ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.68
Committed: 2006-05-03T21:45:14Z (18 years, 4 months ago) by gbeauche
Branch: MAIN
Changes since 1.67: +21 -46 lines
Log Message:
Add patches for native GetNamedResource() and Get1NamedResource(). This will
be useful to fix a bug in the AppleShare extension (see DRVR .AFPTranslator
in Basilisk II)

Unrelated improvement: call sheepshaver_cpu::get_resource() directly, don't
get it through another global function.

File Contents

# User Rev Content
1 gbeauche 1.1 /*
2     * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3     *
4 gbeauche 1.57 * SheepShaver (C) 1997-2005 Christian Bauer and Marc Hellwig
5 gbeauche 1.1 *
6     * This program is free software; you can redistribute it and/or modify
7     * it under the terms of the GNU General Public License as published by
8     * the Free Software Foundation; either version 2 of the License, or
9     * (at your option) any later version.
10     *
11     * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15     *
16     * You should have received a copy of the GNU General Public License
17     * along with this program; if not, write to the Free Software
18     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19     */
20    
21     #include "sysdeps.h"
22     #include "cpu_emulation.h"
23     #include "main.h"
24 gbeauche 1.3 #include "prefs.h"
25 gbeauche 1.1 #include "xlowmem.h"
26     #include "emul_op.h"
27     #include "rom_patches.h"
28     #include "macos_util.h"
29     #include "block-alloc.hpp"
30     #include "sigsegv.h"
31     #include "cpu/ppc/ppc-cpu.hpp"
32     #include "cpu/ppc/ppc-operations.hpp"
33 gbeauche 1.18 #include "cpu/ppc/ppc-instructions.hpp"
34 gbeauche 1.21 #include "thunks.h"
35 gbeauche 1.1
36     // Used for NativeOp trampolines
37     #include "video.h"
38     #include "name_registry.h"
39     #include "serial.h"
40 gbeauche 1.16 #include "ether.h"
41 gbeauche 1.37 #include "timer.h"
42 gbeauche 1.1
43     #include <stdio.h>
44 gbeauche 1.31 #include <stdlib.h>
45 gbeauche 1.53 #ifdef HAVE_MALLOC_H
46     #include <malloc.h>
47     #endif
48 gbeauche 1.1
49 gbeauche 1.47 #ifdef USE_SDL_VIDEO
50     #include <SDL_events.h>
51     #endif
52    
53 gbeauche 1.1 #if ENABLE_MON
54     #include "mon.h"
55     #include "mon_disass.h"
56     #endif
57    
58 gbeauche 1.10 #define DEBUG 0
59 gbeauche 1.1 #include "debug.h"
60    
61 gbeauche 1.15 // Emulation time statistics
62 gbeauche 1.44 #ifndef EMUL_TIME_STATS
63     #define EMUL_TIME_STATS 0
64     #endif
65 gbeauche 1.15
66     #if EMUL_TIME_STATS
67     static clock_t emul_start_time;
68 gbeauche 1.44 static uint32 interrupt_count = 0, ppc_interrupt_count = 0;
69 gbeauche 1.15 static clock_t interrupt_time = 0;
70     static uint32 exec68k_count = 0;
71     static clock_t exec68k_time = 0;
72     static uint32 native_exec_count = 0;
73     static clock_t native_exec_time = 0;
74     static uint32 macos_exec_count = 0;
75     static clock_t macos_exec_time = 0;
76     #endif
77    
78 gbeauche 1.1 static void enter_mon(void)
79     {
80     // Start up mon in real-mode
81     #if ENABLE_MON
82     char *arg[4] = {"mon", "-m", "-r", NULL};
83     mon(3, arg);
84     #endif
85     }
86    
87 gbeauche 1.23 // From main_*.cpp
88     extern uintptr SignalStackBase();
89    
90 gbeauche 1.26 // From rsrc_patches.cpp
91     extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
92 gbeauche 1.68 extern "C" void named_check_load_invoc(uint32 type, uint32 name, uint32 h);
93 gbeauche 1.26
94 gbeauche 1.21 // PowerPC EmulOp to exit from emulation looop
95     const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
96    
97 gbeauche 1.1 // Enable Execute68k() safety checks?
98     #define SAFE_EXEC_68K 1
99    
100     // Save FP state in Execute68k()?
101     #define SAVE_FP_EXEC_68K 1
102    
103     // Interrupts in EMUL_OP mode?
104     #define INTERRUPTS_IN_EMUL_OP_MODE 1
105    
106     // Interrupts in native mode?
107     #define INTERRUPTS_IN_NATIVE_MODE 1
108    
109     // Pointer to Kernel Data
110 gbeauche 1.52 static KernelData * kernel_data;
111 gbeauche 1.1
112 gbeauche 1.17 // SIGSEGV handler
113 gbeauche 1.48 sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
114 gbeauche 1.17
115 gbeauche 1.38 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
116     // Special trampolines for EmulOp and NativeOp
117     static uint8 *emul_op_trampoline;
118     static uint8 *native_op_trampoline;
119     #endif
120    
121 gbeauche 1.20 // JIT Compiler enabled?
