ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.4
Committed: 2003-09-29T15:46:09Z (20 years, 9 months ago) by gbeauche
Branch: MAIN
Changes since 1.3: +16 -29 lines
Log Message:
- Share EmulatorData & KernelData struct definitions
- Introduce new SheepShaver data area for alternate stacks, thunks, etc.
- Experimental asynchronous interrupts handling. This improves performance
  by 30% but some (rare) lockups may occur. To be debugged!

File Contents

# User Rev Content
1 gbeauche 1.1 /*
2     * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3     *
4     * SheepShaver (C) 1997-2002 Christian Bauer and Marc Hellwig
5     *
6     * This program is free software; you can redistribute it and/or modify
7     * it under the terms of the GNU General Public License as published by
8     * the Free Software Foundation; either version 2 of the License, or
9     * (at your option) any later version.
10     *
11     * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15     *
16     * You should have received a copy of the GNU General Public License
17     * along with this program; if not, write to the Free Software
18     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19     */
20    
21     #include "sysdeps.h"
22     #include "cpu_emulation.h"
23     #include "main.h"
24 gbeauche 1.3 #include "prefs.h"
25 gbeauche 1.1 #include "xlowmem.h"
26     #include "emul_op.h"
27     #include "rom_patches.h"
28     #include "macos_util.h"
29     #include "block-alloc.hpp"
30     #include "sigsegv.h"
31 gbeauche 1.2 #include "spcflags.h"
32 gbeauche 1.1 #include "cpu/ppc/ppc-cpu.hpp"
33     #include "cpu/ppc/ppc-operations.hpp"
34    
35     // Used for NativeOp trampolines
36     #include "video.h"
37     #include "name_registry.h"
38     #include "serial.h"
39    
40     #include <stdio.h>
41    
42     #if ENABLE_MON
43     #include "mon.h"
44     #include "mon_disass.h"
45     #endif
46    
47     #define DEBUG 1
48     #include "debug.h"
49    
50     static void enter_mon(void)
51     {
52     // Start up mon in real-mode
53     #if ENABLE_MON
54     char *arg[4] = {"mon", "-m", "-r", NULL};
55     mon(3, arg);
56     #endif
57     }
58    
59 gbeauche 1.2 // Enable multicore (main/interrupts) cpu emulation?
60     #define MULTICORE_CPU 0
61    
62 gbeauche 1.1 // Enable Execute68k() safety checks?
63     #define SAFE_EXEC_68K 1
64    
65     // Save FP state in Execute68k()?
66     #define SAVE_FP_EXEC_68K 1
67    
68     // Interrupts in EMUL_OP mode?
69     #define INTERRUPTS_IN_EMUL_OP_MODE 1
70    
71     // Interrupts in native mode?
72     #define INTERRUPTS_IN_NATIVE_MODE 1
73    
74     // Pointer to Kernel Data
75 gbeauche 1.4 static KernelData * const kernel_data = (KernelData *)KERNEL_DATA_BASE;
76 gbeauche 1.1
77    
78     /**
79     * PowerPC emulator glue with special 'sheep' opcodes
80     **/
81    
82     struct sheepshaver_exec_return { };
83    
84     class sheepshaver_cpu
85     : public powerpc_cpu
86     {
87     void init_decoder();
88     void execute_sheep(uint32 opcode);
89    
90     public:
91    
92     sheepshaver_cpu()
93     : powerpc_cpu()
94     { init_decoder(); }
95    
96     // Condition Register accessors
97     uint32 get_cr() const { return cr().get(); }
98     void set_cr(uint32 v) { cr().set(v); }
99    
100     // Execution loop
101     void execute(uint32 pc);
102    
103     // Execute 68k routine
104     void execute_68k(uint32 entry, M68kRegisters *r);
105    
106 gbeauche 1.2 // Execute ppc routine
107     void execute_ppc(uint32 entry);
108    
109 gbeauche 1.1 // Execute MacOS/PPC code
110     uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
111    
112     // Resource manager thunk
113     void get_resource(uint32 old_get_resource);
114    
115     // Handle MacOS interrupt
116 gbeauche 1.4 void interrupt(uint32 entry);
117 gbeauche 1.2
118     // spcflags for interrupts handling
119     static uint32 spcflags;
120 gbeauche 1.1
121     // Lazy memory allocator (one item at a time)
122     void *operator new(size_t size)
123     { return allocator_helper< sheepshaver_cpu, lazy_allocator >::allocate(); }
124     void operator delete(void *p)
125     { allocator_helper< sheepshaver_cpu, lazy_allocator >::deallocate(p); }
126     // FIXME: really make surre array allocation fail at link time?
