ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.56
Committed: 2005-01-30T21:12:07Z (19 years, 7 months ago) by gbeauche
Branch: MAIN
Changes since 1.55: +12 -0 lines
Log Message:
add FP regs & state to preserved context on interrupt

File Contents

# User Rev Content
1 gbeauche 1.1 /*
2     * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3     *
4 cebix 1.25 * SheepShaver (C) 1997-2004 Christian Bauer and Marc Hellwig
5 gbeauche 1.1 *
6     * This program is free software; you can redistribute it and/or modify
7     * it under the terms of the GNU General Public License as published by
8     * the Free Software Foundation; either version 2 of the License, or
9     * (at your option) any later version.
10     *
11     * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15     *
16     * You should have received a copy of the GNU General Public License
17     * along with this program; if not, write to the Free Software
18     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19     */
20    
21     #include "sysdeps.h"
22     #include "cpu_emulation.h"
23     #include "main.h"
24 gbeauche 1.3 #include "prefs.h"
25 gbeauche 1.1 #include "xlowmem.h"
26     #include "emul_op.h"
27     #include "rom_patches.h"
28     #include "macos_util.h"
29     #include "block-alloc.hpp"
30     #include "sigsegv.h"
31     #include "cpu/ppc/ppc-cpu.hpp"
32     #include "cpu/ppc/ppc-operations.hpp"
33 gbeauche 1.18 #include "cpu/ppc/ppc-instructions.hpp"
34 gbeauche 1.21 #include "thunks.h"
35 gbeauche 1.1
36     // Used for NativeOp trampolines
37     #include "video.h"
38     #include "name_registry.h"
39     #include "serial.h"
40 gbeauche 1.16 #include "ether.h"
41 gbeauche 1.37 #include "timer.h"
42 gbeauche 1.1
43     #include <stdio.h>
44 gbeauche 1.31 #include <stdlib.h>
45 gbeauche 1.53 #ifdef HAVE_MALLOC_H
46     #include <malloc.h>
47     #endif
48 gbeauche 1.1
49 gbeauche 1.47 #ifdef USE_SDL_VIDEO
50     #include <SDL_events.h>
51     #endif
52    
53 gbeauche 1.1 #if ENABLE_MON
54     #include "mon.h"
55     #include "mon_disass.h"
56     #endif
57    
58 gbeauche 1.10 #define DEBUG 0
59 gbeauche 1.1 #include "debug.h"
60    
61 gbeauche 1.15 // Emulation time statistics
62 gbeauche 1.44 #ifndef EMUL_TIME_STATS
63     #define EMUL_TIME_STATS 0
64     #endif
65 gbeauche 1.15
66     #if EMUL_TIME_STATS
67     static clock_t emul_start_time;
68 gbeauche 1.44 static uint32 interrupt_count = 0, ppc_interrupt_count = 0;
69 gbeauche 1.15 static clock_t interrupt_time = 0;
70     static uint32 exec68k_count = 0;
71     static clock_t exec68k_time = 0;
72     static uint32 native_exec_count = 0;
73     static clock_t native_exec_time = 0;
74     static uint32 macos_exec_count = 0;
75     static clock_t macos_exec_time = 0;
76     #endif
77    
78 gbeauche 1.1 static void enter_mon(void)
79     {
80     // Start up mon in real-mode
81     #if ENABLE_MON
82     char *arg[4] = {"mon", "-m", "-r", NULL};
83     mon(3, arg);
84     #endif
85     }
86    
87 gbeauche 1.23 // From main_*.cpp
88     extern uintptr SignalStackBase();
89    
90 gbeauche 1.26 // From rsrc_patches.cpp
91     extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
92    
93 gbeauche 1.21 // PowerPC EmulOp to exit from emulation looop
94     const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
95    
96 gbeauche 1.36 // Enable interrupt routine safety checks?
97     #define SAFE_INTERRUPT_PPC 1
98    
99 gbeauche 1.1 // Enable Execute68k() safety checks?
100     #define SAFE_EXEC_68K 1
101    
102     // Save FP state in Execute68k()?
103     #define SAVE_FP_EXEC_68K 1
104    
105     // Interrupts in EMUL_OP mode?
106     #define INTERRUPTS_IN_EMUL_OP_MODE 1
107    
108     // Interrupts in native mode?
109     #define INTERRUPTS_IN_NATIVE_MODE 1
110    
111     // Pointer to Kernel Data
112 gbeauche 1.52 static KernelData * kernel_data;
113 gbeauche 1.1
114 gbeauche 1.17 // SIGSEGV handler
115 gbeauche 1.48 sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
116 gbeauche 1.17
117 gbeauche 1.38 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
118     // Special trampolines for EmulOp and NativeOp
119     static uint8 *emul_op_trampoline;
120     static uint8 *native_op_trampoline;
121     #endif
122    
123 gbeauche 1.20 // JIT Compiler enabled?
