ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
Revision: 1.30
Committed: 2003-10-13T19:56:17Z (21 years ago) by gbeauche
Branch: MAIN
Changes since 1.29: +20 -15 lines
Log Message:
indentation fixes, optimize handle_badaccess() to receive only necessary
data and don't copy a struct sigcontext again on x86.

File Contents

# User Rev Content
1 gbeauche 1.1 /*
2     * sigsegv.cpp - SIGSEGV signals support
3     *
4     * Derived from Bruno Haible's work on his SIGSEGV library for clisp
5     * <http://clisp.sourceforge.net/>
6     *
7 gbeauche 1.27 * MacOS X support derived from the post by Timothy J. Wood to the
8     * omnigroup macosx-dev list:
9     * Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10     * tjw@omnigroup.com Sun, 4 Jun 2000
11     * www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12     *
13 cebix 1.7 * Basilisk II (C) 1997-2002 Christian Bauer
14 gbeauche 1.1 *
15     * This program is free software; you can redistribute it and/or modify
16     * it under the terms of the GNU General Public License as published by
17     * the Free Software Foundation; either version 2 of the License, or
18     * (at your option) any later version.
19     *
20     * This program is distributed in the hope that it will be useful,
21     * but WITHOUT ANY WARRANTY; without even the implied warranty of
22     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23     * GNU General Public License for more details.
24     *
25     * You should have received a copy of the GNU General Public License
26     * along with this program; if not, write to the Free Software
27     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
28     */
29    
30     #ifdef HAVE_UNISTD_H
31     #include <unistd.h>
32     #endif
33    
34     #ifdef HAVE_CONFIG_H
35     #include "config.h"
36     #endif
37    
38 gbeauche 1.22 #include <list>
39 gbeauche 1.1 #include <signal.h>
40     #include "sigsegv.h"
41    
42 gbeauche 1.22 #ifndef NO_STD_NAMESPACE
43     using std::list;
44     #endif
45    
46 gbeauche 1.1 // Return value type of a signal handler (standard type if not defined)
47     #ifndef RETSIGTYPE
48     #define RETSIGTYPE void
49     #endif
50    
51     // Type of the system signal handler
52     typedef RETSIGTYPE (*signal_handler)(int);
53    
54     // User's SIGSEGV handler
55 gbeauche 1.12 static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
56 gbeauche 1.1
57 gbeauche 1.10 // Function called to dump state if we can't handle the fault
58 gbeauche 1.12 static sigsegv_state_dumper_t sigsegv_state_dumper = 0;
59 gbeauche 1.10
60 gbeauche 1.1 // Actual SIGSEGV handler installer
61     static bool sigsegv_do_install_handler(int sig);
62    
63    
64     /*
65 gbeauche 1.14 * Instruction decoding aids
66     */
67    
68     // Transfer size
69     enum transfer_size_t {
70     SIZE_UNKNOWN,
71     SIZE_BYTE,
72     SIZE_WORD,
73     SIZE_LONG
74     };
75    
76 gbeauche 1.23 // Transfer type
77     typedef sigsegv_transfer_type_t transfer_type_t;
78    
79 gbeauche 1.14 #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
80     // Addressing mode
81     enum addressing_mode_t {
82     MODE_UNKNOWN,
83     MODE_NORM,
84     MODE_U,
85     MODE_X,
86     MODE_UX
87     };
88    
89     // Decoded instruction
90     struct instruction_t {
91     transfer_type_t transfer_type;
92     transfer_size_t transfer_size;
93     addressing_mode_t addr_mode;
94     unsigned int addr;
95     char ra, rd;
96     };
97    
98     static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned int * gpr)
99     {
100     // Get opcode and divide into fields
101     unsigned int opcode = *((unsigned int *)nip);
102     unsigned int primop = opcode >> 26;
103     unsigned int exop = (opcode >> 1) & 0x3ff;
104     unsigned int ra = (opcode >> 16) & 0x1f;
105     unsigned int rb = (opcode >> 11) & 0x1f;
106     unsigned int rd = (opcode >> 21) & 0x1f;
107     signed int imm = (signed short)(opcode & 0xffff);
108    
109     // Analyze opcode
110 gbeauche 1.22 transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
111 gbeauche 1.14 transfer_size_t transfer_size = SIZE_UNKNOWN;
112     addressing_mode_t addr_mode = MODE_UNKNOWN;
113     switch (primop) {
114     case 31:
115     switch (exop) {
116     case 23: // lwzx
117 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
118 gbeauche 1.14 case 55: // lwzux
119 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
120 gbeauche 1.14 case 87: // lbzx
121 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
122 gbeauche 1.14 case 119: // lbzux
123 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
124 gbeauche 1.14 case 151: // stwx
125 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
126 gbeauche 1.14 case 183: // stwux
127 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
128 gbeauche 1.14 case 215: // stbx
129 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
130 gbeauche 1.14 case 247: // stbux
131 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
132 gbeauche 1.14 case 279: // lhzx
133 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
134 gbeauche 1.14 case 311: // lhzux
135 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
136 gbeauche 1.14 case 343: // lhax
137 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
138 gbeauche 1.14 case 375: // lhaux
139 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
140 gbeauche 1.14 case 407: // sthx
141 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
142 gbeauche 1.14 case 439: // sthux
143 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
144 gbeauche 1.14 }
145     break;
146    
147     case 32: // lwz
148 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
149 gbeauche 1.14 case 33: // lwzu
150 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
151 gbeauche 1.14 case 34: // lbz
152 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
153 gbeauche 1.14 case 35: // lbzu
154 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
155 gbeauche 1.14 case 36: // stw
156 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
157 gbeauche 1.14 case 37: // stwu
158 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
159 gbeauche 1.14 case 38: // stb
160 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
161 gbeauche 1.14 case 39: // stbu
162 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
163 gbeauche 1.14 case 40: // lhz
164 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
165 gbeauche 1.14 case 41: // lhzu
166 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
167 gbeauche 1.14 case 42: // lha
168 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
169 gbeauche 1.14 case 43: // lhau
170 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
171 gbeauche 1.14 case 44: // sth
172 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
173 gbeauche 1.14 case 45: // sthu
