ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.5
Committed: 2003-09-29T22:50:31Z (20 years, 11 months ago) by gbeauche
Branch: MAIN
Changes since 1.4: +19 -15 lines
Log Message:
little endian fixes, note that trampolines are still not 64-bit clean either

File Contents

# User Rev Content
1 gbeauche 1.1 /*
2     * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3     *
4     * SheepShaver (C) 1997-2002 Christian Bauer and Marc Hellwig
5     *
6     * This program is free software; you can redistribute it and/or modify
7     * it under the terms of the GNU General Public License as published by
8     * the Free Software Foundation; either version 2 of the License, or
9     * (at your option) any later version.
10     *
11     * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15     *
16     * You should have received a copy of the GNU General Public License
17     * along with this program; if not, write to the Free Software
18     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19     */
20    
21     #include "sysdeps.h"
22     #include "cpu_emulation.h"
23     #include "main.h"
24 gbeauche 1.3 #include "prefs.h"
25 gbeauche 1.1 #include "xlowmem.h"
26     #include "emul_op.h"
27     #include "rom_patches.h"
28     #include "macos_util.h"
29     #include "block-alloc.hpp"
30     #include "sigsegv.h"
31 gbeauche 1.2 #include "spcflags.h"
32 gbeauche 1.1 #include "cpu/ppc/ppc-cpu.hpp"
33     #include "cpu/ppc/ppc-operations.hpp"
34    
35     // Used for NativeOp trampolines
36     #include "video.h"
37     #include "name_registry.h"
38     #include "serial.h"
39    
40     #include <stdio.h>
41    
42     #if ENABLE_MON
43     #include "mon.h"
44     #include "mon_disass.h"
45     #endif
46    
47     #define DEBUG 1
48     #include "debug.h"
49    
50     static void enter_mon(void)
51     {
52     // Start up mon in real-mode
53     #if ENABLE_MON
54     char *arg[4] = {"mon", "-m", "-r", NULL};
55     mon(3, arg);
56     #endif
57     }
58    
59 gbeauche 1.2 // Enable multicore (main/interrupts) cpu emulation?
60     #define MULTICORE_CPU 0
61    
62 gbeauche 1.1 // Enable Execute68k() safety checks?
63     #define SAFE_EXEC_68K 1
64    
65     // Save FP state in Execute68k()?
66     #define SAVE_FP_EXEC_68K 1
67    
68     // Interrupts in EMUL_OP mode?
69     #define INTERRUPTS_IN_EMUL_OP_MODE 1
70    
71     // Interrupts in native mode?
72     #define INTERRUPTS_IN_NATIVE_MODE 1
73    
74     // Pointer to Kernel Data
75 gbeauche 1.4 static KernelData * const kernel_data = (KernelData *)KERNEL_DATA_BASE;
76 gbeauche 1.1
77    
78     /**
79     * PowerPC emulator glue with special 'sheep' opcodes
80     **/
81    
82     struct sheepshaver_exec_return { };
83    
84     class sheepshaver_cpu
85     : public powerpc_cpu
86     {
87     void init_decoder();
88     void execute_sheep(uint32 opcode);
89    
90     public:
91    
92     sheepshaver_cpu()
93     : powerpc_cpu()
94     { init_decoder(); }
95    
96     // Condition Register accessors
97     uint32 get_cr() const { return cr().get(); }
98     void set_cr(uint32 v) { cr().set(v); }
99    
100     // Execution loop
101     void execute(uint32 pc);
102    
103     // Execute 68k routine
104     void execute_68k(uint32 entry, M68kRegisters *r);
105    
106 gbeauche 1.2 // Execute ppc routine
107     void execute_ppc(uint32 entry);
108    
109 gbeauche 1.1 // Execute MacOS/PPC code
110     uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
111    
112     // Resource manager thunk
113     void get_resource(uint32 old_get_resource);
114    
115     // Handle MacOS interrupt
116 gbeauche 1.4 void interrupt(uint32 entry);
117 gbeauche 1.2
118     // spcflags for interrupts handling
119     static uint32 spcflags;
120 gbeauche 1.1
121     // Lazy memory allocator (one item at a time)
122     void *operator new(size_t size)
123     { return allocator_helper< sheepshaver_cpu, lazy_allocator >::allocate(); }
124     void operator delete(void *p)
125     { allocator_helper< sheepshaver_cpu, lazy_allocator >::deallocate(p); }
126     // FIXME: really make surre array allocation fail at link time?
