ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.72
Committed: 2007-01-17T06:20:36Z (17 years, 8 months ago) by gbeauche
Branch: MAIN
Changes since 1.71: +0 -1 lines
Log Message:
Remove specialised decoders. This will be done differently, if necessary.

File Contents

# User Rev Content
1 gbeauche 1.1 /*
2     * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3     *
4 gbeauche 1.57 * SheepShaver (C) 1997-2005 Christian Bauer and Marc Hellwig
5 gbeauche 1.1 *
6     * This program is free software; you can redistribute it and/or modify
7     * it under the terms of the GNU General Public License as published by
8     * the Free Software Foundation; either version 2 of the License, or
9     * (at your option) any later version.
10     *
11     * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15     *
16     * You should have received a copy of the GNU General Public License
17     * along with this program; if not, write to the Free Software
18     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19     */
20    
21     #include "sysdeps.h"
22     #include "cpu_emulation.h"
23     #include "main.h"
24 gbeauche 1.3 #include "prefs.h"
25 gbeauche 1.1 #include "xlowmem.h"
26     #include "emul_op.h"
27     #include "rom_patches.h"
28     #include "macos_util.h"
29     #include "block-alloc.hpp"
30     #include "sigsegv.h"
31     #include "cpu/ppc/ppc-cpu.hpp"
32     #include "cpu/ppc/ppc-operations.hpp"
33 gbeauche 1.18 #include "cpu/ppc/ppc-instructions.hpp"
34 gbeauche 1.21 #include "thunks.h"
35 gbeauche 1.1
36     // Used for NativeOp trampolines
37     #include "video.h"
38     #include "name_registry.h"
39     #include "serial.h"
40 gbeauche 1.16 #include "ether.h"
41 gbeauche 1.37 #include "timer.h"
42 gbeauche 1.1
43     #include <stdio.h>
44 gbeauche 1.31 #include <stdlib.h>
45 gbeauche 1.53 #ifdef HAVE_MALLOC_H
46     #include <malloc.h>
47     #endif
48 gbeauche 1.1
49 gbeauche 1.47 #ifdef USE_SDL_VIDEO
50     #include <SDL_events.h>
51     #endif
52    
53 gbeauche 1.1 #if ENABLE_MON
54     #include "mon.h"
55     #include "mon_disass.h"
56     #endif
57    
58 gbeauche 1.10 #define DEBUG 0
59 gbeauche 1.1 #include "debug.h"
60    
61 gbeauche 1.15 // Emulation time statistics
62 gbeauche 1.44 #ifndef EMUL_TIME_STATS
63     #define EMUL_TIME_STATS 0
64     #endif
65 gbeauche 1.15
66     #if EMUL_TIME_STATS
67     static clock_t emul_start_time;
68 gbeauche 1.44 static uint32 interrupt_count = 0, ppc_interrupt_count = 0;
69 gbeauche 1.15 static clock_t interrupt_time = 0;
70     static uint32 exec68k_count = 0;
71     static clock_t exec68k_time = 0;
72     static uint32 native_exec_count = 0;
73     static clock_t native_exec_time = 0;
74     static uint32 macos_exec_count = 0;
75     static clock_t macos_exec_time = 0;
76     #endif
77    
78 gbeauche 1.1 static void enter_mon(void)
79     {
80     // Start up mon in real-mode
81     #if ENABLE_MON
82     char *arg[4] = {"mon", "-m", "-r", NULL};
83     mon(3, arg);
84     #endif
85     }
86    
87 gbeauche 1.23 // From main_*.cpp
88     extern uintptr SignalStackBase();
89    
90 gbeauche 1.26 // From rsrc_patches.cpp
91     extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
92 gbeauche 1.68 extern "C" void named_check_load_invoc(uint32 type, uint32 name, uint32 h);
93 gbeauche 1.26
94 gbeauche 1.21 // PowerPC EmulOp to exit from emulation looop
95     const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
96    
97 gbeauche 1.1 // Enable Execute68k() safety checks?
98     #define SAFE_EXEC_68K 1
99    
100     // Save FP state in Execute68k()?
101     #define SAVE_FP_EXEC_68K 1
102    
103     // Interrupts in EMUL_OP mode?
104     #define INTERRUPTS_IN_EMUL_OP_MODE 1
105    
106     // Interrupts in native mode?
107     #define INTERRUPTS_IN_NATIVE_MODE 1
108    
109     // Pointer to Kernel Data
110 gbeauche 1.52 static KernelData * kernel_data;
111 gbeauche 1.1
112 gbeauche 1.17 // SIGSEGV handler
113 gbeauche 1.48 sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
114 gbeauche 1.17
115 gbeauche 1.38 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
116     // Special trampolines for EmulOp and NativeOp
117     static uint8 *emul_op_trampoline;
118     static uint8 *native_op_trampoline;
119     #endif
120    
121 gbeauche 1.20 // JIT Compiler enabled?