174 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
175 gbeauche 1.14 }
176    
177     // Calculate effective address
178     unsigned int addr = 0;
179     switch (addr_mode) {
180     case MODE_X:
181     case MODE_UX:
182     if (ra == 0)
183     addr = gpr[rb];
184     else
185     addr = gpr[ra] + gpr[rb];
186     break;
187     case MODE_NORM:
188     case MODE_U:
189     if (ra == 0)
190     addr = (signed int)(signed short)imm;
191     else
192     addr = gpr[ra] + (signed int)(signed short)imm;
193     break;
194     default:
195     break;
196     }
197    
198     // Commit decoded instruction
199     instruction->addr = addr;
200     instruction->addr_mode = addr_mode;
201     instruction->transfer_type = transfer_type;
202     instruction->transfer_size = transfer_size;
203     instruction->ra = ra;
204     instruction->rd = rd;
205     }
206     #endif
207    
208    
209     /*
210 gbeauche 1.1 * OS-dependant SIGSEGV signals support section
211     */
212    
213     #if HAVE_SIGINFO_T
214     // Generic extended signal handler
215 gbeauche 1.27 #define SIGSEGV_FAULT_HANDLER sigsegv_fault_handler
216 cebix 1.8 #if defined(__NetBSD__) || defined(__FreeBSD__)
217     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
218     #else
219 gbeauche 1.1 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
220 cebix 1.8 #endif
221 gbeauche 1.5 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, siginfo_t *sip, void *scp
222 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
223     #define SIGSEGV_FAULT_HANDLER_ARGS sip, scp
224 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS sip->si_addr
225 gbeauche 1.19 #if defined(__NetBSD__) || defined(__FreeBSD__)
226 gbeauche 1.17 #if (defined(i386) || defined(__i386__))
227     #define SIGSEGV_FAULT_INSTRUCTION (((struct sigcontext *)scp)->sc_eip)
228 gbeauche 1.18 #define SIGSEGV_REGISTER_FILE ((unsigned int *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
229 gbeauche 1.17 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
230 gbeauche 1.19 #endif
231 gbeauche 1.17 #endif
232 gbeauche 1.5 #if defined(__linux__)
233 gbeauche 1.6 #if (defined(i386) || defined(__i386__))
234     #include <sys/ucontext.h>
235 gbeauche 1.14 #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
236     #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
237     #define SIGSEGV_REGISTER_FILE (unsigned int *)SIGSEGV_CONTEXT_REGS
238 gbeauche 1.10 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
239 gbeauche 1.6 #endif
240 gbeauche 1.20 #if (defined(x86_64) || defined(__x86_64__))
241     #include <sys/ucontext.h>
242     #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
243     #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
244     #define SIGSEGV_REGISTER_FILE (unsigned long *)SIGSEGV_CONTEXT_REGS
245     #endif
246 gbeauche 1.5 #if (defined(ia64) || defined(__ia64__))
247     #define SIGSEGV_FAULT_INSTRUCTION (((struct sigcontext *)scp)->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
248     #endif
249 gbeauche 1.9 #if (defined(powerpc) || defined(__powerpc__))
250     #include <sys/ucontext.h>
251 gbeauche 1.14 #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.regs)
252     #define SIGSEGV_FAULT_INSTRUCTION (SIGSEGV_CONTEXT_REGS->nip)
253     #define SIGSEGV_REGISTER_FILE (unsigned int *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned int *)(SIGSEGV_CONTEXT_REGS->gpr)
254 gbeauche 1.13 #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
255 gbeauche 1.9 #endif
256 gbeauche 1.5 #endif
257 gbeauche 1.1 #endif
258    
259     #if HAVE_SIGCONTEXT_SUBTERFUGE
260 gbeauche 1.27 #define SIGSEGV_FAULT_HANDLER sigsegv_fault_handler
261 gbeauche 1.1 // Linux kernels prior to 2.4 ?
262     #if defined(__linux__)
263     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
264     #if (defined(i386) || defined(__i386__))
265     #include <asm/sigcontext.h>
266     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, struct sigcontext scs
267 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
268     #define SIGSEGV_FAULT_HANDLER_ARGS &scs
269     #define SIGSEGV_FAULT_ADDRESS scp->cr2
270     #define SIGSEGV_FAULT_INSTRUCTION scp->eip
271     #define SIGSEGV_REGISTER_FILE (unsigned int *)scp
272 gbeauche 1.10 #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
273 gbeauche 1.1 #endif
274     #if (defined(sparc) || defined(__sparc__))
275     #include <asm/sigcontext.h>
276 gbeauche 1.5 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp, char *addr
277 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp, addr
278 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS addr
279     #endif
280     #if (defined(powerpc) || defined(__powerpc__))
281     #include <asm/sigcontext.h>
282 gbeauche 1.4 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, struct sigcontext *scp
283 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, scp
284 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS scp->regs->dar
285     #define SIGSEGV_FAULT_INSTRUCTION scp->regs->nip
286 gbeauche 1.14 #define SIGSEGV_REGISTER_FILE (unsigned int *)&scp->regs->nip, (unsigned int *)(scp->regs->gpr)
287 gbeauche 1.13 #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
288 gbeauche 1.1 #endif
289 gbeauche 1.4 #if (defined(alpha) || defined(__alpha__))
290     #include <asm/sigcontext.h>
291     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
292 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
293 gbeauche 1.4 #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
294     #define SIGSEGV_FAULT_INSTRUCTION scp->sc_pc
295    
296     // From Boehm's GC 6.0alpha8
297     static sigsegv_address_t get_fault_address(struct sigcontext *scp)
298     {
299     unsigned int instruction = *((unsigned int *)(scp->sc_pc));
300     unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
301     fault_address += (signed long)(signed short)(instruction & 0xffff);
302     return (sigsegv_address_t)fault_address;
303     }
304     #endif
305 gbeauche 1.1 #endif
306    
307     // Irix 5 or 6 on MIPS
308     #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
309 gbeauche 1.11 #include <ucontext.h>
310 gbeauche 1.1 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
311 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
312 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS scp->sc_badvaddr
313     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
314     #endif
315    
316 gbeauche 1.11 // HP-UX
317     #if (defined(hpux) || defined(__hpux__))
318     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
319 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
320 gbeauche 1.11 #define SIGSEGV_FAULT_ADDRESS scp->sc_sl.sl_ss.ss_narrow.ss_cr21
321     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
322     #endif
