ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.52
Committed: 2004-11-13T14:09:16Z (19 years, 7 months ago) by gbeauche
Branch: MAIN
Changes since 1.51: +8 -6 lines
Log Message:
Implement Direct Addressing mode similarly to Basilisk II. This is to get
SheepShaver working on OSes that don't support maipping of Low Memory globals
at 0x00000000, e.g. Windows.

File Contents

# Content
1 /*
2 * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3 *
4 * SheepShaver (C) 1997-2004 Christian Bauer and Marc Hellwig
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 #include "sysdeps.h"
22 #include "cpu_emulation.h"
23 #include "main.h"
24 #include "prefs.h"
25 #include "xlowmem.h"
26 #include "emul_op.h"
27 #include "rom_patches.h"
28 #include "macos_util.h"
29 #include "block-alloc.hpp"
30 #include "sigsegv.h"
31 #include "cpu/ppc/ppc-cpu.hpp"
32 #include "cpu/ppc/ppc-operations.hpp"
33 #include "cpu/ppc/ppc-instructions.hpp"
34 #include "thunks.h"
35
36 // Used for NativeOp trampolines
37 #include "video.h"
38 #include "name_registry.h"
39 #include "serial.h"
40 #include "ether.h"
41 #include "timer.h"
42
43 #include <stdio.h>
44 #include <stdlib.h>
45
46 #ifdef USE_SDL_VIDEO
47 #include <SDL_events.h>
48 #endif
49
50 #if ENABLE_MON
51 #include "mon.h"
52 #include "mon_disass.h"
53 #endif
54
55 #define DEBUG 0
56 #include "debug.h"
57
58 // Emulation time statistics
59 #ifndef EMUL_TIME_STATS
60 #define EMUL_TIME_STATS 0
61 #endif
62
63 #if EMUL_TIME_STATS
64 static clock_t emul_start_time;
65 static uint32 interrupt_count = 0, ppc_interrupt_count = 0;
66 static clock_t interrupt_time = 0;
67 static uint32 exec68k_count = 0;
68 static clock_t exec68k_time = 0;
69 static uint32 native_exec_count = 0;
70 static clock_t native_exec_time = 0;
71 static uint32 macos_exec_count = 0;
72 static clock_t macos_exec_time = 0;
73 #endif
74
75 static void enter_mon(void)
76 {
77 // Start up mon in real-mode
78 #if ENABLE_MON
79 char *arg[4] = {"mon", "-m", "-r", NULL};
80 mon(3, arg);
81 #endif
82 }
83
84 // From main_*.cpp
85 extern uintptr SignalStackBase();
86
87 // From rsrc_patches.cpp
88 extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
89
90 // PowerPC EmulOp to exit from emulation looop
91 const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
92
93 // Enable interrupt routine safety checks?
94 #define SAFE_INTERRUPT_PPC 1
95
96 // Enable Execute68k() safety checks?
97 #define SAFE_EXEC_68K 1
98
99 // Save FP state in Execute68k()?
100 #define SAVE_FP_EXEC_68K 1
101
102 // Interrupts in EMUL_OP mode?
103 #define INTERRUPTS_IN_EMUL_OP_MODE 1
104
105 // Interrupts in native mode?
106 #define INTERRUPTS_IN_NATIVE_MODE 1
107
108 // Pointer to Kernel Data
109 static KernelData * kernel_data;
110
111 // SIGSEGV handler
112 sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
113
114 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
115 // Special trampolines for EmulOp and NativeOp
116 static uint8 *emul_op_trampoline;
117 static uint8 *native_op_trampoline;
118 #endif
119
120 // JIT Compiler enabled?
121 static inline bool enable_jit_p()
122 {
123 return PrefsFindBool("jit");
124 }
125
126
127 /**
128 * PowerPC emulator glue with special 'sheep' opcodes
129 **/
130
131 enum {
132 PPC_I(SHEEP) = PPC_I(MAX),
133 PPC_I(SHEEP_MAX)
134 };
135
136 class sheepshaver_cpu
137 : public powerpc_cpu
138 {
139 void init_decoder();
140 void execute_sheep(uint32 opcode);
141
142 // CPU context to preserve on interrupt
143 class interrupt_context {
144 uint32 gpr[32];
145 uint32 pc;
146 uint32 lr;
147 uint32 ctr;
148 uint32 cr;
149 uint32 xer;
150 sheepshaver_cpu *cpu;
151 const char *where;
152 public:
153 interrupt_context(sheepshaver_cpu *_cpu, const char *_where);
154 ~interrupt_context();
155 };
156
157 public:
158
159 // Constructor
160 sheepshaver_cpu();
161
162 // CR & XER accessors
163 uint32 get_cr() const { return cr().get(); }
164 void set_cr(uint32 v) { cr().set(v); }
165 uint32 get_xer() const { return xer().get(); }
166 void set_xer(uint32 v) { xer().set(v); }
167
168 // Execute NATIVE_OP routine
169 void execute_native_op(uint32 native_op);
170
171 // Execute EMUL_OP routine
172 void execute_emul_op(uint32 emul_op);
173
174 // Execute 68k routine
175 void execute_68k(uint32 entry, M68kRegisters *r);
176
177 // Execute ppc routine
178 void execute_ppc(uint32 entry);
179
180 // Execute MacOS/PPC code
181 uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
182
183 // Compile one instruction
184 virtual int compile1(codegen_context_t & cg_context);
185
186 // Resource manager thunk
187 void get_resource(uint32 old_get_resource);
188
189 // Handle MacOS interrupt
190 void interrupt(uint32 entry);
191 void handle_interrupt();
192
193 // Make sure the SIGSEGV handler can access CPU registers
194 friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
195 };
196
197 // Memory allocator returning areas aligned on 16-byte boundaries
198 void *operator new(size_t size)
199 {
200 void *p;
201
202 #if defined(HAVE_POSIX_MEMALIGN)
203 if (posix_memalign(&p, 16, size) != 0)
204 throw std::bad_alloc();
205 #elif defined(HAVE_MEMALIGN)
206 p = memalign(16, size);
207 #elif defined(HAVE_VALLOC)
208 p = valloc(size); // page-aligned!
