ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.26
Committed: 2004-01-24T11:28:06Z (20 years, 8 months ago) by gbeauche
Branch: MAIN
Changes since 1.25: +137 -22 lines
Log Message:
Generate PowerPC code wrapping GetResource() replacements. That way, it's
a normal PPC function invocation that can be JIT compiled to native code
instead of nesting execute() calls which may lead to use the interpreter
(this took around 11% of total execution time on boot, downto 3%).

Also, optimize some SheepShaver EmulOps and actually report non-CTI.

File Contents

# User Rev Content
1 gbeauche 1.1 /*
2     * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3     *
4 cebix 1.25 * SheepShaver (C) 1997-2004 Christian Bauer and Marc Hellwig
5 gbeauche 1.1 *
6     * This program is free software; you can redistribute it and/or modify
7     * it under the terms of the GNU General Public License as published by
8     * the Free Software Foundation; either version 2 of the License, or
9     * (at your option) any later version.
10     *
11     * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15     *
16     * You should have received a copy of the GNU General Public License
17     * along with this program; if not, write to the Free Software
18     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19     */
20    
21     #include "sysdeps.h"
22     #include "cpu_emulation.h"
23     #include "main.h"
24 gbeauche 1.3 #include "prefs.h"
25 gbeauche 1.1 #include "xlowmem.h"
26     #include "emul_op.h"
27     #include "rom_patches.h"
28     #include "macos_util.h"
29     #include "block-alloc.hpp"
30     #include "sigsegv.h"
31     #include "cpu/ppc/ppc-cpu.hpp"
32     #include "cpu/ppc/ppc-operations.hpp"
33 gbeauche 1.18 #include "cpu/ppc/ppc-instructions.hpp"
34 gbeauche 1.21 #include "thunks.h"
35 gbeauche 1.1
36     // Used for NativeOp trampolines
37     #include "video.h"
38     #include "name_registry.h"
39     #include "serial.h"
40 gbeauche 1.16 #include "ether.h"
41 gbeauche 1.1
42     #include <stdio.h>
43    
44     #if ENABLE_MON
45     #include "mon.h"
46     #include "mon_disass.h"
47     #endif
48    
49 gbeauche 1.10 #define DEBUG 0
50 gbeauche 1.1 #include "debug.h"
51    
52 gbeauche 1.15 // Emulation time statistics
53     #define EMUL_TIME_STATS 1
54    
55     #if EMUL_TIME_STATS
56     static clock_t emul_start_time;
57     static uint32 interrupt_count = 0;
58     static clock_t interrupt_time = 0;
59     static uint32 exec68k_count = 0;
60     static clock_t exec68k_time = 0;
61     static uint32 native_exec_count = 0;
62     static clock_t native_exec_time = 0;
63     static uint32 macos_exec_count = 0;
64     static clock_t macos_exec_time = 0;
65     #endif
66    
67 gbeauche 1.1 static void enter_mon(void)
68     {
69     // Start up mon in real-mode
70     #if ENABLE_MON
71     char *arg[4] = {"mon", "-m", "-r", NULL};
72     mon(3, arg);
73     #endif
74     }
75    
76 gbeauche 1.23 // From main_*.cpp
77     extern uintptr SignalStackBase();
78    
79 gbeauche 1.26 // From rsrc_patches.cpp
80     extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
81    
82 gbeauche 1.21 // PowerPC EmulOp to exit from emulation looop
83     const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
84    
85 gbeauche 1.2 // Enable multicore (main/interrupts) cpu emulation?
86 gbeauche 1.9 #define MULTICORE_CPU (ASYNC_IRQ ? 1 : 0)
87 gbeauche 1.2
88 gbeauche 1.1 // Enable Execute68k() safety checks?
89     #define SAFE_EXEC_68K 1
90    
91     // Save FP state in Execute68k()?
92     #define SAVE_FP_EXEC_68K 1
93    
94     // Interrupts in EMUL_OP mode?
95     #define INTERRUPTS_IN_EMUL_OP_MODE 1
96    
97     // Interrupts in native mode?
98     #define INTERRUPTS_IN_NATIVE_MODE 1
99    
100     // Pointer to Kernel Data
101 gbeauche 1.4 static KernelData * const kernel_data = (KernelData *)KERNEL_DATA_BASE;
102 gbeauche 1.1
103 gbeauche 1.17 // SIGSEGV handler
104     static sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
105    
106 gbeauche 1.20 // JIT Compiler enabled?
