ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.36
Committed: 2004-05-12T15:54:23Z (20 years, 4 months ago) by gbeauche
Branch: MAIN
Changes since 1.35: +22 -0 lines
Log Message:
Handle SAFE_INTERRUPT_PPC to check possible nested calls (and this happens)

File Contents

# User Rev Content
1 gbeauche 1.1 /*
2     * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3     *
4 cebix 1.25 * SheepShaver (C) 1997-2004 Christian Bauer and Marc Hellwig
5 gbeauche 1.1 *
6     * This program is free software; you can redistribute it and/or modify
7     * it under the terms of the GNU General Public License as published by
8     * the Free Software Foundation; either version 2 of the License, or
9     * (at your option) any later version.
10     *
11     * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15     *
16     * You should have received a copy of the GNU General Public License
17     * along with this program; if not, write to the Free Software
18     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19     */
20    
21     #include "sysdeps.h"
22     #include "cpu_emulation.h"
23     #include "main.h"
24 gbeauche 1.3 #include "prefs.h"
25 gbeauche 1.1 #include "xlowmem.h"
26     #include "emul_op.h"
27     #include "rom_patches.h"
28     #include "macos_util.h"
29     #include "block-alloc.hpp"
30     #include "sigsegv.h"
31     #include "cpu/ppc/ppc-cpu.hpp"
32     #include "cpu/ppc/ppc-operations.hpp"
33 gbeauche 1.18 #include "cpu/ppc/ppc-instructions.hpp"
34 gbeauche 1.21 #include "thunks.h"
35 gbeauche 1.1
36     // Used for NativeOp trampolines
37     #include "video.h"
38     #include "name_registry.h"
39     #include "serial.h"
40 gbeauche 1.16 #include "ether.h"
41 gbeauche 1.1
42     #include <stdio.h>
43 gbeauche 1.31 #include <stdlib.h>
44 gbeauche 1.1
45     #if ENABLE_MON
46     #include "mon.h"
47     #include "mon_disass.h"
48     #endif
49    
50 gbeauche 1.10 #define DEBUG 0
51 gbeauche 1.1 #include "debug.h"
52    
53 gbeauche 1.15 // Emulation time statistics
54     #define EMUL_TIME_STATS 1
55    
56     #if EMUL_TIME_STATS
57     static clock_t emul_start_time;
58     static uint32 interrupt_count = 0;
59     static clock_t interrupt_time = 0;
60     static uint32 exec68k_count = 0;
61     static clock_t exec68k_time = 0;
62     static uint32 native_exec_count = 0;
63     static clock_t native_exec_time = 0;
64     static uint32 macos_exec_count = 0;
65     static clock_t macos_exec_time = 0;
66     #endif
67    
68 gbeauche 1.1 static void enter_mon(void)
69     {
70     // Start up mon in real-mode
71     #if ENABLE_MON
72     char *arg[4] = {"mon", "-m", "-r", NULL};
73     mon(3, arg);
74     #endif
75     }
76    
77 gbeauche 1.23 // From main_*.cpp
78     extern uintptr SignalStackBase();
79    
80 gbeauche 1.26 // From rsrc_patches.cpp
81     extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
82    
83 gbeauche 1.21 // PowerPC EmulOp to exit from emulation looop
84     const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
85    
86 gbeauche 1.2 // Enable multicore (main/interrupts) cpu emulation?
87 gbeauche 1.9 #define MULTICORE_CPU (ASYNC_IRQ ? 1 : 0)
88 gbeauche 1.2
89 gbeauche 1.36 // Enable interrupt routine safety checks?
90     #define SAFE_INTERRUPT_PPC 1
91    
92 gbeauche 1.1 // Enable Execute68k() safety checks?
93     #define SAFE_EXEC_68K 1
94    
95     // Save FP state in Execute68k()?
96     #define SAVE_FP_EXEC_68K 1
97    
98     // Interrupts in EMUL_OP mode?
99     #define INTERRUPTS_IN_EMUL_OP_MODE 1
100    
101     // Interrupts in native mode?
102     #define INTERRUPTS_IN_NATIVE_MODE 1
103    
104     // Pointer to Kernel Data
105 gbeauche 1.4 static KernelData * const kernel_data = (KernelData *)KERNEL_DATA_BASE;
106 gbeauche 1.1
107 gbeauche 1.17 // SIGSEGV handler
108     static sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
109    
110 gbeauche 1.20 // JIT Compiler enabled?