122     static inline bool enable_jit_p()
123     {
124     return PrefsFindBool("jit");
125     }
126    
127 gbeauche 1.1
128     /**
129     * PowerPC emulator glue with special 'sheep' opcodes
130     **/
131    
132 gbeauche 1.18 enum {
133     PPC_I(SHEEP) = PPC_I(MAX),
134     PPC_I(SHEEP_MAX)
135     };
136    
137 gbeauche 1.1 class sheepshaver_cpu
138     : public powerpc_cpu
139     {
140     void init_decoder();
141     void execute_sheep(uint32 opcode);
142    
143     public:
144    
145 gbeauche 1.10 // Constructor
146     sheepshaver_cpu();
147 gbeauche 1.1
148 gbeauche 1.24 // CR & XER accessors
149 gbeauche 1.1 uint32 get_cr() const { return cr().get(); }
150     void set_cr(uint32 v) { cr().set(v); }
151 gbeauche 1.24 uint32 get_xer() const { return xer().get(); }
152     void set_xer(uint32 v) { xer().set(v); }
153 gbeauche 1.1
154 gbeauche 1.38 // Execute NATIVE_OP routine
155     void execute_native_op(uint32 native_op);
156    
157 gbeauche 1.26 // Execute EMUL_OP routine
158     void execute_emul_op(uint32 emul_op);
159    
160 gbeauche 1.1 // Execute 68k routine
161     void execute_68k(uint32 entry, M68kRegisters *r);
162    
163 gbeauche 1.2 // Execute ppc routine
164     void execute_ppc(uint32 entry);
165    
166 gbeauche 1.1 // Execute MacOS/PPC code
167     uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
168    
169 gbeauche 1.53 #if PPC_ENABLE_JIT
170 gbeauche 1.26 // Compile one instruction
171 gbeauche 1.38 virtual int compile1(codegen_context_t & cg_context);
172 gbeauche 1.53 #endif
173 gbeauche 1.1 // Resource manager thunk
174     void get_resource(uint32 old_get_resource);
175    
176     // Handle MacOS interrupt
177 gbeauche 1.4 void interrupt(uint32 entry);
178 gbeauche 1.2
179 gbeauche 1.17 // Make sure the SIGSEGV handler can access CPU registers
180     friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
181 gbeauche 1.1 };
182    
183 gbeauche 1.10 sheepshaver_cpu::sheepshaver_cpu()
184 gbeauche 1.20 : powerpc_cpu(enable_jit_p())
185 gbeauche 1.10 {
186     init_decoder();
187     }
188    
189 gbeauche 1.1 void sheepshaver_cpu::init_decoder()
190     {
191     static const instr_info_t sheep_ii_table[] = {
192     { "sheep",
193 gbeauche 1.13 (execute_pmf)&sheepshaver_cpu::execute_sheep,
194 gbeauche 1.1 NULL,
195 gbeauche 1.18 PPC_I(SHEEP),
196 gbeauche 1.7 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
197 gbeauche 1.1 }
198     };
199    
200     const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
201     D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
202    
203     for (int i = 0; i < ii_count; i++) {
204     const instr_info_t * ii = &sheep_ii_table[i];
205     init_decoder_entry(ii);
206     }
207     }
208    
209 gbeauche 1.2 /* NativeOp instruction format:
210 gbeauche 1.35 +------------+-------------------------+--+-----------+------------+
211     | 6 | |FN| OP | 2 |
212     +------------+-------------------------+--+-----------+------------+
213     0 5 |6 18 19 20 25 26 31
214 gbeauche 1.2 */
215    
216 gbeauche 1.35 typedef bit_field< 19, 19 > FN_field;
217     typedef bit_field< 20, 25 > NATIVE_OP_field;
218 gbeauche 1.2 typedef bit_field< 26, 31 > EMUL_OP_field;
219    
220 gbeauche 1.26 // Execute EMUL_OP routine
221     void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
222     {
223     M68kRegisters r68;
224     WriteMacInt32(XLM_68K_R25, gpr(25));
225     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
226     for (int i = 0; i < 8; i++)
227     r68.d[i] = gpr(8 + i);
228     for (int i = 0; i < 7; i++)
229     r68.a[i] = gpr(16 + i);
230     r68.a[7] = gpr(1);
231 gbeauche 1.62 uint32 saved_cr = get_cr() & 0xff9fffff; // mask_operand::compute(11, 8)
232 gbeauche 1.26 uint32 saved_xer = get_xer();
233     EmulOp(&r68, gpr(24), emul_op);
234     set_cr(saved_cr);
235     set_xer(saved_xer);
236     for (int i = 0; i < 8; i++)
237     gpr(8 + i) = r68.d[i];
238     for (int i = 0; i < 7; i++)
239     gpr(16 + i) = r68.a[i];
240     gpr(1) = r68.a[7];
241     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
242     }
243    
244 gbeauche 1.1 // Execute SheepShaver instruction
245     void sheepshaver_cpu::execute_sheep(uint32 opcode)
246     {
247     // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
248     assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
249    
250     switch (opcode & 0x3f) {
251     case 0: // EMUL_RETURN
252     QuitEmulator();
253     break;
254 gbeauche 1.8
255 gbeauche 1.1 case 1: // EXEC_RETURN
256 gbeauche 1.12 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
257 gbeauche 1.1 break;
258    
259     case 2: // EXEC_NATIVE
260 gbeauche 1.38 execute_native_op(NATIVE_OP_field::extract(opcode));
261 gbeauche 1.2 if (FN_field::test(opcode))
262     pc() = lr();
263     else
264     pc() += 4;
265 gbeauche 1.1 break;
266    
267 gbeauche 1.26 default: // EMUL_OP
268     execute_emul_op(EMUL_OP_field::extract(opcode) - 3);
269     pc() += 4;
270     break;
271     }
272     }
273    
274     // Compile one instruction
275 gbeauche 1.53 #if PPC_ENABLE_JIT
276 gbeauche 1.38 int sheepshaver_cpu::compile1(codegen_context_t & cg_context)
277 gbeauche 1.26 {
278     const instr_info_t *ii = cg_context.instr_info;
279     if (ii->mnemo != PPC_I(SHEEP))
280 gbeauche 1.38 return COMPILE_FAILURE;
281 gbeauche 1.26
282 gbeauche 1.38 int status = COMPILE_FAILURE;
283 gbeauche 1.26 powerpc_dyngen & dg = cg_context.codegen;
284     uint32 opcode = cg_context.opcode;
285    
286     switch (opcode & 0x3f) {
287     case 0: // EMUL_RETURN
288     dg.gen_invoke(QuitEmulator);
289 gbeauche 1.38 status = COMPILE_CODE_OK;
290 gbeauche 1.26 break;
291    
292     case 1: // EXEC_RETURN
293     dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
294 gbeauche 1.38 // Don't check for pending interrupts, we do know we have to
295     // get out of this block ASAP
296     dg.gen_exec_return();
297     status = COMPILE_EPILOGUE_OK;
298 gbeauche 1.26 break;
299    
300     case 2: { // EXEC_NATIVE
301     uint32 selector = NATIVE_OP_field::extract(opcode);
302     switch (selector) {
303 gbeauche 1.38 #if !PPC_REENTRANT_JIT
304     // Filter out functions that may invoke Execute68k() or
305     // CallMacOS(), this would break reentrancy as they could
306     // invalidate the translation cache and even overwrite
307     // continuation code when we are done with them.
