ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
Revision: 1.31
Committed: 2003-10-13T20:15:41Z (20 years, 9 months ago) by gbeauche
Branch: MAIN
Changes since 1.30: +5 -4 lines
Log Message:
fix merge with Mach exception filters, we have preconditions to check

File Contents

# User Rev Content
1 gbeauche 1.1 /*
2     * sigsegv.cpp - SIGSEGV signals support
3     *
4     * Derived from Bruno Haible's work on his SIGSEGV library for clisp
5     * <http://clisp.sourceforge.net/>
6     *
7 gbeauche 1.27 * MacOS X support derived from the post by Timothy J. Wood to the
8     * omnigroup macosx-dev list:
9     * Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10     * tjw@omnigroup.com Sun, 4 Jun 2000
11     * www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12     *
13 cebix 1.7 * Basilisk II (C) 1997-2002 Christian Bauer
14 gbeauche 1.1 *
15     * This program is free software; you can redistribute it and/or modify
16     * it under the terms of the GNU General Public License as published by
17     * the Free Software Foundation; either version 2 of the License, or
18     * (at your option) any later version.
19     *
20     * This program is distributed in the hope that it will be useful,
21     * but WITHOUT ANY WARRANTY; without even the implied warranty of
22     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23     * GNU General Public License for more details.
24     *
25     * You should have received a copy of the GNU General Public License
26     * along with this program; if not, write to the Free Software
27     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
28     */
29    
30     #ifdef HAVE_UNISTD_H
31     #include <unistd.h>
32     #endif
33    
34     #ifdef HAVE_CONFIG_H
35     #include "config.h"
36     #endif
37    
38 gbeauche 1.22 #include <list>
39 gbeauche 1.1 #include <signal.h>
40     #include "sigsegv.h"
41    
42 gbeauche 1.22 #ifndef NO_STD_NAMESPACE
43     using std::list;
44     #endif
45    
46 gbeauche 1.1 // Return value type of a signal handler (standard type if not defined)
47     #ifndef RETSIGTYPE
48     #define RETSIGTYPE void
49     #endif
50    
51     // Type of the system signal handler
52     typedef RETSIGTYPE (*signal_handler)(int);
53    
54     // User's SIGSEGV handler
55 gbeauche 1.12 static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
56 gbeauche 1.1
57 gbeauche 1.10 // Function called to dump state if we can't handle the fault
58 gbeauche 1.12 static sigsegv_state_dumper_t sigsegv_state_dumper = 0;
59 gbeauche 1.10
60 gbeauche 1.1 // Actual SIGSEGV handler installer
61     static bool sigsegv_do_install_handler(int sig);
62    
63    
64     /*
65 gbeauche 1.14 * Instruction decoding aids
66     */
67    
68     // Transfer size
69     enum transfer_size_t {
70     SIZE_UNKNOWN,
71     SIZE_BYTE,
72     SIZE_WORD,
73     SIZE_LONG
74     };
75    
76 gbeauche 1.23 // Transfer type
77     typedef sigsegv_transfer_type_t transfer_type_t;
78    
79 gbeauche 1.14 #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
80     // Addressing mode
81     enum addressing_mode_t {
82     MODE_UNKNOWN,
83     MODE_NORM,
84     MODE_U,
85     MODE_X,
86     MODE_UX
87     };
88    
89     // Decoded instruction
90     struct instruction_t {
91     transfer_type_t transfer_type;
92     transfer_size_t transfer_size;
93     addressing_mode_t addr_mode;
94     unsigned int addr;
95     char ra, rd;
96     };
97    
98     static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned int * gpr)
99     {
100     // Get opcode and divide into fields
101     unsigned int opcode = *((unsigned int *)nip);
102     unsigned int primop = opcode >> 26;
103     unsigned int exop = (opcode >> 1) & 0x3ff;
104     unsigned int ra = (opcode >> 16) & 0x1f;
105     unsigned int rb = (opcode >> 11) & 0x1f;
106     unsigned int rd = (opcode >> 21) & 0x1f;
107     signed int imm = (signed short)(opcode & 0xffff);
108    
109     // Analyze opcode
110 gbeauche 1.22 transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
111 gbeauche 1.14 transfer_size_t transfer_size = SIZE_UNKNOWN;
112     addressing_mode_t addr_mode = MODE_UNKNOWN;
113     switch (primop) {
114     case 31:
115     switch (exop) {
116     case 23: // lwzx
117 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
118 gbeauche 1.14 case 55: // lwzux
119 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
120 gbeauche 1.14 case 87: // lbzx
121 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
122 gbeauche 1.14 case 119: // lbzux
123 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
124 gbeauche 1.14 case 151: // stwx
125 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
126 gbeauche 1.14 case 183: // stwux
127 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
128 gbeauche 1.14 case 215: // stbx
129 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
130 gbeauche 1.14 case 247: // stbux
131 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
132 gbeauche 1.14 case 279: // lhzx
133 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
134 gbeauche 1.14 case 311: // lhzux
135 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
136 gbeauche 1.14 case 343: // lhax
137 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
138 gbeauche 1.14 case 375: // lhaux
139 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
140 gbeauche 1.14 case 407: // sthx
141 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
142 gbeauche 1.14 case 439: // sthux
143 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
144 gbeauche 1.14 }
145     break;
146    
147     case 32: // lwz
148 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
149 gbeauche 1.14 case 33: // lwzu
150 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
151 gbeauche 1.14 case 34: // lbz
152 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
153 gbeauche 1.14 case 35: // lbzu
154 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
155 gbeauche 1.14 case 36: // stw
156 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
157 gbeauche 1.14 case 37: // stwu
158 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
159 gbeauche 1.14 case 38: // stb
160 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
161 gbeauche 1.14 case 39: // stbu
162 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
163 gbeauche 1.14 case 40: // lhz
164 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
165 gbeauche 1.14 case 41: // lhzu
166 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
167 gbeauche 1.14 case 42: // lha
168 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
169 gbeauche 1.14 case 43: // lhau
170 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
171 gbeauche 1.14 case 44: // sth
172 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
173 gbeauche 1.14 case 45: // sthu