124     static inline bool enable_jit_p()
125     {
126     return PrefsFindBool("jit");
127     }
128    
129 gbeauche 1.1
130     /**
131     * PowerPC emulator glue with special 'sheep' opcodes
132     **/
133    
134 gbeauche 1.18 enum {
135     PPC_I(SHEEP) = PPC_I(MAX),
136     PPC_I(SHEEP_MAX)
137     };
138    
139 gbeauche 1.1 class sheepshaver_cpu
140     : public powerpc_cpu
141     {
142     void init_decoder();
143     void execute_sheep(uint32 opcode);
144    
145 gbeauche 1.39 // CPU context to preserve on interrupt
146     class interrupt_context {
147     uint32 gpr[32];
148 gbeauche 1.56 double fpr[32];
149 gbeauche 1.39 uint32 pc;
150     uint32 lr;
151     uint32 ctr;
152     uint32 cr;
153     uint32 xer;
154 gbeauche 1.56 uint32 fpscr;
155 gbeauche 1.39 sheepshaver_cpu *cpu;
156     const char *where;
157     public:
158     interrupt_context(sheepshaver_cpu *_cpu, const char *_where);
159     ~interrupt_context();
160     };
161    
162 gbeauche 1.1 public:
163    
164 gbeauche 1.10 // Constructor
165     sheepshaver_cpu();
166 gbeauche 1.1
167 gbeauche 1.24 // CR & XER accessors
168 gbeauche 1.1 uint32 get_cr() const { return cr().get(); }
169     void set_cr(uint32 v) { cr().set(v); }
170 gbeauche 1.24 uint32 get_xer() const { return xer().get(); }
171     void set_xer(uint32 v) { xer().set(v); }
172 gbeauche 1.1
173 gbeauche 1.38 // Execute NATIVE_OP routine
174     void execute_native_op(uint32 native_op);
175    
176 gbeauche 1.26 // Execute EMUL_OP routine
177     void execute_emul_op(uint32 emul_op);
178    
179 gbeauche 1.1 // Execute 68k routine
180     void execute_68k(uint32 entry, M68kRegisters *r);
181    
182 gbeauche 1.2 // Execute ppc routine
183     void execute_ppc(uint32 entry);
184    
185 gbeauche 1.1 // Execute MacOS/PPC code
186     uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
187    
188 gbeauche 1.53 #if PPC_ENABLE_JIT
189 gbeauche 1.26 // Compile one instruction
190 gbeauche 1.38 virtual int compile1(codegen_context_t & cg_context);
191 gbeauche 1.53 #endif
192 gbeauche 1.1 // Resource manager thunk
193     void get_resource(uint32 old_get_resource);
194    
195     // Handle MacOS interrupt
196 gbeauche 1.4 void interrupt(uint32 entry);
197 gbeauche 1.10 void handle_interrupt();
198 gbeauche 1.2
199 gbeauche 1.17 // Make sure the SIGSEGV handler can access CPU registers
200     friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
201 gbeauche 1.54
202     // Memory allocator returning areas aligned on 16-byte boundaries
203     void *operator new(size_t size);
204     void operator delete(void *p);
205 gbeauche 1.1 };
206    
207 gbeauche 1.29 // Memory allocator returning areas aligned on 16-byte boundaries
208 gbeauche 1.54 void *sheepshaver_cpu::operator new(size_t size)
209 gbeauche 1.29 {
210     void *p;
211    
212 gbeauche 1.31 #if defined(HAVE_POSIX_MEMALIGN)
213 gbeauche 1.29 if (posix_memalign(&p, 16, size) != 0)
214     throw std::bad_alloc();
215 gbeauche 1.31 #elif defined(HAVE_MEMALIGN)
216     p = memalign(16, size);
217     #elif defined(HAVE_VALLOC)
218     p = valloc(size); // page-aligned!
219     #else
220     /* XXX: handle padding ourselves */
221     p = malloc(size);
222     #endif
223 gbeauche 1.29
224     return p;
225     }
226    
227 gbeauche 1.54 void sheepshaver_cpu::operator delete(void *p)
228 gbeauche 1.29 {
229 gbeauche 1.31 #if defined(HAVE_MEMALIGN) || defined(HAVE_VALLOC)
230     #if defined(__GLIBC__)
231     // this is known to work only with GNU libc
232     free(p);
233     #endif
234     #else
235 gbeauche 1.29 free(p);
236 gbeauche 1.31 #endif
237 gbeauche 1.29 }
238 gbeauche 1.1
239 gbeauche 1.10 sheepshaver_cpu::sheepshaver_cpu()
240 gbeauche 1.20 : powerpc_cpu(enable_jit_p())
241 gbeauche 1.10 {
242     init_decoder();
243     }
244    
245 gbeauche 1.1 void sheepshaver_cpu::init_decoder()
246     {
247     static const instr_info_t sheep_ii_table[] = {
248     { "sheep",
249 gbeauche 1.13 (execute_pmf)&sheepshaver_cpu::execute_sheep,
250 gbeauche 1.1 NULL,
251 gbeauche 1.18 PPC_I(SHEEP),
252 gbeauche 1.7 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
253 gbeauche 1.1 }
254     };
255    
256     const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
257     D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
258    
259     for (int i = 0; i < ii_count; i++) {
260     const instr_info_t * ii = &sheep_ii_table[i];
261     init_decoder_entry(ii);
262     }
263     }
264    
265 gbeauche 1.2 /* NativeOp instruction format:
266 gbeauche 1.35 +------------+-------------------------+--+-----------+------------+
267     | 6 | |FN| OP | 2 |
268     +------------+-------------------------+--+-----------+------------+
269     0 5 |6 18 19 20 25 26 31
270 gbeauche 1.2 */
271    
272 gbeauche 1.35 typedef bit_field< 19, 19 > FN_field;
273     typedef bit_field< 20, 25 > NATIVE_OP_field;
274 gbeauche 1.2 typedef bit_field< 26, 31 > EMUL_OP_field;
275    
276 gbeauche 1.26 // Execute EMUL_OP routine
277     void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
278     {
279     M68kRegisters r68;
280     WriteMacInt32(XLM_68K_R25, gpr(25));
281     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
282     for (int i = 0; i < 8; i++)
283     r68.d[i] = gpr(8 + i);
284     for (int i = 0; i < 7; i++)
285     r68.a[i] = gpr(16 + i);
286     r68.a[7] = gpr(1);
287     uint32 saved_cr = get_cr() & CR_field<2>::mask();
288     uint32 saved_xer = get_xer();
289     EmulOp(&r68, gpr(24), emul_op);
290     set_cr(saved_cr);
291     set_xer(saved_xer);
292     for (int i = 0; i < 8; i++)
293     gpr(8 + i) = r68.d[i];
294     for (int i = 0; i < 7; i++)
295     gpr(16 + i) = r68.a[i];
296     gpr(1) = r68.a[7];
297     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
298     }
299    
300 gbeauche 1.1 // Execute SheepShaver instruction
301     void sheepshaver_cpu::execute_sheep(uint32 opcode)
302     {
303     // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
304     assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
305    
306     switch (opcode & 0x3f) {
307     case 0: // EMUL_RETURN
308     QuitEmulator();
309     break;
310 gbeauche 1.8
311 gbeauche 1.1 case 1: // EXEC_RETURN
312 gbeauche 1.12 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
313 gbeauche 1.1 break;
314    
315     case 2: // EXEC_NATIVE
316 gbeauche 1.38 execute_native_op(NATIVE_OP_field::extract(opcode));
317 gbeauche 1.2 if (FN_field::test(opcode))
318     pc() = lr();
319     else
320     pc() += 4;
321 gbeauche 1.1 break;
322    
323 gbeauche 1.26 default: // EMUL_OP
324     execute_emul_op(EMUL_OP_field::extract(opcode) - 3);
325     pc() += 4;
326     break;
327     }
328     }
329    
330     // Compile one instruction
331 gbeauche 1.53 #if PPC_ENABLE_JIT
332 gbeauche 1.38 int sheepshaver_cpu::compile1(codegen_context_t & cg_context)
333 gbeauche 1.26 {
334     const instr_info_t *ii = cg_context.instr_info;
335     if (ii->mnemo != PPC_I(SHEEP))
336 gbeauche 1.38 return COMPILE_FAILURE;
337 gbeauche 1.26
338 gbeauche 1.38 int status = COMPILE_FAILURE;
339 gbeauche 1.26 powerpc_dyngen & dg = cg_context.codegen;
340     uint32 opcode = cg_context.opcode;
341    
342     switch (opcode & 0x3f) {
343     case 0: // EMUL_RETURN
344     dg.gen_invoke(QuitEmulator);
345 gbeauche 1.38 status = COMPILE_CODE_OK;
346 gbeauche 1.26 break;
347    
348     case 1: // EXEC_RETURN
349     dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
350 gbeauche 1.38 // Don't check for pending interrupts, we do know we have to
351     // get out of this block ASAP
352     dg.gen_exec_return();
353     status = COMPILE_EPILOGUE_OK;
354 gbeauche 1.26 break;
355    
356     case 2: { // EXEC_NATIVE
357     uint32 selector = NATIVE_OP_field::extract(opcode);
358     switch (selector) {
359 gbeauche 1.38 #if !PPC_REENTRANT_JIT
360     // Filter out functions that may invoke Execute68k() or
361     // CallMacOS(), this would break reentrancy as they could
362     // invalidate the translation cache and even overwrite
363     // continuation code when we are done with them.