308 gbeauche 1.26 case NATIVE_PATCH_NAME_REGISTRY:
309     dg.gen_invoke(DoPatchNameRegistry);
310 gbeauche 1.38 status = COMPILE_CODE_OK;
311 gbeauche 1.26 break;
312     case NATIVE_VIDEO_INSTALL_ACCEL:
313     dg.gen_invoke(VideoInstallAccel);
314 gbeauche 1.38 status = COMPILE_CODE_OK;
315 gbeauche 1.26 break;
316     case NATIVE_VIDEO_VBL:
317     dg.gen_invoke(VideoVBL);
318 gbeauche 1.38 status = COMPILE_CODE_OK;
319 gbeauche 1.26 break;
320     case NATIVE_GET_RESOURCE:
321     case NATIVE_GET_1_RESOURCE:
322     case NATIVE_GET_IND_RESOURCE:
323     case NATIVE_GET_1_IND_RESOURCE:
324     case NATIVE_R_GET_RESOURCE: {
325     static const uint32 get_resource_ptr[] = {
326     XLM_GET_RESOURCE,
327     XLM_GET_1_RESOURCE,
328     XLM_GET_IND_RESOURCE,
329     XLM_GET_1_IND_RESOURCE,
330     XLM_R_GET_RESOURCE
331     };
332     uint32 old_get_resource = ReadMacInt32(get_resource_ptr[selector - NATIVE_GET_RESOURCE]);
333     typedef void (*func_t)(dyngen_cpu_base, uint32);
334     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
335     dg.gen_invoke_CPU_im(func, old_get_resource);
336 gbeauche 1.38 status = COMPILE_CODE_OK;
337 gbeauche 1.26 break;
338     }
339     case NATIVE_CHECK_LOAD_INVOC:
340     dg.gen_load_T0_GPR(3);
341     dg.gen_load_T1_GPR(4);
342     dg.gen_se_16_32_T1();
343     dg.gen_load_T2_GPR(5);
344     dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
345 gbeauche 1.38 status = COMPILE_CODE_OK;
346     break;
347 gbeauche 1.68 case NATIVE_NAMED_CHECK_LOAD_INVOC:
348     dg.gen_load_T0_GPR(3);
349     dg.gen_load_T1_GPR(4);
350     dg.gen_load_T2_GPR(5);
351     dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))named_check_load_invoc);
352     status = COMPILE_CODE_OK;
353     break;
354 gbeauche 1.38 #endif
355 gbeauche 1.35 case NATIVE_BITBLT:
356     dg.gen_load_T0_GPR(3);
357     dg.gen_invoke_T0((void (*)(uint32))NQD_bitblt);
358 gbeauche 1.38 status = COMPILE_CODE_OK;
359 gbeauche 1.35 break;
360     case NATIVE_INVRECT:
361     dg.gen_load_T0_GPR(3);
362     dg.gen_invoke_T0((void (*)(uint32))NQD_invrect);
363 gbeauche 1.38 status = COMPILE_CODE_OK;
364 gbeauche 1.35 break;
365     case NATIVE_FILLRECT:
366     dg.gen_load_T0_GPR(3);
367     dg.gen_invoke_T0((void (*)(uint32))NQD_fillrect);
368 gbeauche 1.38 status = COMPILE_CODE_OK;
369 gbeauche 1.26 break;
370     }
371 gbeauche 1.38 // Could we fully translate this NativeOp?
372 gbeauche 1.42 if (status == COMPILE_CODE_OK) {
373     if (!FN_field::test(opcode))
374     cg_context.done_compile = false;
375     else {
376 gbeauche 1.26 dg.gen_load_A0_LR();
377     dg.gen_set_PC_A0();
378 gbeauche 1.42 cg_context.done_compile = true;
379 gbeauche 1.26 }
380 gbeauche 1.38 break;
381     }
382     #if PPC_REENTRANT_JIT
383     // Try to execute NativeOp trampoline
384 gbeauche 1.42 if (!FN_field::test(opcode))
385     dg.gen_set_PC_im(cg_context.pc + 4);
386     else {
387     dg.gen_load_A0_LR();
388     dg.gen_set_PC_A0();
389     }
390 gbeauche 1.38 dg.gen_mov_32_T0_im(selector);
391     dg.gen_jmp(native_op_trampoline);
392     cg_context.done_compile = true;
393     status = COMPILE_EPILOGUE_OK;
394     break;
395     #endif
396     // Invoke NativeOp handler
397 gbeauche 1.42 if (!FN_field::test(opcode)) {
398     typedef void (*func_t)(dyngen_cpu_base, uint32);
399     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
400     dg.gen_invoke_CPU_im(func, selector);
401     cg_context.done_compile = false;
402     status = COMPILE_CODE_OK;
403     }
404     // Otherwise, let it generate a call to execute_sheep() which
405     // will cause necessary updates to the program counter
406 gbeauche 1.26 break;
407     }
408    
409 gbeauche 1.1 default: { // EMUL_OP
410 gbeauche 1.37 uint32 emul_op = EMUL_OP_field::extract(opcode) - 3;
411 gbeauche 1.38 #if PPC_REENTRANT_JIT
412     // Try to execute EmulOp trampoline
413     dg.gen_set_PC_im(cg_context.pc + 4);
414     dg.gen_mov_32_T0_im(emul_op);
415     dg.gen_jmp(emul_op_trampoline);
416     cg_context.done_compile = true;
417     status = COMPILE_EPILOGUE_OK;
418     break;
419     #endif
420     // Invoke EmulOp handler
421 gbeauche 1.26 typedef void (*func_t)(dyngen_cpu_base, uint32);
422     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
423 gbeauche 1.37 dg.gen_invoke_CPU_im(func, emul_op);
424 gbeauche 1.26 cg_context.done_compile = false;
425 gbeauche 1.38 status = COMPILE_CODE_OK;
426 gbeauche 1.1 break;
427     }
428     }
429 gbeauche 1.38 return status;
430 gbeauche 1.53 }
431 gbeauche 1.26 #endif
432 gbeauche 1.1
433     // Handle MacOS interrupt
434 gbeauche 1.4 void sheepshaver_cpu::interrupt(uint32 entry)
435 gbeauche 1.1 {
436 gbeauche 1.15 #if EMUL_TIME_STATS
437 gbeauche 1.44 ppc_interrupt_count++;
438 gbeauche 1.15 const clock_t interrupt_start = clock();
439     #endif
440    