209 #else
210 /* XXX: handle padding ourselves */
211 p = malloc(size);
212 #endif
213
214 return p;
215 }
216
217 void operator delete(void *p)
218 {
219 #if defined(HAVE_MEMALIGN) || defined(HAVE_VALLOC)
220 #if defined(__GLIBC__)
221 // this is known to work only with GNU libc
222 free(p);
223 #endif
224 #else
225 free(p);
226 #endif
227 }
228
229 sheepshaver_cpu::sheepshaver_cpu()
230 : powerpc_cpu(enable_jit_p())
231 {
232 init_decoder();
233 }
234
235 void sheepshaver_cpu::init_decoder()
236 {
237 static const instr_info_t sheep_ii_table[] = {
238 { "sheep",
239 (execute_pmf)&sheepshaver_cpu::execute_sheep,
240 NULL,
241 PPC_I(SHEEP),
242 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
243 }
244 };
245
246 const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
247 D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
248
249 for (int i = 0; i < ii_count; i++) {
250 const instr_info_t * ii = &sheep_ii_table[i];
251 init_decoder_entry(ii);
252 }
253 }
254
255 /* NativeOp instruction format:
256 +------------+-------------------------+--+-----------+------------+
257 | 6 | |FN| OP | 2 |
258 +------------+-------------------------+--+-----------+------------+
259 0 5 |6 18 19 20 25 26 31
260 */
261
262 typedef bit_field< 19, 19 > FN_field;
263 typedef bit_field< 20, 25 > NATIVE_OP_field;
264 typedef bit_field< 26, 31 > EMUL_OP_field;
265
266 // Execute EMUL_OP routine
267 void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
268 {
269 M68kRegisters r68;
270 WriteMacInt32(XLM_68K_R25, gpr(25));
271 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
272 for (int i = 0; i < 8; i++)
273 r68.d[i] = gpr(8 + i);
274 for (int i = 0; i < 7; i++)
275 r68.a[i] = gpr(16 + i);
276 r68.a[7] = gpr(1);
277 uint32 saved_cr = get_cr() & CR_field<2>::mask();
278 uint32 saved_xer = get_xer();
279 EmulOp(&r68, gpr(24), emul_op);
280 set_cr(saved_cr);
281 set_xer(saved_xer);
282 for (int i = 0; i < 8; i++)
283 gpr(8 + i) = r68.d[i];
284 for (int i = 0; i < 7; i++)
285 gpr(16 + i) = r68.a[i];
286 gpr(1) = r68.a[7];
287 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
288 }
289
290 // Execute SheepShaver instruction
291 void sheepshaver_cpu::execute_sheep(uint32 opcode)
292 {
293 // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
294 assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
295
296 switch (opcode & 0x3f) {
297 case 0: // EMUL_RETURN
298 QuitEmulator();
299 break;
300
301 case 1: // EXEC_RETURN
302 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
303 break;
304
305 case 2: // EXEC_NATIVE
306 execute_native_op(NATIVE_OP_field::extract(opcode));
307 if (FN_field::test(opcode))
308 pc() = lr();
309 else
310 pc() += 4;
311 break;
312
313 default: // EMUL_OP
314 execute_emul_op(EMUL_OP_field::extract(opcode) - 3);
315 pc() += 4;
316 break;
317 }
318 }
319
320 // Compile one instruction
321 int sheepshaver_cpu::compile1(codegen_context_t & cg_context)
322 {
323 #if PPC_ENABLE_JIT
324 const instr_info_t *ii = cg_context.instr_info;
325 if (ii->mnemo != PPC_I(SHEEP))
326 return COMPILE_FAILURE;
327
328 int status = COMPILE_FAILURE;
329 powerpc_dyngen & dg = cg_context.codegen;
330 uint32 opcode = cg_context.opcode;
331
332 switch (opcode & 0x3f) {
333 case 0: // EMUL_RETURN
334 dg.gen_invoke(QuitEmulator);
335 status = COMPILE_CODE_OK;
336 break;
337
338 case 1: // EXEC_RETURN
339 dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
340 // Don't check for pending interrupts, we do know we have to
341 // get out of this block ASAP
342 dg.gen_exec_return();
343 status = COMPILE_EPILOGUE_OK;
344 break;
345
346 case 2: { // EXEC_NATIVE
347 uint32 selector = NATIVE_OP_field::extract(opcode);
348 switch (selector) {
349 #if !PPC_REENTRANT_JIT
350 // Filter out functions that may invoke Execute68k() or
351 // CallMacOS(), this would break reentrancy as they could
352 // invalidate the translation cache and even overwrite
353 // continuation code when we are done with them.