364 gbeauche 1.26 case NATIVE_PATCH_NAME_REGISTRY:
365     dg.gen_invoke(DoPatchNameRegistry);
366 gbeauche 1.38 status = COMPILE_CODE_OK;
367 gbeauche 1.26 break;
368     case NATIVE_VIDEO_INSTALL_ACCEL:
369     dg.gen_invoke(VideoInstallAccel);
370 gbeauche 1.38 status = COMPILE_CODE_OK;
371 gbeauche 1.26 break;
372     case NATIVE_VIDEO_VBL:
373     dg.gen_invoke(VideoVBL);
374 gbeauche 1.38 status = COMPILE_CODE_OK;
375 gbeauche 1.26 break;
376     case NATIVE_GET_RESOURCE:
377     case NATIVE_GET_1_RESOURCE:
378     case NATIVE_GET_IND_RESOURCE:
379     case NATIVE_GET_1_IND_RESOURCE:
380     case NATIVE_R_GET_RESOURCE: {
381     static const uint32 get_resource_ptr[] = {
382     XLM_GET_RESOURCE,
383     XLM_GET_1_RESOURCE,
384     XLM_GET_IND_RESOURCE,
385     XLM_GET_1_IND_RESOURCE,
386     XLM_R_GET_RESOURCE
387     };
388     uint32 old_get_resource = ReadMacInt32(get_resource_ptr[selector - NATIVE_GET_RESOURCE]);
389     typedef void (*func_t)(dyngen_cpu_base, uint32);
390     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
391     dg.gen_invoke_CPU_im(func, old_get_resource);
392 gbeauche 1.38 status = COMPILE_CODE_OK;
393 gbeauche 1.26 break;
394     }
395     case NATIVE_CHECK_LOAD_INVOC:
396     dg.gen_load_T0_GPR(3);
397     dg.gen_load_T1_GPR(4);
398     dg.gen_se_16_32_T1();
399     dg.gen_load_T2_GPR(5);
400     dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
401 gbeauche 1.38 status = COMPILE_CODE_OK;
402     break;
403     #endif
404 gbeauche 1.35 case NATIVE_BITBLT:
405     dg.gen_load_T0_GPR(3);
406     dg.gen_invoke_T0((void (*)(uint32))NQD_bitblt);
407 gbeauche 1.38 status = COMPILE_CODE_OK;
408 gbeauche 1.35 break;
409     case NATIVE_INVRECT:
410     dg.gen_load_T0_GPR(3);
411     dg.gen_invoke_T0((void (*)(uint32))NQD_invrect);
412 gbeauche 1.38 status = COMPILE_CODE_OK;
413 gbeauche 1.35 break;
414     case NATIVE_FILLRECT:
415     dg.gen_load_T0_GPR(3);
416     dg.gen_invoke_T0((void (*)(uint32))NQD_fillrect);
417 gbeauche 1.38 status = COMPILE_CODE_OK;
418 gbeauche 1.26 break;
419     }
420 gbeauche 1.38 // Could we fully translate this NativeOp?
421 gbeauche 1.42 if (status == COMPILE_CODE_OK) {
422     if (!FN_field::test(opcode))
423     cg_context.done_compile = false;
424     else {
425 gbeauche 1.26 dg.gen_load_A0_LR();
426     dg.gen_set_PC_A0();
427 gbeauche 1.42 cg_context.done_compile = true;
428 gbeauche 1.26 }
429 gbeauche 1.38 break;
430     }
431     #if PPC_REENTRANT_JIT
432     // Try to execute NativeOp trampoline
433 gbeauche 1.42 if (!FN_field::test(opcode))
434     dg.gen_set_PC_im(cg_context.pc + 4);
435     else {
436     dg.gen_load_A0_LR();
437     dg.gen_set_PC_A0();
438     }
439 gbeauche 1.38 dg.gen_mov_32_T0_im(selector);
440     dg.gen_jmp(native_op_trampoline);
441     cg_context.done_compile = true;
442     status = COMPILE_EPILOGUE_OK;
443     break;
444     #endif
445     // Invoke NativeOp handler
446 gbeauche 1.42 if (!FN_field::test(opcode)) {
447     typedef void (*func_t)(dyngen_cpu_base, uint32);
448     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
449     dg.gen_invoke_CPU_im(func, selector);
450     cg_context.done_compile = false;
451     status = COMPILE_CODE_OK;
452     }
453     // Otherwise, let it generate a call to execute_sheep() which
454     // will cause necessary updates to the program counter
455 gbeauche 1.26 break;
456     }
457    
458 gbeauche 1.1 default: { // EMUL_OP
459 gbeauche 1.37 uint32 emul_op = EMUL_OP_field::extract(opcode) - 3;
460 gbeauche 1.38 #if PPC_REENTRANT_JIT
461     // Try to execute EmulOp trampoline
462     dg.gen_set_PC_im(cg_context.pc + 4);
463     dg.gen_mov_32_T0_im(emul_op);
464     dg.gen_jmp(emul_op_trampoline);
465     cg_context.done_compile = true;
466     status = COMPILE_EPILOGUE_OK;
467     break;
468     #endif
469     // Invoke EmulOp handler
470 gbeauche 1.26 typedef void (*func_t)(dyngen_cpu_base, uint32);
471     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
472 gbeauche 1.37 dg.gen_invoke_CPU_im(func, emul_op);
473 gbeauche 1.26 cg_context.done_compile = false;
474 gbeauche 1.38 status = COMPILE_CODE_OK;
475 gbeauche 1.1 break;
476     }
477     }
478 gbeauche 1.38 return status;
479 gbeauche 1.53 }
480 gbeauche 1.26 #endif
481 gbeauche 1.1
482 gbeauche 1.39 // CPU context to preserve on interrupt
483     sheepshaver_cpu::interrupt_context::interrupt_context(sheepshaver_cpu *_cpu, const char *_where)
484     {
485     #if SAFE_INTERRUPT_PPC >= 2
486     cpu = _cpu;
487     where = _where;
488    
489     // Save interrupt context
490     memcpy(&gpr[0], &cpu->gpr(0), sizeof(gpr));
491 gbeauche 1.56 memcpy(&fpr[0], &cpu->fpr(0), sizeof(fpr));
492 gbeauche 1.39 pc = cpu->pc();
493     lr = cpu->lr();
494     ctr = cpu->ctr();
495     cr = cpu->get_cr();
496     xer = cpu->get_xer();
497 gbeauche 1.56 fpscr = cpu->fpscr();
498 gbeauche 1.39 #endif
499     }
500    
501     sheepshaver_cpu::interrupt_context::~interrupt_context()
502     {
503     #if SAFE_INTERRUPT_PPC >= 2
504     // Check whether CPU context was preserved by interrupt
505     if (memcmp(&gpr[0], &cpu->gpr(0), sizeof(gpr)) != 0) {
506     printf("FATAL: %s: interrupt clobbers registers\n", where);
507     for (int i = 0; i < 32; i++)
508     if (gpr[i] != cpu->gpr(i))
509     printf(" r%d: %08x -> %08x\n", i, gpr[i], cpu->gpr(i));
510     }
511 gbeauche 1.56 if (memcmp(&fpr[0], &cpu->fpr(0), sizeof(fpr)) != 0) {
512     printf("FATAL: %s: interrupt clobbers registers\n", where);
513     for (int i = 0; i < 32; i++)