127     void *operator new[](size_t);
128     void operator delete[](void *p);
129     };
130    
131 gbeauche 1.2 uint32 sheepshaver_cpu::spcflags = 0;
132 gbeauche 1.1 lazy_allocator< sheepshaver_cpu > allocator_helper< sheepshaver_cpu, lazy_allocator >::allocator;
133    
134     void sheepshaver_cpu::init_decoder()
135     {
136     #ifndef PPC_NO_STATIC_II_INDEX_TABLE
137     static bool initialized = false;
138     if (initialized)
139     return;
140     initialized = true;
141     #endif
142    
143     static const instr_info_t sheep_ii_table[] = {
144     { "sheep",
145     (execute_fn)&sheepshaver_cpu::execute_sheep,
146     NULL,
147     D_form, 6, 0, CFLOW_TRAP
148     }
149     };
150    
151     const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
152     D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
153    
154     for (int i = 0; i < ii_count; i++) {
155     const instr_info_t * ii = &sheep_ii_table[i];
156     init_decoder_entry(ii);
157     }
158     }
159    
160     // Forward declaration for native opcode handler
161     static void NativeOp(int selector);
162    
163 gbeauche 1.2 /* NativeOp instruction format:
164     +------------+--------------------------+--+----------+------------+
165     | 6 | |FN| OP | 2 |
166     +------------+--------------------------+--+----------+------------+
167     0 5 |6 19 20 21 25 26 31
168     */
169    
170     typedef bit_field< 20, 20 > FN_field;
171     typedef bit_field< 21, 25 > NATIVE_OP_field;
172     typedef bit_field< 26, 31 > EMUL_OP_field;
173    
174 gbeauche 1.1 // Execute SheepShaver instruction
175     void sheepshaver_cpu::execute_sheep(uint32 opcode)
176     {
177     // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
178     assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
179    
180     switch (opcode & 0x3f) {
181     case 0: // EMUL_RETURN
182     QuitEmulator();
183     break;
184    
185     case 1: // EXEC_RETURN
186     throw sheepshaver_exec_return();
187     break;
188    
189     case 2: // EXEC_NATIVE
190 gbeauche 1.2 NativeOp(NATIVE_OP_field::extract(opcode));
191     if (FN_field::test(opcode))
192     pc() = lr();
193     else
194     pc() += 4;
195 gbeauche 1.1 break;
196    
197     default: { // EMUL_OP
198     M68kRegisters r68;
199     WriteMacInt32(XLM_68K_R25, gpr(25));
200     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
201     for (int i = 0; i < 8; i++)
202     r68.d[i] = gpr(8 + i);
203     for (int i = 0; i < 7; i++)
204     r68.a[i] = gpr(16 + i);
205     r68.a[7] = gpr(1);
206 gbeauche 1.2 EmulOp(&r68, gpr(24), EMUL_OP_field::extract(opcode) - 3);
207 gbeauche 1.1 for (int i = 0; i < 8; i++)
208     gpr(8 + i) = r68.d[i];
209     for (int i = 0; i < 7; i++)
210     gpr(16 + i) = r68.a[i];
211     gpr(1) = r68.a[7];
212     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
213     pc() += 4;
214     break;
215     }
216     }
217     }
218    
219 gbeauche 1.2 // Checks for pending interrupts
220     struct execute_nothing {
221     static inline void execute(powerpc_cpu *) { }
222     };
223    
224     struct execute_spcflags_check {
225     static inline void execute(powerpc_cpu *cpu) {
226 gbeauche 1.4 #if !ASYNC_IRQ
227 gbeauche 1.2 if (SPCFLAGS_TEST(SPCFLAG_ALL_BUT_EXEC_RETURN)) {
228     if (SPCFLAGS_TEST( SPCFLAG_ENTER_MON )) {
229     SPCFLAGS_CLEAR( SPCFLAG_ENTER_MON );
230     enter_mon();
231     }
232     if (SPCFLAGS_TEST( SPCFLAG_DOINT )) {
233     SPCFLAGS_CLEAR( SPCFLAG_DOINT );
234     HandleInterrupt();
235     }
236     if (SPCFLAGS_TEST( SPCFLAG_INT )) {
237     SPCFLAGS_CLEAR( SPCFLAG_INT );
238     SPCFLAGS_SET( SPCFLAG_DOINT );
239     }
240     }
241 gbeauche 1.4 #endif
242 gbeauche 1.2 }
243     };
244    
245 gbeauche 1.1 // Execution loop