122     static inline bool enable_jit_p()
123     {
124     return PrefsFindBool("jit");
125     }
126    
127 gbeauche 1.1
128     /**
129     * PowerPC emulator glue with special 'sheep' opcodes
130     **/
131    
132 gbeauche 1.18 enum {
133     PPC_I(SHEEP) = PPC_I(MAX),
134     PPC_I(SHEEP_MAX)
135     };
136    
137 gbeauche 1.1 class sheepshaver_cpu
138     : public powerpc_cpu
139     {
140     void init_decoder();
141     void execute_sheep(uint32 opcode);
142    
143     public:
144    
145 gbeauche 1.10 // Constructor
146     sheepshaver_cpu();
147 gbeauche 1.1
148 gbeauche 1.24 // CR & XER accessors
149 gbeauche 1.1 uint32 get_cr() const { return cr().get(); }
150     void set_cr(uint32 v) { cr().set(v); }
151 gbeauche 1.24 uint32 get_xer() const { return xer().get(); }
152     void set_xer(uint32 v) { xer().set(v); }
153 gbeauche 1.1
154 gbeauche 1.38 // Execute NATIVE_OP routine
155     void execute_native_op(uint32 native_op);
156    
157 gbeauche 1.26 // Execute EMUL_OP routine
158     void execute_emul_op(uint32 emul_op);
159    
160 gbeauche 1.1 // Execute 68k routine
161     void execute_68k(uint32 entry, M68kRegisters *r);
162    
163 gbeauche 1.2 // Execute ppc routine
164     void execute_ppc(uint32 entry);
165    
166 gbeauche 1.1 // Execute MacOS/PPC code
167     uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
168    
169 gbeauche 1.53 #if PPC_ENABLE_JIT
170 gbeauche 1.26 // Compile one instruction
171 gbeauche 1.38 virtual int compile1(codegen_context_t & cg_context);
172 gbeauche 1.53 #endif
173 gbeauche 1.1 // Resource manager thunk
174     void get_resource(uint32 old_get_resource);
175    
176     // Handle MacOS interrupt
177 gbeauche 1.4 void interrupt(uint32 entry);
178 gbeauche 1.2
179 gbeauche 1.17 // Make sure the SIGSEGV handler can access CPU registers
180     friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
181 gbeauche 1.1 };
182    
183 gbeauche 1.10 sheepshaver_cpu::sheepshaver_cpu()
184 gbeauche 1.20 : powerpc_cpu(enable_jit_p())
185 gbeauche 1.10 {
186     init_decoder();
187     }
188    
189 gbeauche 1.1 void sheepshaver_cpu::init_decoder()
190     {
191     static const instr_info_t sheep_ii_table[] = {
192     { "sheep",
193 gbeauche 1.13 (execute_pmf)&sheepshaver_cpu::execute_sheep,
194 gbeauche 1.18 PPC_I(SHEEP),
195 gbeauche 1.7 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
196 gbeauche 1.1 }
197     };
198    
199     const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
200     D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
201    
202     for (int i = 0; i < ii_count; i++) {
203     const instr_info_t * ii = &sheep_ii_table[i];
204     init_decoder_entry(ii);
205     }
206     }
207    
208 gbeauche 1.2 /* NativeOp instruction format:
209 gbeauche 1.35 +------------+-------------------------+--+-----------+------------+
210     | 6 | |FN| OP | 2 |
211     +------------+-------------------------+--+-----------+------------+
212     0 5 |6 18 19 20 25 26 31
213 gbeauche 1.2 */
214    
215 gbeauche 1.35 typedef bit_field< 19, 19 > FN_field;
216     typedef bit_field< 20, 25 > NATIVE_OP_field;
217 gbeauche 1.2 typedef bit_field< 26, 31 > EMUL_OP_field;
218    
219 gbeauche 1.26 // Execute EMUL_OP routine
220     void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
221     {
222     M68kRegisters r68;
223     WriteMacInt32(XLM_68K_R25, gpr(25));
224     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
225     for (int i = 0; i < 8; i++)
226     r68.d[i] = gpr(8 + i);
227     for (int i = 0; i < 7; i++)
228     r68.a[i] = gpr(16 + i);
229     r68.a[7] = gpr(1);
230 gbeauche 1.62 uint32 saved_cr = get_cr() & 0xff9fffff; // mask_operand::compute(11, 8)
231 gbeauche 1.26 uint32 saved_xer = get_xer();
232     EmulOp(&r68, gpr(24), emul_op);
233     set_cr(saved_cr);
234     set_xer(saved_xer);
235     for (int i = 0; i < 8; i++)
236     gpr(8 + i) = r68.d[i];
237     for (int i = 0; i < 7; i++)
238     gpr(16 + i) = r68.a[i];
239     gpr(1) = r68.a[7];
240     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
241     }
242    
243 gbeauche 1.1 // Execute SheepShaver instruction
244     void sheepshaver_cpu::execute_sheep(uint32 opcode)
245     {
246     // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
247     assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
248    
249     switch (opcode & 0x3f) {
250     case 0: // EMUL_RETURN
251     QuitEmulator();
252     break;
253 gbeauche 1.8
254 gbeauche 1.1 case 1: // EXEC_RETURN
255 gbeauche 1.12 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
256 gbeauche 1.1 break;
257    
258     case 2: // EXEC_NATIVE
259 gbeauche 1.38 execute_native_op(NATIVE_OP_field::extract(opcode));
260 gbeauche 1.2 if (FN_field::test(opcode))
261     pc() = lr();
262     else
263     pc() += 4;
264 gbeauche 1.1 break;
265    
266 gbeauche 1.26 default: // EMUL_OP
267     execute_emul_op(EMUL_OP_field::extract(opcode) - 3);
268     pc() += 4;
269     break;
270     }
271     }
272    
273     // Compile one instruction
274 gbeauche 1.53 #if PPC_ENABLE_JIT
275 gbeauche 1.38 int sheepshaver_cpu::compile1(codegen_context_t & cg_context)
276 gbeauche 1.26 {
277     const instr_info_t *ii = cg_context.instr_info;
278     if (ii->mnemo != PPC_I(SHEEP))
279 gbeauche 1.38 return COMPILE_FAILURE;
280 gbeauche 1.26
281 gbeauche 1.38 int status = COMPILE_FAILURE;
282 gbeauche 1.26 powerpc_dyngen & dg = cg_context.codegen;
283     uint32 opcode = cg_context.opcode;
284    
285     switch (opcode & 0x3f) {
286     case 0: // EMUL_RETURN
287     dg.gen_invoke(QuitEmulator);
288 gbeauche 1.38 status = COMPILE_CODE_OK;
289 gbeauche 1.26 break;
290    
291     case 1: // EXEC_RETURN
292     dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
293 gbeauche 1.38 // Don't check for pending interrupts, we do know we have to
294     // get out of this block ASAP
295     dg.gen_exec_return();
296     status = COMPILE_EPILOGUE_OK;
297 gbeauche 1.26 break;
298    
299     case 2: { // EXEC_NATIVE
300     uint32 selector = NATIVE_OP_field::extract(opcode);
301     switch (selector) {
302 gbeauche 1.38 #if !PPC_REENTRANT_JIT
303     // Filter out functions that may invoke Execute68k() or
304     // CallMacOS(), this would break reentrancy as they could
305     // invalidate the translation cache and even overwrite
306     // continuation code when we are done with them.