107     static inline bool enable_jit_p()
108     {
109     return PrefsFindBool("jit");
110     }
111    
112 gbeauche 1.1
113     /**
114     * PowerPC emulator glue with special 'sheep' opcodes
115     **/
116    
117 gbeauche 1.18 enum {
118     PPC_I(SHEEP) = PPC_I(MAX),
119     PPC_I(SHEEP_MAX)
120     };
121    
122 gbeauche 1.1 class sheepshaver_cpu
123     : public powerpc_cpu
124     {
125     void init_decoder();
126     void execute_sheep(uint32 opcode);
127    
128     public:
129    
130 gbeauche 1.10 // Constructor
131     sheepshaver_cpu();
132 gbeauche 1.1
133 gbeauche 1.24 // CR & XER accessors
134 gbeauche 1.1 uint32 get_cr() const { return cr().get(); }
135     void set_cr(uint32 v) { cr().set(v); }
136 gbeauche 1.24 uint32 get_xer() const { return xer().get(); }
137     void set_xer(uint32 v) { xer().set(v); }
138 gbeauche 1.1
139 gbeauche 1.26 // Execute EMUL_OP routine
140     void execute_emul_op(uint32 emul_op);
141    
142 gbeauche 1.1 // Execute 68k routine
143     void execute_68k(uint32 entry, M68kRegisters *r);
144    
145 gbeauche 1.2 // Execute ppc routine
146     void execute_ppc(uint32 entry);
147    
148 gbeauche 1.1 // Execute MacOS/PPC code
149     uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
150    
151 gbeauche 1.26 // Compile one instruction
152     virtual bool compile1(codegen_context_t & cg_context);
153    
154 gbeauche 1.1 // Resource manager thunk
155     void get_resource(uint32 old_get_resource);
156    
157     // Handle MacOS interrupt
158 gbeauche 1.4 void interrupt(uint32 entry);
159 gbeauche 1.10 void handle_interrupt();
160 gbeauche 1.2
161 gbeauche 1.1 // Lazy memory allocator (one item at a time)
162     void *operator new(size_t size)
163     { return allocator_helper< sheepshaver_cpu, lazy_allocator >::allocate(); }
164     void operator delete(void *p)
165     { allocator_helper< sheepshaver_cpu, lazy_allocator >::deallocate(p); }
166     // FIXME: really make surre array allocation fail at link time?
167     void *operator new[](size_t);
168     void operator delete[](void *p);
169 gbeauche 1.17
170     // Make sure the SIGSEGV handler can access CPU registers
171     friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
172 gbeauche 1.1 };
173    
174     lazy_allocator< sheepshaver_cpu > allocator_helper< sheepshaver_cpu, lazy_allocator >::allocator;
175    
176 gbeauche 1.10 sheepshaver_cpu::sheepshaver_cpu()
177 gbeauche 1.20 : powerpc_cpu(enable_jit_p())
178 gbeauche 1.10 {
179     init_decoder();
180     }
181    
182 gbeauche 1.1 void sheepshaver_cpu::init_decoder()
183     {
184     #ifndef PPC_NO_STATIC_II_INDEX_TABLE
185     static bool initialized = false;
186     if (initialized)
187     return;
188     initialized = true;
189     #endif
190    
191     static const instr_info_t sheep_ii_table[] = {
192     { "sheep",
193 gbeauche 1.13 (execute_pmf)&sheepshaver_cpu::execute_sheep,
194 gbeauche 1.1 NULL,
195 gbeauche 1.18 PPC_I(SHEEP),
196 gbeauche 1.7 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
197 gbeauche 1.1 }
198     };
199    
200     const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
201     D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
202    
203     for (int i = 0; i < ii_count; i++) {
204     const instr_info_t * ii = &sheep_ii_table[i];
205     init_decoder_entry(ii);
206     }
207     }
208    
209     // Forward declaration for native opcode handler
210     static void NativeOp(int selector);
211    
212 gbeauche 1.2 /* NativeOp instruction format:
213     +------------+--------------------------+--+----------+------------+
214     | 6 | |FN| OP | 2 |
215     +------------+--------------------------+--+----------+------------+
216     0 5 |6 19 20 21 25 26 31
217     */
218    
219     typedef bit_field< 20, 20 > FN_field;
220     typedef bit_field< 21, 25 > NATIVE_OP_field;
221     typedef bit_field< 26, 31 > EMUL_OP_field;
222    
223 gbeauche 1.26 // Execute EMUL_OP routine
224     void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
225     {
226     M68kRegisters r68;
227     WriteMacInt32(XLM_68K_R25, gpr(25));
228     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
229     for (int i = 0; i < 8; i++)
230     r68.d[i] = gpr(8 + i);
231     for (int i = 0; i < 7; i++)
232     r68.a[i] = gpr(16 + i);
233     r68.a[7] = gpr(1);