111     static inline bool enable_jit_p()
112     {
113     return PrefsFindBool("jit");
114     }
115    
116 gbeauche 1.1
117     /**
118     * PowerPC emulator glue with special 'sheep' opcodes
119     **/
120    
121 gbeauche 1.18 enum {
122     PPC_I(SHEEP) = PPC_I(MAX),
123     PPC_I(SHEEP_MAX)
124     };
125    
126 gbeauche 1.1 class sheepshaver_cpu
127     : public powerpc_cpu
128     {
129     void init_decoder();
130     void execute_sheep(uint32 opcode);
131    
132     public:
133    
134 gbeauche 1.10 // Constructor
135     sheepshaver_cpu();
136 gbeauche 1.1
137 gbeauche 1.24 // CR & XER accessors
138 gbeauche 1.1 uint32 get_cr() const { return cr().get(); }
139     void set_cr(uint32 v) { cr().set(v); }
140 gbeauche 1.24 uint32 get_xer() const { return xer().get(); }
141     void set_xer(uint32 v) { xer().set(v); }
142 gbeauche 1.1
143 gbeauche 1.26 // Execute EMUL_OP routine
144     void execute_emul_op(uint32 emul_op);
145    
146 gbeauche 1.1 // Execute 68k routine
147     void execute_68k(uint32 entry, M68kRegisters *r);
148    
149 gbeauche 1.2 // Execute ppc routine
150     void execute_ppc(uint32 entry);
151    
152 gbeauche 1.1 // Execute MacOS/PPC code
153     uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
154    
155 gbeauche 1.26 // Compile one instruction
156     virtual bool compile1(codegen_context_t & cg_context);
157    
158 gbeauche 1.1 // Resource manager thunk
159     void get_resource(uint32 old_get_resource);
160    
161     // Handle MacOS interrupt
162 gbeauche 1.4 void interrupt(uint32 entry);
163 gbeauche 1.10 void handle_interrupt();
164 gbeauche 1.2
165 gbeauche 1.17 // Make sure the SIGSEGV handler can access CPU registers
166     friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
167 gbeauche 1.1 };
168    
169 gbeauche 1.29 // Memory allocator returning areas aligned on 16-byte boundaries
170     void *operator new(size_t size)
171     {
172     void *p;
173    
174 gbeauche 1.31 #if defined(HAVE_POSIX_MEMALIGN)
175 gbeauche 1.29 if (posix_memalign(&p, 16, size) != 0)
176     throw std::bad_alloc();
177 gbeauche 1.31 #elif defined(HAVE_MEMALIGN)
178     p = memalign(16, size);
179     #elif defined(HAVE_VALLOC)
180     p = valloc(size); // page-aligned!
181     #else
182     /* XXX: handle padding ourselves */
183     p = malloc(size);
184     #endif
185 gbeauche 1.29
186     return p;
187     }
188    
189     void operator delete(void *p)
190     {
191 gbeauche 1.31 #if defined(HAVE_MEMALIGN) || defined(HAVE_VALLOC)
192     #if defined(__GLIBC__)
193     // this is known to work only with GNU libc
194     free(p);
195     #endif
196     #else
197 gbeauche 1.29 free(p);
198 gbeauche 1.31 #endif
199 gbeauche 1.29 }
200 gbeauche 1.1
201 gbeauche 1.10 sheepshaver_cpu::sheepshaver_cpu()
202 gbeauche 1.20 : powerpc_cpu(enable_jit_p())
203 gbeauche 1.10 {
204     init_decoder();
205     }
206    
207 gbeauche 1.1 void sheepshaver_cpu::init_decoder()
208     {
209     static const instr_info_t sheep_ii_table[] = {
210     { "sheep",
211 gbeauche 1.13 (execute_pmf)&sheepshaver_cpu::execute_sheep,
212 gbeauche 1.1 NULL,
213 gbeauche 1.18 PPC_I(SHEEP),
214 gbeauche 1.7 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
215 gbeauche 1.1 }
216     };
217    
218     const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
219     D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
220    
221     for (int i = 0; i < ii_count; i++) {
222     const instr_info_t * ii = &sheep_ii_table[i];
223     init_decoder_entry(ii);
224     }
225     }
226    
227     // Forward declaration for native opcode handler
228     static void NativeOp(int selector);
229    
230 gbeauche 1.2 /* NativeOp instruction format:
231 gbeauche 1.35 +------------+-------------------------+--+-----------+------------+
232     | 6 | |FN| OP | 2 |
233     +------------+-------------------------+--+-----------+------------+
234     0 5 |6 18 19 20 25 26 31
235 gbeauche 1.2 */
236    
237 gbeauche 1.35 typedef bit_field< 19, 19 > FN_field;
238     typedef bit_field< 20, 25 > NATIVE_OP_field;
239 gbeauche 1.2 typedef bit_field< 26, 31 > EMUL_OP_field;
240    
241 gbeauche 1.26 // Execute EMUL_OP routine
242     void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
243     {
244     M68kRegisters r68;
245     WriteMacInt32(XLM_68K_R25, gpr(25));
246     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
247     for (int i = 0; i < 8; i++)
248     r68.d[i] = gpr(8 + i);
249     for (int i = 0; i < 7; i++)
250     r68.a[i] = gpr(16 + i);
251     r68.a[7] = gpr(1);
252     uint32 saved_cr = get_cr() & CR_field<2>::mask();
253     uint32 saved_xer = get_xer();
254     EmulOp(&r68, gpr(24), emul_op);
255     set_cr(saved_cr);
256     set_xer(saved_xer);
257     for (int i = 0; i < 8; i++)
258     gpr(8 + i) = r68.d[i];
259     for (int i = 0; i < 7; i++)
260     gpr(16 + i) = r68.a[i];
261     gpr(1) = r68.a[7];
262     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
263     }
264    
265 gbeauche 1.1 // Execute SheepShaver instruction
266     void sheepshaver_cpu::execute_sheep(uint32 opcode)
267     {
268     // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