307 gbeauche 1.26 case NATIVE_PATCH_NAME_REGISTRY:
308     dg.gen_invoke(DoPatchNameRegistry);
309 gbeauche 1.38 status = COMPILE_CODE_OK;
310 gbeauche 1.26 break;
311     case NATIVE_VIDEO_INSTALL_ACCEL:
312     dg.gen_invoke(VideoInstallAccel);
313 gbeauche 1.38 status = COMPILE_CODE_OK;
314 gbeauche 1.26 break;
315     case NATIVE_VIDEO_VBL:
316     dg.gen_invoke(VideoVBL);
317 gbeauche 1.38 status = COMPILE_CODE_OK;
318 gbeauche 1.26 break;
319     case NATIVE_GET_RESOURCE:
320     case NATIVE_GET_1_RESOURCE:
321     case NATIVE_GET_IND_RESOURCE:
322     case NATIVE_GET_1_IND_RESOURCE:
323     case NATIVE_R_GET_RESOURCE: {
324     static const uint32 get_resource_ptr[] = {
325     XLM_GET_RESOURCE,
326     XLM_GET_1_RESOURCE,
327     XLM_GET_IND_RESOURCE,
328     XLM_GET_1_IND_RESOURCE,
329     XLM_R_GET_RESOURCE
330     };
331     uint32 old_get_resource = ReadMacInt32(get_resource_ptr[selector - NATIVE_GET_RESOURCE]);
332     typedef void (*func_t)(dyngen_cpu_base, uint32);
333     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
334     dg.gen_invoke_CPU_im(func, old_get_resource);
335 gbeauche 1.38 status = COMPILE_CODE_OK;
336 gbeauche 1.26 break;
337     }
338 gbeauche 1.70 #endif
339 gbeauche 1.26 case NATIVE_CHECK_LOAD_INVOC:
340     dg.gen_load_T0_GPR(3);
341     dg.gen_load_T1_GPR(4);
342     dg.gen_se_16_32_T1();
343     dg.gen_load_T2_GPR(5);
344     dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
345 gbeauche 1.38 status = COMPILE_CODE_OK;
346     break;
347 gbeauche 1.68 case NATIVE_NAMED_CHECK_LOAD_INVOC:
348     dg.gen_load_T0_GPR(3);
349     dg.gen_load_T1_GPR(4);
350     dg.gen_load_T2_GPR(5);
351     dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))named_check_load_invoc);
352     status = COMPILE_CODE_OK;
353     break;
354 gbeauche 1.70 case NATIVE_NQD_SYNC_HOOK:
355     dg.gen_load_T0_GPR(3);
356     dg.gen_invoke_T0_ret_T0((uint32 (*)(uint32))NQD_sync_hook);
357     dg.gen_store_T0_GPR(3);
358     status = COMPILE_CODE_OK;
359     break;
360     case NATIVE_NQD_BITBLT_HOOK:
361     dg.gen_load_T0_GPR(3);
362     dg.gen_invoke_T0_ret_T0((uint32 (*)(uint32))NQD_bitblt_hook);
363     dg.gen_store_T0_GPR(3);
364     status = COMPILE_CODE_OK;
365     break;
366     case NATIVE_NQD_FILLRECT_HOOK:
367     dg.gen_load_T0_GPR(3);
368     dg.gen_invoke_T0_ret_T0((uint32 (*)(uint32))NQD_fillrect_hook);
369     dg.gen_store_T0_GPR(3);
370     status = COMPILE_CODE_OK;
371     break;
372     case NATIVE_NQD_UNKNOWN_HOOK:
373     dg.gen_load_T0_GPR(3);
374     dg.gen_invoke_T0_ret_T0((uint32 (*)(uint32))NQD_unknown_hook);
375     dg.gen_store_T0_GPR(3);
376     status = COMPILE_CODE_OK;
377     break;
378 gbeauche 1.69 case NATIVE_NQD_BITBLT:
379 gbeauche 1.35 dg.gen_load_T0_GPR(3);
380     dg.gen_invoke_T0((void (*)(uint32))NQD_bitblt);
381 gbeauche 1.38 status = COMPILE_CODE_OK;
382 gbeauche 1.35 break;
383 gbeauche 1.69 case NATIVE_NQD_INVRECT:
384 gbeauche 1.35 dg.gen_load_T0_GPR(3);
385     dg.gen_invoke_T0((void (*)(uint32))NQD_invrect);
386 gbeauche 1.38 status = COMPILE_CODE_OK;
387 gbeauche 1.35 break;
388 gbeauche 1.69 case NATIVE_NQD_FILLRECT:
389 gbeauche 1.35 dg.gen_load_T0_GPR(3);
390     dg.gen_invoke_T0((void (*)(uint32))NQD_fillrect);
391 gbeauche 1.38 status = COMPILE_CODE_OK;
392 gbeauche 1.26 break;
393     }
394 gbeauche 1.38 // Could we fully translate this NativeOp?