234     uint32 saved_cr = get_cr() & CR_field<2>::mask();
235     uint32 saved_xer = get_xer();
236     EmulOp(&r68, gpr(24), emul_op);
237     set_cr(saved_cr);
238     set_xer(saved_xer);
239     for (int i = 0; i < 8; i++)
240     gpr(8 + i) = r68.d[i];
241     for (int i = 0; i < 7; i++)
242     gpr(16 + i) = r68.a[i];
243     gpr(1) = r68.a[7];
244     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
245     }
246    
247 gbeauche 1.1 // Execute SheepShaver instruction
248     void sheepshaver_cpu::execute_sheep(uint32 opcode)
249     {
250     // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
251     assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
252    
253     switch (opcode & 0x3f) {
254     case 0: // EMUL_RETURN
255     QuitEmulator();
256     break;
257 gbeauche 1.8
258 gbeauche 1.1 case 1: // EXEC_RETURN
259 gbeauche 1.12 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
260 gbeauche 1.1 break;
261    
262     case 2: // EXEC_NATIVE
263 gbeauche 1.2 NativeOp(NATIVE_OP_field::extract(opcode));
264     if (FN_field::test(opcode))
265     pc() = lr();
266     else
267     pc() += 4;
268 gbeauche 1.1 break;
269    
270 gbeauche 1.26 default: // EMUL_OP
271     execute_emul_op(EMUL_OP_field::extract(opcode) - 3);
272     pc() += 4;
273     break;
274     }
275     }
276    
277     // Compile one instruction
278     bool sheepshaver_cpu::compile1(codegen_context_t & cg_context)
279     {
280     #if PPC_ENABLE_JIT
281     const instr_info_t *ii = cg_context.instr_info;
282     if (ii->mnemo != PPC_I(SHEEP))
283     return false;
284    
285     bool compiled = false;
286     powerpc_dyngen & dg = cg_context.codegen;
287     uint32 opcode = cg_context.opcode;
288    
289     switch (opcode & 0x3f) {
290     case 0: // EMUL_RETURN
291     dg.gen_invoke(QuitEmulator);
292     compiled = true;
293     break;
294    
295     case 1: // EXEC_RETURN
296     dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
297     compiled = true;
298     break;
299    
300     case 2: { // EXEC_NATIVE
301     uint32 selector = NATIVE_OP_field::extract(opcode);
302     switch (selector) {
303     case NATIVE_PATCH_NAME_REGISTRY:
304     dg.gen_invoke(DoPatchNameRegistry);
305     compiled = true;
306     break;
307     case NATIVE_VIDEO_INSTALL_ACCEL:
308     dg.gen_invoke(VideoInstallAccel);
309     compiled = true;
310     break;
311     case NATIVE_VIDEO_VBL:
312     dg.gen_invoke(VideoVBL);
313     compiled = true;
314     break;
315     case NATIVE_GET_RESOURCE:
316     case NATIVE_GET_1_RESOURCE:
317     case NATIVE_GET_IND_RESOURCE:
318     case NATIVE_GET_1_IND_RESOURCE:
319     case NATIVE_R_GET_RESOURCE: {
320     static const uint32 get_resource_ptr[] = {
321     XLM_GET_RESOURCE,
322     XLM_GET_1_RESOURCE,
323     XLM_GET_IND_RESOURCE,
324     XLM_GET_1_IND_RESOURCE,
325     XLM_R_GET_RESOURCE
326     };
327     uint32 old_get_resource = ReadMacInt32(get_resource_ptr[selector - NATIVE_GET_RESOURCE]);
328     typedef void (*func_t)(dyngen_cpu_base, uint32);
329     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
330     dg.gen_invoke_CPU_im(func, old_get_resource);
331     compiled = true;
332     break;
333     }
334     case NATIVE_DISABLE_INTERRUPT:
335     dg.gen_invoke(DisableInterrupt);
336     compiled = true;
337     break;
338     case NATIVE_ENABLE_INTERRUPT:
339     dg.gen_invoke(EnableInterrupt);
340     compiled = true;
341     break;
342     case NATIVE_CHECK_LOAD_INVOC:
343     dg.gen_load_T0_GPR(3);
344     dg.gen_load_T1_GPR(4);
345     dg.gen_se_16_32_T1();
346     dg.gen_load_T2_GPR(5);
347     dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
348     compiled = true;
349     break;
350     }
351     if (FN_field::test(opcode)) {
352     if (compiled) {
353     dg.gen_load_A0_LR();
354     dg.gen_set_PC_A0();
355     }
356     cg_context.done_compile = true;
357     }
358     else
359     cg_context.done_compile = false;
360     break;
361     }
362    
363 gbeauche 1.1 default: { // EMUL_OP
364 gbeauche 1.26 typedef void (*func_t)(dyngen_cpu_base, uint32);
365     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
366     dg.gen_invoke_CPU_im(func, EMUL_OP_field::extract(opcode) - 3);
367     cg_context.done_compile = false;
368     compiled = true;
369 gbeauche 1.1 break;
370     }
371     }
372 gbeauche 1.26 return compiled;
373     #endif
374     return false;