514     if (fpr[i] != cpu->fpr(i))
515     printf(" r%d: %f -> %f\n", i, fpr[i], cpu->fpr(i));
516     }
517 gbeauche 1.39 if (pc != cpu->pc())
518     printf("FATAL: %s: interrupt clobbers PC\n", where);
519     if (lr != cpu->lr())
520     printf("FATAL: %s: interrupt clobbers LR\n", where);
521     if (ctr != cpu->ctr())
522     printf("FATAL: %s: interrupt clobbers CTR\n", where);
523     if (cr != cpu->get_cr())
524     printf("FATAL: %s: interrupt clobbers CR\n", where);
525     if (xer != cpu->get_xer())
526     printf("FATAL: %s: interrupt clobbers XER\n", where);
527 gbeauche 1.56 if (fpscr != cpu->fpscr())
528     printf("FATAL: %s: interrupt clobbers FPSCR\n", where);
529 gbeauche 1.39 #endif
530     }
531    
532 gbeauche 1.1 // Handle MacOS interrupt
533 gbeauche 1.4 void sheepshaver_cpu::interrupt(uint32 entry)
534 gbeauche 1.1 {
535 gbeauche 1.15 #if EMUL_TIME_STATS
536 gbeauche 1.44 ppc_interrupt_count++;
537 gbeauche 1.15 const clock_t interrupt_start = clock();
538     #endif
539    
540 gbeauche 1.36 #if SAFE_INTERRUPT_PPC
541     static int depth = 0;
542     if (depth != 0)
543     printf("FATAL: sheepshaver_cpu::interrupt() called more than once: %d\n", depth);
544     depth++;
545     #endif
546    
547 gbeauche 1.2 // Save program counters and branch registers
548     uint32 saved_pc = pc();
549     uint32 saved_lr = lr();
550     uint32 saved_ctr= ctr();
551 gbeauche 1.4 uint32 saved_sp = gpr(1);
552 gbeauche 1.2
553 gbeauche 1.4 // Initialize stack pointer to SheepShaver alternate stack base
554 gbeauche 1.23 gpr(1) = SignalStackBase() - 64;
555 gbeauche 1.1
556     // Build trampoline to return from interrupt
557 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
558 gbeauche 1.1
559     // Prepare registers for nanokernel interrupt routine
560 gbeauche 1.5 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
561     kernel_data->v[0x018 >> 2] = htonl(gpr(6));
562 gbeauche 1.1
563 gbeauche 1.5 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
564 gbeauche 1.2 assert(gpr(6) != 0);
565 gbeauche 1.1 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
566     WriteMacInt32(gpr(6) + 0x144, gpr(8));
567     WriteMacInt32(gpr(6) + 0x14c, gpr(9));
568     WriteMacInt32(gpr(6) + 0x154, gpr(10));
569     WriteMacInt32(gpr(6) + 0x15c, gpr(11));
570     WriteMacInt32(gpr(6) + 0x164, gpr(12));
571     WriteMacInt32(gpr(6) + 0x16c, gpr(13));
572    
573     gpr(1) = KernelDataAddr;
574 gbeauche 1.5 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
575 gbeauche 1.1 gpr(8) = 0;
576 gbeauche 1.21 gpr(10) = trampoline.addr();
577     gpr(12) = trampoline.addr();
578 gbeauche 1.8 gpr(13) = get_cr();
579 gbeauche 1.1
580     // rlwimi. r7,r7,8,0,0
581     uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
582     record_cr0(result);
583     gpr(7) = result;
584    
585     gpr(11) = 0xf072; // MSR (SRR1)
586 gbeauche 1.8 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
587 gbeauche 1.1
588     // Enter nanokernel
589     execute(entry);
590    
591 gbeauche 1.2 // Restore program counters and branch registers
592     pc() = saved_pc;
593     lr() = saved_lr;
594     ctr()= saved_ctr;
595 gbeauche 1.4 gpr(1) = saved_sp;
596 gbeauche 1.15
597     #if EMUL_TIME_STATS
598     interrupt_time += (clock() - interrupt_start);
599     #endif
600 gbeauche 1.36
601     #if SAFE_INTERRUPT_PPC
602     depth--;
603     #endif
604 gbeauche 1.1 }
605    
606     // Execute 68k routine
607     void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
608     {
609 gbeauche 1.15 #if EMUL_TIME_STATS
610     exec68k_count++;
611     const clock_t exec68k_start = clock();
612     #endif
613    
614 gbeauche 1.1 #if SAFE_EXEC_68K
615     if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
616     printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
617     #endif
618    
619     // Save program counters and branch registers
620     uint32 saved_pc = pc();
621     uint32 saved_lr = lr();
622     uint32 saved_ctr= ctr();
623 gbeauche 1.8 uint32 saved_cr = get_cr();
624 gbeauche 1.1
625     // Create MacOS stack frame
626 gbeauche 1.6 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
627 gbeauche 1.1 uint32 sp = gpr(1);
628 gbeauche 1.6 gpr(1) -= 56;
629 gbeauche 1.1 WriteMacInt32(gpr(1), sp);
630    
631     // Save PowerPC registers
632 gbeauche 1.6 uint32 saved_GPRs[19];
633     memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
634 gbeauche 1.1 #if SAVE_FP_EXEC_68K
635 gbeauche 1.6 double saved_FPRs[18];
636     memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
637 gbeauche 1.1 #endif
638    
639     // Setup registers for 68k emulator
640 gbeauche 1.2 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
641 gbeauche 1.1 for (int i = 0; i < 8; i++) // d[0]..d[7]
642     gpr(8 + i) = r->d[i];
643     for (int i = 0; i < 7; i++) // a[0]..a[6]
644     gpr(16 + i) = r->a[i];
645     gpr(23) = 0;
646     gpr(24) = entry;
647     gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
648     gpr(26) = 0;
649     gpr(28) = 0; // VBR
650 gbeauche 1.5 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
651     gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
652 gbeauche 1.1 gpr(31) = KernelDataAddr + 0x1000;
653    
654     // Push return address (points to EXEC_RETURN opcode) on stack
655     gpr(1) -= 4;
656     WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
657    
658     // Rentering 68k emulator
659     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
660    
661     // Set r0 to 0 for 68k emulator
