ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.7
Committed: 2003-10-12T05:44:15Z (20 years, 11 months ago) by gbeauche
Branch: MAIN
Changes since 1.6: +14 -1 lines
Log Message:
- Handle MakeExecutable() replacement
- Disable predecode cache in CVS for now
- Fix flight recorder ordering in predecode cache mode

File Contents

# User Rev Content
1 gbeauche 1.1 /*
2     * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3     *
4     * SheepShaver (C) 1997-2002 Christian Bauer and Marc Hellwig
5     *
6     * This program is free software; you can redistribute it and/or modify
7     * it under the terms of the GNU General Public License as published by
8     * the Free Software Foundation; either version 2 of the License, or
9     * (at your option) any later version.
10     *
11     * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15     *
16     * You should have received a copy of the GNU General Public License
17     * along with this program; if not, write to the Free Software
18     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19     */
20    
21     #include "sysdeps.h"
22     #include "cpu_emulation.h"
23     #include "main.h"
24 gbeauche 1.3 #include "prefs.h"
25 gbeauche 1.1 #include "xlowmem.h"
26     #include "emul_op.h"
27     #include "rom_patches.h"
28     #include "macos_util.h"
29     #include "block-alloc.hpp"
30     #include "sigsegv.h"
31 gbeauche 1.2 #include "spcflags.h"
32 gbeauche 1.1 #include "cpu/ppc/ppc-cpu.hpp"
33     #include "cpu/ppc/ppc-operations.hpp"
34    
35     // Used for NativeOp trampolines
36     #include "video.h"
37     #include "name_registry.h"
38     #include "serial.h"
39    
40     #include <stdio.h>
41    
42     #if ENABLE_MON
43     #include "mon.h"
44     #include "mon_disass.h"
45     #endif
46    
47     #define DEBUG 1
48     #include "debug.h"
49    
50     static void enter_mon(void)
51     {
52     // Start up mon in real-mode
53     #if ENABLE_MON
54     char *arg[4] = {"mon", "-m", "-r", NULL};
55     mon(3, arg);
56     #endif
57     }
58    
59 gbeauche 1.2 // Enable multicore (main/interrupts) cpu emulation?
60     #define MULTICORE_CPU 0
61    
62 gbeauche 1.1 // Enable Execute68k() safety checks?
63     #define SAFE_EXEC_68K 1
64    
65     // Save FP state in Execute68k()?
66     #define SAVE_FP_EXEC_68K 1
67    
68     // Interrupts in EMUL_OP mode?
69     #define INTERRUPTS_IN_EMUL_OP_MODE 1
70    
71     // Interrupts in native mode?
72     #define INTERRUPTS_IN_NATIVE_MODE 1
73    
74     // Pointer to Kernel Data
75 gbeauche 1.4 static KernelData * const kernel_data = (KernelData *)KERNEL_DATA_BASE;
76 gbeauche 1.1
77    
78     /**
79     * PowerPC emulator glue with special 'sheep' opcodes
80     **/
81    
82     struct sheepshaver_exec_return { };
83    
84     class sheepshaver_cpu
85     : public powerpc_cpu
86     {
87     void init_decoder();
88     void execute_sheep(uint32 opcode);
89    
90     public:
91    
92     sheepshaver_cpu()
93     : powerpc_cpu()
94     { init_decoder(); }
95    
96     // Condition Register accessors
97     uint32 get_cr() const { return cr().get(); }
98     void set_cr(uint32 v) { cr().set(v); }
99    
100     // Execution loop
101     void execute(uint32 pc);
102    
103     // Execute 68k routine
104     void execute_68k(uint32 entry, M68kRegisters *r);
105    
106 gbeauche 1.2 // Execute ppc routine
107     void execute_ppc(uint32 entry);
108    
109 gbeauche 1.1 // Execute MacOS/PPC code
110     uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
111    
112     // Resource manager thunk
113     void get_resource(uint32 old_get_resource);
114    
115     // Handle MacOS interrupt
116 gbeauche 1.4 void interrupt(uint32 entry);
117 gbeauche 1.2
118     // spcflags for interrupts handling
119     static uint32 spcflags;
120 gbeauche 1.1
121     // Lazy memory allocator (one item at a time)
122     void *operator new(size_t size)
123     { return allocator_helper< sheepshaver_cpu, lazy_allocator >::allocate(); }
124     void operator delete(void *p)
125     { allocator_helper< sheepshaver_cpu, lazy_allocator >::deallocate(p); }
126     // FIXME: really make surre array allocation fail at link time?