375 gbeauche 1.1 }
376    
377     // Handle MacOS interrupt
378 gbeauche 1.4 void sheepshaver_cpu::interrupt(uint32 entry)
379 gbeauche 1.1 {
380 gbeauche 1.15 #if EMUL_TIME_STATS
381     interrupt_count++;
382     const clock_t interrupt_start = clock();
383     #endif
384    
385 gbeauche 1.4 #if !MULTICORE_CPU
386 gbeauche 1.2 // Save program counters and branch registers
387     uint32 saved_pc = pc();
388     uint32 saved_lr = lr();
389     uint32 saved_ctr= ctr();
390 gbeauche 1.4 uint32 saved_sp = gpr(1);
391 gbeauche 1.2 #endif
392    
393 gbeauche 1.4 // Initialize stack pointer to SheepShaver alternate stack base
394 gbeauche 1.23 gpr(1) = SignalStackBase() - 64;
395 gbeauche 1.1
396     // Build trampoline to return from interrupt
397 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
398 gbeauche 1.1
399     // Prepare registers for nanokernel interrupt routine
400 gbeauche 1.5 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
401     kernel_data->v[0x018 >> 2] = htonl(gpr(6));
402 gbeauche 1.1
403 gbeauche 1.5 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
404 gbeauche 1.2 assert(gpr(6) != 0);
405 gbeauche 1.1 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
406     WriteMacInt32(gpr(6) + 0x144, gpr(8));
407     WriteMacInt32(gpr(6) + 0x14c, gpr(9));
408     WriteMacInt32(gpr(6) + 0x154, gpr(10));
409     WriteMacInt32(gpr(6) + 0x15c, gpr(11));
410     WriteMacInt32(gpr(6) + 0x164, gpr(12));
411     WriteMacInt32(gpr(6) + 0x16c, gpr(13));
412    
413     gpr(1) = KernelDataAddr;
414 gbeauche 1.5 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
415 gbeauche 1.1 gpr(8) = 0;
416 gbeauche 1.21 gpr(10) = trampoline.addr();
417     gpr(12) = trampoline.addr();
418 gbeauche 1.8 gpr(13) = get_cr();
419 gbeauche 1.1
420     // rlwimi. r7,r7,8,0,0
421     uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
422     record_cr0(result);
423     gpr(7) = result;
424    
425     gpr(11) = 0xf072; // MSR (SRR1)
426 gbeauche 1.8 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
427 gbeauche 1.1
428     // Enter nanokernel
429     execute(entry);
430    
431 gbeauche 1.2 #if !MULTICORE_CPU
432     // Restore program counters and branch registers
433     pc() = saved_pc;
434     lr() = saved_lr;
435     ctr()= saved_ctr;
436 gbeauche 1.4 gpr(1) = saved_sp;
437 gbeauche 1.2 #endif
438 gbeauche 1.15
439     #if EMUL_TIME_STATS
440     interrupt_time += (clock() - interrupt_start);
441     #endif
442 gbeauche 1.1 }
443    
444     // Execute 68k routine
445     void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
446     {
447 gbeauche 1.15 #if EMUL_TIME_STATS
448     exec68k_count++;
449     const clock_t exec68k_start = clock();
450     #endif
451    
452 gbeauche 1.1 #if SAFE_EXEC_68K
453     if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
454     printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
455     #endif
456    
457     // Save program counters and branch registers
458     uint32 saved_pc = pc();
459     uint32 saved_lr = lr();
460     uint32 saved_ctr= ctr();
461 gbeauche 1.8 uint32 saved_cr = get_cr();
462 gbeauche 1.1
463     // Create MacOS stack frame
464 gbeauche 1.6 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
465 gbeauche 1.1 uint32 sp = gpr(1);
466 gbeauche 1.6 gpr(1) -= 56;
467 gbeauche 1.1 WriteMacInt32(gpr(1), sp);
468    
469     // Save PowerPC registers
470 gbeauche 1.6 uint32 saved_GPRs[19];
471     memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
472 gbeauche 1.1 #if SAVE_FP_EXEC_68K
473 gbeauche 1.6 double saved_FPRs[18];
474     memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
475 gbeauche 1.1 #endif
476    
477     // Setup registers for 68k emulator
478 gbeauche 1.2 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
479 gbeauche 1.1 for (int i = 0; i < 8; i++) // d[0]..d[7]
480     gpr(8 + i) = r->d[i];
481     for (int i = 0; i < 7; i++) // a[0]..a[6]
482     gpr(16 + i) = r->a[i];
483     gpr(23) = 0;
484     gpr(24) = entry;
485     gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
486     gpr(26) = 0;
487     gpr(28) = 0; // VBR
488 gbeauche 1.5 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
489     gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
490 gbeauche 1.1 gpr(31) = KernelDataAddr + 0x1000;
491    
492     // Push return address (points to EXEC_RETURN opcode) on stack