354 case NATIVE_PATCH_NAME_REGISTRY:
355 dg.gen_invoke(DoPatchNameRegistry);
356 status = COMPILE_CODE_OK;
357 break;
358 case NATIVE_VIDEO_INSTALL_ACCEL:
359 dg.gen_invoke(VideoInstallAccel);
360 status = COMPILE_CODE_OK;
361 break;
362 case NATIVE_VIDEO_VBL:
363 dg.gen_invoke(VideoVBL);
364 status = COMPILE_CODE_OK;
365 break;
366 case NATIVE_GET_RESOURCE:
367 case NATIVE_GET_1_RESOURCE:
368 case NATIVE_GET_IND_RESOURCE:
369 case NATIVE_GET_1_IND_RESOURCE:
370 case NATIVE_R_GET_RESOURCE: {
371 static const uint32 get_resource_ptr[] = {
372 XLM_GET_RESOURCE,
373 XLM_GET_1_RESOURCE,
374 XLM_GET_IND_RESOURCE,
375 XLM_GET_1_IND_RESOURCE,
376 XLM_R_GET_RESOURCE
377 };
378 uint32 old_get_resource = ReadMacInt32(get_resource_ptr[selector - NATIVE_GET_RESOURCE]);
379 typedef void (*func_t)(dyngen_cpu_base, uint32);
380 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
381 dg.gen_invoke_CPU_im(func, old_get_resource);
382 status = COMPILE_CODE_OK;
383 break;
384 }
385 case NATIVE_CHECK_LOAD_INVOC:
386 dg.gen_load_T0_GPR(3);
387 dg.gen_load_T1_GPR(4);
388 dg.gen_se_16_32_T1();
389 dg.gen_load_T2_GPR(5);
390 dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
391 status = COMPILE_CODE_OK;
392 break;
393 #endif
394 case NATIVE_BITBLT:
395 dg.gen_load_T0_GPR(3);
396 dg.gen_invoke_T0((void (*)(uint32))NQD_bitblt);
397 status = COMPILE_CODE_OK;
398 break;
399 case NATIVE_INVRECT:
400 dg.gen_load_T0_GPR(3);
401 dg.gen_invoke_T0((void (*)(uint32))NQD_invrect);
402 status = COMPILE_CODE_OK;
403 break;
404 case NATIVE_FILLRECT:
405 dg.gen_load_T0_GPR(3);
406 dg.gen_invoke_T0((void (*)(uint32))NQD_fillrect);
407 status = COMPILE_CODE_OK;
408 break;
409 }
410 // Could we fully translate this NativeOp?
411 if (status == COMPILE_CODE_OK) {
412 if (!FN_field::test(opcode))
413 cg_context.done_compile = false;
414 else {
415 dg.gen_load_A0_LR();
416 dg.gen_set_PC_A0();
417 cg_context.done_compile = true;
418 }
419 break;
420 }
421 #if PPC_REENTRANT_JIT
422 // Try to execute NativeOp trampoline
423 if (!FN_field::test(opcode))
424 dg.gen_set_PC_im(cg_context.pc + 4);
425 else {
426 dg.gen_load_A0_LR();
427 dg.gen_set_PC_A0();
428 }
429 dg.gen_mov_32_T0_im(selector);
430 dg.gen_jmp(native_op_trampoline);
431 cg_context.done_compile = true;
432 status = COMPILE_EPILOGUE_OK;
433 break;
434 #endif
435 // Invoke NativeOp handler
436 if (!FN_field::test(opcode)) {
437 typedef void (*func_t)(dyngen_cpu_base, uint32);
438 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
439 dg.gen_invoke_CPU_im(func, selector);
440 cg_context.done_compile = false;
441 status = COMPILE_CODE_OK;
442 }
443 // Otherwise, let it generate a call to execute_sheep() which
444 // will cause necessary updates to the program counter
445 break;
446 }
447
448 default: { // EMUL_OP
449 uint32 emul_op = EMUL_OP_field::extract(opcode) - 3;
450 #if PPC_REENTRANT_JIT
451 // Try to execute EmulOp trampoline
452 dg.gen_set_PC_im(cg_context.pc + 4);
453 dg.gen_mov_32_T0_im(emul_op);
454 dg.gen_jmp(emul_op_trampoline);
455 cg_context.done_compile = true;
456 status = COMPILE_EPILOGUE_OK;
457 break;
458 #endif
459 // Invoke EmulOp handler
460 typedef void (*func_t)(dyngen_cpu_base, uint32);
461 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
462 dg.gen_invoke_CPU_im(func, emul_op);
463 cg_context.done_compile = false;
464 status = COMPILE_CODE_OK;
465 break;
466 }
467 }
468 return status;
469 #endif
470 return COMPILE_FAILURE;
471 }
472
473 // CPU context to preserve on interrupt
474 sheepshaver_cpu::interrupt_context::interrupt_context(sheepshaver_cpu *_cpu, const char *_where)
475 {
476 #if SAFE_INTERRUPT_PPC >= 2
477 cpu = _cpu;
478 where = _where;
479
480 // Save interrupt context
481 memcpy(&gpr[0], &cpu->gpr(0), sizeof(gpr));
482 pc = cpu->pc();
483 lr = cpu->lr();
484 ctr = cpu->ctr();
485 cr = cpu->get_cr();
486 xer = cpu->get_xer();
487 #endif
488 }
489
490 sheepshaver_cpu::interrupt_context::~interrupt_context()
491 {
492 #if SAFE_INTERRUPT_PPC >= 2
493 // Check whether CPU context was preserved by interrupt
494 if (memcmp(&gpr[0], &cpu->gpr(0), sizeof(gpr)) != 0) {
495 printf("FATAL: %s: interrupt clobbers registers\n", where);
496 for (int i = 0; i < 32; i++)
497 if (gpr[i] != cpu->gpr(i))
498 printf(" r%d: %08x -> %08x\n", i, gpr[i], cpu->gpr(i));
499 }
500 if (pc != cpu->pc())