174 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
175 gbeauche 1.14 }
176    
177     // Calculate effective address
178     unsigned int addr = 0;
179     switch (addr_mode) {
180     case MODE_X:
181     case MODE_UX:
182     if (ra == 0)
183     addr = gpr[rb];
184     else
185     addr = gpr[ra] + gpr[rb];
186     break;
187     case MODE_NORM:
188     case MODE_U:
189     if (ra == 0)
190     addr = (signed int)(signed short)imm;
191     else
192     addr = gpr[ra] + (signed int)(signed short)imm;
193     break;
194     default:
195     break;
196     }
197    
198     // Commit decoded instruction
199     instruction->addr = addr;
200     instruction->addr_mode = addr_mode;
201     instruction->transfer_type = transfer_type;
202     instruction->transfer_size = transfer_size;
203     instruction->ra = ra;
204     instruction->rd = rd;
205     }
206     #endif
207    
208    
209     /*
210 gbeauche 1.1 * OS-dependant SIGSEGV signals support section
211     */
212    
213     #if HAVE_SIGINFO_T
214     // Generic extended signal handler
215 cebix 1.8 #if defined(__NetBSD__) || defined(__FreeBSD__)
216     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
217     #else
218 gbeauche 1.1 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
219 cebix 1.8 #endif
220 gbeauche 1.5 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, siginfo_t *sip, void *scp
221 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
222     #define SIGSEGV_FAULT_HANDLER_ARGS sip, scp
223 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS sip->si_addr
224 gbeauche 1.19 #if defined(__NetBSD__) || defined(__FreeBSD__)
225 gbeauche 1.17 #if (defined(i386) || defined(__i386__))
226     #define SIGSEGV_FAULT_INSTRUCTION (((struct sigcontext *)scp)->sc_eip)
227 gbeauche 1.18 #define SIGSEGV_REGISTER_FILE ((unsigned int *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
228 gbeauche 1.17 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
229 gbeauche 1.19 #endif
230 gbeauche 1.17 #endif
231 gbeauche 1.5 #if defined(__linux__)
232 gbeauche 1.6 #if (defined(i386) || defined(__i386__))
233     #include <sys/ucontext.h>
234 gbeauche 1.14 #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
235     #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
236     #define SIGSEGV_REGISTER_FILE (unsigned int *)SIGSEGV_CONTEXT_REGS
237 gbeauche 1.10 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
238 gbeauche 1.6 #endif
239 gbeauche 1.20 #if (defined(x86_64) || defined(__x86_64__))
240     #include <sys/ucontext.h>
241     #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
242     #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
243     #define SIGSEGV_REGISTER_FILE (unsigned long *)SIGSEGV_CONTEXT_REGS
244     #endif
245 gbeauche 1.5 #if (defined(ia64) || defined(__ia64__))
246     #define SIGSEGV_FAULT_INSTRUCTION (((struct sigcontext *)scp)->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
247     #endif
248 gbeauche 1.9 #if (defined(powerpc) || defined(__powerpc__))
249     #include <sys/ucontext.h>
250 gbeauche 1.14 #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.regs)
251     #define SIGSEGV_FAULT_INSTRUCTION (SIGSEGV_CONTEXT_REGS->nip)
252     #define SIGSEGV_REGISTER_FILE (unsigned int *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned int *)(SIGSEGV_CONTEXT_REGS->gpr)
253 gbeauche 1.13 #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
254 gbeauche 1.9 #endif
255 gbeauche 1.5 #endif
256 gbeauche 1.1 #endif
257    
258     #if HAVE_SIGCONTEXT_SUBTERFUGE
259     // Linux kernels prior to 2.4 ?
260     #if defined(__linux__)
261     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
262     #if (defined(i386) || defined(__i386__))
263     #include <asm/sigcontext.h>
264     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, struct sigcontext scs
265 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
266     #define SIGSEGV_FAULT_HANDLER_ARGS &scs
267     #define SIGSEGV_FAULT_ADDRESS scp->cr2
268     #define SIGSEGV_FAULT_INSTRUCTION scp->eip
269     #define SIGSEGV_REGISTER_FILE (unsigned int *)scp
270 gbeauche 1.10 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
271 gbeauche 1.1 #endif
272     #if (defined(sparc) || defined(__sparc__))
273     #include <asm/sigcontext.h>
274 gbeauche 1.5 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp, char *addr
275 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp, addr
276 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS addr
277     #endif
278     #if (defined(powerpc) || defined(__powerpc__))
279     #include <asm/sigcontext.h>
280 gbeauche 1.4 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, struct sigcontext *scp
281 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, scp
282 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS scp->regs->dar
283     #define SIGSEGV_FAULT_INSTRUCTION scp->regs->nip
284 gbeauche 1.14 #define SIGSEGV_REGISTER_FILE (unsigned int *)&scp->regs->nip, (unsigned int *)(scp->regs->gpr)
285 gbeauche 1.13 #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
286 gbeauche 1.1 #endif
287 gbeauche 1.4 #if (defined(alpha) || defined(__alpha__))
288     #include <asm/sigcontext.h>
289     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
290 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
291 gbeauche 1.4 #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
292     #define SIGSEGV_FAULT_INSTRUCTION scp->sc_pc
293    
294     // From Boehm's GC 6.0alpha8
295     static sigsegv_address_t get_fault_address(struct sigcontext *scp)
296     {
297     unsigned int instruction = *((unsigned int *)(scp->sc_pc));
298     unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
299     fault_address += (signed long)(signed short)(instruction & 0xffff);
300     return (sigsegv_address_t)fault_address;
301     }
302     #endif
303 gbeauche 1.1 #endif
304    
305     // Irix 5 or 6 on MIPS
306     #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
307 gbeauche 1.11 #include <ucontext.h>
308 gbeauche 1.1 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
309 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
310 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS scp->sc_badvaddr
311     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
312     #endif
313    
314 gbeauche 1.11 // HP-UX
315     #if (defined(hpux) || defined(__hpux__))
316     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
317 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
318 gbeauche 1.11 #define SIGSEGV_FAULT_ADDRESS scp->sc_sl.sl_ss.ss_narrow.ss_cr21
319     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
320     #endif
321    
322 gbeauche 1.1 // OSF/1 on Alpha
323     #if defined(__osf__)
324 gbeauche 1.11 #include <ucontext.h>