127     void *operator new[](size_t);
128     void operator delete[](void *p);
129     };
130    
131 gbeauche 1.2 uint32 sheepshaver_cpu::spcflags = 0;
132 gbeauche 1.1 lazy_allocator< sheepshaver_cpu > allocator_helper< sheepshaver_cpu, lazy_allocator >::allocator;
133    
134     void sheepshaver_cpu::init_decoder()
135     {
136     #ifndef PPC_NO_STATIC_II_INDEX_TABLE
137     static bool initialized = false;
138     if (initialized)
139     return;
140     initialized = true;
141     #endif
142    
143     static const instr_info_t sheep_ii_table[] = {
144     { "sheep",
145     (execute_fn)&sheepshaver_cpu::execute_sheep,
146     NULL,
147 gbeauche 1.7 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
148 gbeauche 1.1 }
149     };
150    
151     const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
152     D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
153    
154     for (int i = 0; i < ii_count; i++) {
155     const instr_info_t * ii = &sheep_ii_table[i];
156     init_decoder_entry(ii);
157     }
158     }
159    
160     // Forward declaration for native opcode handler
161     static void NativeOp(int selector);
162    
163 gbeauche 1.2 /* NativeOp instruction format:
164     +------------+--------------------------+--+----------+------------+
165     | 6 | |FN| OP | 2 |
166     +------------+--------------------------+--+----------+------------+
167     0 5 |6 19 20 21 25 26 31
168     */
169    
170     typedef bit_field< 20, 20 > FN_field;
171     typedef bit_field< 21, 25 > NATIVE_OP_field;
172     typedef bit_field< 26, 31 > EMUL_OP_field;
173    
174 gbeauche 1.1 // Execute SheepShaver instruction
175     void sheepshaver_cpu::execute_sheep(uint32 opcode)
176     {
177     // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
178     assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
179    
180     switch (opcode & 0x3f) {
181     case 0: // EMUL_RETURN
182     QuitEmulator();
183     break;
184    
185     case 1: // EXEC_RETURN
186     throw sheepshaver_exec_return();
187     break;
188    
189     case 2: // EXEC_NATIVE
190 gbeauche 1.2 NativeOp(NATIVE_OP_field::extract(opcode));
191     if (FN_field::test(opcode))
192     pc() = lr();
193     else
194     pc() += 4;
195 gbeauche 1.1 break;
196    
197     default: { // EMUL_OP
198     M68kRegisters r68;
199     WriteMacInt32(XLM_68K_R25, gpr(25));
200     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
201     for (int i = 0; i < 8; i++)
202     r68.d[i] = gpr(8 + i);
203     for (int i = 0; i < 7; i++)
204     r68.a[i] = gpr(16 + i);
205     r68.a[7] = gpr(1);
206 gbeauche 1.2 EmulOp(&r68, gpr(24), EMUL_OP_field::extract(opcode) - 3);
207 gbeauche 1.1 for (int i = 0; i < 8; i++)
208     gpr(8 + i) = r68.d[i];
209     for (int i = 0; i < 7; i++)
210     gpr(16 + i) = r68.a[i];
211     gpr(1) = r68.a[7];
212     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
213     pc() += 4;
214     break;
215     }
216     }
217     }
218    
219 gbeauche 1.2 // Checks for pending interrupts
220     struct execute_nothing {
221     static inline void execute(powerpc_cpu *) { }
222     };
223    
224     struct execute_spcflags_check {
225     static inline void execute(powerpc_cpu *cpu) {
226 gbeauche 1.4 #if !ASYNC_IRQ
227 gbeauche 1.2 if (SPCFLAGS_TEST(SPCFLAG_ALL_BUT_EXEC_RETURN)) {
228     if (SPCFLAGS_TEST( SPCFLAG_ENTER_MON )) {
229     SPCFLAGS_CLEAR( SPCFLAG_ENTER_MON );
230     enter_mon();
231     }
232     if (SPCFLAGS_TEST( SPCFLAG_DOINT )) {
233     SPCFLAGS_CLEAR( SPCFLAG_DOINT );
234     HandleInterrupt();
235     }
236     if (SPCFLAGS_TEST( SPCFLAG_INT )) {
237     SPCFLAGS_CLEAR( SPCFLAG_INT );
238     SPCFLAGS_SET( SPCFLAG_DOINT );
239     }
240     }
241 gbeauche 1.4 #endif
242 gbeauche 1.2 }
243     };
244    
245 gbeauche 1.1 // Execution loop
246     void sheepshaver_cpu::execute(uint32 entry)
247     {
248     try {
249     pc() = entry;