246     void sheepshaver_cpu::execute(uint32 entry)
247     {
248     try {
249     pc() = entry;
250 gbeauche 1.2 powerpc_cpu::do_execute<execute_nothing, execute_spcflags_check>();
251 gbeauche 1.1 }
252     catch (sheepshaver_exec_return const &) {
253     // Nothing, simply return
254     }
255     catch (...) {
256     printf("ERROR: execute() received an unknown exception!\n");
257     QuitEmulator();
258     }
259     }
260    
261     // Handle MacOS interrupt
262 gbeauche 1.4 void sheepshaver_cpu::interrupt(uint32 entry)
263 gbeauche 1.1 {
264 gbeauche 1.4 #if !MULTICORE_CPU
265 gbeauche 1.2 // Save program counters and branch registers
266     uint32 saved_pc = pc();
267     uint32 saved_lr = lr();
268     uint32 saved_ctr= ctr();
269 gbeauche 1.4 uint32 saved_sp = gpr(1);
270 gbeauche 1.2 #endif
271    
272 gbeauche 1.4 // Initialize stack pointer to SheepShaver alternate stack base
273     gpr(1) = SheepStack1Base - 64;
274 gbeauche 1.1
275     // Build trampoline to return from interrupt
276     uint32 trampoline[] = { POWERPC_EMUL_OP | 1 };
277    
278     // Prepare registers for nanokernel interrupt routine
279     kernel_data->v[0x004 >> 2] = gpr(1);
280     kernel_data->v[0x018 >> 2] = gpr(6);
281    
282     gpr(6) = kernel_data->v[0x65c >> 2];
283 gbeauche 1.2 assert(gpr(6) != 0);
284 gbeauche 1.1 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
285     WriteMacInt32(gpr(6) + 0x144, gpr(8));
286     WriteMacInt32(gpr(6) + 0x14c, gpr(9));
287     WriteMacInt32(gpr(6) + 0x154, gpr(10));
288     WriteMacInt32(gpr(6) + 0x15c, gpr(11));
289     WriteMacInt32(gpr(6) + 0x164, gpr(12));
290     WriteMacInt32(gpr(6) + 0x16c, gpr(13));
291    
292     gpr(1) = KernelDataAddr;
293     gpr(7) = kernel_data->v[0x660 >> 2];
294     gpr(8) = 0;
295     gpr(10) = (uint32)trampoline;
296     gpr(12) = (uint32)trampoline;
297     gpr(13) = cr().get();
298    
299     // rlwimi. r7,r7,8,0,0
300     uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
301     record_cr0(result);
302     gpr(7) = result;
303    
304     gpr(11) = 0xf072; // MSR (SRR1)
305     cr().set((gpr(11) & 0x0fff0000) | (cr().get() & ~0x0fff0000));
306    
307     // Enter nanokernel
308     execute(entry);
309    
310 gbeauche 1.2 #if !MULTICORE_CPU
311     // Restore program counters and branch registers
312     pc() = saved_pc;
313     lr() = saved_lr;
314     ctr()= saved_ctr;
315 gbeauche 1.4 gpr(1) = saved_sp;
316 gbeauche 1.2 #endif
317 gbeauche 1.1 }
318    
319     // Execute 68k routine
320     void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
321     {
322     #if SAFE_EXEC_68K
323     if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
324     printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
325     #endif
326    
327     // Save program counters and branch registers
328     uint32 saved_pc = pc();
329     uint32 saved_lr = lr();
330     uint32 saved_ctr= ctr();
331    
332     // Create MacOS stack frame
333     uint32 sp = gpr(1);
334     gpr(1) -= 56 + 19*4 + 18*8;
335     WriteMacInt32(gpr(1), sp);
336    
337     // Save PowerPC registers
338     memcpy(Mac2HostAddr(gpr(1)+56), &gpr(13), sizeof(uint32)*(32-13));
339     #if SAVE_FP_EXEC_68K
340     memcpy(Mac2HostAddr(gpr(1)+56+19*4), &fpr(14), sizeof(double)*(32-14));
341     #endif
342    
343     // Setup registers for 68k emulator
344 gbeauche 1.2 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
345 gbeauche 1.1 for (int i = 0; i < 8; i++) // d[0]..d[7]
346     gpr(8 + i) = r->d[i];
347     for (int i = 0; i < 7; i++) // a[0]..a[6]
348     gpr(16 + i) = r->a[i];
349     gpr(23) = 0;
350     gpr(24) = entry;
351     gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
352     gpr(26) = 0;
353     gpr(28) = 0; // VBR
354     gpr(29) = kernel_data->ed.v[0x74 >> 2]; // Pointer to opcode table