323    
324 gbeauche 1.1 // OSF/1 on Alpha
325     #if defined(__osf__)
326 gbeauche 1.11 #include <ucontext.h>
327 gbeauche 1.1 #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
328 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
329 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS scp->sc_traparg_a0
330     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
331     #endif
332    
333     // AIX
334     #if defined(_AIX)
335     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
336 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
337 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS scp->sc_jmpbuf.jmp_context.o_vaddr
338     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
339     #endif
340    
341     // NetBSD or FreeBSD
342     #if defined(__NetBSD__) || defined(__FreeBSD__)
343     #if (defined(m68k) || defined(__m68k__))
344     #include <m68k/frame.h>
345     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
346 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
347 gbeauche 1.14 #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
348 gbeauche 1.1 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
349 gbeauche 1.14
350     // Use decoding scheme from BasiliskII/m68k native
351     static sigsegv_address_t get_fault_address(struct sigcontext *scp)
352     {
353     struct sigstate {
354     int ss_flags;
355     struct frame ss_frame;
356     };
357     struct sigstate *state = (struct sigstate *)scp->sc_ap;
358     char *fault_addr;
359     switch (state->ss_frame.f_format) {
360     case 7: /* 68040 access error */
361     /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */
362     fault_addr = state->ss_frame.f_fmt7.f_fa;
363     break;
364     default:
365     fault_addr = (char *)code;
366     break;
367     }
368     return (sigsegv_address_t)fault_addr;
369     }
370 gbeauche 1.1 #else
371     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, void *scp, char *addr
372 gbeauche 1.30 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp, addr
373 gbeauche 1.1 #define SIGSEGV_FAULT_ADDRESS addr
374     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
375     #endif
376     #endif
377 gbeauche 1.4
378 gbeauche 1.27 // MacOS X, not sure which version this works in. Under 10.1
379     // vm_protect does not appear to work from a signal handler. Under
380     // 10.2 signal handlers get siginfo type arguments but the si_addr
381     // field is the address of the faulting instruction and not the
382     // address that caused the SIGBUS. Maybe this works in 10.0? In any
383     // case with Mach exception handlers there is a way to do what this
384     // was meant to do.
385     #ifndef HAVE_MACH_EXCEPTIONS
386 gbeauche 1.4 #if defined(__APPLE__) && defined(__MACH__)
387     #if (defined(ppc) || defined(__ppc__))
388     #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
389 gbeauche 1.27 #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
390 gbeauche 1.4 #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
391     #define SIGSEGV_FAULT_INSTRUCTION scp->sc_ir
392     #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
393 gbeauche 1.14 #define SIGSEGV_REGISTER_FILE (unsigned int *)&scp->sc_ir, &((unsigned int *) scp->sc_regs)[2]
394     #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
395 gbeauche 1.4
396 gbeauche 1.14 // Use decoding scheme from SheepShaver
397 gbeauche 1.4 static sigsegv_address_t get_fault_address(struct sigcontext *scp)
398     {
399 gbeauche 1.14 unsigned int nip = (unsigned int) scp->sc_ir;
400     unsigned int * gpr = &((unsigned int *) scp->sc_regs)[2];
401     instruction_t instr;
402    
403     powerpc_decode_instruction(&instr, nip, gpr);
404     return (sigsegv_address_t)instr.addr;
405 gbeauche 1.4 }
406     #endif
407     #endif
408 gbeauche 1.1 #endif
409 gbeauche 1.27 #endif
410    
411     #if HAVE_MACH_EXCEPTIONS
412    
413     // This can easily be extended to other Mach systems, but really who
414     // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
415     // Mach 2.5/3.0?
416     #if defined(__APPLE__) && defined(__MACH__)
417    
418     #include <sys/types.h>
419     #include <stdlib.h>
420     #include <stdio.h>
421     #include <pthread.h>
422    
423     /*
424     * If you are familiar with MIG then you will understand the frustration
425     * that was necessary to get these embedded into C++ code by hand.
426     */
427     extern "C" {
428     #include <mach/mach.h>
429     #include <mach/mach_error.h>
430    
431     extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
432     extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
433     mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
434     extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
435     exception_type_t, exception_data_t, mach_msg_type_number_t);
436     extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
437     exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
438     thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
439     extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
440     exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
441     thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
442     }
443    
444     // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
445     #define HANDLER_COUNT 64
446    
447     // structure to tuck away existing exception handlers
448     typedef struct _ExceptionPorts {
449     mach_msg_type_number_t maskCount;
450     exception_mask_t masks[HANDLER_COUNT];
451     exception_handler_t handlers[HANDLER_COUNT];
452     exception_behavior_t behaviors[HANDLER_COUNT];
453     thread_state_flavor_t flavors[HANDLER_COUNT];
454     } ExceptionPorts;
455    
456     // exception handler thread
457     static pthread_t exc_thread;
458    
459     // place where old exception handler info is stored
460     static ExceptionPorts ports;
461    
462     // our exception port
463     static mach_port_t _exceptionPort = MACH_PORT_NULL;
464    
465     #define MACH_CHECK_ERROR(name,ret) \
466     if (ret != KERN_SUCCESS) { \
467     mach_error(#name, ret); \
468     exit (1); \
469     }
470    
471     #define SIGSEGV_FAULT_ADDRESS code[1]
472     #define SIGSEGV_FAULT_INSTRUCTION get_fault_instruction(thread, state)
473     #define SIGSEGV_FAULT_HANDLER (code[0] == KERN_PROTECTION_FAILURE) && sigsegv_fault_handler
474     #define SIGSEGV_FAULT_HANDLER_ARGLIST mach_port_t thread, exception_data_t code, ppc_thread_state_t *state
475     #define SIGSEGV_FAULT_HANDLER_ARGS thread, code, &state
476     #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
477     #define SIGSEGV_REGISTER_FILE &state->srr0, &state->r0
478    
479     // Given a suspended thread, stuff the current instruction and
480     // registers into state.