325 gbeauche 1.1 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
326 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
327 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS scp->sc_traparg_a0
328     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
329     #endif
330    
331     // AIX
332     #if defined(_AIX)
333     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
334 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
335 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS scp->sc_jmpbuf.jmp_context.o_vaddr
336     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
337     #endif
338    
339     // NetBSD or FreeBSD
340     #if defined(__NetBSD__) || defined(__FreeBSD__)
341     #if (defined(m68k) || defined(__m68k__))
342     #include <m68k/frame.h>
343     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
344 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
345 gbeauche 1.14 #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
346 gbeauche 1.1 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
347 gbeauche 1.14
348     // Use decoding scheme from BasiliskII/m68k native
349     static sigsegv_address_t get_fault_address(struct sigcontext *scp)
350     {
351     struct sigstate {
352     int ss_flags;
353     struct frame ss_frame;
354     };
355     struct sigstate *state = (struct sigstate *)scp->sc_ap;
356     char *fault_addr;
357     switch (state->ss_frame.f_format) {
358     case 7: /* 68040 access error */
359     /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */
360     fault_addr = state->ss_frame.f_fmt7.f_fa;
361     break;
362     default:
363     fault_addr = (char *)code;
364     break;
365     }
366     return (sigsegv_address_t)fault_addr;
367     }
368 gbeauche 1.1 #else
369     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, void *scp, char *addr
370 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp, addr
371 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS addr
372     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
373     #endif
374     #endif
375 gbeauche 1.4
376 gbeauche 1.27 // MacOS X, not sure which version this works in. Under 10.1
377     // vm_protect does not appear to work from a signal handler. Under
378     // 10.2 signal handlers get siginfo type arguments but the si_addr
379     // field is the address of the faulting instruction and not the
380     // address that caused the SIGBUS. Maybe this works in 10.0? In any
381     // case with Mach exception handlers there is a way to do what this
382     // was meant to do.
383     #ifndef HAVE_MACH_EXCEPTIONS
384 gbeauche 1.4 #if defined(__APPLE__) && defined(__MACH__)
385     #if (defined(ppc) || defined(__ppc__))
386     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
387 gbeauche 1.27 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
388 gbeauche 1.4 #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
389     #define SIGSEGV_FAULT_INSTRUCTION scp->sc_ir
390     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
391 gbeauche 1.14 #define SIGSEGV_REGISTER_FILE (unsigned int *)&scp->sc_ir, &((unsigned int *) scp->sc_regs)[2]
392     #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
393 gbeauche 1.4
394 gbeauche 1.14 // Use decoding scheme from SheepShaver
395 gbeauche 1.4 static sigsegv_address_t get_fault_address(struct sigcontext *scp)
396     {
397 gbeauche 1.14 unsigned int nip = (unsigned int) scp->sc_ir;
398     unsigned int * gpr = &((unsigned int *) scp->sc_regs)[2];
399     instruction_t instr;
400    
401     powerpc_decode_instruction(&instr, nip, gpr);
402     return (sigsegv_address_t)instr.addr;
403 gbeauche 1.4 }
404     #endif
405     #endif
406 gbeauche 1.1 #endif
407 gbeauche 1.27 #endif
408    
409     #if HAVE_MACH_EXCEPTIONS
410    
411     // This can easily be extended to other Mach systems, but really who
412     // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
413     // Mach 2.5/3.0?
414     #if defined(__APPLE__) && defined(__MACH__)
415    
416     #include <sys/types.h>
417     #include <stdlib.h>
418     #include <stdio.h>
419     #include <pthread.h>
420    
421     /*
422     * If you are familiar with MIG then you will understand the frustration
423     * that was necessary to get these embedded into C++ code by hand.
424     */
425     extern "C" {
426     #include <mach/mach.h>
427     #include <mach/mach_error.h>
428    
429     extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
430     extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
431     mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
432     extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
433     exception_type_t, exception_data_t, mach_msg_type_number_t);
434     extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
435     exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
436     thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
437     extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
438     exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
439     thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
440     }
441    
442     // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
443     #define HANDLER_COUNT 64
444    
445     // structure to tuck away existing exception handlers
446     typedef struct _ExceptionPorts {
447     mach_msg_type_number_t maskCount;
448     exception_mask_t masks[HANDLER_COUNT];
449     exception_handler_t handlers[HANDLER_COUNT];
450     exception_behavior_t behaviors[HANDLER_COUNT];
451     thread_state_flavor_t flavors[HANDLER_COUNT];
452     } ExceptionPorts;
453    
454     // exception handler thread
455     static pthread_t exc_thread;
456    
457     // place where old exception handler info is stored
458     static ExceptionPorts ports;
459    
460     // our exception port
461     static mach_port_t _exceptionPort = MACH_PORT_NULL;
462    
463     #define MACH_CHECK_ERROR(name,ret) \
464     if (ret != KERN_SUCCESS) { \
465     mach_error(#name, ret); \
466     exit (1); \
467     }
468    
469     #define SIGSEGV_FAULT_ADDRESS code[1]
470     #define SIGSEGV_FAULT_INSTRUCTION get_fault_instruction(thread, state)
471 gbeauche 1.31 #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP) ((code[0] == KERN_PROTECTION_FAILURE) ? sigsegv_fault_handler(ADDR, IP) : SIGSEGV_RETURN_FAILURE)
472 gbeauche 1.27 #define SIGSEGV_FAULT_HANDLER_ARGLIST mach_port_t thread, exception_data_t code, ppc_thread_state_t *state
473     #define SIGSEGV_FAULT_HANDLER_ARGS thread, code, &state
474     #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
475     #define SIGSEGV_REGISTER_FILE &state->srr0, &state->r0
476    
477     // Given a suspended thread, stuff the current instruction and
478     // registers into state.
