__))
286     #include <asm/sigcontext.h>
287 gbeauche 1.4 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, struct sigcontext *scp
288 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, scp
289 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS scp->regs->dar
290     #define SIGSEGV_FAULT_INSTRUCTION scp->regs->nip
291 gbeauche 1.14 #define SIGSEGV_REGISTER_FILE (unsigned int *)&scp->regs->nip, (unsigned int *)(scp->regs->gpr)
292 gbeauche 1.13 #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
293 gbeauche 1.1 #endif
294 gbeauche 1.4 #if (defined(alpha) || defined(__alpha__))
295     #include <asm/sigcontext.h>
296     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
297 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
298 gbeauche 1.4 #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
299     #define SIGSEGV_FAULT_INSTRUCTION scp->sc_pc
300    
301     // From Boehm's GC 6.0alpha8
302     static sigsegv_address_t get_fault_address(struct sigcontext *scp)
303     {
304     unsigned int instruction = *((unsigned int *)(scp->sc_pc));
305     unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
306     fault_address += (signed long)(signed short)(instruction & 0xffff);
307     return (sigsegv_address_t)fault_address;
308     }
309     #endif
310 gbeauche 1.1 #endif
311    
312     // Irix 5 or 6 on MIPS
313     #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
314 gbeauche 1.11 #include <ucontext.h>
315 gbeauche 1.1 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
316 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
317 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS scp->sc_badvaddr
318     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
319     #endif
320    
321 gbeauche 1.11 // HP-UX
322     #if (defined(hpux) || defined(__hpux__))
323     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
324 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
325 gbeauche 1.11 #define SIGSEGV_FAULT_ADDRESS scp->sc_sl.sl_ss.ss_narrow.ss_cr21
326     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
327     #endif
328    
329 gbeauche 1.1 // OSF/1 on Alpha
330     #if defined(__osf__)
331 gbeauche 1.11 #include <ucontext.h>
332 gbeauche 1.1 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
333 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
334 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS scp->sc_traparg_a0
335     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
336     #endif
337    
338     // AIX
339     #if defined(_AIX)
340     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
341 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
342 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS scp->sc_jmpbuf.jmp_context.o_vaddr
343     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
344     #endif
345    
346     // NetBSD or FreeBSD
347     #if defined(__NetBSD__) || defined(__FreeBSD__)
348     #if (defined(m68k) || defined(__m68k__))
349     #include <m68k/frame.h>
350     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
351 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
352 gbeauche 1.14 #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
353 gbeauche 1.1 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
354 gbeauche 1.14
355     // Use decoding scheme from BasiliskII/m68k native
356     static sigsegv_address_t get_fault_address(struct sigcontext *scp)
357     {
358     struct sigstate {
359     int ss_flags;
360     struct frame ss_frame;
361     };
362     struct sigstate *state = (struct sigstate *)scp->sc_ap;
363     char *fault_addr;
364     switch (state->ss_frame.f_format) {
365     case 7: /* 68040 access error */
366     /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */
367     fault_addr = state->ss_frame.f_fmt7.f_fa;
368     break;
369     default:
370     fault_addr = (char *)code;
371     break;
372     }
373     return (sigsegv_address_t)fault_addr;
374     }
375 gbeauche 1.1 #else
376     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, void *scp, char *addr
377 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp, addr
378 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS addr
379     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
380     #endif
381     #endif
382 gbeauche 1.4
383 gbeauche 1.27 // MacOS X, not sure which version this works in. Under 10.1
384     // vm_protect does not appear to work from a signal handler. Under
385     // 10.2 signal handlers get siginfo type arguments but the si_addr
386     // field is the address of the faulting instruction and not the
387     // address that caused the SIGBUS. Maybe this works in 10.0? In any
388     // case with Mach exception handlers there is a way to do what this
389     // was meant to do.
390     #ifndef HAVE_MACH_EXCEPTIONS
391 gbeauche 1.4 #if defined(__APPLE__) && defined(__MACH__)
392     #if (defined(ppc) || defined(__ppc__))
393     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
394 gbeauche 1.27 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
395 gbeauche 1.4 #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
396     #define SIGSEGV_FAULT_INSTRUCTION scp->sc_ir
397     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
398 gbeauche 1.14 #define SIGSEGV_REGISTER_FILE (unsigned int *)&scp->sc_ir, &((unsigned int *) scp->sc_regs)[2]
399     #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
400 gbeauche 1.4
401 gbeauche 1.14 // Use decoding scheme from SheepShaver
402 gbeauche 1.4 static sigsegv_address_t get_fault_address(struct sigcontext *scp)
403     {
404 gbeauche 1.14 unsigned int nip = (unsigned int) scp->sc_ir;
405     unsigned int * gpr = &((unsigned int *) scp->sc_regs)[2];
406     instruction_t instr;
407    
408     powerpc_decode_instruction(&instr, nip, gpr);
409     return (sigsegv_address_t)instr.addr;
410 gbeauche 1.4 }
411     #endif
412     #endif
413 gbeauche 1.1 #endif
414 gbeauche 1.27 #endif
415    
416     #if HAVE_MACH_EXCEPTIONS
417    
418     // This can easily be extended to other Mach systems, but really who
419     // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
420     // Mach 2.5/3.0?
