ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.36
Committed: 2004-05-12T15:54:23Z (20 years, 1 month ago) by gbeauche
Branch: MAIN
Changes since 1.35: +22 -0 lines
Log Message:
Handle SAFE_INTERRUPT_PPC to check possible nested calls (and this happens)

File Contents

# Content
1 /*
2 * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3 *
4 * SheepShaver (C) 1997-2004 Christian Bauer and Marc Hellwig
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 #include "sysdeps.h"
22 #include "cpu_emulation.h"
23 #include "main.h"
24 #include "prefs.h"
25 #include "xlowmem.h"
26 #include "emul_op.h"
27 #include "rom_patches.h"
28 #include "macos_util.h"
29 #include "block-alloc.hpp"
30 #include "sigsegv.h"
31 #include "cpu/ppc/ppc-cpu.hpp"
32 #include "cpu/ppc/ppc-operations.hpp"
33 #include "cpu/ppc/ppc-instructions.hpp"
34 #include "thunks.h"
35
36 // Used for NativeOp trampolines
37 #include "video.h"
38 #include "name_registry.h"
39 #include "serial.h"
40 #include "ether.h"
41
42 #include <stdio.h>
43 #include <stdlib.h>
44
45 #if ENABLE_MON
46 #include "mon.h"
47 #include "mon_disass.h"
48 #endif
49
50 #define DEBUG 0
51 #include "debug.h"
52
53 // Emulation time statistics
54 #define EMUL_TIME_STATS 1
55
56 #if EMUL_TIME_STATS
57 static clock_t emul_start_time;
58 static uint32 interrupt_count = 0;
59 static clock_t interrupt_time = 0;
60 static uint32 exec68k_count = 0;
61 static clock_t exec68k_time = 0;
62 static uint32 native_exec_count = 0;
63 static clock_t native_exec_time = 0;
64 static uint32 macos_exec_count = 0;
65 static clock_t macos_exec_time = 0;
66 #endif
67
68 static void enter_mon(void)
69 {
70 // Start up mon in real-mode
71 #if ENABLE_MON
72 char *arg[4] = {"mon", "-m", "-r", NULL};
73 mon(3, arg);
74 #endif
75 }
76
77 // From main_*.cpp
78 extern uintptr SignalStackBase();
79
80 // From rsrc_patches.cpp
81 extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
82
83 // PowerPC EmulOp to exit from emulation looop
84 const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
85
86 // Enable multicore (main/interrupts) cpu emulation?
87 #define MULTICORE_CPU (ASYNC_IRQ ? 1 : 0)
88
89 // Enable interrupt routine safety checks?
90 #define SAFE_INTERRUPT_PPC 1
91
92 // Enable Execute68k() safety checks?
93 #define SAFE_EXEC_68K 1
94
95 // Save FP state in Execute68k()?
96 #define SAVE_FP_EXEC_68K 1
97
98 // Interrupts in EMUL_OP mode?
99 #define INTERRUPTS_IN_EMUL_OP_MODE 1
100
101 // Interrupts in native mode?
102 #define INTERRUPTS_IN_NATIVE_MODE 1
103
104 // Pointer to Kernel Data
105 static KernelData * const kernel_data = (KernelData *)KERNEL_DATA_BASE;
106
107 // SIGSEGV handler
108 static sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
109
110 // JIT Compiler enabled?
111 static inline bool enable_jit_p()
112 {
113 return PrefsFindBool("jit");
114 }
115
116
117 /**
118 * PowerPC emulator glue with special 'sheep' opcodes
119 **/
120
121 enum {
122 PPC_I(SHEEP) = PPC_I(MAX),
123 PPC_I(SHEEP_MAX)
124 };
125
126 class sheepshaver_cpu
127 : public powerpc_cpu
128 {
129 void init_decoder();
130 void execute_sheep(uint32 opcode);
131
132 public:
133
134 // Constructor
135 sheepshaver_cpu();
136
137 // CR & XER accessors
138 uint32 get_cr() const { return cr().get(); }
139 void set_cr(uint32 v) { cr().set(v); }
140 uint32 get_xer() const { return xer().get(); }
141 void set_xer(uint32 v) { xer().set(v); }
142
143 // Execute EMUL_OP routine
144 void execute_emul_op(uint32 emul_op);
145
146 // Execute 68k routine
147 void execute_68k(uint32 entry, M68kRegisters *r);
148
149 // Execute ppc routine
150 void execute_ppc(uint32 entry);
151
152 // Execute MacOS/PPC code
153 uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
154
155 // Compile one instruction
156 virtual bool compile1(codegen_context_t & cg_context);
157
158 // Resource manager thunk
159 void get_resource(uint32 old_get_resource);
160
161 // Handle MacOS interrupt
162 void interrupt(uint32 entry);
163 void handle_interrupt();
164
165 // Make sure the SIGSEGV handler can access CPU registers
166 friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
167 };
168
169 // Memory allocator returning areas aligned on 16-byte boundaries
170 void *operator new(size_t size)
171 {
172 void *p;
173
174 #if defined(HAVE_POSIX_MEMALIGN)
175 if (posix_memalign(&p, 16, size) != 0)
176 throw std::bad_alloc();
177 #elif defined(HAVE_MEMALIGN)
178 p = memalign(16, size);
179 #elif defined(HAVE_VALLOC)
180 p = valloc(size); // page-aligned!