479     //
480     // It would have been nice to have this be ppc/x86 independant which
481     // could have been done easily with a thread_state_t instead of
482     // ppc_thread_state_t, but because of the way this is called it is
483     // easier to do it this way.
484     #if (defined(ppc) || defined(__ppc__))
485     static inline sigsegv_address_t get_fault_instruction(mach_port_t thread, ppc_thread_state_t *state)
486     {
487     kern_return_t krc;
488     mach_msg_type_number_t count;
489    
490     count = MACHINE_THREAD_STATE_COUNT;
491     krc = thread_get_state(thread, MACHINE_THREAD_STATE, (thread_state_t)state, &count);
492     MACH_CHECK_ERROR (thread_get_state, krc);
493    
494     return (sigsegv_address_t)state->srr0;
495     }
496     #endif
497    
498     // Since there can only be one exception thread running at any time
499     // this is not a problem.
500     #define MSG_SIZE 512
501     static char msgbuf[MSG_SIZE];
502     static char replybuf[MSG_SIZE];
503    
504     /*
505     * This is the entry point for the exception handler thread. The job
506     * of this thread is to wait for exception messages on the exception
507     * port that was setup beforehand and to pass them on to exc_server.
508     * exc_server is a MIG generated function that is a part of Mach.
509     * Its job is to decide what to do with the exception message. In our
510     * case exc_server calls catch_exception_raise on our behalf. After
511     * exc_server returns, it is our responsibility to send the reply.
512     */
513     static void *
514     handleExceptions(void *priv)
515     {
516     mach_msg_header_t *msg, *reply;
517     kern_return_t krc;
518    
519     msg = (mach_msg_header_t *)msgbuf;
520     reply = (mach_msg_header_t *)replybuf;
521    
522     for (;;) {
523     krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
524     _exceptionPort, 0, MACH_PORT_NULL);
525     MACH_CHECK_ERROR(mach_msg, krc);
526    
527     if (!exc_server(msg, reply)) {
528     fprintf(stderr, "exc_server hated the message\n");
529     exit(1);
530     }
531    
532     krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
533     msg->msgh_local_port, 0, MACH_PORT_NULL);
534     if (krc != KERN_SUCCESS) {
535     fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
536     krc, mach_error_string(krc));
537     exit(1);
538     }
539     }
540     }
541     #endif
542     #endif
543 gbeauche 1.1
544 gbeauche 1.14
545     /*
546     * Instruction skipping
547     */
548    
549 gbeauche 1.10 #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
550     // Decode and skip X86 instruction
551     #if (defined(i386) || defined(__i386__))
552     #if defined(__linux__)
553     enum {
554     X86_REG_EIP = 14,
555     X86_REG_EAX = 11,
556     X86_REG_ECX = 10,
557     X86_REG_EDX = 9,
558     X86_REG_EBX = 8,
559     X86_REG_ESP = 7,
560     X86_REG_EBP = 6,
561     X86_REG_ESI = 5,
562     X86_REG_EDI = 4
563     };
564     #endif
565 gbeauche 1.17 #if defined(__NetBSD__) || defined(__FreeBSD__)
566     enum {
567     X86_REG_EIP = 10,
568     X86_REG_EAX = 7,
569     X86_REG_ECX = 6,
570     X86_REG_EDX = 5,
571     X86_REG_EBX = 4,
572     X86_REG_ESP = 13,
573     X86_REG_EBP = 2,
574     X86_REG_ESI = 1,
575     X86_REG_EDI = 0
576     };
577     #endif
578 gbeauche 1.10 // FIXME: this is partly redundant with the instruction decoding phase
579     // to discover transfer type and register number
580     static inline int ix86_step_over_modrm(unsigned char * p)
581     {
582     int mod = (p[0] >> 6) & 3;
583     int rm = p[0] & 7;
584     int offset = 0;
585    
586     // ModR/M Byte
587     switch (mod) {
588     case 0: // [reg]
589     if (rm == 5) return 4; // disp32
590     break;
591     case 1: // disp8[reg]
592     offset = 1;
593     break;
594     case 2: // disp32[reg]
595     offset = 4;
596     break;
597     case 3: // register
598     return 0;
599     }
600    
601     // SIB Byte
602     if (rm == 4) {
603     if (mod == 0 && (p[1] & 7) == 5)
604     offset = 5; // disp32[index]
605     else
606     offset++;
607     }
608    
609     return offset;
610     }
611    
612 gbeauche 1.14 static bool ix86_skip_instruction(unsigned int * regs)
613 gbeauche 1.10 {
614 gbeauche 1.14 unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
615 gbeauche 1.10
616     if (eip == 0)
617     return false;
618    
619 gbeauche 1.22 transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
620 gbeauche 1.14 transfer_size_t transfer_size = SIZE_LONG;
621 gbeauche 1.10
622     int reg = -1;
623     int len = 0;
624    
625     // Operand size prefix
626     if (*eip == 0x66) {
627     eip++;
628     len++;
629     transfer_size = SIZE_WORD;
630     }
631    
632     // Decode instruction
633     switch (eip[0]) {
634 gbeauche 1.17 case 0x0f:
635 gbeauche 1.18 switch (eip[1]) {
636     case 0xb6: // MOVZX r32, r/m8
637     case 0xb7: // MOVZX r32, r/m16
638 gbeauche 1.17 switch (eip[2] & 0xc0) {
639     case 0x80:
640     reg = (eip[2] >> 3) & 7;
641 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD;
642 gbeauche 1.17 break;
643     case 0x40:
644     reg = (eip[2] >> 3) & 7;
645 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD;
646 gbeauche 1.17 break;
647     case 0x00:
648     reg = (eip[2] >> 3) & 7;
649 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD;
650 gbeauche 1.17 break;
651     }
652     len += 3 + ix86_step_over_modrm(eip + 2);
653 gbeauche 1.18 break;
654 gbeauche 1.17 }
655     break;
656 gbeauche 1.10 case 0x8a: // MOV r8, r/m8
657     transfer_size = SIZE_BYTE;
658     case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
659     switch (eip[1] & 0xc0) {
660     case 0x80:
661     reg = (eip[1] >> 3) & 7;
662 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD;
663 gbeauche 1.10 break;
664     case 0x40:
665     reg = (eip[1] >> 3) & 7;
666 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD;