250 gbeauche 1.2 powerpc_cpu::do_execute<execute_nothing, execute_spcflags_check>();
251 gbeauche 1.1 }
252     catch (sheepshaver_exec_return const &) {
253     // Nothing, simply return
254     }
255     catch (...) {
256     printf("ERROR: execute() received an unknown exception!\n");
257     QuitEmulator();
258     }
259     }
260    
261     // Handle MacOS interrupt
262 gbeauche 1.4 void sheepshaver_cpu::interrupt(uint32 entry)
263 gbeauche 1.1 {
264 gbeauche 1.4 #if !MULTICORE_CPU
265 gbeauche 1.2 // Save program counters and branch registers
266     uint32 saved_pc = pc();
267     uint32 saved_lr = lr();
268     uint32 saved_ctr= ctr();
269 gbeauche 1.4 uint32 saved_sp = gpr(1);
270 gbeauche 1.2 #endif
271    
272 gbeauche 1.4 // Initialize stack pointer to SheepShaver alternate stack base
273     gpr(1) = SheepStack1Base - 64;
274 gbeauche 1.1
275     // Build trampoline to return from interrupt
276 gbeauche 1.5 uint32 trampoline[] = { htonl(POWERPC_EMUL_OP | 1) };
277 gbeauche 1.1
278     // Prepare registers for nanokernel interrupt routine
279 gbeauche 1.5 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
280     kernel_data->v[0x018 >> 2] = htonl(gpr(6));
281 gbeauche 1.1
282 gbeauche 1.5 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
283 gbeauche 1.2 assert(gpr(6) != 0);
284 gbeauche 1.1 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
285     WriteMacInt32(gpr(6) + 0x144, gpr(8));
286     WriteMacInt32(gpr(6) + 0x14c, gpr(9));
287     WriteMacInt32(gpr(6) + 0x154, gpr(10));
288     WriteMacInt32(gpr(6) + 0x15c, gpr(11));
289     WriteMacInt32(gpr(6) + 0x164, gpr(12));
290     WriteMacInt32(gpr(6) + 0x16c, gpr(13));
291    
292     gpr(1) = KernelDataAddr;
293 gbeauche 1.5 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
294 gbeauche 1.1 gpr(8) = 0;
295     gpr(10) = (uint32)trampoline;
296     gpr(12) = (uint32)trampoline;
297     gpr(13) = cr().get();
298    
299     // rlwimi. r7,r7,8,0,0
300     uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
301     record_cr0(result);
302     gpr(7) = result;
303    
304     gpr(11) = 0xf072; // MSR (SRR1)
305     cr().set((gpr(11) & 0x0fff0000) | (cr().get() & ~0x0fff0000));
306    
307     // Enter nanokernel
308     execute(entry);
309    
310 gbeauche 1.2 #if !MULTICORE_CPU
311     // Restore program counters and branch registers
312     pc() = saved_pc;
313     lr() = saved_lr;
314     ctr()= saved_ctr;
315 gbeauche 1.4 gpr(1) = saved_sp;
316 gbeauche 1.2 #endif
317 gbeauche 1.1 }
318    
319     // Execute 68k routine
320     void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
321     {
322     #if SAFE_EXEC_68K
323     if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
324     printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
325     #endif
326    
327     // Save program counters and branch registers
328     uint32 saved_pc = pc();
329     uint32 saved_lr = lr();
330     uint32 saved_ctr= ctr();
331    
332     // Create MacOS stack frame
333 gbeauche 1.6 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
334 gbeauche 1.1 uint32 sp = gpr(1);
335 gbeauche 1.6 gpr(1) -= 56;
336 gbeauche 1.1 WriteMacInt32(gpr(1), sp);
337    
338     // Save PowerPC registers
339 gbeauche 1.6 uint32 saved_GPRs[19];
340     memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
341 gbeauche 1.1 #if SAVE_FP_EXEC_68K
342 gbeauche 1.6 double saved_FPRs[18];
343     memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
344 gbeauche 1.1 #endif
345    
346     // Setup registers for 68k emulator
347 gbeauche 1.2 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
348 gbeauche 1.1 for (int i = 0; i < 8; i++) // d[0]..d[7]
349     gpr(8 + i) = r->d[i];
350     for (int i = 0; i < 7; i++) // a[0]..a[6]
351     gpr(16 + i) = r->a[i];
352     gpr(23) = 0;
353     gpr(24) = entry;
354     gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
355     gpr(26) = 0;