501 printf("FATAL: %s: interrupt clobbers PC\n", where);
502 if (lr != cpu->lr())
503 printf("FATAL: %s: interrupt clobbers LR\n", where);
504 if (ctr != cpu->ctr())
505 printf("FATAL: %s: interrupt clobbers CTR\n", where);
506 if (cr != cpu->get_cr())
507 printf("FATAL: %s: interrupt clobbers CR\n", where);
508 if (xer != cpu->get_xer())
509 printf("FATAL: %s: interrupt clobbers XER\n", where);
510 #endif
511 }
512
513 // Handle MacOS interrupt
514 void sheepshaver_cpu::interrupt(uint32 entry)
515 {
516 #if EMUL_TIME_STATS
517 ppc_interrupt_count++;
518 const clock_t interrupt_start = clock();
519 #endif
520
521 #if SAFE_INTERRUPT_PPC
522 static int depth = 0;
523 if (depth != 0)
524 printf("FATAL: sheepshaver_cpu::interrupt() called more than once: %d\n", depth);
525 depth++;
526 #endif
527
528 // Save program counters and branch registers
529 uint32 saved_pc = pc();
530 uint32 saved_lr = lr();
531 uint32 saved_ctr= ctr();
532 uint32 saved_sp = gpr(1);
533
534 // Initialize stack pointer to SheepShaver alternate stack base
535 gpr(1) = SignalStackBase() - 64;
536
537 // Build trampoline to return from interrupt
538 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
539
540 // Prepare registers for nanokernel interrupt routine
541 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
542 kernel_data->v[0x018 >> 2] = htonl(gpr(6));
543
544 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
545 assert(gpr(6) != 0);
546 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
547 WriteMacInt32(gpr(6) + 0x144, gpr(8));
548 WriteMacInt32(gpr(6) + 0x14c, gpr(9));
549 WriteMacInt32(gpr(6) + 0x154, gpr(10));
550 WriteMacInt32(gpr(6) + 0x15c, gpr(11));
551 WriteMacInt32(gpr(6) + 0x164, gpr(12));
552 WriteMacInt32(gpr(6) + 0x16c, gpr(13));
553
554 gpr(1) = KernelDataAddr;
555 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
556 gpr(8) = 0;
557 gpr(10) = trampoline.addr();
558 gpr(12) = trampoline.addr();
559 gpr(13) = get_cr();
560
561 // rlwimi. r7,r7,8,0,0
562 uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
563 record_cr0(result);
564 gpr(7) = result;
565
566 gpr(11) = 0xf072; // MSR (SRR1)
567 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
568
569 // Enter nanokernel
570 execute(entry);
571
572 // Restore program counters and branch registers
573 pc() = saved_pc;
574 lr() = saved_lr;
575 ctr()= saved_ctr;
576 gpr(1) = saved_sp;
577
578 #if EMUL_TIME_STATS
579 interrupt_time += (clock() - interrupt_start);
580 #endif
581
582 #if SAFE_INTERRUPT_PPC
583 depth--;
584 #endif
585 }
586
587 // Execute 68k routine
588 void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
589 {
590 #if EMUL_TIME_STATS
591 exec68k_count++;
592 const clock_t exec68k_start = clock();
593 #endif
594
595 #if SAFE_EXEC_68K
596 if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
597 printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
598 #endif
599
600 // Save program counters and branch registers
601 uint32 saved_pc = pc();
602 uint32 saved_lr = lr();
603 uint32 saved_ctr= ctr();
604 uint32 saved_cr = get_cr();
605
606 // Create MacOS stack frame
607 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
608 uint32 sp = gpr(1);
609 gpr(1) -= 56;
610 WriteMacInt32(gpr(1), sp);
611
612 // Save PowerPC registers
613 uint32 saved_GPRs[19];
614 memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
615 #if SAVE_FP_EXEC_68K
616 double saved_FPRs[18];
617 memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
618 #endif
619
620 // Setup registers for 68k emulator
621 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
622 for (int i = 0; i < 8; i++) // d[0]..d[7]
623 gpr(8 + i) = r->d[i];
624 for (int i = 0; i < 7; i++) // a[0]..a[6]
625 gpr(16 + i) = r->a[i];
626 gpr(23) = 0;
627 gpr(24) = entry;
628 gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
629 gpr(26) = 0;
630 gpr(28) = 0; // VBR
631 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
632 gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
633 gpr(31) = KernelDataAddr + 0x1000;
634
635 // Push return address (points to EXEC_RETURN opcode) on stack
636 gpr(1) -= 4;
637 WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
638
639 // Rentering 68k emulator
640 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
641
642 // Set r0 to 0 for 68k emulator
643 gpr(0) = 0;
644
645 // Execute 68k opcode
646 uint32 opcode = ReadMacInt16(gpr(24));