395 gbeauche 1.42 if (status == COMPILE_CODE_OK) {
396     if (!FN_field::test(opcode))
397     cg_context.done_compile = false;
398     else {
399 gbeauche 1.71 dg.gen_load_T0_LR_aligned();
400     dg.gen_set_PC_T0();
401 gbeauche 1.42 cg_context.done_compile = true;
402 gbeauche 1.26 }
403 gbeauche 1.38 break;
404     }
405     #if PPC_REENTRANT_JIT
406     // Try to execute NativeOp trampoline
407 gbeauche 1.42 if (!FN_field::test(opcode))
408     dg.gen_set_PC_im(cg_context.pc + 4);
409     else {
410 gbeauche 1.71 dg.gen_load_T0_LR_aligned();
411     dg.gen_set_PC_T0();
412 gbeauche 1.42 }
413 gbeauche 1.38 dg.gen_mov_32_T0_im(selector);
414     dg.gen_jmp(native_op_trampoline);
415     cg_context.done_compile = true;
416     status = COMPILE_EPILOGUE_OK;
417     break;
418     #endif
419     // Invoke NativeOp handler
420 gbeauche 1.42 if (!FN_field::test(opcode)) {
421     typedef void (*func_t)(dyngen_cpu_base, uint32);
422     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
423     dg.gen_invoke_CPU_im(func, selector);
424     cg_context.done_compile = false;
425     status = COMPILE_CODE_OK;
426     }
427     // Otherwise, let it generate a call to execute_sheep() which
428     // will cause necessary updates to the program counter
429 gbeauche 1.26 break;
430     }
431    
432 gbeauche 1.1 default: { // EMUL_OP
433 gbeauche 1.37 uint32 emul_op = EMUL_OP_field::extract(opcode) - 3;
434 gbeauche 1.38 #if PPC_REENTRANT_JIT
435     // Try to execute EmulOp trampoline
436     dg.gen_set_PC_im(cg_context.pc + 4);
437     dg.gen_mov_32_T0_im(emul_op);
438     dg.gen_jmp(emul_op_trampoline);
439     cg_context.done_compile = true;
440     status = COMPILE_EPILOGUE_OK;
441     break;
442     #endif
443     // Invoke EmulOp handler
444 gbeauche 1.26 typedef void (*func_t)(dyngen_cpu_base, uint32);
445     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
446 gbeauche 1.37 dg.gen_invoke_CPU_im(func, emul_op);
447 gbeauche 1.26 cg_context.done_compile = false;
448 gbeauche 1.38 status = COMPILE_CODE_OK;
449 gbeauche 1.1 break;
450     }
451     }
452 gbeauche 1.38 return status;
453 gbeauche 1.53 }
454 gbeauche 1.26 #endif
455 gbeauche 1.1
456     // Handle MacOS interrupt
457 gbeauche 1.4 void sheepshaver_cpu::interrupt(uint32 entry)
458 gbeauche 1.1 {
459 gbeauche 1.15 #if EMUL_TIME_STATS
460 gbeauche 1.44 ppc_interrupt_count++;
461 gbeauche 1.15 const clock_t interrupt_start = clock();
462     #endif
463    
464 gbeauche 1.2 // Save program counters and branch registers
465     uint32 saved_pc = pc();
466     uint32 saved_lr = lr();
467     uint32 saved_ctr= ctr();
468 gbeauche 1.4 uint32 saved_sp = gpr(1);
469 gbeauche 1.2
470 gbeauche 1.4 // Initialize stack pointer to SheepShaver alternate stack base
471 gbeauche 1.23 gpr(1) = SignalStackBase() - 64;
472 gbeauche 1.1
473     // Build trampoline to return from interrupt
474 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
475 gbeauche 1.1
476     // Prepare registers for nanokernel interrupt routine
477 gbeauche 1.5 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
478     kernel_data->v[0x018 >> 2] = htonl(gpr(6));
479 gbeauche 1.1
480 gbeauche 1.5 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
481 gbeauche 1.2 assert(gpr(6) != 0);
482 gbeauche 1.1 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
483     WriteMacInt32(gpr(6) + 0x144, gpr(8));
484     WriteMacInt32(gpr(6) + 0x14c, gpr(9));
485     WriteMacInt32(gpr(6) + 0x154, gpr(10));
486     WriteMacInt32(gpr(6) + 0x15c, gpr(11));
487     WriteMacInt32(gpr(6) + 0x164, gpr(12));
488     WriteMacInt32(gpr(6) + 0x16c, gpr(13));
489    
490     gpr(1) = KernelDataAddr;
491 gbeauche 1.5 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
492 gbeauche 1.1 gpr(8) = 0;
493 gbeauche 1.21 gpr(10) = trampoline.addr();
494     gpr(12) = trampoline.addr();
495 gbeauche 1.8 gpr(13) = get_cr();
496 gbeauche 1.1
497     // rlwimi. r7,r7,8,0,0
498     uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
499     record_cr0(result);
500     gpr(7) = result;
501    
502     gpr(11) = 0xf072; // MSR (SRR1)
503 gbeauche 1.8 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
504 gbeauche 1.1
505     // Enter nanokernel
506     execute(entry);
507    
508 gbeauche 1.2 // Restore program counters and branch registers
509     pc() = saved_pc;
510     lr() = saved_lr;
511     ctr()= saved_ctr;
512 gbeauche 1.4 gpr(1) = saved_sp;
513 gbeauche 1.15
514     #if EMUL_TIME_STATS
515     interrupt_time += (clock() - interrupt_start);
516     #endif
517 gbeauche 1.1 }
518    
519     // Execute 68k routine
520     void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
521     {
522 gbeauche 1.15 #if EMUL_TIME_STATS
523     exec68k_count++;
524     const clock_t exec68k_start = clock();
525     #endif
526    
527 gbeauche 1.1 #if SAFE_EXEC_68K
528     if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
529     printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
530     #endif
531    
532     // Save program counters and branch registers
533     uint32 saved_pc = pc();
534     uint32 saved_lr = lr();
535     uint32 saved_ctr= ctr();
536 gbeauche 1.8 uint32 saved_cr = get_cr();
537 gbeauche 1.1
538     // Create MacOS stack frame
539 gbeauche 1.6 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
540 gbeauche 1.1 uint32 sp = gpr(1);
541 gbeauche 1.6 gpr(1) -= 56;
542 gbeauche 1.1 WriteMacInt32(gpr(1), sp);
543    
544     // Save PowerPC registers
545 gbeauche 1.6 uint32 saved_GPRs[19];
546     memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
547 gbeauche 1.1 #if SAVE_FP_EXEC_68K
548 gbeauche 1.6 double saved_FPRs[18];
549     memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
550 gbeauche 1.1 #endif
551    
552     // Setup registers for 68k emulator
553 gbeauche 1.2 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
554 gbeauche 1.1 for (int i = 0; i < 8; i++) // d[0]..d[7]
555     gpr(8 + i) = r->d[i];
556     for (int i = 0; i < 7; i++) // a[0]..a[6]
557     gpr(16 + i) = r->a[i];
558     gpr(23) = 0;
559     gpr(24) = entry;