441 gbeauche 1.2 // Save program counters and branch registers
442     uint32 saved_pc = pc();
443     uint32 saved_lr = lr();
444     uint32 saved_ctr= ctr();
445 gbeauche 1.4 uint32 saved_sp = gpr(1);
446 gbeauche 1.2
447 gbeauche 1.4 // Initialize stack pointer to SheepShaver alternate stack base
448 gbeauche 1.23 gpr(1) = SignalStackBase() - 64;
449 gbeauche 1.1
450     // Build trampoline to return from interrupt
451 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
452 gbeauche 1.1
453     // Prepare registers for nanokernel interrupt routine
454 gbeauche 1.5 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
455     kernel_data->v[0x018 >> 2] = htonl(gpr(6));
456 gbeauche 1.1
457 gbeauche 1.5 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
458 gbeauche 1.2 assert(gpr(6) != 0);
459 gbeauche 1.1 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
460     WriteMacInt32(gpr(6) + 0x144, gpr(8));
461     WriteMacInt32(gpr(6) + 0x14c, gpr(9));
462     WriteMacInt32(gpr(6) + 0x154, gpr(10));
463     WriteMacInt32(gpr(6) + 0x15c, gpr(11));
464     WriteMacInt32(gpr(6) + 0x164, gpr(12));
465     WriteMacInt32(gpr(6) + 0x16c, gpr(13));
466    
467     gpr(1) = KernelDataAddr;
468 gbeauche 1.5 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
469 gbeauche 1.1 gpr(8) = 0;
470 gbeauche 1.21 gpr(10) = trampoline.addr();
471     gpr(12) = trampoline.addr();
472 gbeauche 1.8 gpr(13) = get_cr();
473 gbeauche 1.1
474     // rlwimi. r7,r7,8,0,0
475     uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
476     record_cr0(result);
477     gpr(7) = result;
478    
479     gpr(11) = 0xf072; // MSR (SRR1)
480 gbeauche 1.8 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
481 gbeauche 1.1
482     // Enter nanokernel
483     execute(entry);
484    
485 gbeauche 1.2 // Restore program counters and branch registers
486     pc() = saved_pc;
487     lr() = saved_lr;
488     ctr()= saved_ctr;
489 gbeauche 1.4 gpr(1) = saved_sp;
490 gbeauche 1.15
491     #if EMUL_TIME_STATS
492     interrupt_time += (clock() - interrupt_start);
493     #endif
494 gbeauche 1.1 }
495    
496     // Execute 68k routine
497     void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
498     {
499 gbeauche 1.15 #if EMUL_TIME_STATS
500     exec68k_count++;
501     const clock_t exec68k_start = clock();
502     #endif
503    
504 gbeauche 1.1 #if SAFE_EXEC_68K
505     if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
506     printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
507     #endif
508    
509     // Save program counters and branch registers
510     uint32 saved_pc = pc();
511     uint32 saved_lr = lr();
512     uint32 saved_ctr= ctr();
513 gbeauche 1.8 uint32 saved_cr = get_cr();
514 gbeauche 1.1
515     // Create MacOS stack frame
516 gbeauche 1.6 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
517 gbeauche 1.1 uint32 sp = gpr(1);
518 gbeauche 1.6 gpr(1) -= 56;
519 gbeauche 1.1 WriteMacInt32(gpr(1), sp);
520    
521     // Save PowerPC registers
522 gbeauche 1.6 uint32 saved_GPRs[19];
523     memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
524 gbeauche 1.1 #if SAVE_FP_EXEC_68K
525 gbeauche 1.6 double saved_FPRs[18];
526     memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
527 gbeauche 1.1 #endif
528    
529     // Setup registers for 68k emulator
530 gbeauche 1.2 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
531 gbeauche 1.1 for (int i = 0; i < 8; i++) // d[0]..d[7]
532     gpr(8 + i) = r->d[i];
533     for (int i = 0; i < 7; i++) // a[0]..a[6]
534     gpr(16 + i) = r->a[i];
535     gpr(23) = 0;
536     gpr(24) = entry;
537     gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
538     gpr(26) = 0;
539     gpr(28) = 0; // VBR
540 gbeauche 1.5 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
541     gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
542 gbeauche 1.1 gpr(31) = KernelDataAddr + 0x1000;
543    
544     // Push return address (points to EXEC_RETURN opcode) on stack
545     gpr(1) -= 4;
546     WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
547    
548     // Rentering 68k emulator
549     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
550    
551     // Set r0 to 0 for 68k emulator
552     gpr(0) = 0;
553    
554     // Execute 68k opcode
555     uint32 opcode = ReadMacInt16(gpr(24));
556     gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
557     gpr(29) += opcode * 8;
558     execute(gpr(29));
559    
560     // Save r25 (contains current 68k interrupt level)
561     WriteMacInt32(XLM_68K_R25, gpr(25));
562    
563     // Reentering EMUL_OP mode
564     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
565    
566     // Save 68k registers
567     for (int i = 0; i < 8; i++) // d[0]..d[7]
568     r->d[i] = gpr(8 + i);
569     for (int i = 0; i < 7; i++) // a[0]..a[6]
570     r->a[i] = gpr(16 + i);
571    