355     gpr(30) = kernel_data->ed.v[0x78 >> 2]; // Address of emulator
356     gpr(31) = KernelDataAddr + 0x1000;
357    
358     // Push return address (points to EXEC_RETURN opcode) on stack
359     gpr(1) -= 4;
360     WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
361    
362     // Rentering 68k emulator
363     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
364    
365     // Set r0 to 0 for 68k emulator
366     gpr(0) = 0;
367    
368     // Execute 68k opcode
369     uint32 opcode = ReadMacInt16(gpr(24));
370     gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
371     gpr(29) += opcode * 8;
372     execute(gpr(29));
373    
374     // Save r25 (contains current 68k interrupt level)
375     WriteMacInt32(XLM_68K_R25, gpr(25));
376    
377     // Reentering EMUL_OP mode
378     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
379    
380     // Save 68k registers
381     for (int i = 0; i < 8; i++) // d[0]..d[7]
382     r->d[i] = gpr(8 + i);
383     for (int i = 0; i < 7; i++) // a[0]..a[6]
384     r->a[i] = gpr(16 + i);
385    
386     // Restore PowerPC registers
387     memcpy(&gpr(13), Mac2HostAddr(gpr(1)+56), sizeof(uint32)*(32-13));
388     #if SAVE_FP_EXEC_68K
389     memcpy(&fpr(14), Mac2HostAddr(gpr(1)+56+19*4), sizeof(double)*(32-14));
390     #endif
391    
392     // Cleanup stack
393     gpr(1) += 56 + 19*4 + 18*8;
394    
395     // Restore program counters and branch registers
396     pc() = saved_pc;
397     lr() = saved_lr;
398     ctr()= saved_ctr;
399     }
400    
401     // Call MacOS PPC code
402     uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
403     {
404     // Save program counters and branch registers
405     uint32 saved_pc = pc();
406     uint32 saved_lr = lr();
407     uint32 saved_ctr= ctr();
408    
409     // Build trampoline with EXEC_RETURN
410     uint32 trampoline[] = { POWERPC_EMUL_OP | 1 };
411     lr() = (uint32)trampoline;
412    
413     gpr(1) -= 64; // Create stack frame
414     uint32 proc = ReadMacInt32(tvect); // Get routine address
415     uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
416    
417     // Save PowerPC registers
418     uint32 regs[8];
419     regs[0] = gpr(2);
420     for (int i = 0; i < nargs; i++)
421     regs[i + 1] = gpr(i + 3);
422    
423     // Prepare and call MacOS routine
424     gpr(2) = toc;
425     for (int i = 0; i < nargs; i++)
426     gpr(i + 3) = args[i];
427     execute(proc);
428     uint32 retval = gpr(3);
429    
430     // Restore PowerPC registers
431     for (int i = 0; i <= nargs; i++)
432     gpr(i + 2) = regs[i];
433    
434     // Cleanup stack
435     gpr(1) += 64;
436    
437     // Restore program counters and branch registers
438     pc() = saved_pc;
439     lr() = saved_lr;
440     ctr()= saved_ctr;
441    
442     return retval;
443     }
444    
445 gbeauche 1.2 // Execute ppc routine
446     inline void sheepshaver_cpu::execute_ppc(uint32 entry)
447     {
448     // Save branch registers
449     uint32 saved_lr = lr();
450     uint32 saved_ctr= ctr();
451    
452     const uint32 trampoline[] = { POWERPC_EMUL_OP | 1 };
453    
454     lr() = (uint32)trampoline;
455     ctr()= entry;
456     execute(entry);
457    
458     // Restore branch registers
459     lr() = saved_lr;
460     ctr()= saved_ctr;
461     }
462    
463 gbeauche 1.1 // Resource Manager thunk
464 gbeauche 1.2 extern "C" void check_load_invoc(uint32 type, int16 id, uint16 **h);
465    
466 gbeauche 1.1 inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
467     {
468 gbeauche 1.2 uint32 type = gpr(3);
469     int16 id = gpr(4);
470    
471     // Create stack frame
472     gpr(1) -= 56;
473    
474     // Call old routine
475     execute_ppc(old_get_resource);