560     gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
561     gpr(26) = 0;
562     gpr(28) = 0; // VBR
563 gbeauche 1.5 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
564     gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
565 gbeauche 1.1 gpr(31) = KernelDataAddr + 0x1000;
566    
567     // Push return address (points to EXEC_RETURN opcode) on stack
568     gpr(1) -= 4;
569     WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
570    
571     // Rentering 68k emulator
572     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
573    
574     // Set r0 to 0 for 68k emulator
575     gpr(0) = 0;
576    
577     // Execute 68k opcode
578     uint32 opcode = ReadMacInt16(gpr(24));
579     gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
580     gpr(29) += opcode * 8;
581     execute(gpr(29));
582    
583     // Save r25 (contains current 68k interrupt level)
584     WriteMacInt32(XLM_68K_R25, gpr(25));
585    
586     // Reentering EMUL_OP mode
587     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
588    
589     // Save 68k registers
590     for (int i = 0; i < 8; i++) // d[0]..d[7]
591     r->d[i] = gpr(8 + i);
592     for (int i = 0; i < 7; i++) // a[0]..a[6]
593     r->a[i] = gpr(16 + i);
594    
595     // Restore PowerPC registers
596 gbeauche 1.6 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
597 gbeauche 1.1 #if SAVE_FP_EXEC_68K
598 gbeauche 1.6 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
599 gbeauche 1.1 #endif
600    
601     // Cleanup stack
602 gbeauche 1.6 gpr(1) += 56;
603 gbeauche 1.1
604     // Restore program counters and branch registers
605     pc() = saved_pc;
606     lr() = saved_lr;
607     ctr()= saved_ctr;
608 gbeauche 1.8 set_cr(saved_cr);
609 gbeauche 1.15
610     #if EMUL_TIME_STATS
611     exec68k_time += (clock() - exec68k_start);
612     #endif
613 gbeauche 1.1 }
614    
615     // Call MacOS PPC code
616     uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
617     {
618 gbeauche 1.15 #if EMUL_TIME_STATS
619     macos_exec_count++;
620     const clock_t macos_exec_start = clock();
621     #endif
622    
623 gbeauche 1.1 // Save program counters and branch registers
624     uint32 saved_pc = pc();
625     uint32 saved_lr = lr();
626     uint32 saved_ctr= ctr();
627    
628     // Build trampoline with EXEC_RETURN
629 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
630     lr() = trampoline.addr();
631 gbeauche 1.1
632     gpr(1) -= 64; // Create stack frame
633     uint32 proc = ReadMacInt32(tvect); // Get routine address
634     uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
635    
636     // Save PowerPC registers
637     uint32 regs[8];
638     regs[0] = gpr(2);
639     for (int i = 0; i < nargs; i++)
640     regs[i + 1] = gpr(i + 3);
641    
642     // Prepare and call MacOS routine
643     gpr(2) = toc;
644     for (int i = 0; i < nargs; i++)
645     gpr(i + 3) = args[i];
646     execute(proc);
647     uint32 retval = gpr(3);
648    
649     // Restore PowerPC registers
650     for (int i = 0; i <= nargs; i++)
651     gpr(i + 2) = regs[i];
652    
653     // Cleanup stack
654     gpr(1) += 64;
655    
656     // Restore program counters and branch registers
657     pc() = saved_pc;
658     lr() = saved_lr;
659     ctr()= saved_ctr;
660    
661 gbeauche 1.15 #if EMUL_TIME_STATS
662     macos_exec_time += (clock() - macos_exec_start);
663     #endif
664    
665 gbeauche 1.1 return retval;
666     }
667    
668 gbeauche 1.2 // Execute ppc routine
669     inline void sheepshaver_cpu::execute_ppc(uint32 entry)
670     {
671     // Save branch registers
672     uint32 saved_lr = lr();
673    
674 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
675     WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
676     lr() = trampoline.addr();
677 gbeauche 1.2
678     execute(entry);
679    
680     // Restore branch registers
681     lr() = saved_lr;
682     }
683    
684 gbeauche 1.1 // Resource Manager thunk
685     inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
686     {
687 gbeauche 1.2 uint32 type = gpr(3);
688     int16 id = gpr(4);
689    
690     // Create stack frame
691     gpr(1) -= 56;
692    
693     // Call old routine
694     execute_ppc(old_get_resource);
695    
696     // Call CheckLoad()
697 gbeauche 1.5 uint32 handle = gpr(3);
698 gbeauche 1.2 check_load_invoc(type, id, handle);
699 gbeauche 1.5 gpr(3) = handle;
700 gbeauche 1.2
701     // Cleanup stack
702     gpr(1) += 56;
703 gbeauche 1.1 }
704    
705    
706     /**
707     * SheepShaver CPU engine interface
708     **/
709    
710 gbeauche 1.41 // PowerPC CPU emulator
711     static sheepshaver_cpu *ppc_cpu = NULL;
712 gbeauche 1.1
713 gbeauche 1.7 void FlushCodeCache(uintptr start, uintptr end)
714     {
715     D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
716 gbeauche 1.41 ppc_cpu->invalidate_cache_range(start, end);
717 gbeauche 1.2 }
718    
719 gbeauche 1.1 // Dump PPC registers
720     static void dump_registers(void)
721     {
722 gbeauche 1.41 ppc_cpu->dump_registers();
723 gbeauche 1.1 }
724    
725     // Dump log
726     static void dump_log(void)
727     {
728 gbeauche 1.41 ppc_cpu->dump_log();
729 gbeauche 1.1 }
730    
731     /*
732     * Initialize CPU emulation
733     */
734    
735 gbeauche 1.48 sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
736 gbeauche 1.1 {
737     #if ENABLE_VOSF
738 gbeauche 1.3 // Handle screen fault
739     extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
740     if (Screen_fault_handler(fault_address, fault_instruction))
741     return SIGSEGV_RETURN_SUCCESS;
742 gbeauche 1.1 #endif
743 gbeauche 1.3
744     const uintptr addr = (uintptr)fault_address;
745     #if HAVE_SIGSEGV_SKIP_INSTRUCTION
746     // Ignore writes to ROM
747 gbeauche 1.52 if ((addr - (uintptr)ROMBaseHost) < ROM_SIZE)
748 gbeauche 1.3 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
749    
750 gbeauche 1.17 // Get program counter of target CPU
751 gbeauche 1.41 sheepshaver_cpu * const cpu = ppc_cpu;
752 gbeauche 1.17 const uint32 pc = cpu->pc();
753    
754     // Fault in Mac ROM or RAM?