421     #if defined(__APPLE__) && defined(__MACH__)
422    
423     #include <sys/types.h>
424     #include <stdlib.h>
425     #include <stdio.h>
426     #include <pthread.h>
427    
428     /*
429     * If you are familiar with MIG then you will understand the frustration
430     * that was necessary to get these embedded into C++ code by hand.
431     */
432     extern "C" {
433     #include <mach/mach.h>
434     #include <mach/mach_error.h>
435    
436     extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
437     extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
438     mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
439     extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
440     exception_type_t, exception_data_t, mach_msg_type_number_t);
441     extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
442     exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
443     thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
444     extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
445     exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
446     thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
447     }
448    
449     // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
450     #define HANDLER_COUNT 64
451    
452     // structure to tuck away existing exception handlers
453     typedef struct _ExceptionPorts {
454     mach_msg_type_number_t maskCount;
455     exception_mask_t masks[HANDLER_COUNT];
456     exception_handler_t handlers[HANDLER_COUNT];
457     exception_behavior_t behaviors[HANDLER_COUNT];
458     thread_state_flavor_t flavors[HANDLER_COUNT];
459     } ExceptionPorts;
460    
461     // exception handler thread
462     static pthread_t exc_thread;
463    
464     // place where old exception handler info is stored
465     static ExceptionPorts ports;
466    
467     // our exception port
468     static mach_port_t _exceptionPort = MACH_PORT_NULL;
469    
470     #define MACH_CHECK_ERROR(name,ret) \
471     if (ret != KERN_SUCCESS) { \
472     mach_error(#name, ret); \
473     exit (1); \
474     }
475    
476     #define SIGSEGV_FAULT_ADDRESS code[1]
477     #define SIGSEGV_FAULT_INSTRUCTION get_fault_instruction(thread, state)
478 gbeauche 1.31 #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP) ((code[0] == KERN_PROTECTION_FAILURE) ? sigsegv_fault_handler(ADDR, IP) : SIGSEGV_RETURN_FAILURE)
479 gbeauche 1.27 #define SIGSEGV_FAULT_HANDLER_ARGLIST mach_port_t thread, exception_data_t code, ppc_thread_state_t *state
480     #define SIGSEGV_FAULT_HANDLER_ARGS thread, code, &state
481     #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
482     #define SIGSEGV_REGISTER_FILE &state->srr0, &state->r0
483    
484     // Given a suspended thread, stuff the current instruction and
485     // registers into state.
486     //
487     // It would have been nice to have this be ppc/x86 independant which
488     // could have been done easily with a thread_state_t instead of
489     // ppc_thread_state_t, but because of the way this is called it is
490     // easier to do it this way.
491     #if (defined(ppc) || defined(__ppc__))
492     static inline sigsegv_address_t get_fault_instruction(mach_port_t thread, ppc_thread_state_t *state)
493     {
494     kern_return_t krc;
495     mach_msg_type_number_t count;
496    
497     count = MACHINE_THREAD_STATE_COUNT;
498     krc = thread_get_state(thread, MACHINE_THREAD_STATE, (thread_state_t)state, &count);
499     MACH_CHECK_ERROR (thread_get_state, krc);
500    
501     return (sigsegv_address_t)state->srr0;
502     }
503     #endif
504    
505     // Since there can only be one exception thread running at any time
506     // this is not a problem.
507     #define MSG_SIZE 512
508     static char msgbuf[MSG_SIZE];
509     static char replybuf[MSG_SIZE];
510    
511     /*
512     * This is the entry point for the exception handler thread. The job
513     * of this thread is to wait for exception messages on the exception
514     * port that was setup beforehand and to pass them on to exc_server.
515     * exc_server is a MIG generated function that is a part of Mach.
516     * Its job is to decide what to do with the exception message. In our
517     * case exc_server calls catch_exception_raise on our behalf. After
518     * exc_server returns, it is our responsibility to send the reply.