127     void *operator new[](size_t);
128     void operator delete[](void *p);
129     };
130    
131 gbeauche 1.2 uint32 sheepshaver_cpu::spcflags = 0;
132 gbeauche 1.1 lazy_allocator< sheepshaver_cpu > allocator_helper< sheepshaver_cpu, lazy_allocator >::allocator;
133    
134     void sheepshaver_cpu::init_decoder()
135     {
136     #ifndef PPC_NO_STATIC_II_INDEX_TABLE
137     static bool initialized = false;
138     if (initialized)
139     return;
140     initialized = true;
141     #endif
142    
143     static const instr_info_t sheep_ii_table[] = {
144     { "sheep",
145     (execute_fn)&sheepshaver_cpu::execute_sheep,
146     NULL,
147     D_form, 6, 0, CFLOW_TRAP
148     }
149     };
150    
151     const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
152     D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
153    
154     for (int i = 0; i < ii_count; i++) {
155     const instr_info_t * ii = &sheep_ii_table[i];
156     init_decoder_entry(ii);
157     }
158     }
159    
160     // Forward declaration for native opcode handler
161     static void NativeOp(int selector);
162    
163 gbeauche 1.2 /* NativeOp instruction format:
164     +------------+--------------------------+--+----------+------------+
165     | 6 | |FN| OP | 2 |
166     +------------+--------------------------+--+----------+------------+
167     0 5 |6 19 20 21 25 26 31
168     */
169    
170     typedef bit_field< 20, 20 > FN_field;
171     typedef bit_field< 21, 25 > NATIVE_OP_field;
172     typedef bit_field< 26, 31 > EMUL_OP_field;
173    
174 gbeauche 1.1 // Execute SheepShaver instruction
175     void sheepshaver_cpu::execute_sheep(uint32 opcode)
176     {
177     // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
178     assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
179    
180     switch (opcode & 0x3f) {
181     case 0: // EMUL_RETURN
182     QuitEmulator();
183     break;
184    
185     case 1: // EXEC_RETURN
186     throw sheepshaver_exec_return();
187     break;
188    
189     case 2: // EXEC_NATIVE
190 gbeauche 1.2 NativeOp(NATIVE_OP_field::extract(opcode));
191     if (FN_field::test(opcode))
192     pc() = lr();
193     else
194     pc() += 4;
195 gbeauche 1.1 break;
196    
197     default: { // EMUL_OP
198     M68kRegisters r68;
199     WriteMacInt32(XLM_68K_R25, gpr(25));
200     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
201     for (int i = 0; i < 8; i++)
202     r68.d[i] = gpr(8 + i);
203     for (int i = 0; i < 7; i++)
204     r68.a[i] = gpr(16 + i);
205     r68.a[7] = gpr(1);
206 gbeauche 1.2 EmulOp(&r68, gpr(24), EMUL_OP_field::extract(opcode) - 3);
207 gbeauche 1.1 for (int i = 0; i < 8; i++)
208     gpr(8 + i) = r68.d[i];
209     for (int i = 0; i < 7; i++)
210     gpr(16 + i) = r68.a[i];
211     gpr(1) = r68.a[7];
212     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
213     pc() += 4;
214     break;
215     }
216     }
217     }
218    
219 gbeauche 1.2 // Checks for pending interrupts
220     struct execute_nothing {
221     static inline void execute(powerpc_cpu *) { }
222     };
223    
224     struct execute_spcflags_check {
225     static inline void execute(powerpc_cpu *cpu) {
226 gbeauche 1.4 #if !ASYNC_IRQ
227 gbeauche 1.2 if (SPCFLAGS_TEST(SPCFLAG_ALL_BUT_EXEC_RETURN)) {
228     if (SPCFLAGS_TEST( SPCFLAG_ENTER_MON )) {
229     SPCFLAGS_CLEAR( SPCFLAG_ENTER_MON );
230     enter_mon();
231     }
232     if (SPCFLAGS_TEST( SPCFLAG_DOINT )) {
233     SPCFLAGS_CLEAR( SPCFLAG_DOINT );
234     HandleInterrupt();
235     }
236     if (SPCFLAGS_TEST( SPCFLAG_INT )) {
237     SPCFLAGS_CLEAR( SPCFLAG_INT );
238     SPCFLAGS_SET( SPCFLAG_DOINT );
239     }
240     }
241 gbeauche 1.4 #endif
242 gbeauche 1.2 }
243     };
244    
245 gbeauche 1.1 // Execution loop
246     void sheepshaver_cpu::execute(uint32 entry)
247     {