647 gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
648 gpr(29) += opcode * 8;
649 execute(gpr(29));
650
651 // Save r25 (contains current 68k interrupt level)
652 WriteMacInt32(XLM_68K_R25, gpr(25));
653
654 // Reentering EMUL_OP mode
655 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
656
657 // Save 68k registers
658 for (int i = 0; i < 8; i++) // d[0]..d[7]
659 r->d[i] = gpr(8 + i);
660 for (int i = 0; i < 7; i++) // a[0]..a[6]
661 r->a[i] = gpr(16 + i);
662
663 // Restore PowerPC registers
664 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
665 #if SAVE_FP_EXEC_68K
666 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
667 #endif
668
669 // Cleanup stack
670 gpr(1) += 56;
671
672 // Restore program counters and branch registers
673 pc() = saved_pc;
674 lr() = saved_lr;
675 ctr()= saved_ctr;
676 set_cr(saved_cr);
677
678 #if EMUL_TIME_STATS
679 exec68k_time += (clock() - exec68k_start);
680 #endif
681 }
682
683 // Call MacOS PPC code
684 uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
685 {
686 #if EMUL_TIME_STATS
687 macos_exec_count++;
688 const clock_t macos_exec_start = clock();
689 #endif
690
691 // Save program counters and branch registers
692 uint32 saved_pc = pc();
693 uint32 saved_lr = lr();
694 uint32 saved_ctr= ctr();
695
696 // Build trampoline with EXEC_RETURN
697 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
698 lr() = trampoline.addr();
699
700 gpr(1) -= 64; // Create stack frame
701 uint32 proc = ReadMacInt32(tvect); // Get routine address
702 uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
703
704 // Save PowerPC registers
705 uint32 regs[8];
706 regs[0] = gpr(2);
707 for (int i = 0; i < nargs; i++)
708 regs[i + 1] = gpr(i + 3);
709
710 // Prepare and call MacOS routine
711 gpr(2) = toc;
712 for (int i = 0; i < nargs; i++)
713 gpr(i + 3) = args[i];
714 execute(proc);
715 uint32 retval = gpr(3);
716
717 // Restore PowerPC registers
718 for (int i = 0; i <= nargs; i++)
719 gpr(i + 2) = regs[i];
720
721 // Cleanup stack
722 gpr(1) += 64;
723
724 // Restore program counters and branch registers
725 pc() = saved_pc;
726 lr() = saved_lr;
727 ctr()= saved_ctr;
728
729 #if EMUL_TIME_STATS
730 macos_exec_time += (clock() - macos_exec_start);
731 #endif
732
733 return retval;
734 }
735
736 // Execute ppc routine
737 inline void sheepshaver_cpu::execute_ppc(uint32 entry)
738 {
739 // Save branch registers
740 uint32 saved_lr = lr();
741
742 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
743 WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
744 lr() = trampoline.addr();
745
746 execute(entry);
747
748 // Restore branch registers
749 lr() = saved_lr;
750 }
751
752 // Resource Manager thunk
753 inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
754 {
755 uint32 type = gpr(3);
756 int16 id = gpr(4);
757
758 // Create stack frame
759 gpr(1) -= 56;
760
761 // Call old routine
762 execute_ppc(old_get_resource);
763
764 // Call CheckLoad()
765 uint32 handle = gpr(3);
766 check_load_invoc(type, id, handle);
767 gpr(3) = handle;
768
769 // Cleanup stack
770 gpr(1) += 56;
771 }
772
773
774 /**
775 * SheepShaver CPU engine interface
776 **/
777
778 // PowerPC CPU emulator
779 static sheepshaver_cpu *ppc_cpu = NULL;
780
781 void FlushCodeCache(uintptr start, uintptr end)
782 {
783 D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
784 ppc_cpu->invalidate_cache_range(start, end);
785 }
786
787 // Dump PPC registers
788 static void dump_registers(void)
789 {
790 ppc_cpu->dump_registers();
791 }
792
793 // Dump log
794 static void dump_log(void)
795 {
796 ppc_cpu->dump_log();
797 }
798
799 /*
800 * Initialize CPU emulation
801 */
802
803 sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
804 {
805 #if ENABLE_VOSF
806 // Handle screen fault
807 extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
808 if (Screen_fault_handler(fault_address, fault_instruction))
809 return SIGSEGV_RETURN_SUCCESS;
810 #endif
811
812 const uintptr addr = (uintptr)fault_address;
813 #if HAVE_SIGSEGV_SKIP_INSTRUCTION
814 // Ignore writes to ROM
815 if ((addr - (uintptr)ROMBaseHost) < ROM_SIZE)
816 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
817
818 // Get program counter of target CPU
819 sheepshaver_cpu * const cpu = ppc_cpu;
820 const uint32 pc = cpu->pc();
821
822 // Fault in Mac ROM or RAM?