481     //
482     // It would have been nice to have this be ppc/x86 independant which
483     // could have been done easily with a thread_state_t instead of
484     // ppc_thread_state_t, but because of the way this is called it is
485     // easier to do it this way.
486     #if (defined(ppc) || defined(__ppc__))
487     static inline sigsegv_address_t get_fault_instruction(mach_port_t thread, ppc_thread_state_t *state)
488     {
489     kern_return_t krc;
490     mach_msg_type_number_t count;
491    
492     count = MACHINE_THREAD_STATE_COUNT;
493     krc = thread_get_state(thread, MACHINE_THREAD_STATE, (thread_state_t)state, &count);
494     MACH_CHECK_ERROR (thread_get_state, krc);
495    
496     return (sigsegv_address_t)state->srr0;
497     }
498     #endif
499    
500     // Since there can only be one exception thread running at any time
501     // this is not a problem.
502     #define MSG_SIZE 512
503     static char msgbuf[MSG_SIZE];
504     static char replybuf[MSG_SIZE];
505    
506     /*
507     * This is the entry point for the exception handler thread. The job
508     * of this thread is to wait for exception messages on the exception
509     * port that was setup beforehand and to pass them on to exc_server.
510     * exc_server is a MIG generated function that is a part of Mach.
511     * Its job is to decide what to do with the exception message. In our
512     * case exc_server calls catch_exception_raise on our behalf. After
513     * exc_server returns, it is our responsibility to send the reply.
514     */
515     static void *
516     handleExceptions(void *priv)
517     {
518     mach_msg_header_t *msg, *reply;
519     kern_return_t krc;
520    
521     msg = (mach_msg_header_t *)msgbuf;
522     reply = (mach_msg_header_t *)replybuf;
523    
524     for (;;) {
525     krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
526     _exceptionPort, 0, MACH_PORT_NULL);
527     MACH_CHECK_ERROR(mach_msg, krc);
528    
529     if (!exc_server(msg, reply)) {
530     fprintf(stderr, "exc_server hated the message\n");
531     exit(1);
532     }
533    
534     krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
535     msg->msgh_local_port, 0, MACH_PORT_NULL);
536     if (krc != KERN_SUCCESS) {
537     fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
538     krc, mach_error_string(krc));
539     exit(1);
540     }
541     }
542     }
543     #endif
544     #endif
545 gbeauche 1.1
546 gbeauche 1.14
547     /*
548     * Instruction skipping
549     */
550    
551 gbeauche 1.10 #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
552     // Decode and skip X86 instruction
553     #if (defined(i386) || defined(__i386__))
554     #if defined(__linux__)
555     enum {
556     X86_REG_EIP = 14,
557     X86_REG_EAX = 11,
558     X86_REG_ECX = 10,
559     X86_REG_EDX = 9,
560     X86_REG_EBX = 8,
561     X86_REG_ESP = 7,
562     X86_REG_EBP = 6,
563     X86_REG_ESI = 5,
564     X86_REG_EDI = 4
565     };
566     #endif
567 gbeauche 1.17 #if defined(__NetBSD__) || defined(__FreeBSD__)
568     enum {
569     X86_REG_EIP = 10,
570     X86_REG_EAX = 7,
571     X86_REG_ECX = 6,
572     X86_REG_EDX = 5,
573     X86_REG_EBX = 4,
574     X86_REG_ESP = 13,
575     X86_REG_EBP = 2,
576     X86_REG_ESI = 1,
577     X86_REG_EDI = 0
578     };
579     #endif
580 gbeauche 1.10 // FIXME: this is partly redundant with the instruction decoding phase
581     // to discover transfer type and register number
582     static inline int ix86_step_over_modrm(unsigned char * p)
583     {
584     int mod = (p[0] >> 6) & 3;
585     int rm = p[0] & 7;
586     int offset = 0;
587    
588     // ModR/M Byte
589     switch (mod) {
590     case 0: // [reg]
591     if (rm == 5) return 4; // disp32
592     break;
593     case 1: // disp8[reg]
594     offset = 1;
595     break;
596     case 2: // disp32[reg]
597     offset = 4;
598     break;
599     case 3: // register
600     return 0;
601     }
602    
603     // SIB Byte
604     if (rm == 4) {
605     if (mod == 0 && (p[1] & 7) == 5)
606     offset = 5; // disp32[index]
607     else
608     offset++;
609     }
610    
611     return offset;
612     }
613    
614 gbeauche 1.14 static bool ix86_skip_instruction(unsigned int * regs)
615 gbeauche 1.10 {
616 gbeauche 1.14 unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
617 gbeauche 1.10
618     if (eip == 0)
619     return false;
620    
621 gbeauche 1.22 transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
622 gbeauche 1.14 transfer_size_t transfer_size = SIZE_LONG;
623 gbeauche 1.10
624     int reg = -1;
625     int len = 0;
626    
627     // Operand size prefix
628     if (*eip == 0x66) {
629     eip++;
630     len++;
631     transfer_size = SIZE_WORD;
632     }
633    
634     // Decode instruction
635     switch (eip[0]) {
636 gbeauche 1.17 case 0x0f:
637 gbeauche 1.18 switch (eip[1]) {
638     case 0xb6: // MOVZX r32, r/m8
639     case 0xb7: // MOVZX r32, r/m16
640 gbeauche 1.17 switch (eip[2] & 0xc0) {
641     case 0x80:
642     reg = (eip[2] >> 3) & 7;
643 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD;
644 gbeauche 1.17 break;
645     case 0x40:
646     reg = (eip[2] >> 3) & 7;
647 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD;
648 gbeauche 1.17 break;
649     case 0x00:
650     reg = (eip[2] >> 3) & 7;
651 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD;
652 gbeauche 1.17 break;
653     }
654     len += 3 + ix86_step_over_modrm(eip + 2);
655 gbeauche 1.18 break;
656 gbeauche 1.17 }
657     break;
658 gbeauche 1.10 case 0x8a: // MOV r8, r/m8
659     transfer_size = SIZE_BYTE;
660     case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
661     switch (eip[1] & 0xc0) {
662     case 0x80:
663     reg = (eip[1] >> 3) & 7;
664 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD;
665 gbeauche 1.10 break;