519     */
520     static void *
521     handleExceptions(void *priv)
522     {
523     mach_msg_header_t *msg, *reply;
524     kern_return_t krc;
525    
526     msg = (mach_msg_header_t *)msgbuf;
527     reply = (mach_msg_header_t *)replybuf;
528    
529     for (;;) {
530     krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
531     _exceptionPort, 0, MACH_PORT_NULL);
532     MACH_CHECK_ERROR(mach_msg, krc);
533    
534     if (!exc_server(msg, reply)) {
535     fprintf(stderr, "exc_server hated the message\n");
536     exit(1);
537     }
538    
539     krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
540     msg->msgh_local_port, 0, MACH_PORT_NULL);
541     if (krc != KERN_SUCCESS) {
542     fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
543     krc, mach_error_string(krc));
544     exit(1);
545     }
546     }
547     }
548     #endif
549     #endif
550 gbeauche 1.1
551 gbeauche 1.14
552     /*
553     * Instruction skipping
554     */
555    
556 gbeauche 1.10 #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
557     // Decode and skip X86 instruction
558     #if (defined(i386) || defined(__i386__))
559     #if defined(__linux__)
560     enum {
561     X86_REG_EIP = 14,
562     X86_REG_EAX = 11,
563     X86_REG_ECX = 10,
564     X86_REG_EDX = 9,
565     X86_REG_EBX = 8,
566     X86_REG_ESP = 7,
567     X86_REG_EBP = 6,
568     X86_REG_ESI = 5,
569     X86_REG_EDI = 4
570     };
571     #endif
572 gbeauche 1.17 #if defined(__NetBSD__) || defined(__FreeBSD__)
573     enum {
574     X86_REG_EIP = 10,
575     X86_REG_EAX = 7,
576     X86_REG_ECX = 6,
577     X86_REG_EDX = 5,
578     X86_REG_EBX = 4,
579     X86_REG_ESP = 13,
580     X86_REG_EBP = 2,
581     X86_REG_ESI = 1,
582     X86_REG_EDI = 0
583     };
584     #endif
585 gbeauche 1.10 // FIXME: this is partly redundant with the instruction decoding phase
586     // to discover transfer type and register number
587     static inline int ix86_step_over_modrm(unsigned char * p)
588     {
589     int mod = (p[0] >> 6) & 3;
590     int rm = p[0] & 7;
591     int offset = 0;
592    
593     // ModR/M Byte
594     switch (mod) {
595     case 0: // [reg]
596     if (rm == 5) return 4; // disp32
597     break;
598     case 1: // disp8[reg]
599     offset = 1;
600     break;
601     case 2: // disp32[reg]
602     offset = 4;
603     break;
604     case 3: // register
605     return 0;
606     }
607    
608     // SIB Byte
609     if (rm == 4) {
610     if (mod == 0 && (p[1] & 7) == 5)
611     offset = 5; // disp32[index]
612     else
613     offset++;
614     }
615    
616     return offset;
617     }
618    
619 gbeauche 1.14 static bool ix86_skip_instruction(unsigned int * regs)
620 gbeauche 1.10 {
621 gbeauche 1.14 unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
622 gbeauche 1.10
623     if (eip == 0)
624     return false;
625    
626 gbeauche 1.22 transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
627 gbeauche 1.14 transfer_size_t transfer_size = SIZE_LONG;
628 gbeauche 1.10
629     int reg = -1;
630     int len = 0;
631    
632     // Operand size prefix
633     if (*eip == 0x66) {
634     eip++;
635     len++;
636     transfer_size = SIZE_WORD;
637     }
638    
639     // Decode instruction
640     switch (eip[0]) {
641 gbeauche 1.17 case 0x0f:
642 gbeauche 1.18 switch (eip[1]) {
643     case 0xb6: // MOVZX r32, r/m8
644     case 0xb7: // MOVZX r32, r/m16
645 gbeauche 1.17 switch (eip[2] & 0xc0) {
646     case 0x80:
647     reg = (eip[2] >> 3) & 7;
648 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD;
649 gbeauche 1.17 break;
650     case 0x40:
651     reg = (eip[2] >> 3) & 7;
652 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD;
653 gbeauche 1.17 break;
654     case 0x00:
655     reg = (eip[2] >> 3) & 7;
656 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD;
657 gbeauche 1.17 break;
658     }
659     len += 3 + ix86_step_over_modrm(eip + 2);
660 gbeauche 1.18 break;
661 gbeauche 1.17 }
662     break;
663 gbeauche 1.10 case 0x8a: // MOV r8, r/m8
664     transfer_size = SIZE_BYTE;
665     case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
666     switch (eip[1] & 0xc0) {
667     case 0x80:
668     reg = (eip[1] >> 3) & 7;
669 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD;
670 gbeauche 1.10 break;
671     case 0x40:
672     reg = (eip[1] >> 3) & 7;
673 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD;
674 gbeauche 1.10 break;
675     case 0x00:
676     reg = (eip[1] >> 3) & 7;
677 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD;
678 gbeauche 1.10 break;
679     }
680     len += 2 + ix86_step_over_modrm(eip + 1);
681     break;
682     case 0x88: // MOV r/m8, r8
683     transfer_size = SIZE_BYTE;
684     case 0x89: // MOV r/m32, r32 (or 16-bit operation)
685     switch (eip[1] & 0xc0) {
686     case 0x80:
687     reg = (eip[1] >> 3) & 7;
688 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE;
689 gbeauche 1.10 break;
690     case 0x40:
691     reg = (eip[1] >> 3) & 7;
692 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE;
693 gbeauche 1.10 break;
694     case 0x00:
695     reg = (eip[1] >> 3) & 7;