356     gpr(28) = 0; // VBR
357 gbeauche 1.5 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
358     gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
359 gbeauche 1.1 gpr(31) = KernelDataAddr + 0x1000;
360    
361     // Push return address (points to EXEC_RETURN opcode) on stack
362     gpr(1) -= 4;
363     WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
364    
365     // Rentering 68k emulator
366     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
367    
368     // Set r0 to 0 for 68k emulator
369     gpr(0) = 0;
370    
371     // Execute 68k opcode
372     uint32 opcode = ReadMacInt16(gpr(24));
373     gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
374     gpr(29) += opcode * 8;
375     execute(gpr(29));
376    
377     // Save r25 (contains current 68k interrupt level)
378     WriteMacInt32(XLM_68K_R25, gpr(25));
379    
380     // Reentering EMUL_OP mode
381     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
382    
383     // Save 68k registers
384     for (int i = 0; i < 8; i++) // d[0]..d[7]
385     r->d[i] = gpr(8 + i);
386     for (int i = 0; i < 7; i++) // a[0]..a[6]
387     r->a[i] = gpr(16 + i);
388    
389     // Restore PowerPC registers
390 gbeauche 1.6 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
391 gbeauche 1.1 #if SAVE_FP_EXEC_68K
392 gbeauche 1.6 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
393 gbeauche 1.1 #endif
394    
395     // Cleanup stack
396 gbeauche 1.6 gpr(1) += 56;
397 gbeauche 1.1
398     // Restore program counters and branch registers
399     pc() = saved_pc;
400     lr() = saved_lr;
401     ctr()= saved_ctr;
402     }
403    
404     // Call MacOS PPC code
405     uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
406     {
407     // Save program counters and branch registers
408     uint32 saved_pc = pc();
409     uint32 saved_lr = lr();
410     uint32 saved_ctr= ctr();
411    
412     // Build trampoline with EXEC_RETURN
413 gbeauche 1.5 uint32 trampoline[] = { htonl(POWERPC_EMUL_OP | 1) };
414 gbeauche 1.1 lr() = (uint32)trampoline;
415    
416     gpr(1) -= 64; // Create stack frame
417     uint32 proc = ReadMacInt32(tvect); // Get routine address
418     uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
419    
420     // Save PowerPC registers
421     uint32 regs[8];
422     regs[0] = gpr(2);
423     for (int i = 0; i < nargs; i++)
424     regs[i + 1] = gpr(i + 3);
425    
426     // Prepare and call MacOS routine
427     gpr(2) = toc;
428     for (int i = 0; i < nargs; i++)
429     gpr(i + 3) = args[i];
430     execute(proc);
431     uint32 retval = gpr(3);
432    
433     // Restore PowerPC registers
434     for (int i = 0; i <= nargs; i++)
435     gpr(i + 2) = regs[i];
436    
437     // Cleanup stack
438     gpr(1) += 64;
439    
440     // Restore program counters and branch registers
441     pc() = saved_pc;
442     lr() = saved_lr;
443     ctr()= saved_ctr;
444    
445     return retval;
446     }
447    
448 gbeauche 1.2 // Execute ppc routine
449     inline void sheepshaver_cpu::execute_ppc(uint32 entry)
450     {
451     // Save branch registers
452     uint32 saved_lr = lr();
453    
454 gbeauche 1.5 const uint32 trampoline[] = { htonl(POWERPC_EMUL_OP | 1) };
455 gbeauche 1.6 lr() = (uint32)trampoline;
456 gbeauche 1.2
457     execute(entry);
458    
459     // Restore branch registers
460     lr() = saved_lr;
461     }
462    
463 gbeauche 1.1 // Resource Manager thunk
464 gbeauche 1.5 extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
465 gbeauche 1.2
466 gbeauche 1.1 inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
467     {
468 gbeauche 1.2 uint32 type = gpr(3);
469     int16 id = gpr(4);
470    
471     // Create stack frame
472     gpr(1) -= 56;
473    
474     // Call old routine
475     execute_ppc(old_get_resource);
476    
477     // Call CheckLoad()
478 gbeauche 1.5 uint32 handle = gpr(3);