572     // Restore PowerPC registers
573 gbeauche 1.6 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
574 gbeauche 1.1 #if SAVE_FP_EXEC_68K
575 gbeauche 1.6 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
576 gbeauche 1.1 #endif
577    
578     // Cleanup stack
579 gbeauche 1.6 gpr(1) += 56;
580 gbeauche 1.1
581     // Restore program counters and branch registers
582     pc() = saved_pc;
583     lr() = saved_lr;
584     ctr()= saved_ctr;
585 gbeauche 1.8 set_cr(saved_cr);
586 gbeauche 1.15
587     #if EMUL_TIME_STATS
588     exec68k_time += (clock() - exec68k_start);
589     #endif
590 gbeauche 1.1 }
591    
592     // Call MacOS PPC code
593     uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
594     {
595 gbeauche 1.15 #if EMUL_TIME_STATS
596     macos_exec_count++;
597     const clock_t macos_exec_start = clock();
598     #endif
599    
600 gbeauche 1.1 // Save program counters and branch registers
601     uint32 saved_pc = pc();
602     uint32 saved_lr = lr();
603     uint32 saved_ctr= ctr();
604    
605     // Build trampoline with EXEC_RETURN
606 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
607     lr() = trampoline.addr();
608 gbeauche 1.1
609     gpr(1) -= 64; // Create stack frame
610     uint32 proc = ReadMacInt32(tvect); // Get routine address
611     uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
612    
613     // Save PowerPC registers
614     uint32 regs[8];
615     regs[0] = gpr(2);
616     for (int i = 0; i < nargs; i++)
617     regs[i + 1] = gpr(i + 3);
618    
619     // Prepare and call MacOS routine
620     gpr(2) = toc;
621     for (int i = 0; i < nargs; i++)
622     gpr(i + 3) = args[i];
623     execute(proc);
624     uint32 retval = gpr(3);
625    
626     // Restore PowerPC registers
627     for (int i = 0; i <= nargs; i++)
628     gpr(i + 2) = regs[i];
629    
630     // Cleanup stack
631     gpr(1) += 64;
632    
633     // Restore program counters and branch registers
634     pc() = saved_pc;
635     lr() = saved_lr;
636     ctr()= saved_ctr;
637    
638 gbeauche 1.15 #if EMUL_TIME_STATS
639     macos_exec_time += (clock() - macos_exec_start);
640     #endif
641    
642 gbeauche 1.1 return retval;
643     }
644    
645 gbeauche 1.2 // Execute ppc routine
646     inline void sheepshaver_cpu::execute_ppc(uint32 entry)
647     {
648     // Save branch registers
649     uint32 saved_lr = lr();
650    
651 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
652     WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
653     lr() = trampoline.addr();
654 gbeauche 1.2
655     execute(entry);
656    
657     // Restore branch registers
658     lr() = saved_lr;
659     }
660    
661 gbeauche 1.1 // Resource Manager thunk
662     inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
663     {
664 gbeauche 1.2 uint32 type = gpr(3);
665     int16 id = gpr(4);
666    
667     // Create stack frame
668     gpr(1) -= 56;
669    
670     // Call old routine
671     execute_ppc(old_get_resource);
672    
673     // Call CheckLoad()
674 gbeauche 1.5 uint32 handle = gpr(3);
675 gbeauche 1.2 check_load_invoc(type, id, handle);
676 gbeauche 1.5 gpr(3) = handle;
677 gbeauche 1.2
678     // Cleanup stack
679     gpr(1) += 56;
680 gbeauche 1.1 }
681    
682    
683     /**
684     * SheepShaver CPU engine interface
685     **/
686    
687 gbeauche 1.41 // PowerPC CPU emulator
688     static sheepshaver_cpu *ppc_cpu = NULL;
689 gbeauche 1.1
690 gbeauche 1.7 void FlushCodeCache(uintptr start, uintptr end)
691     {
692     D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
693 gbeauche 1.41 ppc_cpu->invalidate_cache_range(start, end);
694 gbeauche 1.2 }
695    
696 gbeauche 1.1 // Dump PPC registers
697     static void dump_registers(void)
698     {
699 gbeauche 1.41 ppc_cpu->dump_registers();
700 gbeauche 1.1 }
701    
702     // Dump log
703     static void dump_log(void)
704     {
705 gbeauche 1.41 ppc_cpu->dump_log();
706 gbeauche 1.1 }
707    
708     /*
709     * Initialize CPU emulation
710     */
711    
712 gbeauche 1.48 sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
713 gbeauche 1.1 {
714     #if ENABLE_VOSF
715 gbeauche 1.3 // Handle screen fault
716     extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
717     if (Screen_fault_handler(fault_address, fault_instruction))
718     return SIGSEGV_RETURN_SUCCESS;
719 gbeauche 1.1 #endif
720 gbeauche 1.3
721     const uintptr addr = (uintptr)fault_address;
722     #if HAVE_SIGSEGV_SKIP_INSTRUCTION
723     // Ignore writes to ROM
724 gbeauche 1.52 if ((addr - (uintptr)ROMBaseHost) < ROM_SIZE)
725 gbeauche 1.3 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
726    
727 gbeauche 1.17 // Get program counter of target CPU
728 gbeauche 1.41 sheepshaver_cpu * const cpu = ppc_cpu;
729 gbeauche 1.17 const uint32 pc = cpu->pc();
730    
731     // Fault in Mac ROM or RAM?