667 gbeauche 1.10 break;
668     case 0x00:
669     reg = (eip[1] >> 3) & 7;
670 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD;
671 gbeauche 1.10 break;
672     }
673     len += 2 + ix86_step_over_modrm(eip + 1);
674     break;
675     case 0x88: // MOV r/m8, r8
676     transfer_size = SIZE_BYTE;
677     case 0x89: // MOV r/m32, r32 (or 16-bit operation)
678     switch (eip[1] & 0xc0) {
679     case 0x80:
680     reg = (eip[1] >> 3) & 7;
681 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE;
682 gbeauche 1.10 break;
683     case 0x40:
684     reg = (eip[1] >> 3) & 7;
685 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE;
686 gbeauche 1.10 break;
687     case 0x00:
688     reg = (eip[1] >> 3) & 7;
689 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE;
690 gbeauche 1.10 break;
691     }
692     len += 2 + ix86_step_over_modrm(eip + 1);
693     break;
694     }
695    
696 gbeauche 1.22 if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
697 gbeauche 1.10 // Unknown machine code, let it crash. Then patch the decoder
698     return false;
699     }
700    
701 gbeauche 1.22 if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
702 gbeauche 1.10 static const int x86_reg_map[8] = {
703     X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
704     X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI
705     };
706    
707     if (reg < 0 || reg >= 8)
708     return false;
709    
710     int rloc = x86_reg_map[reg];
711     switch (transfer_size) {
712     case SIZE_BYTE:
713     regs[rloc] = (regs[rloc] & ~0xff);
714     break;
715     case SIZE_WORD:
716     regs[rloc] = (regs[rloc] & ~0xffff);
717     break;
718     case SIZE_LONG:
719     regs[rloc] = 0;
720     break;
721     }
722     }
723    
724     #if DEBUG
725 gbeauche 1.15 printf("%08x: %s %s access", regs[X86_REG_EIP],
726 gbeauche 1.10 transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : "long",
727 gbeauche 1.22 transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
728 gbeauche 1.10
729     if (reg != -1) {
730     static const char * x86_reg_str_map[8] = {
731     "eax", "ecx", "edx", "ebx",
732     "esp", "ebp", "esi", "edi"
733     };
734 gbeauche 1.22 printf(" %s register %%%s", transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from", x86_reg_str_map[reg]);
735 gbeauche 1.10 }
736     printf(", %d bytes instruction\n", len);
737     #endif
738    
739     regs[X86_REG_EIP] += len;
740 gbeauche 1.13 return true;
741     }
742     #endif
743 gbeauche 1.14
744 gbeauche 1.13 // Decode and skip PPC instruction
745 gbeauche 1.14 #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
746     static bool powerpc_skip_instruction(unsigned int * nip_p, unsigned int * regs)
747 gbeauche 1.13 {
748 gbeauche 1.14 instruction_t instr;
749     powerpc_decode_instruction(&instr, *nip_p, regs);
750 gbeauche 1.13
751 gbeauche 1.22 if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
752 gbeauche 1.13 // Unknown machine code, let it crash. Then patch the decoder
753     return false;
754     }
755    
756     #if DEBUG
757 gbeauche 1.14 printf("%08x: %s %s access", *nip_p,
758     instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : "long",
759 gbeauche 1.22 instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
760 gbeauche 1.14
761     if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
762     printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
763 gbeauche 1.22 if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
764 gbeauche 1.14 printf(" r%d (rd = 0)\n", instr.rd);
765     #endif
766    
767     if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
768     regs[instr.ra] = instr.addr;
769 gbeauche 1.22 if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
770 gbeauche 1.14 regs[instr.rd] = 0;
771 gbeauche 1.13
772 gbeauche 1.14 *nip_p += 4;
773 gbeauche 1.10 return true;
774     }
775     #endif
776     #endif
777    
778 gbeauche 1.1 // Fallbacks
779     #ifndef SIGSEGV_FAULT_INSTRUCTION
780     #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_INVALID_PC
781     #endif
782 gbeauche 1.30 #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
783     #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
784     #endif
785 gbeauche 1.31 #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
786     #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP) sigsegv_fault_handler(ADDR, IP)
787     #endif
788 gbeauche 1.1
789 gbeauche 1.2 // SIGSEGV recovery supported ?
790     #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
791     #define HAVE_SIGSEGV_RECOVERY
792     #endif
793    
794 gbeauche 1.1
795     /*
796     * SIGSEGV global handler
797     */
798    
799 gbeauche 1.27 #if defined(HAVE_SIGSEGV_RECOVERY) || defined(HAVE_MACH_EXCEPTIONS)
800     // This function handles the badaccess to memory.
801     // It is called from the signal handler or the exception handler.
802 gbeauche 1.30 static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
803 gbeauche 1.1 {
804 gbeauche 1.10 sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
805     sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
806    
807 gbeauche 1.1 // Call user's handler and reinstall the global handler, if required
808 gbeauche 1.31 switch (SIGSEGV_FAULT_HANDLER_INVOKE(fault_address, fault_instruction)) {
809 gbeauche 1.24 case SIGSEGV_RETURN_SUCCESS:
810 gbeauche 1.27 return true;
811    
812 gbeauche 1.10 #if HAVE_SIGSEGV_SKIP_INSTRUCTION
813 gbeauche 1.24 case SIGSEGV_RETURN_SKIP_INSTRUCTION:
814 gbeauche 1.27 // Call the instruction skipper with the register file
815     // available
816     if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
817     #ifdef HAVE_MACH_EXCEPTIONS
818     // Unlike UNIX signals where the thread state
819     // is modified off of the stack, in Mach we
820     // need to actually call thread_set_state to
821     // have the register values updated.