662     gpr(0) = 0;
663    
664     // Execute 68k opcode
665     uint32 opcode = ReadMacInt16(gpr(24));
666     gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
667     gpr(29) += opcode * 8;
668     execute(gpr(29));
669    
670     // Save r25 (contains current 68k interrupt level)
671     WriteMacInt32(XLM_68K_R25, gpr(25));
672    
673     // Reentering EMUL_OP mode
674     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
675    
676     // Save 68k registers
677     for (int i = 0; i < 8; i++) // d[0]..d[7]
678     r->d[i] = gpr(8 + i);
679     for (int i = 0; i < 7; i++) // a[0]..a[6]
680     r->a[i] = gpr(16 + i);
681    
682     // Restore PowerPC registers
683 gbeauche 1.6 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
684 gbeauche 1.1 #if SAVE_FP_EXEC_68K
685 gbeauche 1.6 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
686 gbeauche 1.1 #endif
687    
688     // Cleanup stack
689 gbeauche 1.6 gpr(1) += 56;
690 gbeauche 1.1
691     // Restore program counters and branch registers
692     pc() = saved_pc;
693     lr() = saved_lr;
694     ctr()= saved_ctr;
695 gbeauche 1.8 set_cr(saved_cr);
696 gbeauche 1.15
697     #if EMUL_TIME_STATS
698     exec68k_time += (clock() - exec68k_start);
699     #endif
700 gbeauche 1.1 }
701    
702     // Call MacOS PPC code
703     uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
704     {
705 gbeauche 1.15 #if EMUL_TIME_STATS
706     macos_exec_count++;
707     const clock_t macos_exec_start = clock();
708     #endif
709    
710 gbeauche 1.1 // Save program counters and branch registers
711     uint32 saved_pc = pc();
712     uint32 saved_lr = lr();
713     uint32 saved_ctr= ctr();
714    
715     // Build trampoline with EXEC_RETURN
716 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
717     lr() = trampoline.addr();
718 gbeauche 1.1
719     gpr(1) -= 64; // Create stack frame
720     uint32 proc = ReadMacInt32(tvect); // Get routine address
721     uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
722    
723     // Save PowerPC registers
724     uint32 regs[8];
725     regs[0] = gpr(2);
726     for (int i = 0; i < nargs; i++)
727     regs[i + 1] = gpr(i + 3);
728    
729     // Prepare and call MacOS routine
730     gpr(2) = toc;
731     for (int i = 0; i < nargs; i++)
732     gpr(i + 3) = args[i];
733     execute(proc);
734     uint32 retval = gpr(3);
735    
736     // Restore PowerPC registers
737     for (int i = 0; i <= nargs; i++)
738     gpr(i + 2) = regs[i];
739    
740     // Cleanup stack
741     gpr(1) += 64;
742    
743     // Restore program counters and branch registers
744     pc() = saved_pc;
745     lr() = saved_lr;
746     ctr()= saved_ctr;
747    
748 gbeauche 1.15 #if EMUL_TIME_STATS
749     macos_exec_time += (clock() - macos_exec_start);
750     #endif
751    
752 gbeauche 1.1 return retval;
753     }
754    
755 gbeauche 1.2 // Execute ppc routine
756     inline void sheepshaver_cpu::execute_ppc(uint32 entry)
757     {
758     // Save branch registers
759     uint32 saved_lr = lr();
760    
761 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
762     WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
763     lr() = trampoline.addr();
764 gbeauche 1.2
765     execute(entry);
766    
767     // Restore branch registers
768     lr() = saved_lr;
769     }
770    
771 gbeauche 1.1 // Resource Manager thunk
772     inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
773     {
774 gbeauche 1.2 uint32 type = gpr(3);
775     int16 id = gpr(4);
776    
777     // Create stack frame
778     gpr(1) -= 56;
779    
780     // Call old routine
781     execute_ppc(old_get_resource);
782    
783     // Call CheckLoad()
784 gbeauche 1.5 uint32 handle = gpr(3);
785 gbeauche 1.2 check_load_invoc(type, id, handle);
786 gbeauche 1.5 gpr(3) = handle;
787 gbeauche 1.2
788     // Cleanup stack
789     gpr(1) += 56;
790 gbeauche 1.1 }
791    
792    
793     /**
794     * SheepShaver CPU engine interface
795     **/
796    
797 gbeauche 1.41 // PowerPC CPU emulator
798     static sheepshaver_cpu *ppc_cpu = NULL;
799 gbeauche 1.1
800 gbeauche 1.7 void FlushCodeCache(uintptr start, uintptr end)
801     {
802     D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
803 gbeauche 1.41 ppc_cpu->invalidate_cache_range(start, end);
804 gbeauche 1.2 }
805    
806 gbeauche 1.1 // Dump PPC registers
807     static void dump_registers(void)
808     {
809 gbeauche 1.41 ppc_cpu->dump_registers();
810 gbeauche 1.1 }
811    
812     // Dump log
813     static void dump_log(void)
814     {
815 gbeauche 1.41 ppc_cpu->dump_log();
816 gbeauche 1.1 }
817    
818     /*
819     * Initialize CPU emulation
820     */
821    
822 gbeauche 1.48 sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
823 gbeauche 1.1 {
824     #if ENABLE_VOSF
825 gbeauche 1.3 // Handle screen fault
826     extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
827     if (Screen_fault_handler(fault_address, fault_instruction))
828     return SIGSEGV_RETURN_SUCCESS;
829 gbeauche 1.1 #endif
830 gbeauche 1.3
831     const uintptr addr = (uintptr)fault_address;
832     #if HAVE_SIGSEGV_SKIP_INSTRUCTION
833     // Ignore writes to ROM
834 gbeauche 1.52 if ((addr - (uintptr)ROMBaseHost) < ROM_SIZE)
835 gbeauche 1.3 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
836    
837 gbeauche 1.17 // Get program counter of target CPU
838 gbeauche 1.41 sheepshaver_cpu * const cpu = ppc_cpu;
839 gbeauche 1.17 const uint32 pc = cpu->pc();
840    
841     // Fault in Mac ROM or RAM?