732 gbeauche 1.43 bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize)) || (pc >= DR_CACHE_BASE && pc < (DR_CACHE_BASE + DR_CACHE_SIZE));
733 gbeauche 1.17 if (mac_fault) {
734    
735     // "VM settings" during MacOS 8 installation
736     if (pc == ROM_BASE + 0x488160 && cpu->gpr(20) == 0xf8000000)
737     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
738    
739     // MacOS 8.5 installation
740     else if (pc == ROM_BASE + 0x488140 && cpu->gpr(16) == 0xf8000000)
741     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
742    
743     // MacOS 8 serial drivers on startup
744     else if (pc == ROM_BASE + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
745     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
746    
747     // MacOS 8.1 serial drivers on startup
748     else if (pc == ROM_BASE + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
749     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
750     else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
751     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
752 gbeauche 1.43
753     // MacOS 8.6 serial drivers on startup (with DR Cache and OldWorld ROM)
754     else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(16) == 0xf3012002 || cpu->gpr(16) == 0xf3012000))
755     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
756     else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
757     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
758 gbeauche 1.17
759 gbeauche 1.30 // Ignore writes to the zero page
760     else if ((uint32)(addr - SheepMem::ZeroPage()) < (uint32)SheepMem::PageSize())
761     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
762    
763 gbeauche 1.17 // Ignore all other faults, if requested
764     if (PrefsFindBool("ignoresegv"))
765     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
766     }
767 gbeauche 1.3 #else
768     #error "FIXME: You don't have the capability to skip instruction within signal handlers"
769 gbeauche 1.1 #endif
770 gbeauche 1.3
771 gbeauche 1.60 fprintf(stderr, "SIGSEGV\n");
772     fprintf(stderr, " pc %p\n", fault_instruction);
773     fprintf(stderr, " ea %p\n", fault_address);
774 gbeauche 1.1 dump_registers();
775 gbeauche 1.41 ppc_cpu->dump_log();
776 gbeauche 1.1 enter_mon();
777     QuitEmulator();
778 gbeauche 1.3
779     return SIGSEGV_RETURN_FAILURE;
780 gbeauche 1.1 }
781    
782     void init_emul_ppc(void)
783     {
784 gbeauche 1.52 // Get pointer to KernelData in host address space
785     kernel_data = (KernelData *)Mac2HostAddr(KERNEL_DATA_BASE);
786    
787 gbeauche 1.1 // Initialize main CPU emulator
788 gbeauche 1.41 ppc_cpu = new sheepshaver_cpu();
789     ppc_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
790     ppc_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
791 gbeauche 1.1 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
792    
793     #if ENABLE_MON
794     // Install "regs" command in cxmon
795     mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
796     mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
797     #endif
798 gbeauche 1.15
799     #if EMUL_TIME_STATS
800     emul_start_time = clock();
801     #endif
802 gbeauche 1.1 }
803    
804     /*
805 gbeauche 1.14 * Deinitialize emulation
806     */
807    
808     void exit_emul_ppc(void)
809     {
810 gbeauche 1.15 #if EMUL_TIME_STATS
811     clock_t emul_end_time = clock();
812    
813     printf("### Statistics for SheepShaver emulation parts\n");
814     const clock_t emul_time = emul_end_time - emul_start_time;
815     printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
816     printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
817     (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
818 gbeauche 1.44 printf("Total ppc interrupt count: %d (%2.1f %%)\n", ppc_interrupt_count,
819     (double(ppc_interrupt_count) * 100.0) / double(interrupt_count));
820 gbeauche 1.15
821     #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
822     printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
823     printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
824     double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
825     100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
826     } while (0)
827    
828     PRINT_STATS("Execute68k[Trap] execution", exec68k);
829     PRINT_STATS("NativeOp execution", native_exec);
830     PRINT_STATS("MacOS routine execution", macos_exec);
831    
832     #undef PRINT_STATS
833     printf("\n");
834     #endif
835    
836 gbeauche 1.41 delete ppc_cpu;
837 gbeauche 1.67 ppc_cpu = NULL;
838 gbeauche 1.14 }
839    
840 gbeauche 1.38 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
841     // Initialize EmulOp trampolines
842     void init_emul_op_trampolines(basic_dyngen & dg)
843     {
844     typedef void (*func_t)(dyngen_cpu_base, uint32);
845     func_t func;
846    
847     // EmulOp
848     emul_op_trampoline = dg.gen_start();
849     func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
850     dg.gen_invoke_CPU_T0(func);
851     dg.gen_exec_return();
852     dg.gen_end();
853    
854     // NativeOp
855     native_op_trampoline = dg.gen_start();
856     func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
857     dg.gen_invoke_CPU_T0(func);
858     dg.gen_exec_return();
859     dg.gen_end();
860    
861     D(bug("EmulOp trampoline: %p\n", emul_op_trampoline));
862     D(bug("NativeOp trampoline: %p\n", native_op_trampoline));
863     }
864     #endif
865    
866 gbeauche 1.14 /*
867 gbeauche 1.1 * Emulation loop
868     */
869    
870     void emul_ppc(uint32 entry)
871     {
872 gbeauche 1.24 #if 0
873 gbeauche 1.41 ppc_cpu->start_log();
874 gbeauche 1.10 #endif
875     // start emulation loop and enable code translation or caching
876 gbeauche 1.41 ppc_cpu->execute(entry);
877 gbeauche 1.1 }
878    
879     /*
880     * Handle PowerPC interrupt
881     */
882    
883 gbeauche 1.2 void TriggerInterrupt(void)
884     {
885 gbeauche 1.64 idle_resume();
886 gbeauche 1.2 #if 0
887     WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
888     #else
889 gbeauche 1.10 // Trigger interrupt to main cpu only
890 gbeauche 1.41 if (ppc_cpu)
891     ppc_cpu->trigger_interrupt();
892 gbeauche 1.2 #endif
893     }
894    
895 gbeauche 1.58 void HandleInterrupt(powerpc_registers *r)
896 gbeauche 1.1 {
897 gbeauche 1.47 #ifdef USE_SDL_VIDEO
898     // We must fill in the events queue in the same thread that did call SDL_SetVideoMode()
899     SDL_PumpEvents();
900     #endif
901    
902 gbeauche 1.1 // Do nothing if interrupts are disabled
903 gbeauche 1.46 if (int32(ReadMacInt32(XLM_IRQ_NEST)) > 0)
904 gbeauche 1.1 return;
905    
906 gbeauche 1.63 // Update interrupt count
907 gbeauche 1.44 #if EMUL_TIME_STATS
908     interrupt_count++;
909     #endif
910 gbeauche 1.40
911 gbeauche 1.1 // Interrupt action depends on current run mode
912     switch (ReadMacInt32(XLM_RUN_MODE)) {
913     case MODE_68K:
914     // 68k emulator active, trigger 68k interrupt level 1
915     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
916 gbeauche 1.58 r->cr.set(r->cr.get() | tswap32(kernel_data->v[0x674 >> 2]));
917 gbeauche 1.1 break;
918    
919     #if INTERRUPTS_IN_NATIVE_MODE
920     case MODE_NATIVE:
921     // 68k emulator inactive, in nanokernel?