476     uint16 **handle = (uint16 **)gpr(3);
477    
478     // Call CheckLoad()
479     check_load_invoc(type, id, handle);
480     gpr(3) = (uint32)handle;
481    
482     // Cleanup stack
483     gpr(1) += 56;
484 gbeauche 1.1 }
485    
486    
487     /**
488     * SheepShaver CPU engine interface
489     **/
490    
491     static sheepshaver_cpu *main_cpu = NULL; // CPU emulator to handle usual control flow
492     static sheepshaver_cpu *interrupt_cpu = NULL; // CPU emulator to handle interrupts
493     static sheepshaver_cpu *current_cpu = NULL; // Current CPU emulator context
494    
495 gbeauche 1.2 static inline void cpu_push(sheepshaver_cpu *new_cpu)
496     {
497     #if MULTICORE_CPU
498     current_cpu = new_cpu;
499     #endif
500     }
501    
502     static inline void cpu_pop()
503     {
504     #if MULTICORE_CPU
505     current_cpu = main_cpu;
506     #endif
507     }
508    
509 gbeauche 1.1 // Dump PPC registers
510     static void dump_registers(void)
511     {
512     current_cpu->dump_registers();
513     }
514    
515     // Dump log
516     static void dump_log(void)
517     {
518     current_cpu->dump_log();
519     }
520    
521     /*
522     * Initialize CPU emulation
523     */
524    
525 gbeauche 1.3 static sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
526 gbeauche 1.1 {
527     #if ENABLE_VOSF
528 gbeauche 1.3 // Handle screen fault
529     extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
530     if (Screen_fault_handler(fault_address, fault_instruction))
531     return SIGSEGV_RETURN_SUCCESS;
532 gbeauche 1.1 #endif
533 gbeauche 1.3
534     const uintptr addr = (uintptr)fault_address;
535     #if HAVE_SIGSEGV_SKIP_INSTRUCTION
536     // Ignore writes to ROM
537     if ((addr - ROM_BASE) < ROM_SIZE)
538     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
539    
540     // Ignore all other faults, if requested
541     if (PrefsFindBool("ignoresegv"))
542     return SIGSEGV_RETURN_FAILURE;
543     #else
544     #error "FIXME: You don't have the capability to skip instruction within signal handlers"
545 gbeauche 1.1 #endif
546 gbeauche 1.3
547     printf("SIGSEGV\n");
548     printf(" pc %p\n", fault_instruction);
549     printf(" ea %p\n", fault_address);
550     printf(" cpu %s\n", current_cpu == main_cpu ? "main" : "interrupts");
551 gbeauche 1.1 dump_registers();
552     current_cpu->dump_log();
553     enter_mon();
554     QuitEmulator();
555 gbeauche 1.3
556     return SIGSEGV_RETURN_FAILURE;
557 gbeauche 1.1 }
558    
559     void init_emul_ppc(void)
560     {
561     // Initialize main CPU emulator
562     main_cpu = new sheepshaver_cpu();
563     main_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
564     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
565    
566 gbeauche 1.2 #if MULTICORE_CPU
567 gbeauche 1.1 // Initialize alternate CPU emulator to handle interrupts
568     interrupt_cpu = new sheepshaver_cpu();
569 gbeauche 1.2 #endif
570 gbeauche 1.1
571 gbeauche 1.3 // Install the handler for SIGSEGV
572     sigsegv_install_handler(sigsegv_handler);
573 gbeauche 1.4
574 gbeauche 1.1 #if ENABLE_MON
575     // Install "regs" command in cxmon
576     mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
577     mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
578     #endif
579     }
580    
581     /*
582     * Emulation loop
583     */
584    
585     void emul_ppc(uint32 entry)
586     {
587     current_cpu = main_cpu;
588     current_cpu->start_log();
589     current_cpu->execute(entry);
590     }
591    
592     /*
593     * Handle PowerPC interrupt
594     */
595    
596     // Atomic operations
597     extern int atomic_add(int *var, int v);
598     extern int atomic_and(int *var, int v);
599     extern int atomic_or(int *var, int v);
600    