181 #else
182 /* XXX: handle padding ourselves */
183 p = malloc(size);
184 #endif
185
186 return p;
187 }
188
189 void operator delete(void *p)
190 {
191 #if defined(HAVE_MEMALIGN) || defined(HAVE_VALLOC)
192 #if defined(__GLIBC__)
193 // this is known to work only with GNU libc
194 free(p);
195 #endif
196 #else
197 free(p);
198 #endif
199 }
200
201 sheepshaver_cpu::sheepshaver_cpu()
202 : powerpc_cpu(enable_jit_p())
203 {
204 init_decoder();
205 }
206
207 void sheepshaver_cpu::init_decoder()
208 {
209 static const instr_info_t sheep_ii_table[] = {
210 { "sheep",
211 (execute_pmf)&sheepshaver_cpu::execute_sheep,
212 NULL,
213 PPC_I(SHEEP),
214 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
215 }
216 };
217
218 const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
219 D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
220
221 for (int i = 0; i < ii_count; i++) {
222 const instr_info_t * ii = &sheep_ii_table[i];
223 init_decoder_entry(ii);
224 }
225 }
226
227 // Forward declaration for native opcode handler
228 static void NativeOp(int selector);
229
230 /* NativeOp instruction format:
231 +------------+-------------------------+--+-----------+------------+
232 | 6 | |FN| OP | 2 |
233 +------------+-------------------------+--+-----------+------------+
234 0 5 |6 18 19 20 25 26 31
235 */
236
237 typedef bit_field< 19, 19 > FN_field;
238 typedef bit_field< 20, 25 > NATIVE_OP_field;
239 typedef bit_field< 26, 31 > EMUL_OP_field;
240
241 // Execute EMUL_OP routine
242 void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
243 {
244 M68kRegisters r68;
245 WriteMacInt32(XLM_68K_R25, gpr(25));
246 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
247 for (int i = 0; i < 8; i++)
248 r68.d[i] = gpr(8 + i);
249 for (int i = 0; i < 7; i++)
250 r68.a[i] = gpr(16 + i);
251 r68.a[7] = gpr(1);
252 uint32 saved_cr = get_cr() & CR_field<2>::mask();
253 uint32 saved_xer = get_xer();
254 EmulOp(&r68, gpr(24), emul_op);
255 set_cr(saved_cr);
256 set_xer(saved_xer);
257 for (int i = 0; i < 8; i++)
258 gpr(8 + i) = r68.d[i];
259 for (int i = 0; i < 7; i++)
260 gpr(16 + i) = r68.a[i];
261 gpr(1) = r68.a[7];
262 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
263 }
264
265 // Execute SheepShaver instruction
266 void sheepshaver_cpu::execute_sheep(uint32 opcode)
267 {
268 // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
269 assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
270
271 switch (opcode & 0x3f) {
272 case 0: // EMUL_RETURN
273 QuitEmulator();
274 break;
275
276 case 1: // EXEC_RETURN
277 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
278 break;
279
280 case 2: // EXEC_NATIVE
281 NativeOp(NATIVE_OP_field::extract(opcode));
282 if (FN_field::test(opcode))
283 pc() = lr();
284 else
285 pc() += 4;
286 break;
287
288 default: // EMUL_OP
289 execute_emul_op(EMUL_OP_field::extract(opcode) - 3);
290 pc() += 4;
291 break;
292 }
293 }
294
295 // Compile one instruction
296 bool sheepshaver_cpu::compile1(codegen_context_t & cg_context)
297 {
298 #if PPC_ENABLE_JIT
299 const instr_info_t *ii = cg_context.instr_info;
300 if (ii->mnemo != PPC_I(SHEEP))
301 return false;
302
303 bool compiled = false;
304 powerpc_dyngen & dg = cg_context.codegen;
305 uint32 opcode = cg_context.opcode;
306
307 switch (opcode & 0x3f) {
308 case 0: // EMUL_RETURN
309 dg.gen_invoke(QuitEmulator);
310 compiled = true;
311 break;
312
313 case 1: // EXEC_RETURN
314 dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
315 compiled = true;
316 break;
317
318 case 2: { // EXEC_NATIVE
319 uint32 selector = NATIVE_OP_field::extract(opcode);
320 switch (selector) {
321 case NATIVE_PATCH_NAME_REGISTRY:
322 dg.gen_invoke(DoPatchNameRegistry);
323 compiled = true;
324 break;
325 case NATIVE_VIDEO_INSTALL_ACCEL:
326 dg.gen_invoke(VideoInstallAccel);
327 compiled = true;
328 break;
329 case NATIVE_VIDEO_VBL:
330 dg.gen_invoke(VideoVBL);
331 compiled = true;
332 break;
333 case NATIVE_GET_RESOURCE:
334 case NATIVE_GET_1_RESOURCE:
335 case NATIVE_GET_IND_RESOURCE:
336 case NATIVE_GET_1_IND_RESOURCE:
337 case NATIVE_R_GET_RESOURCE: {
338 static const uint32 get_resource_ptr[] = {
339 XLM_GET_RESOURCE,
340 XLM_GET_1_RESOURCE,
341 XLM_GET_IND_RESOURCE,
342 XLM_GET_1_IND_RESOURCE,
343 XLM_R_GET_RESOURCE
344 };
345 uint32 old_get_resource = ReadMacInt32(get_resource_ptr[selector - NATIVE_GET_RESOURCE]);
346 typedef void (*func_t)(dyngen_cpu_base, uint32);
347 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
348 dg.gen_invoke_CPU_im(func, old_get_resource);
349 compiled = true;
350 break;
351 }
352 case NATIVE_DISABLE_INTERRUPT:
353 dg.gen_invoke(DisableInterrupt);
354 compiled = true;
355 break;
356 case NATIVE_ENABLE_INTERRUPT:
357 dg.gen_invoke(EnableInterrupt);
358 compiled = true;
359 break;
360 case NATIVE_CHECK_LOAD_INVOC:
361 dg.gen_load_T0_GPR(3);
362 dg.gen_load_T1_GPR(4);
363 dg.gen_se_16_32_T1();
364 dg.gen_load_T2_GPR(5);
365 dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
366 compiled = true;
367 break;
368 case NATIVE_BITBLT:
369 dg.gen_load_T0_GPR(3);
370 dg.gen_invoke_T0((void (*)(uint32))NQD_bitblt);
371 compiled = true;
372 break;
373 case NATIVE_INVRECT:
374 dg.gen_load_T0_GPR(3);
375 dg.gen_invoke_T0((void (*)(uint32))NQD_invrect);
376 compiled = true;
377 break;
378 case NATIVE_FILLRECT:
379 dg.gen_load_T0_GPR(3);
380 dg.gen_invoke_T0((void (*)(uint32))NQD_fillrect);
381 compiled = true;
382 break;
383 }
384 if (FN_field::test(opcode)) {
385 if (compiled) {
386 dg.gen_load_A0_LR();
387 dg.gen_set_PC_A0();
388 }
389 cg_context.done_compile = true;
390 }
391 else
392 cg_context.done_compile = false;
393 break;
394 }
395
396 default: { // EMUL_OP
397 typedef void (*func_t)(dyngen_cpu_base, uint32);
398 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
399 dg.gen_invoke_CPU_im(func, EMUL_OP_field::extract(opcode) - 3);
400 cg_context.done_compile = false;
401 compiled = true;
402 break;
403 }
404 }
405 return compiled;
406 #endif
407 return false;
408 }
409
410 // Handle MacOS interrupt
411 void sheepshaver_cpu::interrupt(uint32 entry)
412 {
413 #if EMUL_TIME_STATS
414 interrupt_count++;
415 const clock_t interrupt_start = clock();
416 #endif
417
418 #if SAFE_INTERRUPT_PPC
419 static int depth = 0;
420 if (depth != 0)
421 printf("FATAL: sheepshaver_cpu::interrupt() called more than once: %d\n", depth);
422 depth++;
423 #endif
424 #if SAFE_INTERRUPT_PPC >= 2
425 uint32 saved_regs[32];
426 memcpy(&saved_regs[0], &gpr(0), sizeof(saved_regs));
427 #endif
428
429 #if !MULTICORE_CPU
430 // Save program counters and branch registers
431 uint32 saved_pc = pc();
432 uint32 saved_lr = lr();
433 uint32 saved_ctr= ctr();
434 uint32 saved_sp = gpr(1);
435 #endif
436
437 // Initialize stack pointer to SheepShaver alternate stack base
438 gpr(1) = SignalStackBase() - 64;
439
440 // Build trampoline to return from interrupt
441 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
442
443 // Prepare registers for nanokernel interrupt routine
444 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
445 kernel_data->v[0x018 >> 2] = htonl(gpr(6));
446
447 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
448 assert(gpr(6) != 0);
449 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
450 WriteMacInt32(gpr(6) + 0x144, gpr(8));
451 WriteMacInt32(gpr(6) + 0x14c, gpr(9));
452 WriteMacInt32(gpr(6) + 0x154, gpr(10));
453 WriteMacInt32(gpr(6) + 0x15c, gpr(11));
454 WriteMacInt32(gpr(6) + 0x164, gpr(12));
455 WriteMacInt32(gpr(6) + 0x16c, gpr(13));
456
457 gpr(1) = KernelDataAddr;
458 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