479 gbeauche 1.2 check_load_invoc(type, id, handle);
480 gbeauche 1.5 gpr(3) = handle;
481 gbeauche 1.2
482     // Cleanup stack
483     gpr(1) += 56;
484 gbeauche 1.1 }
485    
486    
487     /**
488     * SheepShaver CPU engine interface
489     **/
490    
491     static sheepshaver_cpu *main_cpu = NULL; // CPU emulator to handle usual control flow
492     static sheepshaver_cpu *interrupt_cpu = NULL; // CPU emulator to handle interrupts
493     static sheepshaver_cpu *current_cpu = NULL; // Current CPU emulator context
494    
495 gbeauche 1.7 void FlushCodeCache(uintptr start, uintptr end)
496     {
497     D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
498     main_cpu->invalidate_cache_range(start, end);
499     #if MULTICORE_CPU
500     interrupt_cpu->invalidate_cache_range(start, end);
501     #endif
502     }
503    
504 gbeauche 1.2 static inline void cpu_push(sheepshaver_cpu *new_cpu)
505     {
506     #if MULTICORE_CPU
507     current_cpu = new_cpu;
508     #endif
509     }
510    
511     static inline void cpu_pop()
512     {
513     #if MULTICORE_CPU
514     current_cpu = main_cpu;
515     #endif
516     }
517    
518 gbeauche 1.1 // Dump PPC registers
519     static void dump_registers(void)
520     {
521     current_cpu->dump_registers();
522     }
523    
524     // Dump log
525     static void dump_log(void)
526     {
527     current_cpu->dump_log();
528     }
529    
530     /*
531     * Initialize CPU emulation
532     */
533    
534 gbeauche 1.3 static sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
535 gbeauche 1.1 {
536     #if ENABLE_VOSF
537 gbeauche 1.3 // Handle screen fault
538     extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
539     if (Screen_fault_handler(fault_address, fault_instruction))
540     return SIGSEGV_RETURN_SUCCESS;
541 gbeauche 1.1 #endif
542 gbeauche 1.3
543     const uintptr addr = (uintptr)fault_address;
544     #if HAVE_SIGSEGV_SKIP_INSTRUCTION
545     // Ignore writes to ROM
546     if ((addr - ROM_BASE) < ROM_SIZE)
547     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
548    
549     // Ignore all other faults, if requested
550     if (PrefsFindBool("ignoresegv"))
551     return SIGSEGV_RETURN_FAILURE;
552     #else
553     #error "FIXME: You don't have the capability to skip instruction within signal handlers"
554 gbeauche 1.1 #endif
555 gbeauche 1.3
556     printf("SIGSEGV\n");
557     printf(" pc %p\n", fault_instruction);
558     printf(" ea %p\n", fault_address);
559     printf(" cpu %s\n", current_cpu == main_cpu ? "main" : "interrupts");
560 gbeauche 1.1 dump_registers();
561     current_cpu->dump_log();
562     enter_mon();
563     QuitEmulator();
564 gbeauche 1.3
565     return SIGSEGV_RETURN_FAILURE;
566 gbeauche 1.1 }
567    
568     void init_emul_ppc(void)
569     {
570     // Initialize main CPU emulator
571     main_cpu = new sheepshaver_cpu();
572     main_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
573     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
574    
575 gbeauche 1.2 #if MULTICORE_CPU
576 gbeauche 1.1 // Initialize alternate CPU emulator to handle interrupts
577     interrupt_cpu = new sheepshaver_cpu();
578 gbeauche 1.2 #endif
579 gbeauche 1.1
580 gbeauche 1.3 // Install the handler for SIGSEGV
581     sigsegv_install_handler(sigsegv_handler);
582 gbeauche 1.4
583 gbeauche 1.1 #if ENABLE_MON
584     // Install "regs" command in cxmon
585     mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
586     mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
587     #endif
588     }
589    
590     /*
591     * Emulation loop
592     */
593    
594     void emul_ppc(uint32 entry)
595     {
596     current_cpu = main_cpu;
597     current_cpu->start_log();
598     current_cpu->execute(entry);
599     }
600    
601     /*
602     * Handle PowerPC interrupt
603     */
604    
605     // Atomic operations
606     extern int atomic_add(int *var, int v);