601 gbeauche 1.4 #if !ASYNC_IRQ
602 gbeauche 1.2 void TriggerInterrupt(void)
603     {
604     #if 0
605     WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
606     #else
607     SPCFLAGS_SET( SPCFLAG_INT );
608     #endif
609     }
610 gbeauche 1.4 #endif
611 gbeauche 1.2
612 gbeauche 1.4 void HandleInterrupt(void)
613 gbeauche 1.1 {
614     // Do nothing if interrupts are disabled
615 gbeauche 1.2 if (int32(ReadMacInt32(XLM_IRQ_NEST)) > 0)
616 gbeauche 1.1 return;
617    
618 gbeauche 1.2 // Do nothing if there is no interrupt pending
619     if (InterruptFlags == 0)
620 gbeauche 1.1 return;
621    
622     // Disable MacOS stack sniffer
623     WriteMacInt32(0x110, 0);
624    
625     // Interrupt action depends on current run mode
626     switch (ReadMacInt32(XLM_RUN_MODE)) {
627     case MODE_68K:
628     // 68k emulator active, trigger 68k interrupt level 1
629     assert(current_cpu == main_cpu);
630     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
631     main_cpu->set_cr(main_cpu->get_cr() | tswap32(kernel_data->v[0x674 >> 2]));
632     break;
633    
634     #if INTERRUPTS_IN_NATIVE_MODE
635     case MODE_NATIVE:
636     // 68k emulator inactive, in nanokernel?
637     assert(current_cpu == main_cpu);
638     if (main_cpu->gpr(1) != KernelDataAddr) {
639     // Prepare for 68k interrupt level 1
640     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
641     WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
642     ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
643     | tswap32(kernel_data->v[0x674 >> 2]));
644    
645     // Execute nanokernel interrupt routine (this will activate the 68k emulator)
646 gbeauche 1.2 DisableInterrupt();
647     cpu_push(interrupt_cpu);
648 gbeauche 1.1 if (ROMType == ROMTYPE_NEWWORLD)
649 gbeauche 1.4 current_cpu->interrupt(ROM_BASE + 0x312b1c);
650 gbeauche 1.1 else
651 gbeauche 1.4 current_cpu->interrupt(ROM_BASE + 0x312a3c);
652 gbeauche 1.2 cpu_pop();
653 gbeauche 1.1 }
654     break;
655     #endif
656    
657     #if INTERRUPTS_IN_EMUL_OP_MODE
658     case MODE_EMUL_OP:
659     // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
660     if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
661     #if 1
662     // Execute full 68k interrupt routine
663     M68kRegisters r;
664     uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
665     WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
666 gbeauche 1.2 static const uint8 proc[] = {
667     0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
668     0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
669     0x40, 0xe7, // move sr,-(sp) (saved SR)
670     0x20, 0x78, 0x00, 0x064, // move.l $64,a0
671     0x4e, 0xd0, // jmp (a0)
672     M68K_RTS >> 8, M68K_RTS & 0xff // @1
673 gbeauche 1.1 };
674     Execute68k((uint32)proc, &r);
675     WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
676     #else
677     // Only update cursor
678     if (HasMacStarted()) {
679     if (InterruptFlags & INTFLAG_VIA) {
680     ClearInterruptFlag(INTFLAG_VIA);
681     ADBInterrupt();
682     ExecutePPC(VideoVBL);
683     }
684     }
685     #endif
686     }
687     break;
688     #endif
689     }
690     }
691    
692     /*
693     * Execute NATIVE_OP opcode (called by PowerPC emulator)
694     */
695    
696 gbeauche 1.2 #define POWERPC_NATIVE_OP_INIT(LR, OP) \
697     tswap32(POWERPC_EMUL_OP | ((LR) << 11) | (((uint32)OP) << 6) | 2)
698 gbeauche 1.1
699     // FIXME: Make sure 32-bit relocations are used
700     const uint32 NativeOpTable[NATIVE_OP_MAX] = {
701 gbeauche 1.2 POWERPC_NATIVE_OP_INIT(1, NATIVE_PATCH_NAME_REGISTRY),
702     POWERPC_NATIVE_OP_INIT(1, NATIVE_VIDEO_INSTALL_ACCEL),
703     POWERPC_NATIVE_OP_INIT(1, NATIVE_VIDEO_VBL),
704     POWERPC_NATIVE_OP_INIT(1, NATIVE_VIDEO_DO_DRIVER_IO),