459 gpr(8) = 0;
460 gpr(10) = trampoline.addr();
461 gpr(12) = trampoline.addr();
462 gpr(13) = get_cr();
463
464 // rlwimi. r7,r7,8,0,0
465 uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
466 record_cr0(result);
467 gpr(7) = result;
468
469 gpr(11) = 0xf072; // MSR (SRR1)
470 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
471
472 // Enter nanokernel
473 execute(entry);
474
475 #if !MULTICORE_CPU
476 // Restore program counters and branch registers
477 pc() = saved_pc;
478 lr() = saved_lr;
479 ctr()= saved_ctr;
480 gpr(1) = saved_sp;
481 #endif
482
483 #if EMUL_TIME_STATS
484 interrupt_time += (clock() - interrupt_start);
485 #endif
486
487 #if SAFE_INTERRUPT_PPC >= 2
488 if (memcmp(&saved_regs[0], &gpr(0), sizeof(saved_regs)) != 0)
489 printf("FATAL: dirty PowerPC registers\n");
490 #endif
491 #if SAFE_INTERRUPT_PPC
492 depth--;
493 #endif
494 }
495
496 // Execute 68k routine
497 void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
498 {
499 #if EMUL_TIME_STATS
500 exec68k_count++;
501 const clock_t exec68k_start = clock();
502 #endif
503
504 #if SAFE_EXEC_68K
505 if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
506 printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
507 #endif
508
509 // Save program counters and branch registers
510 uint32 saved_pc = pc();
511 uint32 saved_lr = lr();
512 uint32 saved_ctr= ctr();
513 uint32 saved_cr = get_cr();
514
515 // Create MacOS stack frame
516 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
517 uint32 sp = gpr(1);
518 gpr(1) -= 56;
519 WriteMacInt32(gpr(1), sp);
520
521 // Save PowerPC registers
522 uint32 saved_GPRs[19];
523 memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
524 #if SAVE_FP_EXEC_68K
525 double saved_FPRs[18];
526 memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
527 #endif
528
529 // Setup registers for 68k emulator
530 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
531 for (int i = 0; i < 8; i++) // d[0]..d[7]
532 gpr(8 + i) = r->d[i];
533 for (int i = 0; i < 7; i++) // a[0]..a[6]
534 gpr(16 + i) = r->a[i];
535 gpr(23) = 0;
536 gpr(24) = entry;
537 gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
538 gpr(26) = 0;
539 gpr(28) = 0; // VBR
540 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
541 gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
542 gpr(31) = KernelDataAddr + 0x1000;
543
544 // Push return address (points to EXEC_RETURN opcode) on stack
545 gpr(1) -= 4;
546 WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
547
548 // Rentering 68k emulator
549 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
550
551 // Set r0 to 0 for 68k emulator
552 gpr(0) = 0;
553
554 // Execute 68k opcode
555 uint32 opcode = ReadMacInt16(gpr(24));
556 gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
557 gpr(29) += opcode * 8;
558 execute(gpr(29));
559
560 // Save r25 (contains current 68k interrupt level)
561 WriteMacInt32(XLM_68K_R25, gpr(25));
562
563 // Reentering EMUL_OP mode
564 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
565
566 // Save 68k registers
567 for (int i = 0; i < 8; i++) // d[0]..d[7]
568 r->d[i] = gpr(8 + i);
569 for (int i = 0; i < 7; i++) // a[0]..a[6]
570 r->a[i] = gpr(16 + i);
571
572 // Restore PowerPC registers
573 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
574 #if SAVE_FP_EXEC_68K
575 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
576 #endif
577
578 // Cleanup stack
579 gpr(1) += 56;
580
581 // Restore program counters and branch registers
582 pc() = saved_pc;
583 lr() = saved_lr;
584 ctr()= saved_ctr;
585 set_cr(saved_cr);
586
587 #if EMUL_TIME_STATS
588 exec68k_time += (clock() - exec68k_start);
589 #endif
590 }
591
592 // Call MacOS PPC code
593 uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
594 {
595 #if EMUL_TIME_STATS