248     try {
249     pc() = entry;
250 gbeauche 1.2 powerpc_cpu::do_execute<execute_nothing, execute_spcflags_check>();
251 gbeauche 1.1 }
252     catch (sheepshaver_exec_return const &) {
253     // Nothing, simply return
254     }
255     catch (...) {
256     printf("ERROR: execute() received an unknown exception!\n");
257     QuitEmulator();
258     }
259     }
260    
261     // Handle MacOS interrupt
262 gbeauche 1.4 void sheepshaver_cpu::interrupt(uint32 entry)
263 gbeauche 1.1 {
264 gbeauche 1.4 #if !MULTICORE_CPU
265 gbeauche 1.2 // Save program counters and branch registers
266     uint32 saved_pc = pc();
267     uint32 saved_lr = lr();
268     uint32 saved_ctr= ctr();
269 gbeauche 1.4 uint32 saved_sp = gpr(1);
270 gbeauche 1.2 #endif
271    
272 gbeauche 1.4 // Initialize stack pointer to SheepShaver alternate stack base
273     gpr(1) = SheepStack1Base - 64;
274 gbeauche 1.1
275     // Build trampoline to return from interrupt
276 gbeauche 1.5 uint32 trampoline[] = { htonl(POWERPC_EMUL_OP | 1) };
277 gbeauche 1.1
278     // Prepare registers for nanokernel interrupt routine
279 gbeauche 1.5 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
280     kernel_data->v[0x018 >> 2] = htonl(gpr(6));
281 gbeauche 1.1
282 gbeauche 1.5 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
283 gbeauche 1.2 assert(gpr(6) != 0);
284 gbeauche 1.1 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
285     WriteMacInt32(gpr(6) + 0x144, gpr(8));
286     WriteMacInt32(gpr(6) + 0x14c, gpr(9));
287     WriteMacInt32(gpr(6) + 0x154, gpr(10));
288     WriteMacInt32(gpr(6) + 0x15c, gpr(11));
289     WriteMacInt32(gpr(6) + 0x164, gpr(12));
290     WriteMacInt32(gpr(6) + 0x16c, gpr(13));
291    
292     gpr(1) = KernelDataAddr;
293 gbeauche 1.5 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
294 gbeauche 1.1 gpr(8) = 0;
295     gpr(10) = (uint32)trampoline;
296     gpr(12) = (uint32)trampoline;
297     gpr(13) = cr().get();
298    
299     // rlwimi. r7,r7,8,0,0
300     uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
301     record_cr0(result);
302     gpr(7) = result;
303    
304     gpr(11) = 0xf072; // MSR (SRR1)
305     cr().set((gpr(11) & 0x0fff0000) | (cr().get() & ~0x0fff0000));
306    
307     // Enter nanokernel
308     execute(entry);
309    
310 gbeauche 1.2 #if !MULTICORE_CPU
311     // Restore program counters and branch registers
312     pc() = saved_pc;
313     lr() = saved_lr;
314     ctr()= saved_ctr;
315 gbeauche 1.4 gpr(1) = saved_sp;
316 gbeauche 1.2 #endif
317 gbeauche 1.1 }
318    
319     // Execute 68k routine
320     void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
321     {
322     #if SAFE_EXEC_68K
323     if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
324     printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
325     #endif
326    
327     // Save program counters and branch registers
328     uint32 saved_pc = pc();
329     uint32 saved_lr = lr();
330     uint32 saved_ctr= ctr();
331    
332     // Create MacOS stack frame
333     uint32 sp = gpr(1);
334     gpr(1) -= 56 + 19*4 + 18*8;
335     WriteMacInt32(gpr(1), sp);
336    
337     // Save PowerPC registers
338 gbeauche 1.5 for (int i = 13; i < 32; i++)
339     WriteMacInt32(gpr(1) + 56 + i*4, gpr(i));
340 gbeauche 1.1 #if SAVE_FP_EXEC_68K
341     memcpy(Mac2HostAddr(gpr(1)+56+19*4), &fpr(14), sizeof(double)*(32-14));
342     #endif
343    
344     // Setup registers for 68k emulator
345 gbeauche 1.2 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
346 gbeauche 1.1 for (int i = 0; i < 8; i++) // d[0]..d[7]
347     gpr(8 + i) = r->d[i];
348     for (int i = 0; i < 7; i++) // a[0]..a[6]
349     gpr(16 + i) = r->a[i];
350     gpr(23) = 0;
351     gpr(24) = entry;
352     gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
353     gpr(26) = 0;