842 gbeauche 1.43 bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize)) || (pc >= DR_CACHE_BASE && pc < (DR_CACHE_BASE + DR_CACHE_SIZE));
843 gbeauche 1.17 if (mac_fault) {
844    
845     // "VM settings" during MacOS 8 installation
846     if (pc == ROM_BASE + 0x488160 && cpu->gpr(20) == 0xf8000000)
847     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
848    
849     // MacOS 8.5 installation
850     else if (pc == ROM_BASE + 0x488140 && cpu->gpr(16) == 0xf8000000)
851     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
852    
853     // MacOS 8 serial drivers on startup
854     else if (pc == ROM_BASE + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
855     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
856    
857     // MacOS 8.1 serial drivers on startup
858     else if (pc == ROM_BASE + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
859     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
860     else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
861     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
862 gbeauche 1.43
863     // MacOS 8.6 serial drivers on startup (with DR Cache and OldWorld ROM)
864     else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(16) == 0xf3012002 || cpu->gpr(16) == 0xf3012000))
865     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
866     else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
867     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
868 gbeauche 1.17
869 gbeauche 1.30 // Ignore writes to the zero page
870     else if ((uint32)(addr - SheepMem::ZeroPage()) < (uint32)SheepMem::PageSize())
871     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
872    
873 gbeauche 1.17 // Ignore all other faults, if requested
874     if (PrefsFindBool("ignoresegv"))
875     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
876     }
877 gbeauche 1.3 #else
878     #error "FIXME: You don't have the capability to skip instruction within signal handlers"
879 gbeauche 1.1 #endif
880 gbeauche 1.3
881     printf("SIGSEGV\n");
882     printf(" pc %p\n", fault_instruction);
883     printf(" ea %p\n", fault_address);
884 gbeauche 1.1 dump_registers();
885 gbeauche 1.41 ppc_cpu->dump_log();
886 gbeauche 1.1 enter_mon();
887     QuitEmulator();
888 gbeauche 1.3
889     return SIGSEGV_RETURN_FAILURE;
890 gbeauche 1.1 }
891    
892     void init_emul_ppc(void)
893     {
894 gbeauche 1.52 // Get pointer to KernelData in host address space
895     kernel_data = (KernelData *)Mac2HostAddr(KERNEL_DATA_BASE);
896    
897 gbeauche 1.1 // Initialize main CPU emulator
898 gbeauche 1.41 ppc_cpu = new sheepshaver_cpu();
899     ppc_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
900     ppc_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
901 gbeauche 1.1 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
902    
903     #if ENABLE_MON
904     // Install "regs" command in cxmon
905     mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
906     mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
907     #endif
908 gbeauche 1.15
909     #if EMUL_TIME_STATS
910     emul_start_time = clock();
911     #endif
912 gbeauche 1.1 }
913    
914     /*
915 gbeauche 1.14 * Deinitialize emulation
916     */
917    
918     void exit_emul_ppc(void)
919     {
920 gbeauche 1.15 #if EMUL_TIME_STATS
921     clock_t emul_end_time = clock();
922    
923     printf("### Statistics for SheepShaver emulation parts\n");
924     const clock_t emul_time = emul_end_time - emul_start_time;
925     printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
926     printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
927     (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
928 gbeauche 1.44 printf("Total ppc interrupt count: %d (%2.1f %%)\n", ppc_interrupt_count,
929     (double(ppc_interrupt_count) * 100.0) / double(interrupt_count));
930 gbeauche 1.15
931     #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
932     printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
933     printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
934     double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
935     100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
936     } while (0)
937    
938     PRINT_STATS("Execute68k[Trap] execution", exec68k);
939     PRINT_STATS("NativeOp execution", native_exec);
940     PRINT_STATS("MacOS routine execution", macos_exec);
941    
942     #undef PRINT_STATS
943     printf("\n");
944     #endif
945    
946 gbeauche 1.41 delete ppc_cpu;
947 gbeauche 1.14 }
948    
949 gbeauche 1.38 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
950     // Initialize EmulOp trampolines
951     void init_emul_op_trampolines(basic_dyngen & dg)
952     {
953     typedef void (*func_t)(dyngen_cpu_base, uint32);
954     func_t func;
955    
956     // EmulOp
957     emul_op_trampoline = dg.gen_start();
958     func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
959     dg.gen_invoke_CPU_T0(func);
960     dg.gen_exec_return();
961     dg.gen_end();
962    
963     // NativeOp
964     native_op_trampoline = dg.gen_start();
965     func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
966     dg.gen_invoke_CPU_T0(func);
967     dg.gen_exec_return();
968     dg.gen_end();
969    
970     D(bug("EmulOp trampoline: %p\n", emul_op_trampoline));
971     D(bug("NativeOp trampoline: %p\n", native_op_trampoline));
972     }
973     #endif
974    
975 gbeauche 1.14 /*
976 gbeauche 1.1 * Emulation loop
977     */
978    
979     void emul_ppc(uint32 entry)
980     {
981 gbeauche 1.24 #if 0
982 gbeauche 1.41 ppc_cpu->start_log();
983 gbeauche 1.10 #endif
984     // start emulation loop and enable code translation or caching
985 gbeauche 1.41 ppc_cpu->execute(entry);
986 gbeauche 1.1 }
987    
988     /*
989     * Handle PowerPC interrupt
990     */
991    
992 gbeauche 1.2 void TriggerInterrupt(void)
993     {
994     #if 0
995     WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
996     #else
997 gbeauche 1.10 // Trigger interrupt to main cpu only
998 gbeauche 1.41 if (ppc_cpu)
999     ppc_cpu->trigger_interrupt();
1000 gbeauche 1.2 #endif
1001     }
1002    
1003 gbeauche 1.10 void sheepshaver_cpu::handle_interrupt(void)
1004 gbeauche 1.1 {
1005 gbeauche 1.47 #ifdef USE_SDL_VIDEO
1006     // We must fill in the events queue in the same thread that did call SDL_SetVideoMode()
1007     SDL_PumpEvents();
1008     #endif
1009    
1010 gbeauche 1.1 // Do nothing if interrupts are disabled
1011 gbeauche 1.46 if (int32(ReadMacInt32(XLM_IRQ_NEST)) > 0)
1012 gbeauche 1.1 return;
1013    
1014 gbeauche 1.40 // Current interrupt nest level
1015     static int interrupt_depth = 0;
1016     ++interrupt_depth;
1017 gbeauche 1.44 #if EMUL_TIME_STATS
1018     interrupt_count++;
1019     #endif
1020 gbeauche 1.40
1021 gbeauche 1.1 // Disable MacOS stack sniffer
1022     WriteMacInt32(0x110, 0);
1023    
1024     // Interrupt action depends on current run mode
1025     switch (ReadMacInt32(XLM_RUN_MODE)) {
1026     case MODE_68K:
1027     // 68k emulator active, trigger 68k interrupt level 1
1028     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
1029 gbeauche 1.10 set_cr(get_cr() | tswap32(kernel_data->v[0x674 >> 2]));
1030 gbeauche 1.1 break;
1031    
1032     #if INTERRUPTS_IN_NATIVE_MODE
1033     case MODE_NATIVE:
1034     // 68k emulator inactive, in nanokernel?