596 macos_exec_count++;
597 const clock_t macos_exec_start = clock();
598 #endif
599
600 // Save program counters and branch registers
601 uint32 saved_pc = pc();
602 uint32 saved_lr = lr();
603 uint32 saved_ctr= ctr();
604
605 // Build trampoline with EXEC_RETURN
606 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
607 lr() = trampoline.addr();
608
609 gpr(1) -= 64; // Create stack frame
610 uint32 proc = ReadMacInt32(tvect); // Get routine address
611 uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
612
613 // Save PowerPC registers
614 uint32 regs[8];
615 regs[0] = gpr(2);
616 for (int i = 0; i < nargs; i++)
617 regs[i + 1] = gpr(i + 3);
618
619 // Prepare and call MacOS routine
620 gpr(2) = toc;
621 for (int i = 0; i < nargs; i++)
622 gpr(i + 3) = args[i];
623 execute(proc);
624 uint32 retval = gpr(3);
625
626 // Restore PowerPC registers
627 for (int i = 0; i <= nargs; i++)
628 gpr(i + 2) = regs[i];
629
630 // Cleanup stack
631 gpr(1) += 64;
632
633 // Restore program counters and branch registers
634 pc() = saved_pc;
635 lr() = saved_lr;
636 ctr()= saved_ctr;
637
638 #if EMUL_TIME_STATS
639 macos_exec_time += (clock() - macos_exec_start);
640 #endif
641
642 return retval;
643 }
644
645 // Execute ppc routine
646 inline void sheepshaver_cpu::execute_ppc(uint32 entry)
647 {
648 // Save branch registers
649 uint32 saved_lr = lr();
650
651 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
652 WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
653 lr() = trampoline.addr();
654
655 execute(entry);
656
657 // Restore branch registers
658 lr() = saved_lr;
659 }
660
661 // Resource Manager thunk
662 inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
663 {
664 uint32 type = gpr(3);
665 int16 id = gpr(4);
666
667 // Create stack frame
668 gpr(1) -= 56;
669
670 // Call old routine
671 execute_ppc(old_get_resource);
672
673 // Call CheckLoad()
674 uint32 handle = gpr(3);
675 check_load_invoc(type, id, handle);
676 gpr(3) = handle;
677
678 // Cleanup stack
679 gpr(1) += 56;
680 }
681
682
683 /**
684 * SheepShaver CPU engine interface
685 **/
686
687 static sheepshaver_cpu *main_cpu = NULL; // CPU emulator to handle usual control flow
688 static sheepshaver_cpu *interrupt_cpu = NULL; // CPU emulator to handle interrupts
689 static sheepshaver_cpu *current_cpu = NULL; // Current CPU emulator context
690
691 void FlushCodeCache(uintptr start, uintptr end)
692 {
693 D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
694 main_cpu->invalidate_cache_range(start, end);
695 #if MULTICORE_CPU
696 interrupt_cpu->invalidate_cache_range(start, end);
697 #endif
698 }
699
700 static inline void cpu_push(sheepshaver_cpu *new_cpu)
701 {
702 #if MULTICORE_CPU
703 current_cpu = new_cpu;
704 #endif
705 }
706
707 static inline void cpu_pop()
708 {
709 #if MULTICORE_CPU
710 current_cpu = main_cpu;
711 #endif
712 }
713
714 // Dump PPC registers
715 static void dump_registers(void)
716 {
717 current_cpu->dump_registers();
718 }
719
720 // Dump log
721 static void dump_log(void)
722 {
723 current_cpu->dump_log();
724 }
725
726 /*
727 * Initialize CPU emulation
728 */
729
730 static sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
731 {
732 #if ENABLE_VOSF
733 // Handle screen fault
734 extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
735 if (Screen_fault_handler(fault_address, fault_instruction))
736 return SIGSEGV_RETURN_SUCCESS;
737 #endif
738
739 const uintptr addr = (uintptr)fault_address;
740 #if HAVE_SIGSEGV_SKIP_INSTRUCTION
741 // Ignore writes to ROM
742 if ((addr - ROM_BASE) < ROM_SIZE)
743 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
744
745 // Get program counter of target CPU
746 sheepshaver_cpu * const cpu = current_cpu;
747 const uint32 pc = cpu->pc();
748
749 // Fault in Mac ROM or RAM?