354     gpr(28) = 0; // VBR
355 gbeauche 1.5 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
356     gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
357 gbeauche 1.1 gpr(31) = KernelDataAddr + 0x1000;
358    
359     // Push return address (points to EXEC_RETURN opcode) on stack
360     gpr(1) -= 4;
361     WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
362    
363     // Rentering 68k emulator
364     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
365    
366     // Set r0 to 0 for 68k emulator
367     gpr(0) = 0;
368    
369     // Execute 68k opcode
370     uint32 opcode = ReadMacInt16(gpr(24));
371     gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
372     gpr(29) += opcode * 8;
373     execute(gpr(29));
374    
375     // Save r25 (contains current 68k interrupt level)
376     WriteMacInt32(XLM_68K_R25, gpr(25));
377    
378     // Reentering EMUL_OP mode
379     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
380    
381     // Save 68k registers
382     for (int i = 0; i < 8; i++) // d[0]..d[7]
383     r->d[i] = gpr(8 + i);
384     for (int i = 0; i < 7; i++) // a[0]..a[6]
385     r->a[i] = gpr(16 + i);
386    
387     // Restore PowerPC registers
388 gbeauche 1.5 for (int i = 13; i < 32; i++)
389     gpr(i) = ReadMacInt32(gpr(1) + 56 + i*4);
390 gbeauche 1.1 #if SAVE_FP_EXEC_68K
391     memcpy(&fpr(14), Mac2HostAddr(gpr(1)+56+19*4), sizeof(double)*(32-14));
392     #endif
393    
394     // Cleanup stack
395     gpr(1) += 56 + 19*4 + 18*8;
396    
397     // Restore program counters and branch registers
398     pc() = saved_pc;
399     lr() = saved_lr;
400     ctr()= saved_ctr;
401     }
402    
403     // Call MacOS PPC code
404     uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
405     {
406     // Save program counters and branch registers
407     uint32 saved_pc = pc();
408     uint32 saved_lr = lr();
409     uint32 saved_ctr= ctr();
410    
411     // Build trampoline with EXEC_RETURN
412 gbeauche 1.5 uint32 trampoline[] = { htonl(POWERPC_EMUL_OP | 1) };
413 gbeauche 1.1 lr() = (uint32)trampoline;
414    
415     gpr(1) -= 64; // Create stack frame
416     uint32 proc = ReadMacInt32(tvect); // Get routine address
417     uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
418    
419     // Save PowerPC registers
420     uint32 regs[8];
421     regs[0] = gpr(2);
422     for (int i = 0; i < nargs; i++)
423     regs[i + 1] = gpr(i + 3);
424    
425     // Prepare and call MacOS routine
426     gpr(2) = toc;
427     for (int i = 0; i < nargs; i++)
428     gpr(i + 3) = args[i];
429     execute(proc);
430     uint32 retval = gpr(3);
431    
432     // Restore PowerPC registers
433     for (int i = 0; i <= nargs; i++)
434     gpr(i + 2) = regs[i];
435    
436     // Cleanup stack
437     gpr(1) += 64;
438    
439     // Restore program counters and branch registers
440     pc() = saved_pc;
441     lr() = saved_lr;
442     ctr()= saved_ctr;
443    
444     return retval;
445     }
446    
447 gbeauche 1.2 // Execute ppc routine
448     inline void sheepshaver_cpu::execute_ppc(uint32 entry)
449     {
450     // Save branch registers
451     uint32 saved_lr = lr();
452     uint32 saved_ctr= ctr();
453    
454 gbeauche 1.5 const uint32 trampoline[] = { htonl(POWERPC_EMUL_OP | 1) };
455 gbeauche 1.2
456     lr() = (uint32)trampoline;
457     ctr()= entry;
458     execute(entry);
459    
460     // Restore branch registers
461     lr() = saved_lr;
462     ctr()= saved_ctr;
463     }
464    
465 gbeauche 1.1 // Resource Manager thunk
466 gbeauche 1.5 extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
467 gbeauche 1.2
468 gbeauche 1.1 inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
469     {
470 gbeauche 1.2 uint32 type = gpr(3);
471     int16 id = gpr(4);
472    
473     // Create stack frame
474     gpr(1) -= 56;