666     case 0x40:
667     reg = (eip[1] >> 3) & 7;
668 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD;
669 gbeauche 1.10 break;
670     case 0x00:
671     reg = (eip[1] >> 3) & 7;
672 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_LOAD;
673 gbeauche 1.10 break;
674     }
675     len += 2 + ix86_step_over_modrm(eip + 1);
676     break;
677     case 0x88: // MOV r/m8, r8
678     transfer_size = SIZE_BYTE;
679     case 0x89: // MOV r/m32, r32 (or 16-bit operation)
680     switch (eip[1] & 0xc0) {
681     case 0x80:
682     reg = (eip[1] >> 3) & 7;
683 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE;
684 gbeauche 1.10 break;
685     case 0x40:
686     reg = (eip[1] >> 3) & 7;
687 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE;
688 gbeauche 1.10 break;
689     case 0x00:
690     reg = (eip[1] >> 3) & 7;
691 gbeauche 1.22 transfer_type = SIGSEGV_TRANSFER_STORE;
692 gbeauche 1.10 break;
693     }
694     len += 2 + ix86_step_over_modrm(eip + 1);
695     break;
696     }
697    
698 gbeauche 1.22 if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
699 gbeauche 1.10 // Unknown machine code, let it crash. Then patch the decoder
700     return false;
701     }
702    
703 gbeauche 1.22 if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
704 gbeauche 1.10 static const int x86_reg_map[8] = {
705     X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
706     X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI
707     };
708    
709     if (reg < 0 || reg >= 8)
710     return false;
711    
712     int rloc = x86_reg_map[reg];
713     switch (transfer_size) {
714     case SIZE_BYTE:
715     regs[rloc] = (regs[rloc] & ~0xff);
716     break;
717     case SIZE_WORD:
718     regs[rloc] = (regs[rloc] & ~0xffff);
719     break;
720     case SIZE_LONG:
721     regs[rloc] = 0;
722     break;
723     }
724     }
725    
726     #if DEBUG
727 gbeauche 1.15 printf("%08x: %s %s access", regs[X86_REG_EIP],
728 gbeauche 1.10 transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : "long",
729 gbeauche 1.22 transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
730 gbeauche 1.10
731     if (reg != -1) {
732     static const char * x86_reg_str_map[8] = {
733     "eax", "ecx", "edx", "ebx",
734     "esp", "ebp", "esi", "edi"
735     };
736 gbeauche 1.22 printf(" %s register %%%s", transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from", x86_reg_str_map[reg]);
737 gbeauche 1.10 }
738     printf(", %d bytes instruction\n", len);
739     #endif
740    
741     regs[X86_REG_EIP] += len;
742 gbeauche 1.13 return true;
743     }
744     #endif
745 gbeauche 1.14
746 gbeauche 1.13 // Decode and skip PPC instruction
747 gbeauche 1.14 #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
748     static bool powerpc_skip_instruction(unsigned int * nip_p, unsigned int * regs)
749 gbeauche 1.13 {
750 gbeauche 1.14 instruction_t instr;
751     powerpc_decode_instruction(&instr, *nip_p, regs);
752 gbeauche 1.13
753 gbeauche 1.22 if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
754 gbeauche 1.13 // Unknown machine code, let it crash. Then patch the decoder
755     return false;
756     }
757    
758     #if DEBUG
759 gbeauche 1.14 printf("%08x: %s %s access", *nip_p,
760     instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : "long",
761 gbeauche 1.22 instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
762 gbeauche 1.14
763     if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
764     printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
765 gbeauche 1.22 if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
766 gbeauche 1.14 printf(" r%d (rd = 0)\n", instr.rd);
767     #endif
768    
769     if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
770     regs[instr.ra] = instr.addr;
771 gbeauche 1.22 if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
772 gbeauche 1.14 regs[instr.rd] = 0;
773 gbeauche 1.13
774 gbeauche 1.14 *nip_p += 4;
775 gbeauche 1.10 return true;
776     }
777     #endif
778     #endif
779    
780 gbeauche 1.1 // Fallbacks
781     #ifndef SIGSEGV_FAULT_INSTRUCTION
782     #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_INVALID_PC
783     #endif
784 gbeauche 1.30 #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
785     #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
786     #endif
787 gbeauche 1.1
788 gbeauche 1.2 // SIGSEGV recovery supported ?
789     #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
790     #define HAVE_SIGSEGV_RECOVERY
791     #endif
792    
793 gbeauche 1.1
794     /*
795     * SIGSEGV global handler
796     */
797    
798 gbeauche 1.27 #if defined(HAVE_SIGSEGV_RECOVERY) || defined(HAVE_MACH_EXCEPTIONS)
799     // This function handles the badaccess to memory.
800     // It is called from the signal handler or the exception handler.
801 gbeauche 1.30 static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
802 gbeauche 1.1 {
803 gbeauche 1.10 sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
804     sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
805    
806 gbeauche 1.1 // Call user's handler and reinstall the global handler, if required
807 gbeauche 1.24 switch (sigsegv_fault_handler(fault_address, fault_instruction)) {
808     case SIGSEGV_RETURN_SUCCESS:
809 gbeauche 1.27 return true;
810    
811 gbeauche 1.10 #if HAVE_SIGSEGV_SKIP_INSTRUCTION
812 gbeauche 1.24 case SIGSEGV_RETURN_SKIP_INSTRUCTION:
813 gbeauche 1.27 // Call the instruction skipper with the register file
814     // available
815     if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
816     #ifdef HAVE_MACH_EXCEPTIONS
817     // Unlike UNIX signals where the thread state
818     // is modified off of the stack, in Mach we
819     // need to actually call thread_set_state to
820     // have the register values updated.