750 bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize));
751 if (mac_fault) {
752
753 // "VM settings" during MacOS 8 installation
754 if (pc == ROM_BASE + 0x488160 && cpu->gpr(20) == 0xf8000000)
755 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
756
757 // MacOS 8.5 installation
758 else if (pc == ROM_BASE + 0x488140 && cpu->gpr(16) == 0xf8000000)
759 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
760
761 // MacOS 8 serial drivers on startup
762 else if (pc == ROM_BASE + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
763 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
764
765 // MacOS 8.1 serial drivers on startup
766 else if (pc == ROM_BASE + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
767 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
768 else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
769 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
770
771 // Ignore writes to the zero page
772 else if ((uint32)(addr - SheepMem::ZeroPage()) < (uint32)SheepMem::PageSize())
773 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
774
775 // Ignore all other faults, if requested
776 if (PrefsFindBool("ignoresegv"))
777 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
778 }
779 #else
780 #error "FIXME: You don't have the capability to skip instruction within signal handlers"
781 #endif
782
783 printf("SIGSEGV\n");
784 printf(" pc %p\n", fault_instruction);
785 printf(" ea %p\n", fault_address);
786 printf(" cpu %s\n", current_cpu == main_cpu ? "main" : "interrupts");
787 dump_registers();
788 current_cpu->dump_log();
789 enter_mon();
790 QuitEmulator();
791
792 return SIGSEGV_RETURN_FAILURE;
793 }
794
795 void init_emul_ppc(void)
796 {
797 // Initialize main CPU emulator
798 main_cpu = new sheepshaver_cpu();
799 main_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
800 main_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
801 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
802
803 #if MULTICORE_CPU
804 // Initialize alternate CPU emulator to handle interrupts
805 interrupt_cpu = new sheepshaver_cpu();
806 #endif
807
808 // Install the handler for SIGSEGV
809 sigsegv_install_handler(sigsegv_handler);
810
811 #if ENABLE_MON
812 // Install "regs" command in cxmon
813 mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
814 mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
815 #endif
816
817 #if EMUL_TIME_STATS
818 emul_start_time = clock();
819 #endif
820 }
821
822 /*
823 * Deinitialize emulation
824 */
825
826 void exit_emul_ppc(void)
827 {
828 #if EMUL_TIME_STATS
829 clock_t emul_end_time = clock();
830
831 printf("### Statistics for SheepShaver emulation parts\n");
832 const clock_t emul_time = emul_end_time - emul_start_time;
833 printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
834 printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
835 (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
836
837 #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
838 printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
839 printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
840 double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
841 100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
842 } while (0)
843
844 PRINT_STATS("Execute68k[Trap] execution", exec68k);
845 PRINT_STATS("NativeOp execution", native_exec);
846 PRINT_STATS("MacOS routine execution", macos_exec);
847
848 #undef PRINT_STATS
849 printf("\n");
850 #endif
851
852 delete main_cpu;
853 #if MULTICORE_CPU
854 delete interrupt_cpu;
855 #endif
856 }
857
858 /*
859 * Emulation loop
860 */
861
862 void emul_ppc(uint32 entry)
863 {
864 current_cpu = main_cpu;
865 #if 0
866 current_cpu->start_log();
867 #endif
868 // start emulation loop and enable code translation or caching
869 current_cpu->execute(entry);
870 }
871
872 /*
873 * Handle PowerPC interrupt
874 */
875
876 #if ASYNC_IRQ
877 void HandleInterrupt(void)
878 {
879 main_cpu->handle_interrupt();
880 }
881 #else
882 void TriggerInterrupt(void)
883 {
884 #if 0
885 WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
886 #else
887 // Trigger interrupt to main cpu only
888 if (main_cpu)
889 main_cpu->trigger_interrupt();
890 #endif
891 }
892 #endif
893
894 void sheepshaver_cpu::handle_interrupt(void)
895 {
896 // Do nothing if interrupts are disabled
897 if (*(int32 *)XLM_IRQ_NEST > 0)
898 return;
899
900 // Do nothing if there is no interrupt pending
901 if (InterruptFlags == 0)
902 return;
903
904 // Disable MacOS stack sniffer
905 WriteMacInt32(0x110, 0);
906
907 // Interrupt action depends on current run mode
908 switch (ReadMacInt32(XLM_RUN_MODE)) {
909 case MODE_68K:
910 // 68k emulator active, trigger 68k interrupt level 1
911 assert(current_cpu == main_cpu);
912 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
913 set_cr(get_cr() | tswap32(kernel_data->v[0x674 >> 2]));
914 break;
915
916 #if INTERRUPTS_IN_NATIVE_MODE
917 case MODE_NATIVE:
918 // 68k emulator inactive, in nanokernel?