475    
476     // Call old routine
477     execute_ppc(old_get_resource);
478    
479     // Call CheckLoad()
480 gbeauche 1.5 uint32 handle = gpr(3);
481 gbeauche 1.2 check_load_invoc(type, id, handle);
482 gbeauche 1.5 gpr(3) = handle;
483 gbeauche 1.2
484     // Cleanup stack
485     gpr(1) += 56;
486 gbeauche 1.1 }
487    
488    
489     /**
490     * SheepShaver CPU engine interface
491     **/
492    
493     static sheepshaver_cpu *main_cpu = NULL; // CPU emulator to handle usual control flow
494     static sheepshaver_cpu *interrupt_cpu = NULL; // CPU emulator to handle interrupts
495     static sheepshaver_cpu *current_cpu = NULL; // Current CPU emulator context
496    
497 gbeauche 1.2 static inline void cpu_push(sheepshaver_cpu *new_cpu)
498     {
499     #if MULTICORE_CPU
500     current_cpu = new_cpu;
501     #endif
502     }
503    
504     static inline void cpu_pop()
505     {
506     #if MULTICORE_CPU
507     current_cpu = main_cpu;
508     #endif
509     }
510    
511 gbeauche 1.1 // Dump PPC registers
512     static void dump_registers(void)
513     {
514     current_cpu->dump_registers();
515     }
516    
517     // Dump log
518     static void dump_log(void)
519     {
520     current_cpu->dump_log();
521     }
522    
523     /*
524     * Initialize CPU emulation
525     */
526    
527 gbeauche 1.3 static sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
528 gbeauche 1.1 {
529     #if ENABLE_VOSF
530 gbeauche 1.3 // Handle screen fault
531     extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
532     if (Screen_fault_handler(fault_address, fault_instruction))
533     return SIGSEGV_RETURN_SUCCESS;
534 gbeauche 1.1 #endif
535 gbeauche 1.3
536     const uintptr addr = (uintptr)fault_address;
537     #if HAVE_SIGSEGV_SKIP_INSTRUCTION
538     // Ignore writes to ROM
539     if ((addr - ROM_BASE) < ROM_SIZE)
540     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
541    
542     // Ignore all other faults, if requested
543     if (PrefsFindBool("ignoresegv"))
544     return SIGSEGV_RETURN_FAILURE;
545     #else
546     #error "FIXME: You don't have the capability to skip instruction within signal handlers"
547 gbeauche 1.1 #endif
548 gbeauche 1.3
549     printf("SIGSEGV\n");
550     printf(" pc %p\n", fault_instruction);
551     printf(" ea %p\n", fault_address);
552     printf(" cpu %s\n", current_cpu == main_cpu ? "main" : "interrupts");
553 gbeauche 1.1 dump_registers();
554     current_cpu->dump_log();
555     enter_mon();
556     QuitEmulator();
557 gbeauche 1.3
558     return SIGSEGV_RETURN_FAILURE;
559 gbeauche 1.1 }
560    
561     void init_emul_ppc(void)
562     {
563     // Initialize main CPU emulator
564     main_cpu = new sheepshaver_cpu();
565     main_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
566     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
567    
568 gbeauche 1.2 #if MULTICORE_CPU
569 gbeauche 1.1 // Initialize alternate CPU emulator to handle interrupts
570     interrupt_cpu = new sheepshaver_cpu();
571 gbeauche 1.2 #endif
572 gbeauche 1.1
573 gbeauche 1.3 // Install the handler for SIGSEGV
574     sigsegv_install_handler(sigsegv_handler);
575 gbeauche 1.4
576 gbeauche 1.1 #if ENABLE_MON
577     // Install "regs" command in cxmon
578     mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
579     mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
580     #endif
581     }
582    
583     /*
584     * Emulation loop
585     */
586    
587     void emul_ppc(uint32 entry)
588     {
589     current_cpu = main_cpu;
590     current_cpu->start_log();
591     current_cpu->execute(entry);
592     }
593    
594     /*
595     * Handle PowerPC interrupt
596     */
597    
598     // Atomic operations
599     extern int atomic_add(int *var, int v);
600     extern int atomic_and(int *var, int v);