696 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE;
697 gbeauche 1.10 break;
698     }
699     len += 2 + ix86_step_over_modrm(eip + 1);
700     break;
701     }
702    
703 gbeauche 1.22 if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
704 gbeauche 1.10 // Unknown machine code, let it crash. Then patch the decoder
705     return false;
706     }
707    
708 gbeauche 1.22 if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
709 gbeauche 1.10 static const int x86_reg_map[8] = {
710     X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
711     X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI
712     };
713    
714     if (reg < 0 || reg >= 8)
715     return false;
716    
717     int rloc = x86_reg_map[reg];
718     switch (transfer_size) {
719     case SIZE_BYTE:
720     regs[rloc] = (regs[rloc] & ~0xff);
721     break;
722     case SIZE_WORD:
723     regs[rloc] = (regs[rloc] & ~0xffff);
724     break;
725     case SIZE_LONG:
726     regs[rloc] = 0;
727     break;
728     }
729     }
730    
731     #if DEBUG
732 gbeauche 1.15 printf("%08x: %s %s access", regs[X86_REG_EIP],
733 gbeauche 1.10 transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : "long",
734 gbeauche 1.22 transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
735 gbeauche 1.10
736     if (reg != -1) {
737     static const char * x86_reg_str_map[8] = {
738     "eax", "ecx", "edx", "ebx",
739     "esp", "ebp", "esi", "edi"
740     };
741 gbeauche 1.22 printf(" %s register %%%s", transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from", x86_reg_str_map[reg]);
742 gbeauche 1.10 }
743     printf(", %d bytes instruction\n", len);
744     #endif
745    
746     regs[X86_REG_EIP] += len;
747 gbeauche 1.13 return true;
748     }
749     #endif
750 gbeauche 1.14
751 gbeauche 1.13 // Decode and skip PPC instruction
752 gbeauche 1.14 #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
753     static bool powerpc_skip_instruction(unsigned int * nip_p, unsigned int * regs)
754 gbeauche 1.13 {
755 gbeauche 1.14 instruction_t instr;
756     powerpc_decode_instruction(&instr, *nip_p, regs);
757 gbeauche 1.13
758 gbeauche 1.22 if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
759 gbeauche 1.13 // Unknown machine code, let it crash. Then patch the decoder
760     return false;
761     }
762    
763     #if DEBUG
764 gbeauche 1.14 printf("%08x: %s %s access", *nip_p,
765     instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : "long",
766 gbeauche 1.22 instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
767 gbeauche 1.14
768     if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
769     printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
770 gbeauche 1.22 if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
771 gbeauche 1.14 printf(" r%d (rd = 0)\n", instr.rd);
772     #endif
773    
774     if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
775     regs[instr.ra] = instr.addr;
776 gbeauche 1.22 if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
777 gbeauche 1.14 regs[instr.rd] = 0;
778 gbeauche 1.13
779 gbeauche 1.14 *nip_p += 4;
780 gbeauche 1.10 return true;
781     }
782     #endif
783     #endif
784    
785 gbeauche 1.1 // Fallbacks
786     #ifndef SIGSEGV_FAULT_INSTRUCTION
787     #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_INVALID_PC
788     #endif
789 gbeauche 1.30 #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
790     #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
791     #endif
792 gbeauche 1.31 #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
793     #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP) sigsegv_fault_handler(ADDR, IP)
794     #endif
795 gbeauche 1.1
796 gbeauche 1.2 // SIGSEGV recovery supported ?
797     #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
798     #define HAVE_SIGSEGV_RECOVERY
799     #endif
800    
801 gbeauche 1.1
802     /*
803     * SIGSEGV global handler
804     */
805    
806 gbeauche 1.27 #if defined(HAVE_SIGSEGV_RECOVERY) || defined(HAVE_MACH_EXCEPTIONS)
807     // This function handles the badaccess to memory.
808     // It is called from the signal handler or the exception handler.
809 gbeauche 1.30 static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
810 gbeauche 1.1 {
811 gbeauche 1.10 sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
812     sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
813    
814 gbeauche 1.1 // Call user's handler and reinstall the global handler, if required
815 gbeauche 1.31 switch (SIGSEGV_FAULT_HANDLER_INVOKE(fault_address, fault_instruction)) {
816 gbeauche 1.24 case SIGSEGV_RETURN_SUCCESS:
817 gbeauche 1.27 return true;
818    
819 gbeauche 1.10 #if HAVE_SIGSEGV_SKIP_INSTRUCTION
820 gbeauche 1.24 case SIGSEGV_RETURN_SKIP_INSTRUCTION:
821 gbeauche 1.27 // Call the instruction skipper with the register file
822     // available
823     if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
824     #ifdef HAVE_MACH_EXCEPTIONS
825     // Unlike UNIX signals where the thread state
826     // is modified off of the stack, in Mach we
827     // need to actually call thread_set_state to
828     // have the register values updated.