821     kern_return_t krc;
822    
823     krc = thread_set_state(thread,
824     MACHINE_THREAD_STATE, (thread_state_t)state,
825     MACHINE_THREAD_STATE_COUNT);
826     MACH_CHECK_ERROR (thread_get_state, krc);
827     #endif
828     return true;
829     }
830 gbeauche 1.24 break;
831     #endif
832 gbeauche 1.10 }
833 gbeauche 1.27
834     // We can't do anything with the fault_address, dump state?
835     if (sigsegv_state_dumper != 0)
836     sigsegv_state_dumper(fault_address, fault_instruction);
837    
838     return false;
839     }
840     #endif
841    
842    
843     /*
844     * There are two mechanisms for handling a bad memory access,
845     * Mach exceptions and UNIX signals. The implementation specific
846     * code appears below. Its reponsibility is to call handle_badaccess
847     * which is the routine that handles the fault in an implementation
848     * agnostic manner. The implementation specific code below is then
849     * reponsible for checking whether handle_badaccess was able
850     * to handle the memory access error and perform any implementation
851     * specific tasks necessary afterwards.
852     */
853    
854     #ifdef HAVE_MACH_EXCEPTIONS
855     /*
856     * We need to forward all exceptions that we do not handle.
857     * This is important, there are many exceptions that may be
858     * handled by other exception handlers. For example debuggers
859     * use exceptions and the exception hander is in another
860     * process in such a case. (Timothy J. Wood states in his
861     * message to the list that he based this code on that from
862     * gdb for Darwin.)
863     */
864     static inline kern_return_t
865     forward_exception(mach_port_t thread_port,
866     mach_port_t task_port,
867     exception_type_t exception_type,
868     exception_data_t exception_data,
869     mach_msg_type_number_t data_count,
870     ExceptionPorts *oldExceptionPorts)
871     {
872     kern_return_t kret;
873     unsigned int portIndex;
874     mach_port_t port;
875     exception_behavior_t behavior;
876     thread_state_flavor_t flavor;
877     thread_state_t thread_state;
878     mach_msg_type_number_t thread_state_count;
879    
880     for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
881     if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
882     // This handler wants the exception
883     break;
884     }
885     }
886    
887     if (portIndex >= oldExceptionPorts->maskCount) {
888     fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
889     return KERN_FAILURE;
890     }
891    
892     port = oldExceptionPorts->handlers[portIndex];
893     behavior = oldExceptionPorts->behaviors[portIndex];
894     flavor = oldExceptionPorts->flavors[portIndex];
895    
896     /*
897     fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
898     */
899    
900     if (behavior != EXCEPTION_DEFAULT) {
901     thread_state_count = THREAD_STATE_MAX;
902     kret = thread_get_state (thread_port, flavor, thread_state,
903     &thread_state_count);
904     MACH_CHECK_ERROR (thread_get_state, kret);
905     }
906    
907     switch (behavior) {
908     case EXCEPTION_DEFAULT:
909     // fprintf(stderr, "forwarding to exception_raise\n");
910     kret = exception_raise(port, thread_port, task_port, exception_type,
911     exception_data, data_count);
912     MACH_CHECK_ERROR (exception_raise, kret);
913     break;
914     case EXCEPTION_STATE:
915     // fprintf(stderr, "forwarding to exception_raise_state\n");
916     kret = exception_raise_state(port, exception_type, exception_data,
917     data_count, &flavor,
918     thread_state, thread_state_count,
919     thread_state, &thread_state_count);
920     MACH_CHECK_ERROR (exception_raise_state, kret);
921     break;
922     case EXCEPTION_STATE_IDENTITY:
923     // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
924     kret = exception_raise_state_identity(port, thread_port, task_port,
925     exception_type, exception_data,
926     data_count, &flavor,
927     thread_state, thread_state_count,
928     thread_state, &thread_state_count);
929     MACH_CHECK_ERROR (exception_raise_state_identity, kret);
930     break;
931     default:
932     fprintf(stderr, "forward_exception got unknown behavior\n");
933     break;
934     }
935    
936     if (behavior != EXCEPTION_DEFAULT) {
937     kret = thread_set_state (thread_port, flavor, thread_state,
938     thread_state_count);
939     MACH_CHECK_ERROR (thread_set_state, kret);
940     }
941    
942     return KERN_SUCCESS;
943     }
944    
945     /*
946     * This is the code that actually handles the exception.
947     * It is called by exc_server. For Darwin 5 Apple changed
948     * this a bit from how this family of functions worked in
949     * Mach. If you are familiar with that it is a little
950     * different. The main variation that concerns us here is
951     * that code is an array of exception specific codes and
952     * codeCount is a count of the number of codes in the code
953     * array. In typical Mach all exceptions have a code
954     * and sub-code. It happens to be the case that for a
955     * EXC_BAD_ACCESS exception the first entry is the type of
956     * bad access that occurred and the second entry is the
957     * faulting address so these entries correspond exactly to
958     * how the code and sub-code are used on Mach.
959     *
960     * This is a MIG interface. No code in Basilisk II should
961     * call this directley. This has to have external C
962     * linkage because that is what exc_server expects.
963     */
964     kern_return_t
965     catch_exception_raise(mach_port_t exception_port,
966     mach_port_t thread,
967     mach_port_t task,
968     exception_type_t exception,
969     exception_data_t code,
970     mach_msg_type_number_t codeCount)
971     {
972     ppc_thread_state_t state;
973     kern_return_t krc;
974    
975     if ((exception == EXC_BAD_ACCESS) && (codeCount >= 2)) {
976     if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
977     return KERN_SUCCESS;
978     }
979    
980     // In Mach we do not need to remove the exception handler.