607     extern int atomic_and(int *var, int v);
608     extern int atomic_or(int *var, int v);
609    
610 gbeauche 1.4 #if !ASYNC_IRQ
611 gbeauche 1.2 void TriggerInterrupt(void)
612     {
613     #if 0
614     WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
615     #else
616     SPCFLAGS_SET( SPCFLAG_INT );
617     #endif
618     }
619 gbeauche 1.4 #endif
620 gbeauche 1.2
621 gbeauche 1.4 void HandleInterrupt(void)
622 gbeauche 1.1 {
623     // Do nothing if interrupts are disabled
624 gbeauche 1.2 if (int32(ReadMacInt32(XLM_IRQ_NEST)) > 0)
625 gbeauche 1.1 return;
626    
627 gbeauche 1.2 // Do nothing if there is no interrupt pending
628     if (InterruptFlags == 0)
629 gbeauche 1.1 return;
630    
631     // Disable MacOS stack sniffer
632     WriteMacInt32(0x110, 0);
633    
634     // Interrupt action depends on current run mode
635     switch (ReadMacInt32(XLM_RUN_MODE)) {
636     case MODE_68K:
637     // 68k emulator active, trigger 68k interrupt level 1
638     assert(current_cpu == main_cpu);
639     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
640     main_cpu->set_cr(main_cpu->get_cr() | tswap32(kernel_data->v[0x674 >> 2]));
641     break;
642    
643     #if INTERRUPTS_IN_NATIVE_MODE
644     case MODE_NATIVE:
645     // 68k emulator inactive, in nanokernel?
646     assert(current_cpu == main_cpu);
647     if (main_cpu->gpr(1) != KernelDataAddr) {
648     // Prepare for 68k interrupt level 1
649     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
650     WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
651     ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
652     | tswap32(kernel_data->v[0x674 >> 2]));
653    
654     // Execute nanokernel interrupt routine (this will activate the 68k emulator)
655 gbeauche 1.2 DisableInterrupt();
656     cpu_push(interrupt_cpu);
657 gbeauche 1.1 if (ROMType == ROMTYPE_NEWWORLD)
658 gbeauche 1.4 current_cpu->interrupt(ROM_BASE + 0x312b1c);
659 gbeauche 1.1 else
660 gbeauche 1.4 current_cpu->interrupt(ROM_BASE + 0x312a3c);
661 gbeauche 1.2 cpu_pop();
662 gbeauche 1.1 }
663     break;
664     #endif
665    
666     #if INTERRUPTS_IN_EMUL_OP_MODE
667     case MODE_EMUL_OP:
668     // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
669     if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
670     #if 1
671     // Execute full 68k interrupt routine
672     M68kRegisters r;
673     uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
674     WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
675 gbeauche 1.2 static const uint8 proc[] = {
676     0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
677     0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
678     0x40, 0xe7, // move sr,-(sp) (saved SR)
679     0x20, 0x78, 0x00, 0x064, // move.l $64,a0
680     0x4e, 0xd0, // jmp (a0)
681     M68K_RTS >> 8, M68K_RTS & 0xff // @1
682 gbeauche 1.1 };
683     Execute68k((uint32)proc, &r);
684     WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
685     #else
686     // Only update cursor
687     if (HasMacStarted()) {
688     if (InterruptFlags & INTFLAG_VIA) {
689     ClearInterruptFlag(INTFLAG_VIA);
690     ADBInterrupt();
691     ExecutePPC(VideoVBL);
692     }
693     }
694     #endif
695     }
696     break;
697     #endif
698     }
699     }
700    
701     /*
702     * Execute NATIVE_OP opcode (called by PowerPC emulator)
703     */
704    
705 gbeauche 1.2 #define POWERPC_NATIVE_OP_INIT(LR, OP) \
706     tswap32(POWERPC_EMUL_OP | ((LR) << 11) | (((uint32)OP) << 6) | 2)
707 gbeauche 1.1
708     // FIXME: Make sure 32-bit relocations are used
709     const uint32 NativeOpTable[NATIVE_OP_MAX] = {
710 gbeauche 1.2 POWERPC_NATIVE_OP_INIT(1, NATIVE_PATCH_NAME_REGISTRY),
711     POWERPC_NATIVE_OP_INIT(1, NATIVE_VIDEO_INSTALL_ACCEL),
712     POWERPC_NATIVE_OP_INIT(1, NATIVE_VIDEO_VBL),
713     POWERPC_NATIVE_OP_INIT(1, NATIVE_VIDEO_DO_DRIVER_IO),