829     kern_return_t krc;
830    
831     krc = thread_set_state(thread,
832     MACHINE_THREAD_STATE, (thread_state_t)state,
833     MACHINE_THREAD_STATE_COUNT);
834     MACH_CHECK_ERROR (thread_get_state, krc);
835     #endif
836     return true;
837     }
838 gbeauche 1.24 break;
839     #endif
840 gbeauche 1.10 }
841 gbeauche 1.27
842     // We can't do anything with the fault_address, dump state?
843     if (sigsegv_state_dumper != 0)
844     sigsegv_state_dumper(fault_address, fault_instruction);
845    
846     return false;
847     }
848     #endif
849    
850    
851     /*
852     * There are two mechanisms for handling a bad memory access,
853     * Mach exceptions and UNIX signals. The implementation specific
854     * code appears below. Its reponsibility is to call handle_badaccess
855     * which is the routine that handles the fault in an implementation
856     * agnostic manner. The implementation specific code below is then
857     * reponsible for checking whether handle_badaccess was able
858     * to handle the memory access error and perform any implementation
859     * specific tasks necessary afterwards.
860     */
861    
862     #ifdef HAVE_MACH_EXCEPTIONS
863     /*
864     * We need to forward all exceptions that we do not handle.
865     * This is important, there are many exceptions that may be
866     * handled by other exception handlers. For example debuggers
867     * use exceptions and the exception hander is in another
868     * process in such a case. (Timothy J. Wood states in his
869     * message to the list that he based this code on that from
870     * gdb for Darwin.)
871     */
872     static inline kern_return_t
873     forward_exception(mach_port_t thread_port,
874     mach_port_t task_port,
875     exception_type_t exception_type,
876     exception_data_t exception_data,
877     mach_msg_type_number_t data_count,
878     ExceptionPorts *oldExceptionPorts)
879     {
880     kern_return_t kret;
881     unsigned int portIndex;
882     mach_port_t port;
883     exception_behavior_t behavior;
884     thread_state_flavor_t flavor;
885     thread_state_t thread_state;
886     mach_msg_type_number_t thread_state_count;
887    
888     for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
889     if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
890     // This handler wants the exception
891     break;
892     }
893     }
894    
895     if (portIndex >= oldExceptionPorts->maskCount) {
896     fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
897     return KERN_FAILURE;
898     }
899    
900     port = oldExceptionPorts->handlers[portIndex];
901     behavior = oldExceptionPorts->behaviors[portIndex];
902     flavor = oldExceptionPorts->flavors[portIndex];
903    
904     /*
905     fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
906     */
907    
908     if (behavior != EXCEPTION_DEFAULT) {
909     thread_state_count = THREAD_STATE_MAX;
910     kret = thread_get_state (thread_port, flavor, thread_state,
911     &thread_state_count);
912     MACH_CHECK_ERROR (thread_get_state, kret);
913     }
914    
915     switch (behavior) {
916     case EXCEPTION_DEFAULT:
917     // fprintf(stderr, "forwarding to exception_raise\n");
918     kret = exception_raise(port, thread_port, task_port, exception_type,
919     exception_data, data_count);
920     MACH_CHECK_ERROR (exception_raise, kret);
921     break;
922     case EXCEPTION_STATE:
923     // fprintf(stderr, "forwarding to exception_raise_state\n");
924     kret = exception_raise_state(port, exception_type, exception_data,
925     data_count, &flavor,
926     thread_state, thread_state_count,
927     thread_state, &thread_state_count);
928     MACH_CHECK_ERROR (exception_raise_state, kret);
929     break;
930     case EXCEPTION_STATE_IDENTITY:
931     // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
932     kret = exception_raise_state_identity(port, thread_port, task_port,
933     exception_type, exception_data,
934     data_count, &flavor,
935     thread_state, thread_state_count,
936     thread_state, &thread_state_count);
937     MACH_CHECK_ERROR (exception_raise_state_identity, kret);
938     break;
939     default:
940     fprintf(stderr, "forward_exception got unknown behavior\n");
941     break;
942     }
943    
944     if (behavior != EXCEPTION_DEFAULT) {
945     kret = thread_set_state (thread_port, flavor, thread_state,
946     thread_state_count);
947     MACH_CHECK_ERROR (thread_set_state, kret);
948     }
949    
950     return KERN_SUCCESS;
951     }
952    
953     /*
954     * This is the code that actually handles the exception.