601     extern int atomic_or(int *var, int v);
602    
603 gbeauche 1.4 #if !ASYNC_IRQ
604 gbeauche 1.2 void TriggerInterrupt(void)
605     {
606     #if 0
607     WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
608     #else
609     SPCFLAGS_SET( SPCFLAG_INT );
610     #endif
611     }
612 gbeauche 1.4 #endif
613 gbeauche 1.2
614 gbeauche 1.4 void HandleInterrupt(void)
615 gbeauche 1.1 {
616     // Do nothing if interrupts are disabled
617 gbeauche 1.2 if (int32(ReadMacInt32(XLM_IRQ_NEST)) > 0)
618 gbeauche 1.1 return;
619    
620 gbeauche 1.2 // Do nothing if there is no interrupt pending
621     if (InterruptFlags == 0)
622 gbeauche 1.1 return;
623    
624     // Disable MacOS stack sniffer
625     WriteMacInt32(0x110, 0);
626    
627     // Interrupt action depends on current run mode
628     switch (ReadMacInt32(XLM_RUN_MODE)) {
629     case MODE_68K:
630     // 68k emulator active, trigger 68k interrupt level 1
631     assert(current_cpu == main_cpu);
632     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
633     main_cpu->set_cr(main_cpu->get_cr() | tswap32(kernel_data->v[0x674 >> 2]));
634     break;
635    
636     #if INTERRUPTS_IN_NATIVE_MODE
637     case MODE_NATIVE:
638     // 68k emulator inactive, in nanokernel?
639     assert(current_cpu == main_cpu);
640     if (main_cpu->gpr(1) != KernelDataAddr) {
641     // Prepare for 68k interrupt level 1
642     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
643     WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
644     ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
645     | tswap32(kernel_data->v[0x674 >> 2]));
646    
647     // Execute nanokernel interrupt routine (this will activate the 68k emulator)
648 gbeauche 1.2 DisableInterrupt();
649     cpu_push(interrupt_cpu);
650 gbeauche 1.1 if (ROMType == ROMTYPE_NEWWORLD)
651 gbeauche 1.4 current_cpu->interrupt(ROM_BASE + 0x312b1c);
652 gbeauche 1.1 else
653 gbeauche 1.4 current_cpu->interrupt(ROM_BASE + 0x312a3c);
654 gbeauche 1.2 cpu_pop();
655 gbeauche 1.1 }
656     break;
657     #endif
658    
659     #if INTERRUPTS_IN_EMUL_OP_MODE
660     case MODE_EMUL_OP:
661     // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
662     if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
663     #if 1
664     // Execute full 68k interrupt routine
665     M68kRegisters r;
666     uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
667     WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
668 gbeauche 1.2 static const uint8 proc[] = {
669     0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
670     0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
671     0x40, 0xe7, // move sr,-(sp) (saved SR)
672     0x20, 0x78, 0x00, 0x064, // move.l $64,a0
673     0x4e, 0xd0, // jmp (a0)
674     M68K_RTS >> 8, M68K_RTS & 0xff // @1
675 gbeauche 1.1 };
676     Execute68k((uint32)proc, &r);
677     WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
678     #else
679     // Only update cursor
680     if (HasMacStarted()) {
681     if (InterruptFlags & INTFLAG_VIA) {
682     ClearInterruptFlag(INTFLAG_VIA);
683     ADBInterrupt();
684     ExecutePPC(VideoVBL);
685     }
686     }
687     #endif
688     }
689     break;
690     #endif
691     }
692     }
693    
694     /*
695     * Execute NATIVE_OP opcode (called by PowerPC emulator)
696     */
697    
698 gbeauche 1.2 #define POWERPC_NATIVE_OP_INIT(LR, OP) \
699     tswap32(POWERPC_EMUL_OP | ((LR) << 11) | (((uint32)OP) << 6) | 2)
700 gbeauche 1.1
701     // FIXME: Make sure 32-bit relocations are used
702     const uint32 NativeOpTable[NATIVE_OP_MAX] = {
703 gbeauche 1.2 POWERPC_NATIVE_OP_INIT(1, NATIVE_PATCH_NAME_REGISTRY),
704     POWERPC_NATIVE_OP_INIT(1, NATIVE_VIDEO_INSTALL_ACCEL),
705     POWERPC_NATIVE_OP_INIT(1, NATIVE_VIDEO_VBL),