1035 gbeauche 1.40 if (gpr(1) != KernelDataAddr && interrupt_depth == 1) {
1036 gbeauche 1.39 interrupt_context ctx(this, "PowerPC mode");
1037    
1038 gbeauche 1.1 // Prepare for 68k interrupt level 1
1039     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
1040     WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
1041     ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
1042     | tswap32(kernel_data->v[0x674 >> 2]));
1043    
1044     // Execute nanokernel interrupt routine (this will activate the 68k emulator)
1045 gbeauche 1.2 DisableInterrupt();
1046 gbeauche 1.1 if (ROMType == ROMTYPE_NEWWORLD)
1047 gbeauche 1.41 ppc_cpu->interrupt(ROM_BASE + 0x312b1c);
1048 gbeauche 1.1 else
1049 gbeauche 1.41 ppc_cpu->interrupt(ROM_BASE + 0x312a3c);
1050 gbeauche 1.1 }
1051     break;
1052     #endif
1053    
1054     #if INTERRUPTS_IN_EMUL_OP_MODE
1055     case MODE_EMUL_OP:
1056     // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
1057     if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
1058 gbeauche 1.39 interrupt_context ctx(this, "68k mode");
1059 gbeauche 1.44 #if EMUL_TIME_STATS
1060     const clock_t interrupt_start = clock();
1061     #endif
1062 gbeauche 1.1 #if 1
1063     // Execute full 68k interrupt routine
1064     M68kRegisters r;
1065     uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
1066     WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
1067 gbeauche 1.53 static const uint8 proc_template[] = {
1068 gbeauche 1.2 0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
1069     0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
1070     0x40, 0xe7, // move sr,-(sp) (saved SR)
1071     0x20, 0x78, 0x00, 0x064, // move.l $64,a0
1072     0x4e, 0xd0, // jmp (a0)
1073     M68K_RTS >> 8, M68K_RTS & 0xff // @1
1074 gbeauche 1.1 };
1075 gbeauche 1.53 BUILD_SHEEPSHAVER_PROCEDURE(proc);
1076     Execute68k(proc, &r);
1077 gbeauche 1.1 WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
1078     #else
1079     // Only update cursor
1080     if (HasMacStarted()) {
1081     if (InterruptFlags & INTFLAG_VIA) {
1082     ClearInterruptFlag(INTFLAG_VIA);
1083     ADBInterrupt();
1084 gbeauche 1.22 ExecuteNative(NATIVE_VIDEO_VBL);
1085 gbeauche 1.1 }
1086     }
1087     #endif
1088 gbeauche 1.44 #if EMUL_TIME_STATS
1089     interrupt_time += (clock() - interrupt_start);
1090     #endif
1091 gbeauche 1.1 }
1092     break;
1093     #endif
1094     }
1095 gbeauche 1.40
1096     // We are done with this interrupt
1097     --interrupt_depth;
1098 gbeauche 1.1 }
1099    
1100     static void get_resource(void);
1101     static void get_1_resource(void);
1102     static void get_ind_resource(void);
1103     static void get_1_ind_resource(void);
1104     static void r_get_resource(void);
1105    
1106 gbeauche 1.38 // Execute NATIVE_OP routine
1107     void sheepshaver_cpu::execute_native_op(uint32 selector)
1108 gbeauche 1.1 {
1109 gbeauche 1.15 #if EMUL_TIME_STATS
1110     native_exec_count++;
1111     const clock_t native_exec_start = clock();
1112     #endif
1113    
1114 gbeauche 1.1 switch (selector) {
1115     case NATIVE_PATCH_NAME_REGISTRY:
1116     DoPatchNameRegistry();
1117     break;
1118     case NATIVE_VIDEO_INSTALL_ACCEL:
1119     VideoInstallAccel();
1120     break;
1121     case NATIVE_VIDEO_VBL:
1122     VideoVBL();
1123     break;
1124     case NATIVE_VIDEO_DO_DRIVER_IO:
1125 gbeauche 1.52 gpr(3) = (int32)(int16)VideoDoDriverIO(gpr(3), gpr(4), gpr(5), gpr(6), gpr(7));
1126 gbeauche 1.1 break;
1127 gbeauche 1.16 case NATIVE_ETHER_IRQ:
1128     EtherIRQ();
1129     break;
1130     case NATIVE_ETHER_INIT:
1131 gbeauche 1.38 gpr(3) = InitStreamModule((void *)gpr(3));
1132 gbeauche 1.16 break;
1133     case NATIVE_ETHER_TERM:
1134     TerminateStreamModule();
1135     break;
1136     case NATIVE_ETHER_OPEN:
1137 gbeauche 1.38 gpr(3) = ether_open((queue_t *)gpr(3), (void *)gpr(4), gpr(5), gpr(6), (void*)gpr(7));
1138 gbeauche 1.1 break;
1139 gbeauche 1.16 case NATIVE_ETHER_CLOSE:
1140 gbeauche 1.38 gpr(3) = ether_close((queue_t *)gpr(3), gpr(4), (void *)gpr(5));
1141 gbeauche 1.1 break;
1142 gbeauche 1.16 case NATIVE_ETHER_WPUT:
1143 gbeauche 1.38 gpr(3) = ether_wput((queue_t *)gpr(3), (mblk_t *)gpr(4));
1144 gbeauche 1.1 break;
1145 gbeauche 1.16 case NATIVE_ETHER_RSRV:
1146 gbeauche 1.38 gpr(3) = ether_rsrv((queue_t *)gpr(3));
1147 gbeauche 1.1 break;
1148 gbeauche 1.32 case NATIVE_SYNC_HOOK:
1149 gbeauche 1.38 gpr(3) = NQD_sync_hook(gpr(3));
1150 gbeauche 1.32 break;
1151     case NATIVE_BITBLT_HOOK:
1152 gbeauche 1.38 gpr(3) = NQD_bitblt_hook(gpr(3));
1153 gbeauche 1.32 break;
1154     case NATIVE_BITBLT:
1155 gbeauche 1.38 NQD_bitblt(gpr(3));
1156 gbeauche 1.32 break;
1157     case NATIVE_FILLRECT_HOOK:
1158 gbeauche 1.38 gpr(3) = NQD_fillrect_hook(gpr(3));
1159 gbeauche 1.32 break;
1160     case NATIVE_INVRECT:
1161 gbeauche 1.38 NQD_invrect(gpr(3));
1162 gbeauche 1.32 break;
1163 gbeauche 1.33 case NATIVE_FILLRECT:
1164 gbeauche 1.38 NQD_fillrect(gpr(3));
1165 gbeauche 1.32 break;
1166 gbeauche 1.1 case NATIVE_SERIAL_NOTHING:
1167     case NATIVE_SERIAL_OPEN:
1168     case NATIVE_SERIAL_PRIME_IN:
1169     case NATIVE_SERIAL_PRIME_OUT:
1170     case NATIVE_SERIAL_CONTROL:
1171     case NATIVE_SERIAL_STATUS:
1172     case NATIVE_SERIAL_CLOSE: {
1173     typedef int16 (*SerialCallback)(uint32, uint32);
1174     static const SerialCallback serial_callbacks[] = {
1175     SerialNothing,
1176     SerialOpen,
1177     SerialPrimeIn,
1178     SerialPrimeOut,
1179     SerialControl,
1180     SerialStatus,
1181     SerialClose
1182     };
1183 gbeauche 1.38 gpr(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](gpr(3), gpr(4));
1184 gbeauche 1.16 break;
1185     }
1186     case NATIVE_GET_RESOURCE:
1187     case NATIVE_GET_1_RESOURCE:
1188     case NATIVE_GET_IND_RESOURCE:
1189     case NATIVE_GET_1_IND_RESOURCE:
1190     case NATIVE_R_GET_RESOURCE: {
1191     typedef void (*GetResourceCallback)(void);
1192     static const GetResourceCallback get_resource_callbacks[] = {
1193 gbeauche 1.38 ::get_resource,
1194     ::get_1_resource,
1195     ::get_ind_resource,
1196     ::get_1_ind_resource,
1197     ::r_get_resource
1198 gbeauche 1.16 };
1199     get_resource_callbacks[selector - NATIVE_GET_RESOURCE]();
1200 gbeauche 1.1 break;
1201     }
1202 gbeauche 1.7 case NATIVE_MAKE_EXECUTABLE:
1203 gbeauche 1.52 MakeExecutable(0, gpr(4), gpr(5));
1204 gbeauche 1.26 break;
1205     case NATIVE_CHECK_LOAD_INVOC:
1206 gbeauche 1.38 check_load_invoc(gpr(3), gpr(4), gpr(5));
1207 gbeauche 1.2 break;
1208 gbeauche 1.1 default:
1209     printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
1210     QuitEmulator();
1211     break;
1212     }
1213 gbeauche 1.15
1214     #if EMUL_TIME_STATS
1215     native_exec_time += (clock() - native_exec_start);
1216     #endif
1217 gbeauche 1.1 }
1218    
1219     /*
1220     * Execute 68k subroutine (must be ended with EXEC_RETURN)
1221     * This must only be called by the emul_thread when in EMUL_OP mode
1222     * r->a[7] is unused, the routine runs on the caller's stack
1223     */
1224    
1225     void Execute68k(uint32 pc, M68kRegisters *r)
1226     {
1227 gbeauche 1.41 ppc_cpu->execute_68k(pc, r);
1228 gbeauche 1.1 }
1229    
1230     /*
1231     * Execute 68k A-Trap from EMUL_OP routine
1232     * r->a[7] is unused, the routine runs on the caller's stack
1233     */
1234    
1235     void Execute68kTrap(uint16 trap, M68kRegisters *r)
1236     {
1237 gbeauche 1.21 SheepVar proc_var(4);
1238     uint32 proc = proc_var.addr();
1239     WriteMacInt16(proc, trap);
1240     WriteMacInt16(proc + 2, M68K_RTS);
1241     Execute68k(proc, r);
1242 gbeauche 1.1 }
1243    
1244     /*
1245     * Call MacOS PPC code
1246     */
1247    
1248     uint32 call_macos(uint32 tvect)
1249     {
1250 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, 0, NULL);
1251 gbeauche 1.1 }
1252    
1253     uint32 call_macos1(uint32 tvect, uint32 arg1)
1254     {
1255     const uint32 args[] = { arg1 };
1256 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1257 gbeauche 1.1 }
1258    
1259     uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1260     {
1261     const uint32 args[] = { arg1, arg2 };
1262 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1263 gbeauche 1.1 }
1264    
1265     uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1266     {
1267     const uint32 args[] = { arg1, arg2, arg3 };
1268 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1269 gbeauche 1.1 }
1270    
1271     uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1272     {
1273     const uint32 args[] = { arg1, arg2, arg3, arg4 };
1274 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1275 gbeauche 1.1 }
1276    
1277     uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1278     {
1279     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1280 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1281 gbeauche 1.1 }
1282    
1283     uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1284     {
1285     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1286 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1287 gbeauche 1.1 }
1288    
1289     uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1290     {
1291     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1292 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1293 gbeauche 1.1 }
1294    
1295     /*
1296     * Resource Manager thunks
1297     */
1298    
1299     void get_resource(void)
1300     {
1301 gbeauche 1.41 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1302 gbeauche 1.1 }
1303    
1304     void get_1_resource(void)
1305     {
1306 gbeauche 1.41 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1307 gbeauche 1.1 }
1308    
1309     void get_ind_resource(void)
1310     {
1311 gbeauche 1.41 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1312 gbeauche 1.1 }
1313    
1314     void get_1_ind_resource(void)
1315     {
1316 gbeauche 1.41 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1317 gbeauche 1.1 }
1318    
1319     void r_get_resource(void)
1320     {
1321 gbeauche 1.41 ppc_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1322 gbeauche 1.1 }