269     assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
270    
271     switch (opcode & 0x3f) {
272     case 0: // EMUL_RETURN
273     QuitEmulator();
274     break;
275 gbeauche 1.8
276 gbeauche 1.1 case 1: // EXEC_RETURN
277 gbeauche 1.12 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
278 gbeauche 1.1 break;
279    
280     case 2: // EXEC_NATIVE
281 gbeauche 1.2 NativeOp(NATIVE_OP_field::extract(opcode));
282     if (FN_field::test(opcode))
283     pc() = lr();
284     else
285     pc() += 4;
286 gbeauche 1.1 break;
287    
288 gbeauche 1.26 default: // EMUL_OP
289     execute_emul_op(EMUL_OP_field::extract(opcode) - 3);
290     pc() += 4;
291     break;
292     }
293     }
294    
295     // Compile one instruction
296     bool sheepshaver_cpu::compile1(codegen_context_t & cg_context)
297     {
298     #if PPC_ENABLE_JIT
299     const instr_info_t *ii = cg_context.instr_info;
300     if (ii->mnemo != PPC_I(SHEEP))
301     return false;
302    
303     bool compiled = false;
304     powerpc_dyngen & dg = cg_context.codegen;
305     uint32 opcode = cg_context.opcode;
306    
307     switch (opcode & 0x3f) {
308     case 0: // EMUL_RETURN
309     dg.gen_invoke(QuitEmulator);
310     compiled = true;
311     break;
312    
313     case 1: // EXEC_RETURN
314     dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
315     compiled = true;
316     break;
317    
318     case 2: { // EXEC_NATIVE
319     uint32 selector = NATIVE_OP_field::extract(opcode);
320     switch (selector) {
321     case NATIVE_PATCH_NAME_REGISTRY:
322     dg.gen_invoke(DoPatchNameRegistry);
323     compiled = true;
324     break;
325     case NATIVE_VIDEO_INSTALL_ACCEL:
326     dg.gen_invoke(VideoInstallAccel);
327     compiled = true;
328     break;
329     case NATIVE_VIDEO_VBL:
330     dg.gen_invoke(VideoVBL);
331     compiled = true;
332     break;
333     case NATIVE_GET_RESOURCE:
334     case NATIVE_GET_1_RESOURCE:
335     case NATIVE_GET_IND_RESOURCE:
336     case NATIVE_GET_1_IND_RESOURCE:
337     case NATIVE_R_GET_RESOURCE: {
338     static const uint32 get_resource_ptr[] = {
339     XLM_GET_RESOURCE,
340     XLM_GET_1_RESOURCE,
341     XLM_GET_IND_RESOURCE,
342     XLM_GET_1_IND_RESOURCE,
343     XLM_R_GET_RESOURCE
344     };
345     uint32 old_get_resource = ReadMacInt32(get_resource_ptr[selector - NATIVE_GET_RESOURCE]);
346     typedef void (*func_t)(dyngen_cpu_base, uint32);
347     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
348     dg.gen_invoke_CPU_im(func, old_get_resource);
349     compiled = true;
350     break;
351     }
352     case NATIVE_DISABLE_INTERRUPT:
353     dg.gen_invoke(DisableInterrupt);
354     compiled = true;
355     break;
356     case NATIVE_ENABLE_INTERRUPT:
357     dg.gen_invoke(EnableInterrupt);
358     compiled = true;
359     break;
360     case NATIVE_CHECK_LOAD_INVOC:
361     dg.gen_load_T0_GPR(3);
362     dg.gen_load_T1_GPR(4);
363     dg.gen_se_16_32_T1();
364     dg.gen_load_T2_GPR(5);
365     dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
366 gbeauche 1.35 compiled = true;
367     break;
368     case NATIVE_BITBLT:
369     dg.gen_load_T0_GPR(3);
370     dg.gen_invoke_T0((void (*)(uint32))NQD_bitblt);
371     compiled = true;
372     break;
373     case NATIVE_INVRECT:
374     dg.gen_load_T0_GPR(3);
375     dg.gen_invoke_T0((void (*)(uint32))NQD_invrect);
376     compiled = true;
377     break;
378     case NATIVE_FILLRECT:
379     dg.gen_load_T0_GPR(3);
380     dg.gen_invoke_T0((void (*)(uint32))NQD_fillrect);
381 gbeauche 1.26 compiled = true;
382     break;
383     }
384     if (FN_field::test(opcode)) {
385     if (compiled) {
386     dg.gen_load_A0_LR();
387     dg.gen_set_PC_A0();
388     }
389     cg_context.done_compile = true;
390     }
391     else
392     cg_context.done_compile = false;
393     break;
394     }
395    
396 gbeauche 1.1 default: { // EMUL_OP
397 gbeauche 1.26 typedef void (*func_t)(dyngen_cpu_base, uint32);
398     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
399     dg.gen_invoke_CPU_im(func, EMUL_OP_field::extract(opcode) - 3);
400     cg_context.done_compile = false;
401     compiled = true;
402 gbeauche 1.1 break;
403     }
404     }
405 gbeauche 1.26 return compiled;
406     #endif
407     return false;
408 gbeauche 1.1 }
409    
410     // Handle MacOS interrupt
411 gbeauche 1.4 void sheepshaver_cpu::interrupt(uint32 entry)
412 gbeauche 1.1 {
413 gbeauche 1.15 #if EMUL_TIME_STATS
414     interrupt_count++;
415     const clock_t interrupt_start = clock();
416     #endif
417    
418 gbeauche 1.36 #if SAFE_INTERRUPT_PPC
419     static int depth = 0;
420     if (depth != 0)
421     printf("FATAL: sheepshaver_cpu::interrupt() called more than once: %d\n", depth);
422     depth++;
423     #endif
424     #if SAFE_INTERRUPT_PPC >= 2
425     uint32 saved_regs[32];
426     memcpy(&saved_regs[0], &gpr(0), sizeof(saved_regs));
427     #endif
428    
429 gbeauche 1.4 #if !MULTICORE_CPU
430 gbeauche 1.2 // Save program counters and branch registers
431     uint32 saved_pc = pc();
432     uint32 saved_lr = lr();
433     uint32 saved_ctr= ctr();
434 gbeauche 1.4 uint32 saved_sp = gpr(1);