823 bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize)) || (pc >= DR_CACHE_BASE && pc < (DR_CACHE_BASE + DR_CACHE_SIZE));
824 if (mac_fault) {
825
826 // "VM settings" during MacOS 8 installation
827 if (pc == ROM_BASE + 0x488160 && cpu->gpr(20) == 0xf8000000)
828 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
829
830 // MacOS 8.5 installation
831 else if (pc == ROM_BASE + 0x488140 && cpu->gpr(16) == 0xf8000000)
832 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
833
834 // MacOS 8 serial drivers on startup
835 else if (pc == ROM_BASE + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
836 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
837
838 // MacOS 8.1 serial drivers on startup
839 else if (pc == ROM_BASE + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
840 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
841 else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
842 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
843
844 // MacOS 8.6 serial drivers on startup (with DR Cache and OldWorld ROM)
845 else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(16) == 0xf3012002 || cpu->gpr(16) == 0xf3012000))
846 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
847 else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
848 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
849
850 // Ignore writes to the zero page
851 else if ((uint32)(addr - SheepMem::ZeroPage()) < (uint32)SheepMem::PageSize())
852 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
853
854 // Ignore all other faults, if requested
855 if (PrefsFindBool("ignoresegv"))
856 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
857 }
858 #else
859 #error "FIXME: You don't have the capability to skip instruction within signal handlers"
860 #endif
861
862 printf("SIGSEGV\n");
863 printf(" pc %p\n", fault_instruction);
864 printf(" ea %p\n", fault_address);
865 dump_registers();
866 ppc_cpu->dump_log();
867 enter_mon();
868 QuitEmulator();
869
870 return SIGSEGV_RETURN_FAILURE;
871 }
872
873 void init_emul_ppc(void)
874 {
875 // Get pointer to KernelData in host address space
876 kernel_data = (KernelData *)Mac2HostAddr(KERNEL_DATA_BASE);
877
878 // Initialize main CPU emulator
879 ppc_cpu = new sheepshaver_cpu();
880 ppc_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
881 ppc_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
882 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
883
884 #if ENABLE_MON
885 // Install "regs" command in cxmon
886 mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
887 mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
888 #endif
889
890 #if EMUL_TIME_STATS
891 emul_start_time = clock();
892 #endif
893 }
894
895 /*
896 * Deinitialize emulation
897 */
898
899 void exit_emul_ppc(void)
900 {
901 #if EMUL_TIME_STATS
902 clock_t emul_end_time = clock();
903
904 printf("### Statistics for SheepShaver emulation parts\n");
905 const clock_t emul_time = emul_end_time - emul_start_time;
906 printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
907 printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
908 (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
909 printf("Total ppc interrupt count: %d (%2.1f %%)\n", ppc_interrupt_count,
910 (double(ppc_interrupt_count) * 100.0) / double(interrupt_count));
911
912 #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
913 printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
914 printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
915 double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
916 100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
917 } while (0)
918
919 PRINT_STATS("Execute68k[Trap] execution", exec68k);
920 PRINT_STATS("NativeOp execution", native_exec);
921 PRINT_STATS("MacOS routine execution", macos_exec);
922
923 #undef PRINT_STATS
924 printf("\n");
925 #endif
926
927 delete ppc_cpu;
928 }
929
930 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
931 // Initialize EmulOp trampolines
932 void init_emul_op_trampolines(basic_dyngen & dg)
933 {
934 typedef void (*func_t)(dyngen_cpu_base, uint32);
935 func_t func;
936
937 // EmulOp
938 emul_op_trampoline = dg.gen_start();
939 func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
940 dg.gen_invoke_CPU_T0(func);
941 dg.gen_exec_return();
942 dg.gen_end();
943
944 // NativeOp
945 native_op_trampoline = dg.gen_start();
946 func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
947 dg.gen_invoke_CPU_T0(func);
948 dg.gen_exec_return();
949 dg.gen_end();
950
951 D(bug("EmulOp trampoline: %p\n", emul_op_trampoline));
952 D(bug("NativeOp trampoline: %p\n", native_op_trampoline));
953 }
954 #endif
955
956 /*
957 * Emulation loop
958 */
959
960 void emul_ppc(uint32 entry)
961 {
962 #if 0
963 ppc_cpu->start_log();
964 #endif
965 // start emulation loop and enable code translation or caching
966 ppc_cpu->execute(entry);
967 }
968
969 /*
970 * Handle PowerPC interrupt
971 */
972
973 void TriggerInterrupt(void)
974 {
975 #if 0
976 WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
977 #else
978 // Trigger interrupt to main cpu only
979 if (ppc_cpu)
980 ppc_cpu->trigger_interrupt();
981 #endif
982 }
983
984 void sheepshaver_cpu::handle_interrupt(void)
985 {
986 #ifdef USE_SDL_VIDEO
987 // We must fill in the events queue in the same thread that did call SDL_SetVideoMode()
988 SDL_PumpEvents();
989 #endif
990
991 // Do nothing if interrupts are disabled
992 if (int32(ReadMacInt32(XLM_IRQ_NEST)) > 0)
993 return;
994
995 // Current interrupt nest level
996 static int interrupt_depth = 0;
997 ++interrupt_depth;
998 #if EMUL_TIME_STATS
999 interrupt_count++;
1000 #endif
1001
1002 // Disable MacOS stack sniffer
1003 WriteMacInt32(0x110, 0);
1004
1005 // Interrupt action depends on current run mode
1006 switch (ReadMacInt32(XLM_RUN_MODE)) {
1007 case MODE_68K:
1008 // 68k emulator active, trigger 68k interrupt level 1
1009 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
1010 set_cr(get_cr() | tswap32(kernel_data->v[0x674 >> 2]));
1011 break;
1012
1013 #if INTERRUPTS_IN_NATIVE_MODE
1014 case MODE_NATIVE:
1015 // 68k emulator inactive, in nanokernel?