706     POWERPC_NATIVE_OP_INIT(1, NATIVE_VIDEO_DO_DRIVER_IO),
707     POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_IRQ),
708     POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_INIT),
709     POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_TERM),
710     POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_OPEN),
711     POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_CLOSE),
712     POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_WPUT),
713     POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_RSRV),
714     POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_NOTHING),
715     POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_OPEN),
716     POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_PRIME_IN),
717     POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_PRIME_OUT),
718     POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_CONTROL),
719     POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_STATUS),
720     POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_CLOSE),
721     POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_RESOURCE),
722     POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_1_RESOURCE),
723     POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_IND_RESOURCE),
724     POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_1_IND_RESOURCE),
725     POWERPC_NATIVE_OP_INIT(1, NATIVE_R_GET_RESOURCE),
726     POWERPC_NATIVE_OP_INIT(0, NATIVE_DISABLE_INTERRUPT),
727     POWERPC_NATIVE_OP_INIT(0, NATIVE_ENABLE_INTERRUPT),
728 gbeauche 1.1 };
729    
730     static void get_resource(void);
731     static void get_1_resource(void);
732     static void get_ind_resource(void);
733     static void get_1_ind_resource(void);
734     static void r_get_resource(void);
735    
736     #define GPR(REG) current_cpu->gpr(REG)
737    
738     static void NativeOp(int selector)
739     {
740     switch (selector) {
741     case NATIVE_PATCH_NAME_REGISTRY:
742     DoPatchNameRegistry();
743     break;
744     case NATIVE_VIDEO_INSTALL_ACCEL:
745     VideoInstallAccel();
746     break;
747     case NATIVE_VIDEO_VBL:
748     VideoVBL();
749     break;
750     case NATIVE_VIDEO_DO_DRIVER_IO:
751     GPR(3) = (int32)(int16)VideoDoDriverIO((void *)GPR(3), (void *)GPR(4),
752     (void *)GPR(5), GPR(6), GPR(7));
753     break;
754     case NATIVE_GET_RESOURCE:
755     get_resource();
756     break;
757     case NATIVE_GET_1_RESOURCE:
758     get_1_resource();
759     break;
760     case NATIVE_GET_IND_RESOURCE:
761     get_ind_resource();
762     break;
763     case NATIVE_GET_1_IND_RESOURCE:
764     get_1_ind_resource();
765     break;
766     case NATIVE_R_GET_RESOURCE:
767     r_get_resource();
768     break;
769     case NATIVE_SERIAL_NOTHING:
770     case NATIVE_SERIAL_OPEN:
771     case NATIVE_SERIAL_PRIME_IN:
772     case NATIVE_SERIAL_PRIME_OUT:
773     case NATIVE_SERIAL_CONTROL:
774     case NATIVE_SERIAL_STATUS:
775     case NATIVE_SERIAL_CLOSE: {
776     typedef int16 (*SerialCallback)(uint32, uint32);
777     static const SerialCallback serial_callbacks[] = {
778     SerialNothing,
779     SerialOpen,
780     SerialPrimeIn,
781     SerialPrimeOut,
782     SerialControl,
783     SerialStatus,
784     SerialClose
785     };
786     GPR(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](GPR(3), GPR(4));
787     break;
788     }
789 gbeauche 1.2 case NATIVE_DISABLE_INTERRUPT:
790     DisableInterrupt();
791     break;
792     case NATIVE_ENABLE_INTERRUPT:
793     EnableInterrupt();
794     break;
795 gbeauche 1.1 default:
796     printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
797     QuitEmulator();
798     break;
799     }
800     }
801    
802     /*
803     * Execute native subroutine (LR must contain return address)
804     */
805    
806     void ExecuteNative(int selector)