955     * It is called by exc_server. For Darwin 5 Apple changed
956     * this a bit from how this family of functions worked in
957     * Mach. If you are familiar with that it is a little
958     * different. The main variation that concerns us here is
959     * that code is an array of exception specific codes and
960     * codeCount is a count of the number of codes in the code
961     * array. In typical Mach all exceptions have a code
962     * and sub-code. It happens to be the case that for a
963     * EXC_BAD_ACCESS exception the first entry is the type of
964     * bad access that occurred and the second entry is the
965     * faulting address so these entries correspond exactly to
966     * how the code and sub-code are used on Mach.
967     *
968     * This is a MIG interface. No code in Basilisk II should
969     * call this directley. This has to have external C
970     * linkage because that is what exc_server expects.
971     */
972     kern_return_t
973     catch_exception_raise(mach_port_t exception_port,
974     mach_port_t thread,
975     mach_port_t task,
976     exception_type_t exception,
977     exception_data_t code,
978     mach_msg_type_number_t codeCount)
979     {
980     ppc_thread_state_t state;
981     kern_return_t krc;
982    
983     if ((exception == EXC_BAD_ACCESS) && (codeCount >= 2)) {
984     if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
985     return KERN_SUCCESS;
986     }
987    
988     // In Mach we do not need to remove the exception handler.
989     // If we forward the exception, eventually some exception handler
990     // will take care of this exception.
991     krc = forward_exception(thread, task, exception, code, codeCount, &ports);
992    
993     return krc;
994     }
995     #endif
996    
997     #ifdef HAVE_SIGSEGV_RECOVERY
998     // Handle bad memory accesses with signal handler
999     static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1000     {
1001     // Call handler and reinstall the global handler, if required
1002     if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
1003     #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1004     sigsegv_do_install_handler(sig);
1005     #endif
1006     return;
1007     }
1008 gbeauche 1.10
1009 gbeauche 1.27 // Failure: reinstall default handler for "safe" crash
1010 gbeauche 1.1 #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1011 gbeauche 1.27 SIGSEGV_ALL_SIGNALS
1012 gbeauche 1.1 #undef FAULT_HANDLER
1013     }
1014 gbeauche 1.2 #endif
1015 gbeauche 1.1
1016    
1017     /*
1018     * SIGSEGV handler initialization
1019     */
1020    
1021     #if defined(HAVE_SIGINFO_T)
1022     static bool sigsegv_do_install_handler(int sig)
1023     {
1024     // Setup SIGSEGV handler to process writes to frame buffer
1025     #ifdef HAVE_SIGACTION
1026 gbeauche 1.22 struct sigaction sigsegv_sa;
1027     sigemptyset(&sigsegv_sa.sa_mask);
1028     sigsegv_sa.sa_sigaction = sigsegv_handler;
1029     sigsegv_sa.sa_flags = SA_SIGINFO;
1030     return (sigaction(sig, &sigsegv_sa, 0) == 0);
1031 gbeauche 1.1 #else
1032     return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1033     #endif
1034     }
1035 gbeauche 1.2 #endif
1036    
1037     #if defined(HAVE_SIGCONTEXT_SUBTERFUGE)
1038 gbeauche 1.1 static bool sigsegv_do_install_handler(int sig)
1039     {
1040     // Setup SIGSEGV handler to process writes to frame buffer
1041     #ifdef HAVE_SIGACTION
1042 gbeauche 1.22 struct sigaction sigsegv_sa;
1043     sigemptyset(&sigsegv_sa.sa_mask);
1044     sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
1045     sigsegv_sa.sa_flags = 0;
1046 gbeauche 1.1 #if !EMULATED_68K && defined(__NetBSD__)
1047 gbeauche 1.22 sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
1048     sigsegv_sa.sa_flags |= SA_ONSTACK;
1049 gbeauche 1.1 #endif
1050 gbeauche 1.22 return (sigaction(sig, &sigsegv_sa, 0) == 0);
1051 gbeauche 1.1 #else
1052     return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1053     #endif
1054     }
1055     #endif
1056    
1057 gbeauche 1.27 #if defined(HAVE_MACH_EXCEPTIONS)
1058     static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1059     {
1060     /*
1061     * Except for the exception port functions, this should be
1062     * pretty much stock Mach. If later you choose to support
1063     * other Mach's besides Darwin, just check for __MACH__
1064     * here and __APPLE__ where the actual differences are.