755 gbeauche 1.43 bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize)) || (pc >= DR_CACHE_BASE && pc < (DR_CACHE_BASE + DR_CACHE_SIZE));
756 gbeauche 1.17 if (mac_fault) {
757    
758     // "VM settings" during MacOS 8 installation
759     if (pc == ROM_BASE + 0x488160 && cpu->gpr(20) == 0xf8000000)
760     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
761    
762     // MacOS 8.5 installation
763     else if (pc == ROM_BASE + 0x488140 && cpu->gpr(16) == 0xf8000000)
764     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
765    
766     // MacOS 8 serial drivers on startup
767     else if (pc == ROM_BASE + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
768     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
769    
770     // MacOS 8.1 serial drivers on startup
771     else if (pc == ROM_BASE + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
772     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
773     else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
774     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
775 gbeauche 1.43
776     // MacOS 8.6 serial drivers on startup (with DR Cache and OldWorld ROM)
777     else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(16) == 0xf3012002 || cpu->gpr(16) == 0xf3012000))
778     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
779     else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
780     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
781 gbeauche 1.17
782 gbeauche 1.30 // Ignore writes to the zero page
783     else if ((uint32)(addr - SheepMem::ZeroPage()) < (uint32)SheepMem::PageSize())
784     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
785    
786 gbeauche 1.17 // Ignore all other faults, if requested
787     if (PrefsFindBool("ignoresegv"))
788     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
789     }
790 gbeauche 1.3 #else
791     #error "FIXME: You don't have the capability to skip instruction within signal handlers"
792 gbeauche 1.1 #endif
793 gbeauche 1.3
794 gbeauche 1.60 fprintf(stderr, "SIGSEGV\n");
795     fprintf(stderr, " pc %p\n", fault_instruction);
796     fprintf(stderr, " ea %p\n", fault_address);
797 gbeauche 1.1 dump_registers();
798 gbeauche 1.41 ppc_cpu->dump_log();
799 gbeauche 1.1 enter_mon();
800     QuitEmulator();
801 gbeauche 1.3
802     return SIGSEGV_RETURN_FAILURE;
803 gbeauche 1.1 }
804    
805     void init_emul_ppc(void)
806     {
807 gbeauche 1.52 // Get pointer to KernelData in host address space
808     kernel_data = (KernelData *)Mac2HostAddr(KERNEL_DATA_BASE);
809    
810 gbeauche 1.1 // Initialize main CPU emulator
811 gbeauche 1.41 ppc_cpu = new sheepshaver_cpu();
812     ppc_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
813     ppc_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
814 gbeauche 1.1 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
815    
816     #if ENABLE_MON
817     // Install "regs" command in cxmon
818     mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
819     mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
820     #endif
821 gbeauche 1.15
822     #if EMUL_TIME_STATS
823     emul_start_time = clock();
824     #endif
825 gbeauche 1.1 }
826    
827     /*
828 gbeauche 1.14 * Deinitialize emulation
829     */
830    
831     void exit_emul_ppc(void)
832     {
833 gbeauche 1.15 #if EMUL_TIME_STATS
834     clock_t emul_end_time = clock();
835    
836     printf("### Statistics for SheepShaver emulation parts\n");
837     const clock_t emul_time = emul_end_time - emul_start_time;
838     printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
839     printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
840     (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
841 gbeauche 1.44 printf("Total ppc interrupt count: %d (%2.1f %%)\n", ppc_interrupt_count,
842     (double(ppc_interrupt_count) * 100.0) / double(interrupt_count));
843 gbeauche 1.15
844     #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
845     printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
846     printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
847     double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
848     100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
849     } while (0)
850    
851     PRINT_STATS("Execute68k[Trap] execution", exec68k);
852     PRINT_STATS("NativeOp execution", native_exec);
853     PRINT_STATS("MacOS routine execution", macos_exec);
854    
855     #undef PRINT_STATS
856     printf("\n");
857     #endif
858    
859 gbeauche 1.41 delete ppc_cpu;
860 gbeauche 1.67 ppc_cpu = NULL;
861 gbeauche 1.14 }
862    
863 gbeauche 1.38 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
864     // Initialize EmulOp trampolines
865     void init_emul_op_trampolines(basic_dyngen & dg)
866     {
867     typedef void (*func_t)(dyngen_cpu_base, uint32);
868     func_t func;
869    
870     // EmulOp
871     emul_op_trampoline = dg.gen_start();
872     func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
873     dg.gen_invoke_CPU_T0(func);
874     dg.gen_exec_return();
875     dg.gen_end();
876    
877     // NativeOp
878     native_op_trampoline = dg.gen_start();
879     func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
880     dg.gen_invoke_CPU_T0(func);
881     dg.gen_exec_return();
882     dg.gen_end();
883    
884     D(bug("EmulOp trampoline: %p\n", emul_op_trampoline));
885     D(bug("NativeOp trampoline: %p\n", native_op_trampoline));
886     }
887     #endif
888    
889 gbeauche 1.14 /*
890 gbeauche 1.1 * Emulation loop
891     */
892    
893     void emul_ppc(uint32 entry)
894     {
895 gbeauche 1.24 #if 0
896 gbeauche 1.41 ppc_cpu->start_log();
897 gbeauche 1.10 #endif
898     // start emulation loop and enable code translation or caching
899 gbeauche 1.41 ppc_cpu->execute(entry);
900 gbeauche 1.1 }
901    
902     /*
903     * Handle PowerPC interrupt
904     */
905    
906 gbeauche 1.2 void TriggerInterrupt(void)
907     {
908 gbeauche 1.64 idle_resume();
909 gbeauche 1.2 #if 0
910     WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
911     #else
912 gbeauche 1.10 // Trigger interrupt to main cpu only
913 gbeauche 1.41 if (ppc_cpu)
914     ppc_cpu->trigger_interrupt();
915 gbeauche 1.2 #endif
916     }
917    
918 gbeauche 1.58 void HandleInterrupt(powerpc_registers *r)
919 gbeauche 1.1 {
920 gbeauche 1.47 #ifdef USE_SDL_VIDEO
921     // We must fill in the events queue in the same thread that did call SDL_SetVideoMode()
922     SDL_PumpEvents();
923     #endif
924    
925 gbeauche 1.1 // Do nothing if interrupts are disabled
926 gbeauche 1.46 if (int32(ReadMacInt32(XLM_IRQ_NEST)) > 0)
927 gbeauche 1.1 return;
928    
929 gbeauche 1.63 // Update interrupt count
930 gbeauche 1.44 #if EMUL_TIME_STATS
931     interrupt_count++;
932     #endif
933 gbeauche 1.40
934 gbeauche 1.1 // Interrupt action depends on current run mode
935     switch (ReadMacInt32(XLM_RUN_MODE)) {
936     case MODE_68K:
937     // 68k emulator active, trigger 68k interrupt level 1
938     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
939 gbeauche 1.58 r->cr.set(r->cr.get() | tswap32(kernel_data->v[0x674 >> 2]));
940 gbeauche 1.1 break;
941    
942     #if INTERRUPTS_IN_NATIVE_MODE
943     case MODE_NATIVE:
944     // 68k emulator inactive, in nanokernel?