922 gbeauche 1.63 if (r->gpr[1] != KernelDataAddr) {
923 gbeauche 1.39
924 gbeauche 1.1 // Prepare for 68k interrupt level 1
925     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
926     WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
927     ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
928     | tswap32(kernel_data->v[0x674 >> 2]));
929    
930     // Execute nanokernel interrupt routine (this will activate the 68k emulator)
931 gbeauche 1.2 DisableInterrupt();
932 gbeauche 1.1 if (ROMType == ROMTYPE_NEWWORLD)
933 gbeauche 1.41 ppc_cpu->interrupt(ROM_BASE + 0x312b1c);
934 gbeauche 1.1 else
935 gbeauche 1.41 ppc_cpu->interrupt(ROM_BASE + 0x312a3c);
936 gbeauche 1.1 }
937     break;
938     #endif
939    
940     #if INTERRUPTS_IN_EMUL_OP_MODE
941     case MODE_EMUL_OP:
942     // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
943     if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
944 gbeauche 1.44 #if EMUL_TIME_STATS
945     const clock_t interrupt_start = clock();
946     #endif
947 gbeauche 1.1 #if 1
948     // Execute full 68k interrupt routine
949     M68kRegisters r;
950     uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
951     WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
952 gbeauche 1.53 static const uint8 proc_template[] = {
953 gbeauche 1.2 0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
954     0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
955     0x40, 0xe7, // move sr,-(sp) (saved SR)
956     0x20, 0x78, 0x00, 0x064, // move.l $64,a0
957     0x4e, 0xd0, // jmp (a0)
958     M68K_RTS >> 8, M68K_RTS & 0xff // @1
959 gbeauche 1.1 };
960 gbeauche 1.53 BUILD_SHEEPSHAVER_PROCEDURE(proc);
961     Execute68k(proc, &r);
962 gbeauche 1.1 WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
963     #else
964     // Only update cursor
965     if (HasMacStarted()) {
966     if (InterruptFlags & INTFLAG_VIA) {
967     ClearInterruptFlag(INTFLAG_VIA);
968     ADBInterrupt();
969 gbeauche 1.22 ExecuteNative(NATIVE_VIDEO_VBL);
970 gbeauche 1.1 }
971     }
972     #endif
973 gbeauche 1.44 #if EMUL_TIME_STATS
974     interrupt_time += (clock() - interrupt_start);
975     #endif
976 gbeauche 1.1 }
977     break;
978     #endif
979     }
980     }
981    
982 gbeauche 1.38 // Execute NATIVE_OP routine
983     void sheepshaver_cpu::execute_native_op(uint32 selector)
984 gbeauche 1.1 {
985 gbeauche 1.15 #if EMUL_TIME_STATS
986     native_exec_count++;
987     const clock_t native_exec_start = clock();
988     #endif
989    
990 gbeauche 1.1 switch (selector) {
991     case NATIVE_PATCH_NAME_REGISTRY:
992     DoPatchNameRegistry();
993     break;
994     case NATIVE_VIDEO_INSTALL_ACCEL:
995     VideoInstallAccel();
996     break;
997     case NATIVE_VIDEO_VBL:
998     VideoVBL();
999     break;
1000     case NATIVE_VIDEO_DO_DRIVER_IO:
1001 gbeauche 1.52 gpr(3) = (int32)(int16)VideoDoDriverIO(gpr(3), gpr(4), gpr(5), gpr(6), gpr(7));
1002 gbeauche 1.1 break;
1003 gbeauche 1.65 case NATIVE_ETHER_AO_GET_HWADDR:
1004     AO_get_ethernet_address(gpr(3));
1005     break;
1006     case NATIVE_ETHER_AO_ADD_MULTI:
1007     AO_enable_multicast(gpr(3));
1008     break;
1009     case NATIVE_ETHER_AO_DEL_MULTI:
1010     AO_disable_multicast(gpr(3));
1011     break;
1012     case NATIVE_ETHER_AO_SEND_PACKET:
1013     AO_transmit_packet(gpr(3));
1014     break;
1015 gbeauche 1.16 case NATIVE_ETHER_IRQ:
1016     EtherIRQ();
1017     break;
1018     case NATIVE_ETHER_INIT:
1019 gbeauche 1.38 gpr(3) = InitStreamModule((void *)gpr(3));
1020 gbeauche 1.16 break;
1021     case NATIVE_ETHER_TERM:
1022     TerminateStreamModule();
1023     break;
1024     case NATIVE_ETHER_OPEN:
1025 gbeauche 1.38 gpr(3) = ether_open((queue_t *)gpr(3), (void *)gpr(4), gpr(5), gpr(6), (void*)gpr(7));
1026 gbeauche 1.1 break;
1027 gbeauche 1.16 case NATIVE_ETHER_CLOSE:
1028 gbeauche 1.38 gpr(3) = ether_close((queue_t *)gpr(3), gpr(4), (void *)gpr(5));
1029 gbeauche 1.1 break;
1030 gbeauche 1.16 case NATIVE_ETHER_WPUT:
1031 gbeauche 1.38 gpr(3) = ether_wput((queue_t *)gpr(3), (mblk_t *)gpr(4));
1032 gbeauche 1.1 break;
1033 gbeauche 1.16 case NATIVE_ETHER_RSRV:
1034 gbeauche 1.38 gpr(3) = ether_rsrv((queue_t *)gpr(3));
1035 gbeauche 1.1 break;
1036 gbeauche 1.32 case NATIVE_SYNC_HOOK:
1037 gbeauche 1.38 gpr(3) = NQD_sync_hook(gpr(3));
1038 gbeauche 1.32 break;
1039     case NATIVE_BITBLT_HOOK:
1040 gbeauche 1.38 gpr(3) = NQD_bitblt_hook(gpr(3));
1041 gbeauche 1.32 break;
1042     case NATIVE_BITBLT:
1043 gbeauche 1.38 NQD_bitblt(gpr(3));
1044 gbeauche 1.32 break;
1045     case NATIVE_FILLRECT_HOOK:
1046 gbeauche 1.38 gpr(3) = NQD_fillrect_hook(gpr(3));
1047 gbeauche 1.32 break;
1048     case NATIVE_INVRECT:
1049 gbeauche 1.38 NQD_invrect(gpr(3));