1065     */
1066     #if defined(__APPLE__) && defined(__MACH__)
1067     if (sigsegv_fault_handler != NULL) {
1068     sigsegv_fault_handler = handler;
1069     return true;
1070     }
1071    
1072     kern_return_t krc;
1073    
1074     // create the the exception port
1075     krc = mach_port_allocate(mach_task_self(),
1076     MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
1077     if (krc != KERN_SUCCESS) {
1078     mach_error("mach_port_allocate", krc);
1079     return false;
1080     }
1081    
1082     // add a port send right
1083     krc = mach_port_insert_right(mach_task_self(),
1084     _exceptionPort, _exceptionPort,
1085     MACH_MSG_TYPE_MAKE_SEND);
1086     if (krc != KERN_SUCCESS) {
1087     mach_error("mach_port_insert_right", krc);
1088     return false;
1089     }
1090    
1091     // get the old exception ports
1092     ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
1093     krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
1094     &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
1095     if (krc != KERN_SUCCESS) {
1096     mach_error("thread_get_exception_ports", krc);
1097     return false;
1098     }
1099    
1100     // set the new exception port
1101     //
1102     // We could have used EXCEPTION_STATE_IDENTITY instead of
1103     // EXCEPTION_DEFAULT to get the thread state in the initial
1104     // message, but it turns out that in the common case this is not
1105     // neccessary. If we need it we can later ask for it from the
1106     // suspended thread.
1107     //
1108     // Even with THREAD_STATE_NONE, Darwin provides the program
1109     // counter in the thread state. The comments in the header file
1110     // seem to imply that you can count on the GPR's on an exception
1111     // as well but just to be safe I use MACHINE_THREAD_STATE because
1112     // you have to ask for all of the GPR's anyway just to get the
1113     // program counter. In any case because of update effective
1114     // address from immediate and update address from effective
1115     // addresses of ra and rb modes (as good an name as any for these
1116     // addressing modes) used in PPC instructions, you will need the
1117     // GPR state anyway.
1118     krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
1119     EXCEPTION_DEFAULT, MACHINE_THREAD_STATE);
1120     if (krc != KERN_SUCCESS) {
1121     mach_error("thread_set_exception_ports", krc);
1122     return false;
1123     }
1124    
1125     // create the exception handler thread
1126     if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
1127     (void)fprintf(stderr, "creation of exception thread failed\n");
1128     return false;
1129     }
1130    
1131     // do not care about the exception thread any longer, let is run standalone
1132     (void)pthread_detach(exc_thread);
1133    
1134     sigsegv_fault_handler = handler;
1135     return true;
1136     #else
1137     return false;
1138     #endif
1139     }
1140     #endif
1141    
1142 gbeauche 1.12 bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1143 gbeauche 1.1 {
1144 gbeauche 1.27 #if defined(HAVE_SIGSEGV_RECOVERY)
1145 gbeauche 1.1 bool success = true;
1146     #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
1147     SIGSEGV_ALL_SIGNALS
1148     #undef FAULT_HANDLER
1149 gbeauche 1.27 if (success)
1150     sigsegv_fault_handler = handler;
1151 gbeauche 1.1 return success;
1152 gbeauche 1.27 #elif defined(HAVE_MACH_EXCEPTIONS)
1153     return sigsegv_do_install_handler(handler);
1154 gbeauche 1.1 #else
1155     // FAIL: no siginfo_t nor sigcontext subterfuge is available
1156     return false;
1157     #endif
1158     }
1159    
1160    
1161     /*
1162     * SIGSEGV handler deinitialization
1163     */
1164    
1165     void sigsegv_deinstall_handler(void)
1166     {
1167 gbeauche 1.27 // We do nothing for Mach exceptions, the thread would need to be
1168     // suspended if not already so, and we might mess with other
1169     // exception handlers that came after we registered ours. There is
1170     // no need to remove the exception handler, in fact this function is
1171     // not called anywhere in Basilisk II.
1172 gbeauche 1.2 #ifdef HAVE_SIGSEGV_RECOVERY
1173 gbeauche 1.12 sigsegv_fault_handler = 0;
1174 gbeauche 1.1 #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1175     SIGSEGV_ALL_SIGNALS
1176     #undef FAULT_HANDLER
1177 gbeauche 1.2 #endif
1178 gbeauche 1.1 }
1179    
1180 gbeauche 1.10
1181     /*
1182     * Set callback function when we cannot handle the fault
1183     */
1184    
1185 gbeauche 1.12 void sigsegv_set_dump_state(sigsegv_state_dumper_t handler)
1186 gbeauche 1.10 {
1187 gbeauche 1.12 sigsegv_state_dumper = handler;