435 gbeauche 1.2 #endif
436    
437 gbeauche 1.4 // Initialize stack pointer to SheepShaver alternate stack base
438 gbeauche 1.23 gpr(1) = SignalStackBase() - 64;
439 gbeauche 1.1
440     // Build trampoline to return from interrupt
441 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
442 gbeauche 1.1
443     // Prepare registers for nanokernel interrupt routine
444 gbeauche 1.5 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
445     kernel_data->v[0x018 >> 2] = htonl(gpr(6));
446 gbeauche 1.1
447 gbeauche 1.5 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
448 gbeauche 1.2 assert(gpr(6) != 0);
449 gbeauche 1.1 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
450     WriteMacInt32(gpr(6) + 0x144, gpr(8));
451     WriteMacInt32(gpr(6) + 0x14c, gpr(9));
452     WriteMacInt32(gpr(6) + 0x154, gpr(10));
453     WriteMacInt32(gpr(6) + 0x15c, gpr(11));
454     WriteMacInt32(gpr(6) + 0x164, gpr(12));
455     WriteMacInt32(gpr(6) + 0x16c, gpr(13));
456    
457     gpr(1) = KernelDataAddr;
458 gbeauche 1.5 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
459 gbeauche 1.1 gpr(8) = 0;
460 gbeauche 1.21 gpr(10) = trampoline.addr();
461     gpr(12) = trampoline.addr();
462 gbeauche 1.8 gpr(13) = get_cr();
463 gbeauche 1.1
464     // rlwimi. r7,r7,8,0,0
465     uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
466     record_cr0(result);
467     gpr(7) = result;
468    
469     gpr(11) = 0xf072; // MSR (SRR1)
470 gbeauche 1.8 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
471 gbeauche 1.1
472     // Enter nanokernel
473     execute(entry);
474    
475 gbeauche 1.2 #if !MULTICORE_CPU
476     // Restore program counters and branch registers
477     pc() = saved_pc;
478     lr() = saved_lr;
479     ctr()= saved_ctr;
480 gbeauche 1.4 gpr(1) = saved_sp;
481 gbeauche 1.2 #endif
482 gbeauche 1.15
483     #if EMUL_TIME_STATS
484     interrupt_time += (clock() - interrupt_start);
485     #endif
486 gbeauche 1.36
487     #if SAFE_INTERRUPT_PPC >= 2
488     if (memcmp(&saved_regs[0], &gpr(0), sizeof(saved_regs)) != 0)
489     printf("FATAL: dirty PowerPC registers\n");
490     #endif
491     #if SAFE_INTERRUPT_PPC
492     depth--;
493     #endif
494 gbeauche 1.1 }
495    
496     // Execute 68k routine
497     void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
498     {
499 gbeauche 1.15 #if EMUL_TIME_STATS
500     exec68k_count++;
501     const clock_t exec68k_start = clock();
502     #endif
503    
504 gbeauche 1.1 #if SAFE_EXEC_68K
505     if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
506     printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
507     #endif
508    
509     // Save program counters and branch registers
510     uint32 saved_pc = pc();
511     uint32 saved_lr = lr();
512     uint32 saved_ctr= ctr();
513 gbeauche 1.8 uint32 saved_cr = get_cr();
514 gbeauche 1.1
515     // Create MacOS stack frame
516 gbeauche 1.6 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
517 gbeauche 1.1 uint32 sp = gpr(1);
518 gbeauche 1.6 gpr(1) -= 56;
519 gbeauche 1.1 WriteMacInt32(gpr(1), sp);
520    
521     // Save PowerPC registers
522 gbeauche 1.6 uint32 saved_GPRs[19];
523     memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
524 gbeauche 1.1 #if SAVE_FP_EXEC_68K
525 gbeauche 1.6 double saved_FPRs[18];
526     memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
527 gbeauche 1.1 #endif
528    
529     // Setup registers for 68k emulator
530 gbeauche 1.2 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
531 gbeauche 1.1 for (int i = 0; i < 8; i++) // d[0]..d[7]
532     gpr(8 + i) = r->d[i];
533     for (int i = 0; i < 7; i++) // a[0]..a[6]
534     gpr(16 + i) = r->a[i];
535     gpr(23) = 0;
536     gpr(24) = entry;
537     gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
538     gpr(26) = 0;
539     gpr(28) = 0; // VBR
540 gbeauche 1.5 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
541     gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
542 gbeauche 1.1 gpr(31) = KernelDataAddr + 0x1000;
543    
544     // Push return address (points to EXEC_RETURN opcode) on stack
545     gpr(1) -= 4;
546     WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
547    
548     // Rentering 68k emulator
549     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
550    
551     // Set r0 to 0 for 68k emulator
552     gpr(0) = 0;
553    
554     // Execute 68k opcode
555     uint32 opcode = ReadMacInt16(gpr(24));
556     gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
557     gpr(29) += opcode * 8;
558     execute(gpr(29));
559    
560     // Save r25 (contains current 68k interrupt level)
561     WriteMacInt32(XLM_68K_R25, gpr(25));
562    
563     // Reentering EMUL_OP mode
564     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
565    
566     // Save 68k registers
567     for (int i = 0; i < 8; i++) // d[0]..d[7]
568     r->d[i] = gpr(8 + i);
569     for (int i = 0; i < 7; i++) // a[0]..a[6]
570     r->a[i] = gpr(16 + i);
571    
572     // Restore PowerPC registers
573 gbeauche 1.6 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
574 gbeauche 1.1 #if SAVE_FP_EXEC_68K
575 gbeauche 1.6 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