1050 gbeauche 1.32 break;
1051 gbeauche 1.33 case NATIVE_FILLRECT:
1052 gbeauche 1.38 NQD_fillrect(gpr(3));
1053 gbeauche 1.32 break;
1054 gbeauche 1.1 case NATIVE_SERIAL_NOTHING:
1055     case NATIVE_SERIAL_OPEN:
1056     case NATIVE_SERIAL_PRIME_IN:
1057     case NATIVE_SERIAL_PRIME_OUT:
1058     case NATIVE_SERIAL_CONTROL:
1059     case NATIVE_SERIAL_STATUS:
1060     case NATIVE_SERIAL_CLOSE: {
1061     typedef int16 (*SerialCallback)(uint32, uint32);
1062     static const SerialCallback serial_callbacks[] = {
1063     SerialNothing,
1064     SerialOpen,
1065     SerialPrimeIn,
1066     SerialPrimeOut,
1067     SerialControl,
1068     SerialStatus,
1069     SerialClose
1070     };
1071 gbeauche 1.38 gpr(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](gpr(3), gpr(4));
1072 gbeauche 1.16 break;
1073     }
1074     case NATIVE_GET_RESOURCE:
1075 gbeauche 1.68 get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1076     break;
1077 gbeauche 1.16 case NATIVE_GET_1_RESOURCE:
1078 gbeauche 1.68 get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1079     break;
1080 gbeauche 1.16 case NATIVE_GET_IND_RESOURCE:
1081 gbeauche 1.68 get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1082     break;
1083 gbeauche 1.16 case NATIVE_GET_1_IND_RESOURCE:
1084 gbeauche 1.68 get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1085     break;
1086     case NATIVE_R_GET_RESOURCE:
1087     get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1088 gbeauche 1.1 break;
1089 gbeauche 1.7 case NATIVE_MAKE_EXECUTABLE:
1090 gbeauche 1.52 MakeExecutable(0, gpr(4), gpr(5));
1091 gbeauche 1.26 break;
1092     case NATIVE_CHECK_LOAD_INVOC:
1093 gbeauche 1.38 check_load_invoc(gpr(3), gpr(4), gpr(5));
1094 gbeauche 1.2 break;
1095 gbeauche 1.68 case NATIVE_NAMED_CHECK_LOAD_INVOC:
1096     named_check_load_invoc(gpr(3), gpr(4), gpr(5));
1097     break;
1098 gbeauche 1.1 default:
1099     printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
1100     QuitEmulator();
1101     break;
1102     }
1103 gbeauche 1.15
1104     #if EMUL_TIME_STATS
1105     native_exec_time += (clock() - native_exec_start);
1106     #endif
1107 gbeauche 1.1 }
1108    
1109     /*
1110     * Execute 68k subroutine (must be ended with EXEC_RETURN)
1111     * This must only be called by the emul_thread when in EMUL_OP mode
1112     * r->a[7] is unused, the routine runs on the caller's stack
1113     */
1114    
1115     void Execute68k(uint32 pc, M68kRegisters *r)
1116     {
1117 gbeauche 1.41 ppc_cpu->execute_68k(pc, r);
1118 gbeauche 1.1 }
1119    
1120     /*
1121     * Execute 68k A-Trap from EMUL_OP routine
1122     * r->a[7] is unused, the routine runs on the caller's stack
1123     */
1124    
1125     void Execute68kTrap(uint16 trap, M68kRegisters *r)
1126     {
1127 gbeauche 1.21 SheepVar proc_var(4);
1128     uint32 proc = proc_var.addr();
1129     WriteMacInt16(proc, trap);
1130     WriteMacInt16(proc + 2, M68K_RTS);
1131     Execute68k(proc, r);
1132 gbeauche 1.1 }
1133    
1134     /*
1135     * Call MacOS PPC code
1136     */
1137    
1138     uint32 call_macos(uint32 tvect)
1139     {
1140 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, 0, NULL);
1141 gbeauche 1.1 }
1142    
1143     uint32 call_macos1(uint32 tvect, uint32 arg1)
1144     {
1145     const uint32 args[] = { arg1 };
1146 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1147 gbeauche 1.1 }
1148    
1149     uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1150     {
1151     const uint32 args[] = { arg1, arg2 };
1152 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1153 gbeauche 1.1 }
1154    
1155     uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1156     {
1157     const uint32 args[] = { arg1, arg2, arg3 };
1158 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1159 gbeauche 1.1 }
1160    
1161     uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1162     {
1163     const uint32 args[] = { arg1, arg2, arg3, arg4 };
1164 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1165 gbeauche 1.1 }
1166    
1167     uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1168     {
1169     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1170 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1171 gbeauche 1.1 }
1172    
1173     uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1174     {
1175     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1176 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1177 gbeauche 1.1 }
1178    
1179     uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1180     {
1181     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1182 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1183 gbeauche 1.1 }