1016 if (gpr(1) != KernelDataAddr && interrupt_depth == 1) {
1017 interrupt_context ctx(this, "PowerPC mode");
1018
1019 // Prepare for 68k interrupt level 1
1020 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
1021 WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
1022 ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
1023 | tswap32(kernel_data->v[0x674 >> 2]));
1024
1025 // Execute nanokernel interrupt routine (this will activate the 68k emulator)
1026 DisableInterrupt();
1027 if (ROMType == ROMTYPE_NEWWORLD)
1028 ppc_cpu->interrupt(ROM_BASE + 0x312b1c);
1029 else
1030 ppc_cpu->interrupt(ROM_BASE + 0x312a3c);
1031 }
1032 break;
1033 #endif
1034
1035 #if INTERRUPTS_IN_EMUL_OP_MODE
1036 case MODE_EMUL_OP:
1037 // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
1038 if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
1039 interrupt_context ctx(this, "68k mode");
1040 #if EMUL_TIME_STATS
1041 const clock_t interrupt_start = clock();
1042 #endif
1043 #if 1
1044 // Execute full 68k interrupt routine
1045 M68kRegisters r;
1046 uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
1047 WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
1048 static const uint8 proc[] = {
1049 0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
1050 0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
1051 0x40, 0xe7, // move sr,-(sp) (saved SR)
1052 0x20, 0x78, 0x00, 0x064, // move.l $64,a0
1053 0x4e, 0xd0, // jmp (a0)
1054 M68K_RTS >> 8, M68K_RTS & 0xff // @1
1055 };
1056 Execute68k(Host2MacAddr((uint8 *)proc), &r);
1057 WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
1058 #else
1059 // Only update cursor
1060 if (HasMacStarted()) {
1061 if (InterruptFlags & INTFLAG_VIA) {
1062 ClearInterruptFlag(INTFLAG_VIA);
1063 ADBInterrupt();
1064 ExecuteNative(NATIVE_VIDEO_VBL);
1065 }
1066 }
1067 #endif
1068 #if EMUL_TIME_STATS
1069 interrupt_time += (clock() - interrupt_start);
1070 #endif
1071 }
1072 break;
1073 #endif
1074 }
1075
1076 // We are done with this interrupt
1077 --interrupt_depth;
1078 }
1079
1080 static void get_resource(void);
1081 static void get_1_resource(void);
1082 static void get_ind_resource(void);
1083 static void get_1_ind_resource(void);
1084 static void r_get_resource(void);
1085
1086 // Execute NATIVE_OP routine
1087 void sheepshaver_cpu::execute_native_op(uint32 selector)
1088 {
1089 #if EMUL_TIME_STATS
1090 native_exec_count++;
1091 const clock_t native_exec_start = clock();
1092 #endif
1093
1094 switch (selector) {
1095 case NATIVE_PATCH_NAME_REGISTRY:
1096 DoPatchNameRegistry();
1097 break;
1098 case NATIVE_VIDEO_INSTALL_ACCEL:
1099 VideoInstallAccel();
1100 break;
1101 case NATIVE_VIDEO_VBL:
1102 VideoVBL();
1103 break;
1104 case NATIVE_VIDEO_DO_DRIVER_IO:
1105 gpr(3) = (int32)(int16)VideoDoDriverIO(gpr(3), gpr(4), gpr(5), gpr(6), gpr(7));
1106 break;
1107 #ifdef WORDS_BIGENDIAN
1108 case NATIVE_ETHER_IRQ:
1109 EtherIRQ();
1110 break;
1111 case NATIVE_ETHER_INIT:
1112 gpr(3) = InitStreamModule((void *)gpr(3));
1113 break;
1114 case NATIVE_ETHER_TERM:
1115 TerminateStreamModule();
1116 break;
1117 case NATIVE_ETHER_OPEN:
1118 gpr(3) = ether_open((queue_t *)gpr(3), (void *)gpr(4), gpr(5), gpr(6), (void*)gpr(7));
1119 break;
1120 case NATIVE_ETHER_CLOSE:
1121 gpr(3) = ether_close((queue_t *)gpr(3), gpr(4), (void *)gpr(5));
1122 break;
1123 case NATIVE_ETHER_WPUT:
1124 gpr(3) = ether_wput((queue_t *)gpr(3), (mblk_t *)gpr(4));
1125 break;
1126 case NATIVE_ETHER_RSRV:
1127 gpr(3) = ether_rsrv((queue_t *)gpr(3));
1128 break;
1129 #else
1130 case NATIVE_ETHER_INIT:
1131 // FIXME: needs more complicated thunks
1132 gpr(3) = false;
1133 break;
1134 #endif
1135 case NATIVE_SYNC_HOOK:
1136 gpr(3) = NQD_sync_hook(gpr(3));
1137 break;
1138 case NATIVE_BITBLT_HOOK:
1139 gpr(3) = NQD_bitblt_hook(gpr(3));
1140 break;
1141 case NATIVE_BITBLT:
1142 NQD_bitblt(gpr(3));
1143 break;
1144 case NATIVE_FILLRECT_HOOK:
1145 gpr(3) = NQD_fillrect_hook(gpr(3));
1146 break;
1147 case NATIVE_INVRECT:
1148 NQD_invrect(gpr(3));
1149 break;
1150 case NATIVE_FILLRECT:
1151 NQD_fillrect(gpr(3));
1152 break;
1153 case NATIVE_SERIAL_NOTHING:
1154 case NATIVE_SERIAL_OPEN:
1155 case NATIVE_SERIAL_PRIME_IN:
1156 case NATIVE_SERIAL_PRIME_OUT:
1157 case NATIVE_SERIAL_CONTROL:
1158 case NATIVE_SERIAL_STATUS:
1159 case NATIVE_SERIAL_CLOSE: {
1160 typedef int16 (*SerialCallback)(uint32, uint32);
1161 static const SerialCallback serial_callbacks[] = {
1162 SerialNothing,
1163 SerialOpen,
1164 SerialPrimeIn,
1165 SerialPrimeOut,
1166 SerialControl,
1167 SerialStatus,
1168 SerialClose
1169 };
1170 gpr(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](gpr(3), gpr(4));
1171 break;
1172 }
1173 case NATIVE_GET_RESOURCE:
1174 case NATIVE_GET_1_RESOURCE:
1175 case NATIVE_GET_IND_RESOURCE:
1176 case NATIVE_GET_1_IND_RESOURCE:
1177 case NATIVE_R_GET_RESOURCE: {
1178 typedef void (*GetResourceCallback)(void);
1179 static const GetResourceCallback get_resource_callbacks[] = {
1180 ::get_resource,
1181 ::get_1_resource,
1182 ::get_ind_resource,
1183 ::get_1_ind_resource,
1184 ::r_get_resource
1185 };
1186 get_resource_callbacks[selector - NATIVE_GET_RESOURCE]();
1187 break;
1188 }
1189 case NATIVE_MAKE_EXECUTABLE:
1190 MakeExecutable(0, gpr(4), gpr(5));
1191 break;
1192 case NATIVE_CHECK_LOAD_INVOC:
1193 check_load_invoc(gpr(3), gpr(4), gpr(5));
1194 break;
1195 default:
1196 printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
1197 QuitEmulator();
1198 break;
1199 }
1200
1201 #if EMUL_TIME_STATS
1202 native_exec_time += (clock() - native_exec_start);
1203 #endif
1204 }
1205
1206 /*
1207 * Execute 68k subroutine (must be ended with EXEC_RETURN)
1208 * This must only be called by the emul_thread when in EMUL_OP mode
1209 * r->a[7] is unused, the routine runs on the caller's stack
1210 */
1211
1212 void Execute68k(uint32 pc, M68kRegisters *r)
1213 {
1214 ppc_cpu->execute_68k(pc, r);
1215 }
1216
1217 /*
1218 * Execute 68k A-Trap from EMUL_OP routine
1219 * r->a[7] is unused, the routine runs on the caller's stack
1220 */
1221
1222 void Execute68kTrap(uint16 trap, M68kRegisters *r)
1223 {
1224 SheepVar proc_var(4);
1225 uint32 proc = proc_var.addr();
1226 WriteMacInt16(proc, trap);
1227 WriteMacInt16(proc + 2, M68K_RTS);
1228 Execute68k(proc, r);
1229 }
1230
1231 /*
1232 * Call MacOS PPC code
1233 */
1234
1235 uint32 call_macos(uint32 tvect)
1236 {
1237 return ppc_cpu->execute_macos_code(tvect, 0, NULL);
1238 }
1239
1240 uint32 call_macos1(uint32 tvect, uint32 arg1)
1241 {
1242 const uint32 args[] = { arg1 };
1243 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1244 }
1245
1246 uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1247 {
1248 const uint32 args[] = { arg1, arg2 };
1249 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1250 }
1251
1252 uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1253 {
1254 const uint32 args[] = { arg1, arg2, arg3 };
1255 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1256 }
1257
1258 uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1259 {
1260 const uint32 args[] = { arg1, arg2, arg3, arg4 };
1261 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1262 }
1263
1264 uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1265 {
1266 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1267 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1268 }
1269
1270 uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1271 {
1272 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1273 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1274 }
1275
1276 uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1277 {
1278 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1279 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1280 }
1281
1282 /*
1283 * Resource Manager thunks
1284 */
1285
1286 void get_resource(void)
1287 {
1288 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1289 }
1290
1291 void get_1_resource(void)
1292 {
1293 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1294 }
1295
1296 void get_ind_resource(void)
1297 {
1298 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1299 }
1300
1301 void get_1_ind_resource(void)
1302 {
1303 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1304 }
1305
1306 void r_get_resource(void)
1307 {
1308 ppc_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1309 }