576 gbeauche 1.1 #endif
577    
578     // Cleanup stack
579 gbeauche 1.6 gpr(1) += 56;
580 gbeauche 1.1
581     // Restore program counters and branch registers
582     pc() = saved_pc;
583     lr() = saved_lr;
584     ctr()= saved_ctr;
585 gbeauche 1.8 set_cr(saved_cr);
586 gbeauche 1.15
587     #if EMUL_TIME_STATS
588     exec68k_time += (clock() - exec68k_start);
589     #endif
590 gbeauche 1.1 }
591    
592     // Call MacOS PPC code
593     uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
594     {
595 gbeauche 1.15 #if EMUL_TIME_STATS
596     macos_exec_count++;
597     const clock_t macos_exec_start = clock();
598     #endif
599    
600 gbeauche 1.1 // Save program counters and branch registers
601     uint32 saved_pc = pc();
602     uint32 saved_lr = lr();
603     uint32 saved_ctr= ctr();
604    
605     // Build trampoline with EXEC_RETURN
606 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
607     lr() = trampoline.addr();
608 gbeauche 1.1
609     gpr(1) -= 64; // Create stack frame
610     uint32 proc = ReadMacInt32(tvect); // Get routine address
611     uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
612    
613     // Save PowerPC registers
614     uint32 regs[8];
615     regs[0] = gpr(2);
616     for (int i = 0; i < nargs; i++)
617     regs[i + 1] = gpr(i + 3);
618    
619     // Prepare and call MacOS routine
620     gpr(2) = toc;
621     for (int i = 0; i < nargs; i++)
622     gpr(i + 3) = args[i];
623     execute(proc);
624     uint32 retval = gpr(3);
625    
626     // Restore PowerPC registers
627     for (int i = 0; i <= nargs; i++)
628     gpr(i + 2) = regs[i];
629    
630     // Cleanup stack
631     gpr(1) += 64;
632    
633     // Restore program counters and branch registers
634     pc() = saved_pc;
635     lr() = saved_lr;
636     ctr()= saved_ctr;
637    
638 gbeauche 1.15 #if EMUL_TIME_STATS
639     macos_exec_time += (clock() - macos_exec_start);
640     #endif
641    
642 gbeauche 1.1 return retval;
643     }
644    
645 gbeauche 1.2 // Execute ppc routine
646     inline void sheepshaver_cpu::execute_ppc(uint32 entry)
647     {
648     // Save branch registers
649     uint32 saved_lr = lr();
650    
651 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
652     WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
653     lr() = trampoline.addr();
654 gbeauche 1.2
655     execute(entry);
656    
657     // Restore branch registers
658     lr() = saved_lr;
659     }
660    
661 gbeauche 1.1 // Resource Manager thunk
662     inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
663     {
664 gbeauche 1.2 uint32 type = gpr(3);
665     int16 id = gpr(4);
666    
667     // Create stack frame
668     gpr(1) -= 56;
669    
670     // Call old routine
671     execute_ppc(old_get_resource);
672    
673     // Call CheckLoad()
674 gbeauche 1.5 uint32 handle = gpr(3);
675 gbeauche 1.2 check_load_invoc(type, id, handle);
676 gbeauche 1.5 gpr(3) = handle;
677 gbeauche 1.2
678     // Cleanup stack
679     gpr(1) += 56;
680 gbeauche 1.1 }
681    
682    
683     /**
684     * SheepShaver CPU engine interface
685     **/
686    
687     static sheepshaver_cpu *main_cpu = NULL; // CPU emulator to handle usual control flow
688     static sheepshaver_cpu *interrupt_cpu = NULL; // CPU emulator to handle interrupts
689     static sheepshaver_cpu *current_cpu = NULL; // Current CPU emulator context
690    
691 gbeauche 1.7 void FlushCodeCache(uintptr start, uintptr end)
692     {
693     D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
694     main_cpu->invalidate_cache_range(start, end);
695     #if MULTICORE_CPU
696     interrupt_cpu->invalidate_cache_range(start, end);
697     #endif
698     }
699    
700 gbeauche 1.2 static inline void cpu_push(sheepshaver_cpu *new_cpu)
701     {
702     #if MULTICORE_CPU
703     current_cpu = new_cpu;
704     #endif
705     }
706    
707     static inline void cpu_pop()
708     {
709     #if MULTICORE_CPU
710     current_cpu = main_cpu;
711     #endif
712     }
713    
714 gbeauche 1.1 // Dump PPC registers
715     static void dump_registers(void)
716     {
717     current_cpu->dump_registers();
718     }
719    
720     // Dump log
721     static void dump_log(void)
722     {
723     current_cpu->dump_log();
724     }
725    
726     /*
727     * Initialize CPU emulation
728     */
729    
730 gbeauche 1.3 static sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
731 gbeauche 1.1 {
732     #if ENABLE_VOSF
733 gbeauche 1.3 // Handle screen fault
734     extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
735     if (Screen_fault_handler(fault_address, fault_instruction))
736     return SIGSEGV_RETURN_SUCCESS;
737 gbeauche 1.1 #endif
738 gbeauche 1.3
739     const uintptr addr = (uintptr)fault_address;
740     #if HAVE_SIGSEGV_SKIP_INSTRUCTION
741     // Ignore writes to ROM
742     if ((addr - ROM_BASE) < ROM_SIZE)
743     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
744    
745 gbeauche 1.17 // Get program counter of target CPU
746     sheepshaver_cpu * const cpu = current_cpu;
747     const uint32 pc = cpu->pc();
748    
749     // Fault in Mac ROM or RAM?