714     POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_IRQ),
715     POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_INIT),
716     POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_TERM),
717     POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_OPEN),
718     POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_CLOSE),
719     POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_WPUT),
720     POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_RSRV),
721     POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_NOTHING),
722     POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_OPEN),
723     POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_PRIME_IN),
724     POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_PRIME_OUT),
725     POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_CONTROL),
726     POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_STATUS),
727     POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_CLOSE),
728     POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_RESOURCE),
729     POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_1_RESOURCE),
730     POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_IND_RESOURCE),
731     POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_1_IND_RESOURCE),
732     POWERPC_NATIVE_OP_INIT(1, NATIVE_R_GET_RESOURCE),
733     POWERPC_NATIVE_OP_INIT(0, NATIVE_DISABLE_INTERRUPT),
734     POWERPC_NATIVE_OP_INIT(0, NATIVE_ENABLE_INTERRUPT),
735 gbeauche 1.7 POWERPC_NATIVE_OP_INIT(1, NATIVE_MAKE_EXECUTABLE),
736 gbeauche 1.1 };
737    
738     static void get_resource(void);
739     static void get_1_resource(void);
740     static void get_ind_resource(void);
741     static void get_1_ind_resource(void);
742     static void r_get_resource(void);
743    
744     #define GPR(REG) current_cpu->gpr(REG)
745    
746     static void NativeOp(int selector)
747     {
748     switch (selector) {
749     case NATIVE_PATCH_NAME_REGISTRY:
750     DoPatchNameRegistry();
751     break;
752     case NATIVE_VIDEO_INSTALL_ACCEL:
753     VideoInstallAccel();
754     break;
755     case NATIVE_VIDEO_VBL:
756     VideoVBL();
757     break;
758     case NATIVE_VIDEO_DO_DRIVER_IO:
759     GPR(3) = (int32)(int16)VideoDoDriverIO((void *)GPR(3), (void *)GPR(4),
760     (void *)GPR(5), GPR(6), GPR(7));
761     break;
762     case NATIVE_GET_RESOURCE:
763     get_resource();
764     break;
765     case NATIVE_GET_1_RESOURCE:
766     get_1_resource();
767     break;
768     case NATIVE_GET_IND_RESOURCE:
769     get_ind_resource();
770     break;
771     case NATIVE_GET_1_IND_RESOURCE:
772     get_1_ind_resource();
773     break;
774     case NATIVE_R_GET_RESOURCE:
775     r_get_resource();
776     break;
777     case NATIVE_SERIAL_NOTHING:
778     case NATIVE_SERIAL_OPEN:
779     case NATIVE_SERIAL_PRIME_IN:
780     case NATIVE_SERIAL_PRIME_OUT:
781     case NATIVE_SERIAL_CONTROL:
782     case NATIVE_SERIAL_STATUS:
783     case NATIVE_SERIAL_CLOSE: {
784     typedef int16 (*SerialCallback)(uint32, uint32);
785     static const SerialCallback serial_callbacks[] = {
786     SerialNothing,
787     SerialOpen,
788     SerialPrimeIn,
789     SerialPrimeOut,
790     SerialControl,
791     SerialStatus,
792     SerialClose
793     };
794     GPR(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](GPR(3), GPR(4));
795     break;
796     }
797 gbeauche 1.2 case NATIVE_DISABLE_INTERRUPT:
798     DisableInterrupt();
799     break;
800     case NATIVE_ENABLE_INTERRUPT:
801     EnableInterrupt();
802 gbeauche 1.7 break;
803     case NATIVE_MAKE_EXECUTABLE:
804     MakeExecutable(0, (void *)GPR(4), GPR(5));
805 gbeauche 1.2 break;
806 gbeauche 1.1 default:
807     printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
808     QuitEmulator();
809     break;
810     }
811     }
812    
813     /*
814     * Execute native subroutine (LR must contain return address)