981     // If we forward the exception, eventually some exception handler
982     // will take care of this exception.
983     krc = forward_exception(thread, task, exception, code, codeCount, &ports);
984    
985     return krc;
986     }
987     #endif
988    
989     #ifdef HAVE_SIGSEGV_RECOVERY
990     // Handle bad memory accesses with signal handler
991     static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
992     {
993     // Call handler and reinstall the global handler, if required
994     if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
995     #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
996     sigsegv_do_install_handler(sig);
997     #endif
998     return;
999     }
1000 gbeauche 1.10
1001 gbeauche 1.27 // Failure: reinstall default handler for "safe" crash
1002 gbeauche 1.1 #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1003 gbeauche 1.27 SIGSEGV_ALL_SIGNALS
1004 gbeauche 1.1 #undef FAULT_HANDLER
1005     }
1006 gbeauche 1.2 #endif
1007 gbeauche 1.1
1008    
1009     /*
1010     * SIGSEGV handler initialization
1011     */
1012    
1013     #if defined(HAVE_SIGINFO_T)
1014     static bool sigsegv_do_install_handler(int sig)
1015     {
1016     // Setup SIGSEGV handler to process writes to frame buffer
1017     #ifdef HAVE_SIGACTION
1018 gbeauche 1.22 struct sigaction sigsegv_sa;
1019     sigemptyset(&sigsegv_sa.sa_mask);
1020     sigsegv_sa.sa_sigaction = sigsegv_handler;
1021     sigsegv_sa.sa_flags = SA_SIGINFO;
1022     return (sigaction(sig, &sigsegv_sa, 0) == 0);
1023 gbeauche 1.1 #else
1024     return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1025     #endif
1026     }
1027 gbeauche 1.2 #endif
1028    
1029     #if defined(HAVE_SIGCONTEXT_SUBTERFUGE)
1030 gbeauche 1.1 static bool sigsegv_do_install_handler(int sig)
1031     {
1032     // Setup SIGSEGV handler to process writes to frame buffer
1033     #ifdef HAVE_SIGACTION
1034 gbeauche 1.22 struct sigaction sigsegv_sa;
1035     sigemptyset(&sigsegv_sa.sa_mask);
1036     sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
1037     sigsegv_sa.sa_flags = 0;
1038 gbeauche 1.1 #if !EMULATED_68K && defined(__NetBSD__)
1039 gbeauche 1.22 sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
1040     sigsegv_sa.sa_flags |= SA_ONSTACK;
1041 gbeauche 1.1 #endif
1042 gbeauche 1.22 return (sigaction(sig, &sigsegv_sa, 0) == 0);
1043 gbeauche 1.1 #else
1044     return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1045     #endif
1046     }
1047     #endif
1048    
1049 gbeauche 1.27 #if defined(HAVE_MACH_EXCEPTIONS)
1050     static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1051     {
1052     /*
1053     * Except for the exception port functions, this should be
1054     * pretty much stock Mach. If later you choose to support
1055     * other Mach's besides Darwin, just check for __MACH__
1056     * here and __APPLE__ where the actual differences are.
1057     */
1058     #if defined(__APPLE__) && defined(__MACH__)
1059     if (sigsegv_fault_handler != NULL) {
1060     sigsegv_fault_handler = handler;
1061     return true;
1062     }
1063    
1064     kern_return_t krc;
1065    
1066     // create the the exception port
1067     krc = mach_port_allocate(mach_task_self(),
1068     MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
1069     if (krc != KERN_SUCCESS) {
1070     mach_error("mach_port_allocate", krc);
1071     return false;
1072     }
1073    
1074     // add a port send right
1075     krc = mach_port_insert_right(mach_task_self(),
1076     _exceptionPort, _exceptionPort,
1077     MACH_MSG_TYPE_MAKE_SEND);
1078     if (krc != KERN_SUCCESS) {
1079     mach_error("mach_port_insert_right", krc);
1080     return false;
1081     }
1082    
1083     // get the old exception ports
1084     ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
1085     krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
1086     &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
1087     if (krc != KERN_SUCCESS) {
1088     mach_error("thread_get_exception_ports", krc);
1089     return false;
1090     }
1091    
1092     // set the new exception port
1093     //
1094     // We could have used EXCEPTION_STATE_IDENTITY instead of
1095     // EXCEPTION_DEFAULT to get the thread state in the initial
1096     // message, but it turns out that in the common case this is not
1097     // neccessary. If we need it we can later ask for it from the
1098     // suspended thread.
1099     //
1100     // Even with THREAD_STATE_NONE, Darwin provides the program
1101     // counter in the thread state. The comments in the header file
1102     // seem to imply that you can count on the GPR's on an exception
1103     // as well but just to be safe I use MACHINE_THREAD_STATE because
1104     // you have to ask for all of the GPR's anyway just to get the
1105     // program counter. In any case because of update effective
1106     // address from immediate and update address from effective
1107     // addresses of ra and rb modes (as good an name as any for these
1108     // addressing modes) used in PPC instructions, you will need the
1109     // GPR state anyway.
1110     krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
1111     EXCEPTION_DEFAULT, MACHINE_THREAD_STATE);
1112     if (krc != KERN_SUCCESS) {
1113     mach_error("thread_set_exception_ports", krc);
1114     return false;
1115     }
1116    
1117     // create the exception handler thread
1118     if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
1119     (void)fprintf(stderr, "creation of exception thread failed\n");
1120     return false;
1121     }
1122    
1123     // do not care about the exception thread any longer, let is run standalone
1124     (void)pthread_detach(exc_thread);
1125    
1126     sigsegv_fault_handler = handler;
1127     return true;
1128     #else
1129     return false;
1130     #endif
1131     }
1132     #endif
1133    
1134 gbeauche 1.12 bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1135 gbeauche 1.1 {
1136 gbeauche 1.27 #if defined(HAVE_SIGSEGV_RECOVERY)
1137 gbeauche 1.1 bool success = true;
1138     #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
1139     SIGSEGV_ALL_SIGNALS
1140     #undef FAULT_HANDLER
1141 gbeauche 1.27 if (success)
1142     sigsegv_fault_handler = handler;
1143 gbeauche 1.1 return success;
1144 gbeauche 1.27 #elif defined(HAVE_MACH_EXCEPTIONS)
1145     return sigsegv_do_install_handler(handler);
1146 gbeauche 1.1 #else
1147     // FAIL: no siginfo_t nor sigcontext subterfuge is available
1148     return false;
1149     #endif
1150     }
1151    
1152    
1153     /*
1154     * SIGSEGV handler deinitialization
1155     */
1156    
1157     void sigsegv_deinstall_handler(void)
1158     {
1159 gbeauche 1.27 // We do nothing for Mach exceptions, the thread would need to be
1160     // suspended if not already so, and we might mess with other
1161     // exception handlers that came after we registered ours. There is
1162     // no need to remove the exception handler, in fact this function is
1163     // not called anywhere in Basilisk II.