822     kern_return_t krc;
823    
824     krc = thread_set_state(thread,
825     MACHINE_THREAD_STATE, (thread_state_t)state,
826     MACHINE_THREAD_STATE_COUNT);
827     MACH_CHECK_ERROR (thread_get_state, krc);
828     #endif
829     return true;
830     }
831 gbeauche 1.24 break;
832     #endif
833 gbeauche 1.10 }
834 gbeauche 1.27
835     // We can't do anything with the fault_address, dump state?
836     if (sigsegv_state_dumper != 0)
837     sigsegv_state_dumper(fault_address, fault_instruction);
838    
839     return false;
840     }
841     #endif
842    
843    
844     /*
845     * There are two mechanisms for handling a bad memory access,
846     * Mach exceptions and UNIX signals. The implementation specific
847     * code appears below. Its reponsibility is to call handle_badaccess
848     * which is the routine that handles the fault in an implementation
849     * agnostic manner. The implementation specific code below is then
850     * reponsible for checking whether handle_badaccess was able
851     * to handle the memory access error and perform any implementation
852     * specific tasks necessary afterwards.
853     */
854    
855     #ifdef HAVE_MACH_EXCEPTIONS
856     /*
857     * We need to forward all exceptions that we do not handle.
858     * This is important, there are many exceptions that may be
859     * handled by other exception handlers. For example debuggers
860     * use exceptions and the exception hander is in another
861     * process in such a case. (Timothy J. Wood states in his
862     * message to the list that he based this code on that from
863     * gdb for Darwin.)
864     */
865     static inline kern_return_t
866     forward_exception(mach_port_t thread_port,
867     mach_port_t task_port,
868     exception_type_t exception_type,
869     exception_data_t exception_data,
870     mach_msg_type_number_t data_count,
871     ExceptionPorts *oldExceptionPorts)
872     {
873     kern_return_t kret;
874     unsigned int portIndex;
875     mach_port_t port;
876     exception_behavior_t behavior;
877     thread_state_flavor_t flavor;
878     thread_state_t thread_state;
879     mach_msg_type_number_t thread_state_count;
880    
881     for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
882     if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
883     // This handler wants the exception
884     break;
885     }
886     }
887    
888     if (portIndex >= oldExceptionPorts->maskCount) {
889     fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
890     return KERN_FAILURE;
891     }
892    
893     port = oldExceptionPorts->handlers[portIndex];
894     behavior = oldExceptionPorts->behaviors[portIndex];
895     flavor = oldExceptionPorts->flavors[portIndex];
896    
897     /*
898     fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
899     */
900    
901     if (behavior != EXCEPTION_DEFAULT) {
902     thread_state_count = THREAD_STATE_MAX;
903     kret = thread_get_state (thread_port, flavor, thread_state,
904     &thread_state_count);
905     MACH_CHECK_ERROR (thread_get_state, kret);
906     }
907    
908     switch (behavior) {
909     case EXCEPTION_DEFAULT:
910     // fprintf(stderr, "forwarding to exception_raise\n");
911     kret = exception_raise(port, thread_port, task_port, exception_type,
912     exception_data, data_count);
913     MACH_CHECK_ERROR (exception_raise, kret);
914     break;
915     case EXCEPTION_STATE:
916     // fprintf(stderr, "forwarding to exception_raise_state\n");
917     kret = exception_raise_state(port, exception_type, exception_data,
918     data_count, &flavor,
919     thread_state, thread_state_count,
920     thread_state, &thread_state_count);
921     MACH_CHECK_ERROR (exception_raise_state, kret);
922     break;
923     case EXCEPTION_STATE_IDENTITY:
924     // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
925     kret = exception_raise_state_identity(port, thread_port, task_port,
926     exception_type, exception_data,
927     data_count, &flavor,
928     thread_state, thread_state_count,
929     thread_state, &thread_state_count);
930     MACH_CHECK_ERROR (exception_raise_state_identity, kret);
931     break;
932     default:
933     fprintf(stderr, "forward_exception got unknown behavior\n");
934     break;
935     }
936    
937     if (behavior != EXCEPTION_DEFAULT) {
938     kret = thread_set_state (thread_port, flavor, thread_state,
939     thread_state_count);
940     MACH_CHECK_ERROR (thread_set_state, kret);
941     }
942    
943     return KERN_SUCCESS;
944     }
945    
946     /*
947     * This is the code that actually handles the exception.
948     * It is called by exc_server. For Darwin 5 Apple changed
949     * this a bit from how this family of functions worked in
950     * Mach. If you are familiar with that it is a little
951     * different. The main variation that concerns us here is
952     * that code is an array of exception specific codes and
953     * codeCount is a count of the number of codes in the code
954     * array. In typical Mach all exceptions have a code
955     * and sub-code. It happens to be the case that for a
956     * EXC_BAD_ACCESS exception the first entry is the type of
957     * bad access that occurred and the second entry is the
958     * faulting address so these entries correspond exactly to
959     * how the code and sub-code are used on Mach.
960     *
961     * This is a MIG interface. No code in Basilisk II should
962     * call this directley. This has to have external C
963     * linkage because that is what exc_server expects.
964     */
965     kern_return_t
966     catch_exception_raise(mach_port_t exception_port,
967     mach_port_t thread,
968     mach_port_t task,
969     exception_type_t exception,
970     exception_data_t code,
971     mach_msg_type_number_t codeCount)
972     {
973     ppc_thread_state_t state;
974     kern_return_t krc;
975    
976     if ((exception == EXC_BAD_ACCESS) && (codeCount >= 2)) {
977     if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
978     return KERN_SUCCESS;
979     }
980    
981     // In Mach we do not need to remove the exception handler.
982     // If we forward the exception, eventually some exception handler
983     // will take care of this exception.