750     bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize));
751     if (mac_fault) {
752    
753     // "VM settings" during MacOS 8 installation
754     if (pc == ROM_BASE + 0x488160 && cpu->gpr(20) == 0xf8000000)
755     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
756    
757     // MacOS 8.5 installation
758     else if (pc == ROM_BASE + 0x488140 && cpu->gpr(16) == 0xf8000000)
759     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
760    
761     // MacOS 8 serial drivers on startup
762     else if (pc == ROM_BASE + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
763     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
764    
765     // MacOS 8.1 serial drivers on startup
766     else if (pc == ROM_BASE + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
767     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
768     else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
769     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
770    
771 gbeauche 1.30 // Ignore writes to the zero page
772     else if ((uint32)(addr - SheepMem::ZeroPage()) < (uint32)SheepMem::PageSize())
773     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
774    
775 gbeauche 1.17 // Ignore all other faults, if requested
776     if (PrefsFindBool("ignoresegv"))
777     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
778     }
779 gbeauche 1.3 #else
780     #error "FIXME: You don't have the capability to skip instruction within signal handlers"
781 gbeauche 1.1 #endif
782 gbeauche 1.3
783     printf("SIGSEGV\n");
784     printf(" pc %p\n", fault_instruction);
785     printf(" ea %p\n", fault_address);
786     printf(" cpu %s\n", current_cpu == main_cpu ? "main" : "interrupts");
787 gbeauche 1.1 dump_registers();
788     current_cpu->dump_log();
789     enter_mon();
790     QuitEmulator();
791 gbeauche 1.3
792     return SIGSEGV_RETURN_FAILURE;
793 gbeauche 1.1 }
794    
795     void init_emul_ppc(void)
796     {
797     // Initialize main CPU emulator
798     main_cpu = new sheepshaver_cpu();
799     main_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
800 gbeauche 1.24 main_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
801 gbeauche 1.1 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
802    
803 gbeauche 1.2 #if MULTICORE_CPU
804 gbeauche 1.1 // Initialize alternate CPU emulator to handle interrupts
805     interrupt_cpu = new sheepshaver_cpu();
806 gbeauche 1.2 #endif
807 gbeauche 1.1
808 gbeauche 1.3 // Install the handler for SIGSEGV
809     sigsegv_install_handler(sigsegv_handler);
810 gbeauche 1.4
811 gbeauche 1.1 #if ENABLE_MON
812     // Install "regs" command in cxmon
813     mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
814     mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
815     #endif
816 gbeauche 1.15
817     #if EMUL_TIME_STATS
818     emul_start_time = clock();
819     #endif
820 gbeauche 1.1 }
821    
822     /*
823 gbeauche 1.14 * Deinitialize emulation
824     */
825    
826     void exit_emul_ppc(void)
827     {
828 gbeauche 1.15 #if EMUL_TIME_STATS
829     clock_t emul_end_time = clock();
830    
831     printf("### Statistics for SheepShaver emulation parts\n");
832     const clock_t emul_time = emul_end_time - emul_start_time;
833     printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
834     printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
835     (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
836    
837     #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
838     printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
839     printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
840     double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
841     100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
842     } while (0)
843    
844     PRINT_STATS("Execute68k[Trap] execution", exec68k);
845     PRINT_STATS("NativeOp execution", native_exec);
846     PRINT_STATS("MacOS routine execution", macos_exec);
847    
848     #undef PRINT_STATS
849     printf("\n");
850     #endif
851    
852 gbeauche 1.14 delete main_cpu;
853     #if MULTICORE_CPU
854     delete interrupt_cpu;
855     #endif
856     }
857    
858     /*
859 gbeauche 1.1 * Emulation loop
860     */
861    
862     void emul_ppc(uint32 entry)
863     {
864     current_cpu = main_cpu;
865 gbeauche 1.24 #if 0
866 gbeauche 1.1 current_cpu->start_log();
867 gbeauche 1.10 #endif
868     // start emulation loop and enable code translation or caching
869 gbeauche 1.19 current_cpu->execute(entry);
870 gbeauche 1.1 }
871    
872     /*
873     * Handle PowerPC interrupt
874     */
875    
876 gbeauche 1.11 #if ASYNC_IRQ
877     void HandleInterrupt(void)
878     {
879     main_cpu->handle_interrupt();
880     }
881     #else
882 gbeauche 1.2 void TriggerInterrupt(void)
883     {
884     #if 0
885     WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
886     #else
887 gbeauche 1.10 // Trigger interrupt to main cpu only
888     if (main_cpu)
889     main_cpu->trigger_interrupt();
890 gbeauche 1.2 #endif
891     }
892 gbeauche 1.4 #endif
893 gbeauche 1.2
894 gbeauche 1.10 void sheepshaver_cpu::handle_interrupt(void)
895 gbeauche 1.1 {
896     // Do nothing if interrupts are disabled
897 gbeauche 1.16 if (*(int32 *)XLM_IRQ_NEST > 0)
898 gbeauche 1.1 return;
899    
900 gbeauche 1.2 // Do nothing if there is no interrupt pending
901     if (InterruptFlags == 0)
902 gbeauche 1.1 return;
903    
904     // Disable MacOS stack sniffer
905     WriteMacInt32(0x110, 0);
906    
907     // Interrupt action depends on current run mode
908     switch (ReadMacInt32(XLM_RUN_MODE)) {
909     case MODE_68K:
910     // 68k emulator active, trigger 68k interrupt level 1
911     assert(current_cpu == main_cpu);
912     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
913 gbeauche 1.10 set_cr(get_cr() | tswap32(kernel_data->v[0x674 >> 2]));
914 gbeauche 1.1 break;
915    
916     #if INTERRUPTS_IN_NATIVE_MODE
917     case MODE_NATIVE:
918     // 68k emulator inactive, in nanokernel?