1188 gbeauche 1.10 }
1189    
1190    
1191 gbeauche 1.1 /*
1192     * Test program used for configure/test
1193     */
1194    
1195 gbeauche 1.4 #ifdef CONFIGURE_TEST_SIGSEGV_RECOVERY
1196 gbeauche 1.1 #include <stdio.h>
1197     #include <stdlib.h>
1198     #include <fcntl.h>
1199     #include <sys/mman.h>
1200 gbeauche 1.4 #include "vm_alloc.h"
1201 gbeauche 1.1
1202 gbeauche 1.32 const int REF_INDEX = 123;
1203     const int REF_VALUE = 45;
1204    
1205 gbeauche 1.1 static int page_size;
1206 gbeauche 1.3 static volatile char * page = 0;
1207     static volatile int handler_called = 0;
1208 gbeauche 1.1
1209 gbeauche 1.32 #ifdef __GNUC__
1210     // Code range where we expect the fault to come from
1211     static void *b_region, *e_region;
1212     #endif
1213    
1214 gbeauche 1.24 static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1215 gbeauche 1.1 {
1216     handler_called++;
1217 gbeauche 1.32 if ((fault_address - REF_INDEX) != page)
1218 gbeauche 1.29 exit(10);
1219 gbeauche 1.32 #ifdef __GNUC__
1220     // Make sure reported fault instruction address falls into
1221     // expected code range
1222     if (instruction_address != SIGSEGV_INVALID_PC
1223     && ((instruction_address < (sigsegv_address_t)b_region) ||
1224     (instruction_address >= (sigsegv_address_t)e_region)))
1225     exit(11);
1226     #endif
1227 gbeauche 1.4 if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
1228 gbeauche 1.32 exit(12);
1229 gbeauche 1.24 return SIGSEGV_RETURN_SUCCESS;
1230 gbeauche 1.1 }
1231    
1232 gbeauche 1.10 #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1233 gbeauche 1.24 static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1234 gbeauche 1.10 {
1235 gbeauche 1.28 if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
1236     #ifdef __GNUC__
1237     // Make sure reported fault instruction address falls into
1238     // expected code range
1239     if (instruction_address != SIGSEGV_INVALID_PC
1240     && ((instruction_address < (sigsegv_address_t)b_region) ||
1241     (instruction_address >= (sigsegv_address_t)e_region)))
1242     return SIGSEGV_RETURN_FAILURE;
1243     #endif
1244 gbeauche 1.26 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
1245 gbeauche 1.28 }
1246    
1247 gbeauche 1.24 return SIGSEGV_RETURN_FAILURE;
1248 gbeauche 1.10 }
1249     #endif
1250    
1251 gbeauche 1.1 int main(void)
1252     {
1253 gbeauche 1.4 if (vm_init() < 0)
1254 gbeauche 1.1 return 1;
1255    
1256     page_size = getpagesize();
1257 gbeauche 1.4 if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
1258 gbeauche 1.29 return 2;
1259 gbeauche 1.4
1260 gbeauche 1.32 memset((void *)page, 0, page_size);
1261 gbeauche 1.4 if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
1262 gbeauche 1.29 return 3;
1263 gbeauche 1.1
1264     if (!sigsegv_install_handler(sigsegv_test_handler))
1265 gbeauche 1.29 return 4;
1266 gbeauche 1.1
1267 gbeauche 1.32 #ifdef __GNUC__
1268     b_region = &&L_b_region1;
1269     e_region = &&L_e_region1;
1270     #endif
1271     L_b_region1:
1272     page[REF_INDEX] = REF_VALUE;
1273     if (page[REF_INDEX] != REF_VALUE)
1274     exit(20);
1275     page[REF_INDEX] = REF_VALUE;
1276     L_e_region1:
1277    
1278 gbeauche 1.1 if (handler_called != 1)
1279 gbeauche 1.29 return 5;
1280 gbeauche 1.10
1281     #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1282     if (!sigsegv_install_handler(sigsegv_insn_handler))
1283 gbeauche 1.29 return 6;
1284 gbeauche 1.10
1285 gbeauche 1.17 if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
1286 gbeauche 1.29 return 7;
1287 gbeauche 1.10
1288     for (int i = 0; i < page_size; i++)
1289     page[i] = (i + 1) % page_size;
1290    
1291     if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
1292 gbeauche 1.29 return 8;
1293 gbeauche 1.10
1294     #define TEST_SKIP_INSTRUCTION(TYPE) do { \
1295     const unsigned int TAG = 0x12345678; \
1296     TYPE data = *((TYPE *)(page + sizeof(TYPE))); \
1297     volatile unsigned int effect = data + TAG; \
1298     if (effect != TAG) \
1299 gbeauche 1.29 return 9; \
1300 gbeauche 1.10 } while (0)
1301    
1302 gbeauche 1.28 #ifdef __GNUC__
1303 gbeauche 1.32 b_region = &&L_b_region2;
1304     e_region = &&L_e_region2;
1305 gbeauche 1.28 #endif
1306 gbeauche 1.32 L_b_region2:
1307 gbeauche 1.10 TEST_SKIP_INSTRUCTION(unsigned char);
1308     TEST_SKIP_INSTRUCTION(unsigned short);
1309     TEST_SKIP_INSTRUCTION(unsigned int);
1310 gbeauche 1.32 L_e_region2:
1311 gbeauche 1.10 #endif
1312 gbeauche 1.1
1313 gbeauche 1.4 vm_exit();
1314 gbeauche 1.1 return 0;
1315     }
1316     #endif
1317 gbeauche 1.32
1318    
1319    
1320    
1321    
1322    
1323    
1324    
1325    
1326    
1327    
1328    
1329    
1330    
1331