984     krc = forward_exception(thread, task, exception, code, codeCount, &ports);
985    
986     return krc;
987     }
988     #endif
989    
990     #ifdef HAVE_SIGSEGV_RECOVERY
991     // Handle bad memory accesses with signal handler
992     static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
993     {
994     // Call handler and reinstall the global handler, if required
995     if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
996     #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
997     sigsegv_do_install_handler(sig);
998     #endif
999     return;
1000     }
1001 gbeauche 1.10
1002 gbeauche 1.27 // Failure: reinstall default handler for "safe" crash
1003 gbeauche 1.1 #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1004 gbeauche 1.27 SIGSEGV_ALL_SIGNALS
1005 gbeauche 1.1 #undef FAULT_HANDLER
1006     }
1007 gbeauche 1.2 #endif
1008 gbeauche 1.1
1009    
1010     /*
1011     * SIGSEGV handler initialization
1012     */
1013    
1014     #if defined(HAVE_SIGINFO_T)
1015     static bool sigsegv_do_install_handler(int sig)
1016     {
1017     // Setup SIGSEGV handler to process writes to frame buffer
1018     #ifdef HAVE_SIGACTION
1019 gbeauche 1.22 struct sigaction sigsegv_sa;
1020     sigemptyset(&sigsegv_sa.sa_mask);
1021     sigsegv_sa.sa_sigaction = sigsegv_handler;
1022     sigsegv_sa.sa_flags = SA_SIGINFO;
1023     return (sigaction(sig, &sigsegv_sa, 0) == 0);
1024 gbeauche 1.1 #else
1025     return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1026     #endif
1027     }
1028 gbeauche 1.2 #endif
1029    
1030     #if defined(HAVE_SIGCONTEXT_SUBTERFUGE)
1031 gbeauche 1.1 static bool sigsegv_do_install_handler(int sig)
1032     {
1033     // Setup SIGSEGV handler to process writes to frame buffer
1034     #ifdef HAVE_SIGACTION
1035 gbeauche 1.22 struct sigaction sigsegv_sa;
1036     sigemptyset(&sigsegv_sa.sa_mask);
1037     sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
1038     sigsegv_sa.sa_flags = 0;
1039 gbeauche 1.1 #if !EMULATED_68K && defined(__NetBSD__)
1040 gbeauche 1.22 sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
1041     sigsegv_sa.sa_flags |= SA_ONSTACK;
1042 gbeauche 1.1 #endif
1043 gbeauche 1.22 return (sigaction(sig, &sigsegv_sa, 0) == 0);
1044 gbeauche 1.1 #else
1045     return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1046     #endif
1047     }
1048     #endif
1049    
1050 gbeauche 1.27 #if defined(HAVE_MACH_EXCEPTIONS)
1051     static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1052     {
1053     /*
1054     * Except for the exception port functions, this should be
1055     * pretty much stock Mach. If later you choose to support
1056     * other Mach's besides Darwin, just check for __MACH__
1057     * here and __APPLE__ where the actual differences are.
1058     */
1059     #if defined(__APPLE__) && defined(__MACH__)
1060     if (sigsegv_fault_handler != NULL) {
1061     sigsegv_fault_handler = handler;
1062     return true;
1063     }
1064    
1065     kern_return_t krc;
1066    
1067     // create the the exception port
1068     krc = mach_port_allocate(mach_task_self(),
1069     MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
1070     if (krc != KERN_SUCCESS) {
1071     mach_error("mach_port_allocate", krc);
1072     return false;
1073     }
1074    
1075     // add a port send right
1076     krc = mach_port_insert_right(mach_task_self(),
1077     _exceptionPort, _exceptionPort,
1078     MACH_MSG_TYPE_MAKE_SEND);
1079     if (krc != KERN_SUCCESS) {
1080     mach_error("mach_port_insert_right", krc);
1081     return false;
1082     }
1083    
1084     // get the old exception ports
1085     ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
1086     krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
1087     &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
1088     if (krc != KERN_SUCCESS) {
1089     mach_error("thread_get_exception_ports", krc);
1090     return false;
1091     }
1092    
1093     // set the new exception port
1094     //
1095     // We could have used EXCEPTION_STATE_IDENTITY instead of
1096     // EXCEPTION_DEFAULT to get the thread state in the initial
1097     // message, but it turns out that in the common case this is not
1098     // neccessary. If we need it we can later ask for it from the
1099     // suspended thread.
1100     //
1101     // Even with THREAD_STATE_NONE, Darwin provides the program
1102     // counter in the thread state. The comments in the header file
1103     // seem to imply that you can count on the GPR's on an exception
1104     // as well but just to be safe I use MACHINE_THREAD_STATE because
1105     // you have to ask for all of the GPR's anyway just to get the
1106     // program counter. In any case because of update effective
1107     // address from immediate and update address from effective
1108     // addresses of ra and rb modes (as good an name as any for these
1109     // addressing modes) used in PPC instructions, you will need the
1110     // GPR state anyway.
1111     krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
1112     EXCEPTION_DEFAULT, MACHINE_THREAD_STATE);
1113     if (krc != KERN_SUCCESS) {
1114     mach_error("thread_set_exception_ports", krc);
1115     return false;
1116     }
1117    
1118     // create the exception handler thread
1119     if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
1120     (void)fprintf(stderr, "creation of exception thread failed\n");
1121     return false;
1122     }
1123    
1124     // do not care about the exception thread any longer, let is run standalone
1125     (void)pthread_detach(exc_thread);
1126    
1127     sigsegv_fault_handler = handler;
1128     return true;
1129     #else
1130     return false;
1131     #endif
1132     }
1133     #endif
1134    
1135 gbeauche 1.12 bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1136 gbeauche 1.1 {
1137 gbeauche 1.27 #if defined(HAVE_SIGSEGV_RECOVERY)
1138 gbeauche 1.1 bool success = true;
1139     #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
1140     SIGSEGV_ALL_SIGNALS
1141     #undef FAULT_HANDLER
1142 gbeauche 1.27 if (success)
1143     sigsegv_fault_handler = handler;
1144 gbeauche 1.1 return success;
1145 gbeauche 1.27 #elif defined(HAVE_MACH_EXCEPTIONS)
1146     return sigsegv_do_install_handler(handler);
1147 gbeauche 1.1 #else
1148     // FAIL: no siginfo_t nor sigcontext subterfuge is available
1149     return false;
1150     #endif
1151     }
1152    
1153    
1154     /*
1155     * SIGSEGV handler deinitialization
1156     */
1157    
1158     void sigsegv_deinstall_handler(void)
1159     {
1160 gbeauche 1.27 // We do nothing for Mach exceptions, the thread would need to be
1161     // suspended if not already so, and we might mess with other
1162     // exception handlers that came after we registered ours. There is
1163     // no need to remove the exception handler, in fact this function is
1164     // not called anywhere in Basilisk II.