807     {
808     uint32 tvect[2];
809     tvect[0] = tswap32(POWERPC_NATIVE_OP_FUNC(selector));
810     tvect[1] = 0; // Fake TVECT
811     RoutineDescriptor desc = BUILD_PPC_ROUTINE_DESCRIPTOR(0, tvect);
812     M68kRegisters r;
813     Execute68k((uint32)&desc, &r);
814     }
815    
816     /*
817     * Execute 68k subroutine (must be ended with EXEC_RETURN)
818     * This must only be called by the emul_thread when in EMUL_OP mode
819     * r->a[7] is unused, the routine runs on the caller's stack
820     */
821    
822     void Execute68k(uint32 pc, M68kRegisters *r)
823     {
824     current_cpu->execute_68k(pc, r);
825     }
826    
827     /*
828     * Execute 68k A-Trap from EMUL_OP routine
829     * r->a[7] is unused, the routine runs on the caller's stack
830     */
831    
832     void Execute68kTrap(uint16 trap, M68kRegisters *r)
833     {
834 gbeauche 1.5 uint16 proc[2];
835     proc[0] = htons(trap);
836     proc[1] = htons(M68K_RTS);
837 gbeauche 1.1 Execute68k((uint32)proc, r);
838     }
839    
840     /*
841     * Call MacOS PPC code
842     */
843    
844     uint32 call_macos(uint32 tvect)
845     {
846     return current_cpu->execute_macos_code(tvect, 0, NULL);
847     }
848    
849     uint32 call_macos1(uint32 tvect, uint32 arg1)
850     {
851     const uint32 args[] = { arg1 };
852     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
853     }
854    
855     uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
856     {
857     const uint32 args[] = { arg1, arg2 };
858     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
859     }
860    
861     uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
862     {
863     const uint32 args[] = { arg1, arg2, arg3 };
864     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
865     }
866    
867     uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
868     {
869     const uint32 args[] = { arg1, arg2, arg3, arg4 };
870     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
871     }
872    
873     uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
874     {
875     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
876     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
877     }
878    
879     uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
880     {
881     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
882     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
883     }
884    
885     uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
886     {
887     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
888     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
889     }
890    
891     /*
892     * Atomic operations
893     */
894    
895     int atomic_add(int *var, int v)
896     {
897     int ret = *var;
898     *var += v;
899     return ret;
900     }
901    
902     int atomic_and(int *var, int v)
903     {
904     int ret = *var;
905     *var &= v;
906     return ret;
907     }
908    
909     int atomic_or(int *var, int v)
910     {
911     int ret = *var;
912     *var |= v;
913     return ret;
914     }
915    
916     /*
917     * Resource Manager thunks
918     */
919    
920     void get_resource(void)
921     {
922     current_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
923     }
924    
925     void get_1_resource(void)
926     {
927     current_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
928     }
929    
930     void get_ind_resource(void)
931     {
932     current_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
933     }
934    
935     void get_1_ind_resource(void)
936     {
937     current_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
938     }
939    
940     void r_get_resource(void)
941     {
942     current_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
943     }