919 assert(current_cpu == main_cpu);
920 if (gpr(1) != KernelDataAddr) {
921 // Prepare for 68k interrupt level 1
922 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
923 WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
924 ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
925 | tswap32(kernel_data->v[0x674 >> 2]));
926
927 // Execute nanokernel interrupt routine (this will activate the 68k emulator)
928 DisableInterrupt();
929 cpu_push(interrupt_cpu);
930 if (ROMType == ROMTYPE_NEWWORLD)
931 current_cpu->interrupt(ROM_BASE + 0x312b1c);
932 else
933 current_cpu->interrupt(ROM_BASE + 0x312a3c);
934 cpu_pop();
935 }
936 break;
937 #endif
938
939 #if INTERRUPTS_IN_EMUL_OP_MODE
940 case MODE_EMUL_OP:
941 // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
942 if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
943 #if 1
944 // Execute full 68k interrupt routine
945 M68kRegisters r;
946 uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
947 WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
948 static const uint8 proc[] = {
949 0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
950 0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
951 0x40, 0xe7, // move sr,-(sp) (saved SR)
952 0x20, 0x78, 0x00, 0x064, // move.l $64,a0
953 0x4e, 0xd0, // jmp (a0)
954 M68K_RTS >> 8, M68K_RTS & 0xff // @1
955 };
956 Execute68k((uint32)proc, &r);
957 WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
958 #else
959 // Only update cursor
960 if (HasMacStarted()) {
961 if (InterruptFlags & INTFLAG_VIA) {
962 ClearInterruptFlag(INTFLAG_VIA);
963 ADBInterrupt();
964 ExecuteNative(NATIVE_VIDEO_VBL);
965 }
966 }
967 #endif
968 }
969 break;
970 #endif
971 }
972 }
973
974 static void get_resource(void);
975 static void get_1_resource(void);
976 static void get_ind_resource(void);
977 static void get_1_ind_resource(void);
978 static void r_get_resource(void);
979
980 #define GPR(REG) current_cpu->gpr(REG)
981
982 static void NativeOp(int selector)
983 {
984 #if EMUL_TIME_STATS
985 native_exec_count++;
986 const clock_t native_exec_start = clock();
987 #endif
988
989 switch (selector) {
990 case NATIVE_PATCH_NAME_REGISTRY:
991 DoPatchNameRegistry();
992 break;
993 case NATIVE_VIDEO_INSTALL_ACCEL:
994 VideoInstallAccel();
995 break;
996 case NATIVE_VIDEO_VBL:
997 VideoVBL();
998 break;
999 case NATIVE_VIDEO_DO_DRIVER_IO:
1000 GPR(3) = (int32)(int16)VideoDoDriverIO((void *)GPR(3), (void *)GPR(4),
1001 (void *)GPR(5), GPR(6), GPR(7));
1002 break;
1003 #ifdef WORDS_BIGENDIAN
1004 case NATIVE_ETHER_IRQ:
1005 EtherIRQ();
1006 break;
1007 case NATIVE_ETHER_INIT:
1008 GPR(3) = InitStreamModule((void *)GPR(3));
1009 break;
1010 case NATIVE_ETHER_TERM:
1011 TerminateStreamModule();
1012 break;
1013 case NATIVE_ETHER_OPEN:
1014 GPR(3) = ether_open((queue_t *)GPR(3), (void *)GPR(4), GPR(5), GPR(6), (void*)GPR(7));
1015 break;
1016 case NATIVE_ETHER_CLOSE:
1017 GPR(3) = ether_close((queue_t *)GPR(3), GPR(4), (void *)GPR(5));
1018 break;
1019 case NATIVE_ETHER_WPUT:
1020 GPR(3) = ether_wput((queue_t *)GPR(3), (mblk_t *)GPR(4));
1021 break;
1022 case NATIVE_ETHER_RSRV:
1023 GPR(3) = ether_rsrv((queue_t *)GPR(3));
1024 break;
1025 #else
1026 case NATIVE_ETHER_INIT:
1027 // FIXME: needs more complicated thunks
1028 GPR(3) = false;
1029 break;
1030 #endif
1031 case NATIVE_SYNC_HOOK:
1032 GPR(3) = NQD_sync_hook(GPR(3));
1033 break;
1034 case NATIVE_BITBLT_HOOK:
1035 GPR(3) = NQD_bitblt_hook(GPR(3));
1036 break;
1037 case NATIVE_BITBLT:
1038 NQD_bitblt(GPR(3));
1039 break;
1040 case NATIVE_FILLRECT_HOOK:
1041 GPR(3) = NQD_fillrect_hook(GPR(3));
1042 break;
1043 case NATIVE_INVRECT:
1044 NQD_invrect(GPR(3));
1045 break;
1046 case NATIVE_FILLRECT:
1047 NQD_fillrect(GPR(3));
1048 break;
1049 case NATIVE_SERIAL_NOTHING:
1050 case NATIVE_SERIAL_OPEN:
1051 case NATIVE_SERIAL_PRIME_IN:
1052 case NATIVE_SERIAL_PRIME_OUT:
1053 case NATIVE_SERIAL_CONTROL:
1054 case NATIVE_SERIAL_STATUS:
1055 case NATIVE_SERIAL_CLOSE: {
1056 typedef int16 (*SerialCallback)(uint32, uint32);
1057 static const SerialCallback serial_callbacks[] = {