493     gpr(1) -= 4;
494     WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
495    
496     // Rentering 68k emulator
497     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
498    
499     // Set r0 to 0 for 68k emulator
500     gpr(0) = 0;
501    
502     // Execute 68k opcode
503     uint32 opcode = ReadMacInt16(gpr(24));
504     gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
505     gpr(29) += opcode * 8;
506     execute(gpr(29));
507    
508     // Save r25 (contains current 68k interrupt level)
509     WriteMacInt32(XLM_68K_R25, gpr(25));
510    
511     // Reentering EMUL_OP mode
512     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
513    
514     // Save 68k registers
515     for (int i = 0; i < 8; i++) // d[0]..d[7]
516     r->d[i] = gpr(8 + i);
517     for (int i = 0; i < 7; i++) // a[0]..a[6]
518     r->a[i] = gpr(16 + i);
519    
520     // Restore PowerPC registers
521 gbeauche 1.6 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
522 gbeauche 1.1 #if SAVE_FP_EXEC_68K
523 gbeauche 1.6 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
524 gbeauche 1.1 #endif
525    
526     // Cleanup stack
527 gbeauche 1.6 gpr(1) += 56;
528 gbeauche 1.1
529     // Restore program counters and branch registers
530     pc() = saved_pc;
531     lr() = saved_lr;
532     ctr()= saved_ctr;
533 gbeauche 1.8 set_cr(saved_cr);
534 gbeauche 1.15
535     #if EMUL_TIME_STATS
536     exec68k_time += (clock() - exec68k_start);
537     #endif
538 gbeauche 1.1 }
539    
540     // Call MacOS PPC code
541     uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
542     {
543 gbeauche 1.15 #if EMUL_TIME_STATS
544     macos_exec_count++;
545     const clock_t macos_exec_start = clock();
546     #endif
547    
548 gbeauche 1.1 // Save program counters and branch registers
549     uint32 saved_pc = pc();
550     uint32 saved_lr = lr();
551     uint32 saved_ctr= ctr();
552    
553     // Build trampoline with EXEC_RETURN
554 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
555     lr() = trampoline.addr();
556 gbeauche 1.1
557     gpr(1) -= 64; // Create stack frame
558     uint32 proc = ReadMacInt32(tvect); // Get routine address
559     uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
560    
561     // Save PowerPC registers
562     uint32 regs[8];
563     regs[0] = gpr(2);
564     for (int i = 0; i < nargs; i++)
565     regs[i + 1] = gpr(i + 3);
566    
567     // Prepare and call MacOS routine
568     gpr(2) = toc;
569     for (int i = 0; i < nargs; i++)
570     gpr(i + 3) = args[i];
571     execute(proc);
572     uint32 retval = gpr(3);
573    
574     // Restore PowerPC registers
575     for (int i = 0; i <= nargs; i++)
576     gpr(i + 2) = regs[i];
577    
578     // Cleanup stack
579     gpr(1) += 64;
580    
581     // Restore program counters and branch registers
582     pc() = saved_pc;
583     lr() = saved_lr;
584     ctr()= saved_ctr;
585    
586 gbeauche 1.15 #if EMUL_TIME_STATS
587     macos_exec_time += (clock() - macos_exec_start);
588     #endif
589    
590 gbeauche 1.1 return retval;
591     }
592    
593 gbeauche 1.2 // Execute ppc routine
594     inline void sheepshaver_cpu::execute_ppc(uint32 entry)
595     {
596     // Save branch registers
597     uint32 saved_lr = lr();
598    
599 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
600     WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
601     lr() = trampoline.addr();
602 gbeauche 1.2
603     execute(entry);
604    
605     // Restore branch registers
606     lr() = saved_lr;
607     }
608    
609 gbeauche 1.1 // Resource Manager thunk
610     inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
611     {
612 gbeauche 1.2 uint32 type = gpr(3);
613     int16 id = gpr(4);
614    
615     // Create stack frame
616     gpr(1) -= 56;
617    
618     // Call old routine
619     execute_ppc(old_get_resource);
620    
621     // Call CheckLoad()
622 gbeauche 1.5 uint32 handle = gpr(3);
623 gbeauche 1.2 check_load_invoc(type, id, handle);
624 gbeauche 1.5 gpr(3) = handle;
625 gbeauche 1.2
626     // Cleanup stack
627     gpr(1) += 56;
628 gbeauche 1.1 }
629    
630    
631     /**
632     * SheepShaver CPU engine interface
633     **/
634    
635     static sheepshaver_cpu *main_cpu = NULL; // CPU emulator to handle usual control flow