945 gbeauche 1.63 if (r->gpr[1] != KernelDataAddr) {
946 gbeauche 1.39
947 gbeauche 1.1 // Prepare for 68k interrupt level 1
948     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
949     WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
950     ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
951     | tswap32(kernel_data->v[0x674 >> 2]));
952    
953     // Execute nanokernel interrupt routine (this will activate the 68k emulator)
954 gbeauche 1.2 DisableInterrupt();
955 gbeauche 1.1 if (ROMType == ROMTYPE_NEWWORLD)
956 gbeauche 1.41 ppc_cpu->interrupt(ROM_BASE + 0x312b1c);
957 gbeauche 1.1 else
958 gbeauche 1.41 ppc_cpu->interrupt(ROM_BASE + 0x312a3c);
959 gbeauche 1.1 }
960     break;
961     #endif
962    
963     #if INTERRUPTS_IN_EMUL_OP_MODE
964     case MODE_EMUL_OP:
965     // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
966     if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
967 gbeauche 1.44 #if EMUL_TIME_STATS
968     const clock_t interrupt_start = clock();
969     #endif
970 gbeauche 1.1 #if 1
971     // Execute full 68k interrupt routine
972     M68kRegisters r;
973     uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
974     WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
975 gbeauche 1.53 static const uint8 proc_template[] = {
976 gbeauche 1.2 0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
977     0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
978     0x40, 0xe7, // move sr,-(sp) (saved SR)
979     0x20, 0x78, 0x00, 0x064, // move.l $64,a0
980     0x4e, 0xd0, // jmp (a0)
981     M68K_RTS >> 8, M68K_RTS & 0xff // @1
982 gbeauche 1.1 };
983 gbeauche 1.53 BUILD_SHEEPSHAVER_PROCEDURE(proc);
984     Execute68k(proc, &r);
985 gbeauche 1.1 WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
986     #else
987     // Only update cursor
988     if (HasMacStarted()) {
989     if (InterruptFlags & INTFLAG_VIA) {
990     ClearInterruptFlag(INTFLAG_VIA);
991     ADBInterrupt();
992 gbeauche 1.22 ExecuteNative(NATIVE_VIDEO_VBL);
993 gbeauche 1.1 }
994     }
995     #endif
996 gbeauche 1.44 #if EMUL_TIME_STATS
997     interrupt_time += (clock() - interrupt_start);
998     #endif
999 gbeauche 1.1 }
1000     break;
1001     #endif
1002     }
1003     }
1004    
1005 gbeauche 1.38 // Execute NATIVE_OP routine
1006     void sheepshaver_cpu::execute_native_op(uint32 selector)
1007 gbeauche 1.1 {
1008 gbeauche 1.15 #if EMUL_TIME_STATS
1009     native_exec_count++;
1010     const clock_t native_exec_start = clock();
1011     #endif
1012    
1013 gbeauche 1.1 switch (selector) {
1014     case NATIVE_PATCH_NAME_REGISTRY:
1015     DoPatchNameRegistry();
1016     break;
1017     case NATIVE_VIDEO_INSTALL_ACCEL:
1018     VideoInstallAccel();
1019     break;
1020     case NATIVE_VIDEO_VBL:
1021     VideoVBL();
1022     break;
1023     case NATIVE_VIDEO_DO_DRIVER_IO:
1024 gbeauche 1.52 gpr(3) = (int32)(int16)VideoDoDriverIO(gpr(3), gpr(4), gpr(5), gpr(6), gpr(7));
1025 gbeauche 1.1 break;
1026 gbeauche 1.65 case NATIVE_ETHER_AO_GET_HWADDR:
1027     AO_get_ethernet_address(gpr(3));
1028     break;
1029     case NATIVE_ETHER_AO_ADD_MULTI:
1030     AO_enable_multicast(gpr(3));
1031     break;
1032     case NATIVE_ETHER_AO_DEL_MULTI:
1033     AO_disable_multicast(gpr(3));
1034     break;
1035     case NATIVE_ETHER_AO_SEND_PACKET:
1036     AO_transmit_packet(gpr(3));
1037     break;
1038 gbeauche 1.16 case NATIVE_ETHER_IRQ:
1039     EtherIRQ();
1040     break;
1041     case NATIVE_ETHER_INIT:
1042 gbeauche 1.38 gpr(3) = InitStreamModule((void *)gpr(3));
1043 gbeauche 1.16 break;
1044     case NATIVE_ETHER_TERM:
1045     TerminateStreamModule();
1046     break;
1047     case NATIVE_ETHER_OPEN:
1048 gbeauche 1.38 gpr(3) = ether_open((queue_t *)gpr(3), (void *)gpr(4), gpr(5), gpr(6), (void*)gpr(7));
1049 gbeauche 1.1 break;
1050 gbeauche 1.16 case NATIVE_ETHER_CLOSE:
1051 gbeauche 1.38 gpr(3) = ether_close((queue_t *)gpr(3), gpr(4), (void *)gpr(5));
1052 gbeauche 1.1 break;
1053 gbeauche 1.16 case NATIVE_ETHER_WPUT:
1054 gbeauche 1.38 gpr(3) = ether_wput((queue_t *)gpr(3), (mblk_t *)gpr(4));
1055 gbeauche 1.1 break;
1056 gbeauche 1.16 case NATIVE_ETHER_RSRV:
1057 gbeauche 1.38 gpr(3) = ether_rsrv((queue_t *)gpr(3));
1058 gbeauche 1.1 break;
1059 gbeauche 1.69 case NATIVE_NQD_SYNC_HOOK:
1060 gbeauche 1.38 gpr(3) = NQD_sync_hook(gpr(3));
1061 gbeauche 1.32 break;
1062 gbeauche 1.70 case NATIVE_NQD_UNKNOWN_HOOK:
1063     gpr(3) = NQD_unknown_hook(gpr(3));
1064     break;
1065 gbeauche 1.69 case NATIVE_NQD_BITBLT_HOOK:
1066 gbeauche 1.38 gpr(3) = NQD_bitblt_hook(gpr(3));
1067 gbeauche 1.32 break;
1068 gbeauche 1.69 case NATIVE_NQD_BITBLT:
1069 gbeauche 1.38 NQD_bitblt(gpr(3));
1070 gbeauche 1.32 break;
1071 gbeauche 1.69 case NATIVE_NQD_FILLRECT_HOOK:
1072 gbeauche 1.38 gpr(3) = NQD_fillrect_hook(gpr(3));