1164 gbeauche 1.2 #ifdef HAVE_SIGSEGV_RECOVERY
1165 gbeauche 1.12 sigsegv_fault_handler = 0;
1166 gbeauche 1.1 #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1167     SIGSEGV_ALL_SIGNALS
1168     #undef FAULT_HANDLER
1169 gbeauche 1.2 #endif
1170 gbeauche 1.1 }
1171    
1172 gbeauche 1.10
1173     /*
1174     * Set callback function when we cannot handle the fault
1175     */
1176    
1177 gbeauche 1.12 void sigsegv_set_dump_state(sigsegv_state_dumper_t handler)
1178 gbeauche 1.10 {
1179 gbeauche 1.12 sigsegv_state_dumper = handler;
1180 gbeauche 1.10 }
1181    
1182    
1183 gbeauche 1.1 /*
1184     * Test program used for configure/test
1185     */
1186    
1187 gbeauche 1.4 #ifdef CONFIGURE_TEST_SIGSEGV_RECOVERY
1188 gbeauche 1.1 #include <stdio.h>
1189     #include <stdlib.h>
1190     #include <fcntl.h>
1191     #include <sys/mman.h>
1192 gbeauche 1.4 #include "vm_alloc.h"
1193 gbeauche 1.1
1194     static int page_size;
1195 gbeauche 1.3 static volatile char * page = 0;
1196     static volatile int handler_called = 0;
1197 gbeauche 1.1
1198 gbeauche 1.24 static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1199 gbeauche 1.1 {
1200     handler_called++;
1201     if ((fault_address - 123) != page)
1202 gbeauche 1.29 exit(10);
1203 gbeauche 1.4 if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
1204 gbeauche 1.29 exit(11);
1205 gbeauche 1.24 return SIGSEGV_RETURN_SUCCESS;
1206 gbeauche 1.1 }
1207    
1208 gbeauche 1.10 #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1209 gbeauche 1.28 #ifdef __GNUC__
1210     // Code range where we expect the fault to come from
1211     static void *b_region, *e_region;
1212     #endif
1213    
1214 gbeauche 1.24 static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1215 gbeauche 1.10 {
1216 gbeauche 1.28 if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
1217     #ifdef __GNUC__
1218     // Make sure reported fault instruction address falls into
1219     // expected code range
1220     if (instruction_address != SIGSEGV_INVALID_PC
1221     && ((instruction_address < (sigsegv_address_t)b_region) ||
1222     (instruction_address >= (sigsegv_address_t)e_region)))
1223     return SIGSEGV_RETURN_FAILURE;
1224     #endif
1225 gbeauche 1.26 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
1226 gbeauche 1.28 }
1227    
1228 gbeauche 1.24 return SIGSEGV_RETURN_FAILURE;
1229 gbeauche 1.10 }
1230     #endif
1231    
1232 gbeauche 1.1 int main(void)
1233     {
1234 gbeauche 1.4 if (vm_init() < 0)
1235 gbeauche 1.1 return 1;
1236    
1237     page_size = getpagesize();
1238 gbeauche 1.4 if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
1239 gbeauche 1.29 return 2;
1240 gbeauche 1.4
1241     if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
1242 gbeauche 1.29 return 3;
1243 gbeauche 1.1
1244     if (!sigsegv_install_handler(sigsegv_test_handler))
1245 gbeauche 1.29 return 4;
1246 gbeauche 1.1
1247     page[123] = 45;
1248     page[123] = 45;
1249    
1250     if (handler_called != 1)
1251 gbeauche 1.29 return 5;
1252 gbeauche 1.10
1253     #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1254     if (!sigsegv_install_handler(sigsegv_insn_handler))
1255 gbeauche 1.29 return 6;
1256 gbeauche 1.10
1257 gbeauche 1.17 if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
1258 gbeauche 1.29 return 7;
1259 gbeauche 1.10
1260     for (int i = 0; i < page_size; i++)
1261     page[i] = (i + 1) % page_size;
1262    
1263     if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
1264 gbeauche 1.29 return 8;
1265 gbeauche 1.10
1266     #define TEST_SKIP_INSTRUCTION(TYPE) do { \
1267     const unsigned int TAG = 0x12345678; \
1268     TYPE data = *((TYPE *)(page + sizeof(TYPE))); \
1269     volatile unsigned int effect = data + TAG; \
1270     if (effect != TAG) \
1271 gbeauche 1.29 return 9; \
1272 gbeauche 1.10 } while (0)
1273    
1274 gbeauche 1.28 #ifdef __GNUC__
1275     b_region = &&L_b_region;
1276     e_region = &&L_e_region;
1277     #endif
1278     L_b_region:
1279 gbeauche 1.10 TEST_SKIP_INSTRUCTION(unsigned char);
1280     TEST_SKIP_INSTRUCTION(unsigned short);
1281     TEST_SKIP_INSTRUCTION(unsigned int);
1282 gbeauche 1.28 L_e_region:
1283 gbeauche 1.10 #endif
1284 gbeauche 1.1
1285 gbeauche 1.4 vm_exit();
1286 gbeauche 1.1 return 0;
1287     }
1288     #endif