1058 SerialNothing,
1059 SerialOpen,
1060 SerialPrimeIn,
1061 SerialPrimeOut,
1062 SerialControl,
1063 SerialStatus,
1064 SerialClose
1065 };
1066 GPR(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](GPR(3), GPR(4));
1067 break;
1068 }
1069 case NATIVE_GET_RESOURCE:
1070 case NATIVE_GET_1_RESOURCE:
1071 case NATIVE_GET_IND_RESOURCE:
1072 case NATIVE_GET_1_IND_RESOURCE:
1073 case NATIVE_R_GET_RESOURCE: {
1074 typedef void (*GetResourceCallback)(void);
1075 static const GetResourceCallback get_resource_callbacks[] = {
1076 get_resource,
1077 get_1_resource,
1078 get_ind_resource,
1079 get_1_ind_resource,
1080 r_get_resource
1081 };
1082 get_resource_callbacks[selector - NATIVE_GET_RESOURCE]();
1083 break;
1084 }
1085 case NATIVE_DISABLE_INTERRUPT:
1086 DisableInterrupt();
1087 break;
1088 case NATIVE_ENABLE_INTERRUPT:
1089 EnableInterrupt();
1090 break;
1091 case NATIVE_MAKE_EXECUTABLE:
1092 MakeExecutable(0, (void *)GPR(4), GPR(5));
1093 break;
1094 case NATIVE_CHECK_LOAD_INVOC:
1095 check_load_invoc(GPR(3), GPR(4), GPR(5));
1096 break;
1097 default:
1098 printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
1099 QuitEmulator();
1100 break;
1101 }
1102
1103 #if EMUL_TIME_STATS
1104 native_exec_time += (clock() - native_exec_start);
1105 #endif
1106 }
1107
1108 /*
1109 * Execute 68k subroutine (must be ended with EXEC_RETURN)
1110 * This must only be called by the emul_thread when in EMUL_OP mode
1111 * r->a[7] is unused, the routine runs on the caller's stack
1112 */
1113
1114 void Execute68k(uint32 pc, M68kRegisters *r)
1115 {
1116 current_cpu->execute_68k(pc, r);
1117 }
1118
1119 /*
1120 * Execute 68k A-Trap from EMUL_OP routine
1121 * r->a[7] is unused, the routine runs on the caller's stack
1122 */
1123
1124 void Execute68kTrap(uint16 trap, M68kRegisters *r)
1125 {
1126 SheepVar proc_var(4);
1127 uint32 proc = proc_var.addr();
1128 WriteMacInt16(proc, trap);
1129 WriteMacInt16(proc + 2, M68K_RTS);
1130 Execute68k(proc, r);
1131 }
1132
1133 /*
1134 * Call MacOS PPC code
1135 */
1136
1137 uint32 call_macos(uint32 tvect)
1138 {
1139 return current_cpu->execute_macos_code(tvect, 0, NULL);
1140 }
1141
1142 uint32 call_macos1(uint32 tvect, uint32 arg1)
1143 {
1144 const uint32 args[] = { arg1 };
1145 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1146 }
1147
1148 uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1149 {
1150 const uint32 args[] = { arg1, arg2 };
1151 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1152 }
1153
1154 uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1155 {
1156 const uint32 args[] = { arg1, arg2, arg3 };
1157 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1158 }
1159
1160 uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1161 {
1162 const uint32 args[] = { arg1, arg2, arg3, arg4 };
1163 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1164 }
1165
1166 uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1167 {
1168 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1169 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1170 }
1171
1172 uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1173 {
1174 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1175 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1176 }
1177
1178 uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1179 {
1180 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1181 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1182 }
1183
1184 /*
1185 * Resource Manager thunks
1186 */
1187
1188 void get_resource(void)
1189 {
1190 current_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1191 }
1192
1193 void get_1_resource(void)
1194 {
1195 current_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1196 }
1197
1198 void get_ind_resource(void)
1199 {
1200 current_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1201 }
1202
1203 void get_1_ind_resource(void)
1204 {
1205 current_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1206 }
1207
1208 void r_get_resource(void)
1209 {
1210 current_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1211 }