815     */
816    
817     void ExecuteNative(int selector)
818     {
819     uint32 tvect[2];
820     tvect[0] = tswap32(POWERPC_NATIVE_OP_FUNC(selector));
821     tvect[1] = 0; // Fake TVECT
822     RoutineDescriptor desc = BUILD_PPC_ROUTINE_DESCRIPTOR(0, tvect);
823     M68kRegisters r;
824     Execute68k((uint32)&desc, &r);
825     }
826    
827     /*
828     * Execute 68k subroutine (must be ended with EXEC_RETURN)
829     * This must only be called by the emul_thread when in EMUL_OP mode
830     * r->a[7] is unused, the routine runs on the caller's stack
831     */
832    
833     void Execute68k(uint32 pc, M68kRegisters *r)
834     {
835     current_cpu->execute_68k(pc, r);
836     }
837    
838     /*
839     * Execute 68k A-Trap from EMUL_OP routine
840     * r->a[7] is unused, the routine runs on the caller's stack
841     */
842    
843     void Execute68kTrap(uint16 trap, M68kRegisters *r)
844     {
845 gbeauche 1.5 uint16 proc[2];
846     proc[0] = htons(trap);
847     proc[1] = htons(M68K_RTS);
848 gbeauche 1.1 Execute68k((uint32)proc, r);
849     }
850    
851     /*
852     * Call MacOS PPC code
853     */
854    
855     uint32 call_macos(uint32 tvect)
856     {
857     return current_cpu->execute_macos_code(tvect, 0, NULL);
858     }
859    
860     uint32 call_macos1(uint32 tvect, uint32 arg1)
861     {
862     const uint32 args[] = { arg1 };
863     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
864     }
865    
866     uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
867     {
868     const uint32 args[] = { arg1, arg2 };
869     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
870     }
871    
872     uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
873     {
874     const uint32 args[] = { arg1, arg2, arg3 };
875     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
876     }
877    
878     uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
879     {
880     const uint32 args[] = { arg1, arg2, arg3, arg4 };
881     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
882     }
883    
884     uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
885     {
886     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
887     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
888     }
889    
890     uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
891     {
892     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
893     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
894     }
895    
896     uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
897     {
898     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
899     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
900     }
901    
902     /*
903     * Atomic operations
904     */
905    
906     int atomic_add(int *var, int v)
907     {
908     int ret = *var;
909     *var += v;
910     return ret;
911     }
912    
913     int atomic_and(int *var, int v)
914     {
915     int ret = *var;
916     *var &= v;
917     return ret;
918     }
919    
920     int atomic_or(int *var, int v)
921     {
922     int ret = *var;
923     *var |= v;
924     return ret;
925     }
926    
927     /*
928     * Resource Manager thunks
929     */
930    
931     void get_resource(void)
932     {
933     current_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
934     }
935    
936     void get_1_resource(void)
937     {
938     current_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
939     }
940    
941     void get_ind_resource(void)
942     {
943     current_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
944     }
945    
946     void get_1_ind_resource(void)
947     {
948     current_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
949     }
950    
951     void r_get_resource(void)
952     {
953     current_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
954     }