705     POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_IRQ),
706     POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_INIT),
707     POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_TERM),
708     POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_OPEN),
709     POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_CLOSE),
710     POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_WPUT),
711     POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_RSRV),
712     POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_NOTHING),
713     POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_OPEN),
714     POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_PRIME_IN),
715     POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_PRIME_OUT),
716     POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_CONTROL),
717     POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_STATUS),
718     POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_CLOSE),
719     POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_RESOURCE),
720     POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_1_RESOURCE),
721     POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_IND_RESOURCE),
722     POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_1_IND_RESOURCE),
723     POWERPC_NATIVE_OP_INIT(1, NATIVE_R_GET_RESOURCE),
724     POWERPC_NATIVE_OP_INIT(0, NATIVE_DISABLE_INTERRUPT),
725     POWERPC_NATIVE_OP_INIT(0, NATIVE_ENABLE_INTERRUPT),
726 gbeauche 1.1 };
727    
728     static void get_resource(void);
729     static void get_1_resource(void);
730     static void get_ind_resource(void);
731     static void get_1_ind_resource(void);
732     static void r_get_resource(void);
733    
734     #define GPR(REG) current_cpu->gpr(REG)
735    
736     static void NativeOp(int selector)
737     {
738     switch (selector) {
739     case NATIVE_PATCH_NAME_REGISTRY:
740     DoPatchNameRegistry();
741     break;
742     case NATIVE_VIDEO_INSTALL_ACCEL:
743     VideoInstallAccel();
744     break;
745     case NATIVE_VIDEO_VBL:
746     VideoVBL();
747     break;
748     case NATIVE_VIDEO_DO_DRIVER_IO:
749     GPR(3) = (int32)(int16)VideoDoDriverIO((void *)GPR(3), (void *)GPR(4),
750     (void *)GPR(5), GPR(6), GPR(7));
751     break;
752     case NATIVE_GET_RESOURCE:
753     get_resource();
754     break;
755     case NATIVE_GET_1_RESOURCE:
756     get_1_resource();
757     break;
758     case NATIVE_GET_IND_RESOURCE:
759     get_ind_resource();
760     break;
761     case NATIVE_GET_1_IND_RESOURCE:
762     get_1_ind_resource();
763     break;
764     case NATIVE_R_GET_RESOURCE:
765     r_get_resource();
766     break;
767     case NATIVE_SERIAL_NOTHING:
768     case NATIVE_SERIAL_OPEN:
769     case NATIVE_SERIAL_PRIME_IN:
770     case NATIVE_SERIAL_PRIME_OUT:
771     case NATIVE_SERIAL_CONTROL:
772     case NATIVE_SERIAL_STATUS:
773     case NATIVE_SERIAL_CLOSE: {
774     typedef int16 (*SerialCallback)(uint32, uint32);
775     static const SerialCallback serial_callbacks[] = {
776     SerialNothing,
777     SerialOpen,
778     SerialPrimeIn,
779     SerialPrimeOut,
780     SerialControl,
781     SerialStatus,
782     SerialClose
783     };
784     GPR(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](GPR(3), GPR(4));
785     break;
786     }
787 gbeauche 1.2 case NATIVE_DISABLE_INTERRUPT:
788     DisableInterrupt();
789     break;
790     case NATIVE_ENABLE_INTERRUPT:
791     EnableInterrupt();
792     break;
793 gbeauche 1.1 default:
794     printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
795     QuitEmulator();
796     break;
797     }
798     }
799    
800     /*
801     * Execute native subroutine (LR must contain return address)
802     */
803    