1165 gbeauche 1.2 #ifdef HAVE_SIGSEGV_RECOVERY
1166 gbeauche 1.12 sigsegv_fault_handler = 0;
1167 gbeauche 1.1 #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1168     SIGSEGV_ALL_SIGNALS
1169     #undef FAULT_HANDLER
1170 gbeauche 1.2 #endif
1171 gbeauche 1.1 }
1172    
1173 gbeauche 1.10
1174     /*
1175     * Set callback function when we cannot handle the fault
1176     */
1177    
1178 gbeauche 1.12 void sigsegv_set_dump_state(sigsegv_state_dumper_t handler)
1179 gbeauche 1.10 {
1180 gbeauche 1.12 sigsegv_state_dumper = handler;
1181 gbeauche 1.10 }
1182    
1183    
1184 gbeauche 1.1 /*
1185     * Test program used for configure/test
1186     */
1187    
1188 gbeauche 1.4 #ifdef CONFIGURE_TEST_SIGSEGV_RECOVERY
1189 gbeauche 1.1 #include <stdio.h>
1190     #include <stdlib.h>
1191     #include <fcntl.h>
1192     #include <sys/mman.h>
1193 gbeauche 1.4 #include "vm_alloc.h"
1194 gbeauche 1.1
1195     static int page_size;
1196 gbeauche 1.3 static volatile char * page = 0;
1197     static volatile int handler_called = 0;
1198 gbeauche 1.1
1199 gbeauche 1.24 static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1200 gbeauche 1.1 {
1201     handler_called++;
1202     if ((fault_address - 123) != page)
1203 gbeauche 1.29 exit(10);
1204 gbeauche 1.4 if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
1205 gbeauche 1.29 exit(11);
1206 gbeauche 1.24 return SIGSEGV_RETURN_SUCCESS;
1207 gbeauche 1.1 }
1208    
1209 gbeauche 1.10 #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1210 gbeauche 1.28 #ifdef __GNUC__
1211     // Code range where we expect the fault to come from
1212     static void *b_region, *e_region;
1213     #endif
1214    
1215 gbeauche 1.24 static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1216 gbeauche 1.10 {
1217 gbeauche 1.28 if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
1218     #ifdef __GNUC__
1219     // Make sure reported fault instruction address falls into
1220     // expected code range
1221     if (instruction_address != SIGSEGV_INVALID_PC
1222     && ((instruction_address < (sigsegv_address_t)b_region) ||
1223     (instruction_address >= (sigsegv_address_t)e_region)))
1224     return SIGSEGV_RETURN_FAILURE;
1225     #endif
1226 gbeauche 1.26 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
1227 gbeauche 1.28 }
1228    
1229 gbeauche 1.24 return SIGSEGV_RETURN_FAILURE;
1230 gbeauche 1.10 }
1231     #endif
1232    
1233 gbeauche 1.1 int main(void)
1234     {
1235 gbeauche 1.4 if (vm_init() < 0)
1236 gbeauche 1.1 return 1;
1237    
1238     page_size = getpagesize();
1239 gbeauche 1.4 if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
1240 gbeauche 1.29 return 2;
1241 gbeauche 1.4
1242     if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
1243 gbeauche 1.29 return 3;
1244 gbeauche 1.1
1245     if (!sigsegv_install_handler(sigsegv_test_handler))
1246 gbeauche 1.29 return 4;
1247 gbeauche 1.1
1248     page[123] = 45;
1249     page[123] = 45;
1250    
1251     if (handler_called != 1)
1252 gbeauche 1.29 return 5;
1253 gbeauche 1.10
1254     #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1255     if (!sigsegv_install_handler(sigsegv_insn_handler))
1256 gbeauche 1.29 return 6;
1257 gbeauche 1.10
1258 gbeauche 1.17 if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
1259 gbeauche 1.29 return 7;
1260 gbeauche 1.10
1261     for (int i = 0; i < page_size; i++)
1262     page[i] = (i + 1) % page_size;
1263    
1264     if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
1265 gbeauche 1.29 return 8;
1266 gbeauche 1.10
1267     #define TEST_SKIP_INSTRUCTION(TYPE) do { \
1268     const unsigned int TAG = 0x12345678; \
1269     TYPE data = *((TYPE *)(page + sizeof(TYPE))); \
1270     volatile unsigned int effect = data + TAG; \
1271     if (effect != TAG) \
1272 gbeauche 1.29 return 9; \
1273 gbeauche 1.10 } while (0)
1274    
1275 gbeauche 1.28 #ifdef __GNUC__
1276     b_region = &&L_b_region;
1277     e_region = &&L_e_region;
1278     #endif
1279     L_b_region:
1280 gbeauche 1.10 TEST_SKIP_INSTRUCTION(unsigned char);
1281     TEST_SKIP_INSTRUCTION(unsigned short);
1282     TEST_SKIP_INSTRUCTION(unsigned int);
1283 gbeauche 1.28 L_e_region:
1284 gbeauche 1.10 #endif
1285 gbeauche 1.1
1286 gbeauche 1.4 vm_exit();
1287 gbeauche 1.1 return 0;
1288     }
1289     #endif