636     static sheepshaver_cpu *interrupt_cpu = NULL; // CPU emulator to handle interrupts
637     static sheepshaver_cpu *current_cpu = NULL; // Current CPU emulator context
638    
639 gbeauche 1.7 void FlushCodeCache(uintptr start, uintptr end)
640     {
641     D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
642     main_cpu->invalidate_cache_range(start, end);
643     #if MULTICORE_CPU
644     interrupt_cpu->invalidate_cache_range(start, end);
645     #endif
646     }
647    
648 gbeauche 1.2 static inline void cpu_push(sheepshaver_cpu *new_cpu)
649     {
650     #if MULTICORE_CPU
651     current_cpu = new_cpu;
652     #endif
653     }
654    
655     static inline void cpu_pop()
656     {
657     #if MULTICORE_CPU
658     current_cpu = main_cpu;
659     #endif
660     }
661    
662 gbeauche 1.1 // Dump PPC registers
663     static void dump_registers(void)
664     {
665     current_cpu->dump_registers();
666     }
667    
668     // Dump log
669     static void dump_log(void)
670     {
671     current_cpu->dump_log();
672     }
673    
674     /*
675     * Initialize CPU emulation
676     */
677    
678 gbeauche 1.3 static sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
679 gbeauche 1.1 {
680     #if ENABLE_VOSF
681 gbeauche 1.3 // Handle screen fault
682     extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
683     if (Screen_fault_handler(fault_address, fault_instruction))
684     return SIGSEGV_RETURN_SUCCESS;
685 gbeauche 1.1 #endif
686 gbeauche 1.3
687     const uintptr addr = (uintptr)fault_address;
688     #if HAVE_SIGSEGV_SKIP_INSTRUCTION
689     // Ignore writes to ROM
690     if ((addr - ROM_BASE) < ROM_SIZE)
691     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
692    
693 gbeauche 1.17 // Get program counter of target CPU
694     sheepshaver_cpu * const cpu = current_cpu;
695     const uint32 pc = cpu->pc();
696    
697     // Fault in Mac ROM or RAM?
698     bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize));
699     if (mac_fault) {
700    
701     // "VM settings" during MacOS 8 installation
702     if (pc == ROM_BASE + 0x488160 && cpu->gpr(20) == 0xf8000000)
703     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
704    
705     // MacOS 8.5 installation
706     else if (pc == ROM_BASE + 0x488140 && cpu->gpr(16) == 0xf8000000)
707     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
708    
709     // MacOS 8 serial drivers on startup
710     else if (pc == ROM_BASE + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
711     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
712    
713     // MacOS 8.1 serial drivers on startup
714     else if (pc == ROM_BASE + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
715     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
716     else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
717     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
718    
719     // Ignore all other faults, if requested
720     if (PrefsFindBool("ignoresegv"))
721     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
722     }
723 gbeauche 1.3 #else
724     #error "FIXME: You don't have the capability to skip instruction within signal handlers"
725 gbeauche 1.1 #endif
726 gbeauche 1.3
727     printf("SIGSEGV\n");
728     printf(" pc %p\n", fault_instruction);
729     printf(" ea %p\n", fault_address);
730     printf(" cpu %s\n", current_cpu == main_cpu ? "main" : "interrupts");
731 gbeauche 1.1 dump_registers();
732     current_cpu->dump_log();
733     enter_mon();
734     QuitEmulator();
735 gbeauche 1.3
736     return SIGSEGV_RETURN_FAILURE;
737 gbeauche 1.1 }
738    
739     void init_emul_ppc(void)
740     {
741     // Initialize main CPU emulator
742     main_cpu = new sheepshaver_cpu();
743     main_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
744 gbeauche 1.24 main_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
745 gbeauche 1.1 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
746    
747 gbeauche 1.2 #if MULTICORE_CPU
748 gbeauche 1.1 // Initialize alternate CPU emulator to handle interrupts
749     interrupt_cpu = new sheepshaver_cpu();
750 gbeauche 1.2 #endif
751 gbeauche 1.1
752 gbeauche 1.3 // Install the handler for SIGSEGV
753     sigsegv_install_handler(sigsegv_handler);
754 gbeauche 1.4
755 gbeauche 1.1 #if ENABLE_MON
756     // Install "regs" command in cxmon