919     assert(current_cpu == main_cpu);
920 gbeauche 1.10 if (gpr(1) != KernelDataAddr) {
921 gbeauche 1.1 // Prepare for 68k interrupt level 1
922     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
923     WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
924     ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
925     | tswap32(kernel_data->v[0x674 >> 2]));
926    
927     // Execute nanokernel interrupt routine (this will activate the 68k emulator)
928 gbeauche 1.2 DisableInterrupt();
929     cpu_push(interrupt_cpu);
930 gbeauche 1.1 if (ROMType == ROMTYPE_NEWWORLD)
931 gbeauche 1.4 current_cpu->interrupt(ROM_BASE + 0x312b1c);
932 gbeauche 1.1 else
933 gbeauche 1.4 current_cpu->interrupt(ROM_BASE + 0x312a3c);
934 gbeauche 1.2 cpu_pop();
935 gbeauche 1.1 }
936     break;
937     #endif
938    
939     #if INTERRUPTS_IN_EMUL_OP_MODE
940     case MODE_EMUL_OP:
941     // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
942     if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
943     #if 1
944     // Execute full 68k interrupt routine
945     M68kRegisters r;
946     uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
947     WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
948 gbeauche 1.2 static const uint8 proc[] = {
949     0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
950     0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
951     0x40, 0xe7, // move sr,-(sp) (saved SR)
952     0x20, 0x78, 0x00, 0x064, // move.l $64,a0
953     0x4e, 0xd0, // jmp (a0)
954     M68K_RTS >> 8, M68K_RTS & 0xff // @1
955 gbeauche 1.1 };
956     Execute68k((uint32)proc, &r);
957     WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
958     #else
959     // Only update cursor
960     if (HasMacStarted()) {
961     if (InterruptFlags & INTFLAG_VIA) {
962     ClearInterruptFlag(INTFLAG_VIA);
963     ADBInterrupt();
964 gbeauche 1.22 ExecuteNative(NATIVE_VIDEO_VBL);
965 gbeauche 1.1 }
966     }
967     #endif
968     }
969     break;
970     #endif
971     }
972     }
973    
974     static void get_resource(void);
975     static void get_1_resource(void);
976     static void get_ind_resource(void);
977     static void get_1_ind_resource(void);
978     static void r_get_resource(void);
979    
980     #define GPR(REG) current_cpu->gpr(REG)
981    
982     static void NativeOp(int selector)
983     {
984 gbeauche 1.15 #if EMUL_TIME_STATS
985     native_exec_count++;
986     const clock_t native_exec_start = clock();
987     #endif
988    
989 gbeauche 1.1 switch (selector) {
990     case NATIVE_PATCH_NAME_REGISTRY:
991     DoPatchNameRegistry();
992     break;
993     case NATIVE_VIDEO_INSTALL_ACCEL:
994     VideoInstallAccel();
995     break;
996     case NATIVE_VIDEO_VBL:
997     VideoVBL();
998     break;
999     case NATIVE_VIDEO_DO_DRIVER_IO:
1000     GPR(3) = (int32)(int16)VideoDoDriverIO((void *)GPR(3), (void *)GPR(4),
1001     (void *)GPR(5), GPR(6), GPR(7));
1002     break;
1003 gbeauche 1.16 #ifdef WORDS_BIGENDIAN
1004     case NATIVE_ETHER_IRQ:
1005     EtherIRQ();
1006     break;
1007     case NATIVE_ETHER_INIT:
1008     GPR(3) = InitStreamModule((void *)GPR(3));
1009     break;
1010     case NATIVE_ETHER_TERM:
1011     TerminateStreamModule();
1012     break;
1013     case NATIVE_ETHER_OPEN:
1014     GPR(3) = ether_open((queue_t *)GPR(3), (void *)GPR(4), GPR(5), GPR(6), (void*)GPR(7));
1015 gbeauche 1.1 break;
1016 gbeauche 1.16 case NATIVE_ETHER_CLOSE:
1017     GPR(3) = ether_close((queue_t *)GPR(3), GPR(4), (void *)GPR(5));
1018 gbeauche 1.1 break;
1019 gbeauche 1.16 case NATIVE_ETHER_WPUT:
1020     GPR(3) = ether_wput((queue_t *)GPR(3), (mblk_t *)GPR(4));
1021 gbeauche 1.1 break;
1022 gbeauche 1.16 case NATIVE_ETHER_RSRV:
1023     GPR(3) = ether_rsrv((queue_t *)GPR(3));
1024 gbeauche 1.1 break;
1025 gbeauche 1.34 #else
1026     case NATIVE_ETHER_INIT:
1027     // FIXME: needs more complicated thunks
1028     GPR(3) = false;
1029     break;
1030     #endif
1031 gbeauche 1.32 case NATIVE_SYNC_HOOK:
1032     GPR(3) = NQD_sync_hook(GPR(3));
1033     break;
1034     case NATIVE_BITBLT_HOOK:
1035     GPR(3) = NQD_bitblt_hook(GPR(3));
1036     break;
1037     case NATIVE_BITBLT:
1038     NQD_bitblt(GPR(3));
1039     break;
1040     case NATIVE_FILLRECT_HOOK:
1041     GPR(3) = NQD_fillrect_hook(GPR(3));
1042     break;
1043     case NATIVE_INVRECT:
1044     NQD_invrect(GPR(3));
1045     break;
1046 gbeauche 1.33 case NATIVE_FILLRECT:
1047     NQD_fillrect(GPR(3));
1048 gbeauche 1.32 break;
1049 gbeauche 1.1 case NATIVE_SERIAL_NOTHING:
1050     case NATIVE_SERIAL_OPEN:
1051     case NATIVE_SERIAL_PRIME_IN:
1052     case NATIVE_SERIAL_PRIME_OUT:
1053     case NATIVE_SERIAL_CONTROL:
1054     case NATIVE_SERIAL_STATUS:
1055     case NATIVE_SERIAL_CLOSE: {
1056     typedef int16 (*SerialCallback)(uint32, uint32);