804     void ExecuteNative(int selector)
805     {
806     uint32 tvect[2];
807     tvect[0] = tswap32(POWERPC_NATIVE_OP_FUNC(selector));
808     tvect[1] = 0; // Fake TVECT
809     RoutineDescriptor desc = BUILD_PPC_ROUTINE_DESCRIPTOR(0, tvect);
810     M68kRegisters r;
811     Execute68k((uint32)&desc, &r);
812     }
813    
814     /*
815     * Execute 68k subroutine (must be ended with EXEC_RETURN)
816     * This must only be called by the emul_thread when in EMUL_OP mode
817     * r->a[7] is unused, the routine runs on the caller's stack
818     */
819    
820     void Execute68k(uint32 pc, M68kRegisters *r)
821     {
822     current_cpu->execute_68k(pc, r);
823     }
824    
825     /*
826     * Execute 68k A-Trap from EMUL_OP routine
827     * r->a[7] is unused, the routine runs on the caller's stack
828     */
829    
830     void Execute68kTrap(uint16 trap, M68kRegisters *r)
831     {
832     uint16 proc[2] = {trap, M68K_RTS};
833     Execute68k((uint32)proc, r);
834     }
835    
836     /*
837     * Call MacOS PPC code
838     */
839    
840     uint32 call_macos(uint32 tvect)
841     {
842     return current_cpu->execute_macos_code(tvect, 0, NULL);
843     }
844    
845     uint32 call_macos1(uint32 tvect, uint32 arg1)
846     {
847     const uint32 args[] = { arg1 };
848     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
849     }
850    
851     uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
852     {
853     const uint32 args[] = { arg1, arg2 };
854     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
855     }
856    
857     uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
858     {
859     const uint32 args[] = { arg1, arg2, arg3 };
860     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
861     }
862    
863     uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
864     {
865     const uint32 args[] = { arg1, arg2, arg3, arg4 };
866     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
867     }
868    
869     uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
870     {
871     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
872     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
873     }
874    
875     uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
876     {
877     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
878     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
879     }
880    
881     uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
882     {
883     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
884     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
885     }
886    
887     /*
888     * Atomic operations
889     */
890    
891     int atomic_add(int *var, int v)
892     {
893     int ret = *var;
894     *var += v;
895     return ret;
896     }
897    
898     int atomic_and(int *var, int v)
899     {
900     int ret = *var;
901     *var &= v;
902     return ret;
903     }
904    
905     int atomic_or(int *var, int v)
906     {
907     int ret = *var;
908     *var |= v;
909     return ret;
910     }
911    
912     /*
913     * Resource Manager thunks
914     */
915    
916     void get_resource(void)
917     {
918     current_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
919     }
920    
921     void get_1_resource(void)
922     {
923     current_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
924     }
925    
926     void get_ind_resource(void)
927     {
928     current_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
929     }
930    
931     void get_1_ind_resource(void)
932     {
933     current_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
934     }
935    
936     void r_get_resource(void)
937     {
938     current_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
939     }