757     mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
758     mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
759     #endif
760 gbeauche 1.15
761     #if EMUL_TIME_STATS
762     emul_start_time = clock();
763     #endif
764 gbeauche 1.1 }
765    
766     /*
767 gbeauche 1.14 * Deinitialize emulation
768     */
769    
770     void exit_emul_ppc(void)
771     {
772 gbeauche 1.15 #if EMUL_TIME_STATS
773     clock_t emul_end_time = clock();
774    
775     printf("### Statistics for SheepShaver emulation parts\n");
776     const clock_t emul_time = emul_end_time - emul_start_time;
777     printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
778     printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
779     (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
780    
781     #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
782     printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
783     printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
784     double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
785     100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
786     } while (0)
787    
788     PRINT_STATS("Execute68k[Trap] execution", exec68k);
789     PRINT_STATS("NativeOp execution", native_exec);
790     PRINT_STATS("MacOS routine execution", macos_exec);
791    
792     #undef PRINT_STATS
793     printf("\n");
794     #endif
795    
796 gbeauche 1.14 delete main_cpu;
797     #if MULTICORE_CPU
798     delete interrupt_cpu;
799     #endif
800     }
801    
802     /*
803 gbeauche 1.1 * Emulation loop
804     */
805    
806     void emul_ppc(uint32 entry)
807     {
808     current_cpu = main_cpu;
809 gbeauche 1.24 #if 0
810 gbeauche 1.1 current_cpu->start_log();
811 gbeauche 1.10 #endif
812     // start emulation loop and enable code translation or caching
813 gbeauche 1.19 current_cpu->execute(entry);
814 gbeauche 1.1 }
815    
816     /*
817     * Handle PowerPC interrupt
818     */
819    
820 gbeauche 1.11 #if ASYNC_IRQ
821     void HandleInterrupt(void)
822     {
823     main_cpu->handle_interrupt();
824     }
825     #else
826 gbeauche 1.2 void TriggerInterrupt(void)
827     {
828     #if 0
829     WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
830     #else
831 gbeauche 1.10 // Trigger interrupt to main cpu only
832     if (main_cpu)
833     main_cpu->trigger_interrupt();
834 gbeauche 1.2 #endif
835     }
836 gbeauche 1.4 #endif
837 gbeauche 1.2
838 gbeauche 1.10 void sheepshaver_cpu::handle_interrupt(void)
839 gbeauche 1.1 {
840     // Do nothing if interrupts are disabled
841 gbeauche 1.16 if (*(int32 *)XLM_IRQ_NEST > 0)
842 gbeauche 1.1 return;
843    
844 gbeauche 1.2 // Do nothing if there is no interrupt pending
845     if (InterruptFlags == 0)
846 gbeauche 1.1 return;
847    
848     // Disable MacOS stack sniffer
849     WriteMacInt32(0x110, 0);
850    
851     // Interrupt action depends on current run mode
852     switch (ReadMacInt32(XLM_RUN_MODE)) {
853     case MODE_68K:
854     // 68k emulator active, trigger 68k interrupt level 1
855     assert(current_cpu == main_cpu);
856     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
857 gbeauche 1.10 set_cr(get_cr() | tswap32(kernel_data->v[0x674 >> 2]));
858 gbeauche 1.1 break;
859    
860     #if INTERRUPTS_IN_NATIVE_MODE
861     case MODE_NATIVE:
862     // 68k emulator inactive, in nanokernel?
863     assert(current_cpu == main_cpu);
864 gbeauche 1.10 if (gpr(1) != KernelDataAddr) {
865 gbeauche 1.1 // Prepare for 68k interrupt level 1
866     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
867     WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
868     ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
869     | tswap32(kernel_data->v[0x674 >> 2]));
870    
871     // Execute nanokernel interrupt routine (this will activate the 68k emulator)
872 gbeauche 1.2 DisableInterrupt();
873     cpu_push(interrupt_cpu);
874 gbeauche 1.1 if (ROMType == ROMTYPE_NEWWORLD)
875 gbeauche 1.4 current_cpu->interrupt(ROM_BASE + 0x312b1c);
876 gbeauche 1.1 else
877 gbeauche 1.4 current_cpu->interrupt(ROM_BASE + 0x312a3c);
878 gbeauche 1.2 cpu_pop();
879 gbeauche 1.1 }
880     break;
881     #endif
882    
883     #if INTERRUPTS_IN_EMUL_OP_MODE
884     case MODE_EMUL_OP:
885     // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