1073 gbeauche 1.32 break;
1074 gbeauche 1.69 case NATIVE_NQD_INVRECT:
1075 gbeauche 1.38 NQD_invrect(gpr(3));
1076 gbeauche 1.32 break;
1077 gbeauche 1.69 case NATIVE_NQD_FILLRECT:
1078 gbeauche 1.38 NQD_fillrect(gpr(3));
1079 gbeauche 1.32 break;
1080 gbeauche 1.1 case NATIVE_SERIAL_NOTHING:
1081     case NATIVE_SERIAL_OPEN:
1082     case NATIVE_SERIAL_PRIME_IN:
1083     case NATIVE_SERIAL_PRIME_OUT:
1084     case NATIVE_SERIAL_CONTROL:
1085     case NATIVE_SERIAL_STATUS:
1086     case NATIVE_SERIAL_CLOSE: {
1087     typedef int16 (*SerialCallback)(uint32, uint32);
1088     static const SerialCallback serial_callbacks[] = {
1089     SerialNothing,
1090     SerialOpen,
1091     SerialPrimeIn,
1092     SerialPrimeOut,
1093     SerialControl,
1094     SerialStatus,
1095     SerialClose
1096     };
1097 gbeauche 1.38 gpr(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](gpr(3), gpr(4));
1098 gbeauche 1.16 break;
1099     }
1100     case NATIVE_GET_RESOURCE:
1101 gbeauche 1.68 get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1102     break;
1103 gbeauche 1.16 case NATIVE_GET_1_RESOURCE:
1104 gbeauche 1.68 get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1105     break;
1106 gbeauche 1.16 case NATIVE_GET_IND_RESOURCE:
1107 gbeauche 1.68 get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1108     break;
1109 gbeauche 1.16 case NATIVE_GET_1_IND_RESOURCE:
1110 gbeauche 1.68 get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1111     break;
1112     case NATIVE_R_GET_RESOURCE:
1113     get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1114 gbeauche 1.1 break;
1115 gbeauche 1.7 case NATIVE_MAKE_EXECUTABLE:
1116 gbeauche 1.52 MakeExecutable(0, gpr(4), gpr(5));
1117 gbeauche 1.26 break;
1118     case NATIVE_CHECK_LOAD_INVOC:
1119 gbeauche 1.38 check_load_invoc(gpr(3), gpr(4), gpr(5));
1120 gbeauche 1.2 break;
1121 gbeauche 1.68 case NATIVE_NAMED_CHECK_LOAD_INVOC:
1122     named_check_load_invoc(gpr(3), gpr(4), gpr(5));
1123     break;
1124 gbeauche 1.1 default:
1125     printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
1126     QuitEmulator();
1127     break;
1128     }
1129 gbeauche 1.15
1130     #if EMUL_TIME_STATS
1131     native_exec_time += (clock() - native_exec_start);
1132     #endif
1133 gbeauche 1.1 }
1134    
1135     /*
1136     * Execute 68k subroutine (must be ended with EXEC_RETURN)
1137     * This must only be called by the emul_thread when in EMUL_OP mode
1138     * r->a[7] is unused, the routine runs on the caller's stack
1139     */
1140    
1141     void Execute68k(uint32 pc, M68kRegisters *r)
1142     {
1143 gbeauche 1.41 ppc_cpu->execute_68k(pc, r);
1144 gbeauche 1.1 }
1145    
1146     /*
1147     * Execute 68k A-Trap from EMUL_OP routine
1148     * r->a[7] is unused, the routine runs on the caller's stack
1149     */
1150    
1151     void Execute68kTrap(uint16 trap, M68kRegisters *r)
1152     {
1153 gbeauche 1.21 SheepVar proc_var(4);
1154     uint32 proc = proc_var.addr();
1155     WriteMacInt16(proc, trap);
1156     WriteMacInt16(proc + 2, M68K_RTS);
1157     Execute68k(proc, r);
1158 gbeauche 1.1 }
1159    
1160     /*
1161     * Call MacOS PPC code
1162     */
1163    
1164     uint32 call_macos(uint32 tvect)
1165     {
1166 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, 0, NULL);
1167 gbeauche 1.1 }
1168    
1169     uint32 call_macos1(uint32 tvect, uint32 arg1)
1170     {
1171     const uint32 args[] = { arg1 };
1172 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1173 gbeauche 1.1 }
1174    
1175     uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1176     {
1177     const uint32 args[] = { arg1, arg2 };
1178 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1179 gbeauche 1.1 }
1180    
1181     uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1182     {
1183     const uint32 args[] = { arg1, arg2, arg3 };
1184 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1185 gbeauche 1.1 }
1186    
1187     uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1188     {
1189     const uint32 args[] = { arg1, arg2, arg3, arg4 };
1190 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1191 gbeauche 1.1 }
1192    
1193     uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1194     {
1195     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1196 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1197 gbeauche 1.1 }
1198    
1199     uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1200     {
1201     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1202 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1203 gbeauche 1.1 }
1204    
1205     uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1206     {
1207     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1208 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1209 gbeauche 1.1 }