1057     static const SerialCallback serial_callbacks[] = {
1058     SerialNothing,
1059     SerialOpen,
1060     SerialPrimeIn,
1061     SerialPrimeOut,
1062     SerialControl,
1063     SerialStatus,
1064     SerialClose
1065     };
1066     GPR(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](GPR(3), GPR(4));
1067 gbeauche 1.16 break;
1068     }
1069     case NATIVE_GET_RESOURCE:
1070     case NATIVE_GET_1_RESOURCE:
1071     case NATIVE_GET_IND_RESOURCE:
1072     case NATIVE_GET_1_IND_RESOURCE:
1073     case NATIVE_R_GET_RESOURCE: {
1074     typedef void (*GetResourceCallback)(void);
1075     static const GetResourceCallback get_resource_callbacks[] = {
1076     get_resource,
1077     get_1_resource,
1078     get_ind_resource,
1079     get_1_ind_resource,
1080     r_get_resource
1081     };
1082     get_resource_callbacks[selector - NATIVE_GET_RESOURCE]();
1083 gbeauche 1.1 break;
1084     }
1085 gbeauche 1.2 case NATIVE_DISABLE_INTERRUPT:
1086     DisableInterrupt();
1087     break;
1088     case NATIVE_ENABLE_INTERRUPT:
1089     EnableInterrupt();
1090 gbeauche 1.7 break;
1091     case NATIVE_MAKE_EXECUTABLE:
1092     MakeExecutable(0, (void *)GPR(4), GPR(5));
1093 gbeauche 1.26 break;
1094     case NATIVE_CHECK_LOAD_INVOC:
1095     check_load_invoc(GPR(3), GPR(4), GPR(5));
1096 gbeauche 1.2 break;
1097 gbeauche 1.1 default:
1098     printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
1099     QuitEmulator();
1100     break;
1101     }
1102 gbeauche 1.15
1103     #if EMUL_TIME_STATS
1104     native_exec_time += (clock() - native_exec_start);
1105     #endif
1106 gbeauche 1.1 }
1107    
1108     /*
1109     * Execute 68k subroutine (must be ended with EXEC_RETURN)
1110     * This must only be called by the emul_thread when in EMUL_OP mode
1111     * r->a[7] is unused, the routine runs on the caller's stack
1112     */
1113    
1114     void Execute68k(uint32 pc, M68kRegisters *r)
1115     {
1116     current_cpu->execute_68k(pc, r);
1117     }
1118    
1119     /*
1120     * Execute 68k A-Trap from EMUL_OP routine
1121     * r->a[7] is unused, the routine runs on the caller's stack
1122     */
1123    
1124     void Execute68kTrap(uint16 trap, M68kRegisters *r)
1125     {
1126 gbeauche 1.21 SheepVar proc_var(4);
1127     uint32 proc = proc_var.addr();
1128     WriteMacInt16(proc, trap);
1129     WriteMacInt16(proc + 2, M68K_RTS);
1130     Execute68k(proc, r);
1131 gbeauche 1.1 }
1132    
1133     /*
1134     * Call MacOS PPC code
1135     */
1136    
1137     uint32 call_macos(uint32 tvect)
1138     {
1139     return current_cpu->execute_macos_code(tvect, 0, NULL);
1140     }
1141    
1142     uint32 call_macos1(uint32 tvect, uint32 arg1)
1143     {
1144     const uint32 args[] = { arg1 };
1145     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1146     }
1147    
1148     uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1149     {
1150     const uint32 args[] = { arg1, arg2 };
1151     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1152     }
1153    
1154     uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1155     {
1156     const uint32 args[] = { arg1, arg2, arg3 };
1157     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1158     }
1159    
1160     uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1161     {
1162     const uint32 args[] = { arg1, arg2, arg3, arg4 };
1163     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1164     }
1165    
1166     uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1167     {
1168     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1169     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1170     }
1171    
1172     uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1173     {
1174     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1175     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1176     }
1177    
1178     uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1179     {
1180     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1181     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1182     }
1183    
1184     /*
1185     * Resource Manager thunks
1186     */
1187    
1188     void get_resource(void)
1189     {
1190     current_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1191     }
1192    
1193     void get_1_resource(void)
1194     {
1195     current_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1196     }
1197    
1198     void get_ind_resource(void)
1199     {
1200     current_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1201     }
1202    
1203     void get_1_ind_resource(void)
1204     {
1205     current_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1206     }
1207    
1208     void r_get_resource(void)
1209     {
1210     current_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1211     }