886     if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
887     #if 1
888     // Execute full 68k interrupt routine
889     M68kRegisters r;
890     uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
891     WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
892 gbeauche 1.2 static const uint8 proc[] = {
893     0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
894     0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
895     0x40, 0xe7, // move sr,-(sp) (saved SR)
896     0x20, 0x78, 0x00, 0x064, // move.l $64,a0
897     0x4e, 0xd0, // jmp (a0)
898     M68K_RTS >> 8, M68K_RTS & 0xff // @1
899 gbeauche 1.1 };
900     Execute68k((uint32)proc, &r);
901     WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
902     #else
903     // Only update cursor
904     if (HasMacStarted()) {
905     if (InterruptFlags & INTFLAG_VIA) {
906     ClearInterruptFlag(INTFLAG_VIA);
907     ADBInterrupt();
908 gbeauche 1.22 ExecuteNative(NATIVE_VIDEO_VBL);
909 gbeauche 1.1 }
910     }
911     #endif
912     }
913     break;
914     #endif
915     }
916     }
917    
918     static void get_resource(void);
919     static void get_1_resource(void);
920     static void get_ind_resource(void);
921     static void get_1_ind_resource(void);
922     static void r_get_resource(void);
923    
924     #define GPR(REG) current_cpu->gpr(REG)
925    
926     static void NativeOp(int selector)
927     {
928 gbeauche 1.15 #if EMUL_TIME_STATS
929     native_exec_count++;
930     const clock_t native_exec_start = clock();
931     #endif
932    
933 gbeauche 1.1 switch (selector) {
934     case NATIVE_PATCH_NAME_REGISTRY:
935     DoPatchNameRegistry();
936     break;
937     case NATIVE_VIDEO_INSTALL_ACCEL:
938     VideoInstallAccel();
939     break;
940     case NATIVE_VIDEO_VBL:
941     VideoVBL();
942     break;
943     case NATIVE_VIDEO_DO_DRIVER_IO:
944     GPR(3) = (int32)(int16)VideoDoDriverIO((void *)GPR(3), (void *)GPR(4),
945     (void *)GPR(5), GPR(6), GPR(7));
946     break;
947 gbeauche 1.16 #ifdef WORDS_BIGENDIAN
948     case NATIVE_ETHER_IRQ:
949     EtherIRQ();
950     break;
951     case NATIVE_ETHER_INIT:
952     GPR(3) = InitStreamModule((void *)GPR(3));
953     break;
954     case NATIVE_ETHER_TERM:
955     TerminateStreamModule();
956     break;
957     case NATIVE_ETHER_OPEN:
958     GPR(3) = ether_open((queue_t *)GPR(3), (void *)GPR(4), GPR(5), GPR(6), (void*)GPR(7));
959 gbeauche 1.1 break;
960 gbeauche 1.16 case NATIVE_ETHER_CLOSE:
961     GPR(3) = ether_close((queue_t *)GPR(3), GPR(4), (void *)GPR(5));
962 gbeauche 1.1 break;
963 gbeauche 1.16 case NATIVE_ETHER_WPUT:
964     GPR(3) = ether_wput((queue_t *)GPR(3), (mblk_t *)GPR(4));
965 gbeauche 1.1 break;
966 gbeauche 1.16 case NATIVE_ETHER_RSRV:
967     GPR(3) = ether_rsrv((queue_t *)GPR(3));
968 gbeauche 1.1 break;
969 gbeauche 1.16 #else
970     case NATIVE_ETHER_INIT:
971     // FIXME: needs more complicated thunks
972     GPR(3) = false;
973 gbeauche 1.1 break;
974 gbeauche 1.16 #endif
975 gbeauche 1.1 case NATIVE_SERIAL_NOTHING:
976     case NATIVE_SERIAL_OPEN:
977     case NATIVE_SERIAL_PRIME_IN:
978     case NATIVE_SERIAL_PRIME_OUT:
979     case NATIVE_SERIAL_CONTROL:
980     case NATIVE_SERIAL_STATUS:
981     case NATIVE_SERIAL_CLOSE: {
982     typedef int16 (*SerialCallback)(uint32, uint32);
983     static const SerialCallback serial_callbacks[] = {
984     SerialNothing,
985     SerialOpen,
986     SerialPrimeIn,
987     SerialPrimeOut,
988     SerialControl,
989     SerialStatus,
990     SerialClose
991     };
992     GPR(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](GPR(3), GPR(4));
993 gbeauche 1.16 break;
994     }
995     case NATIVE_GET_RESOURCE:
996     case NATIVE_GET_1_RESOURCE:
997     case NATIVE_GET_IND_RESOURCE:
998     case NATIVE_GET_1_IND_RESOURCE:
999     case NATIVE_R_GET_RESOURCE: {
1000     typedef void (*GetResourceCallback)(void);
1001     static const GetResourceCallback get_resource_callbacks[] = {
1002     get_resource,
1003     get_1_resource,
1004     get_ind_resource,
1005     get_1_ind_resource,
1006     r_get_resource
1007     };
1008     get_resource_callbacks[selector - NATIVE_GET_RESOURCE]();
1009 gbeauche 1.1 break;
1010     }
1011 gbeauche 1.2 case NATIVE_DISABLE_INTERRUPT:
1012     DisableInterrupt();
1013     break;
1014     case NATIVE_ENABLE_INTERRUPT:
1015     EnableInterrupt();
1016 gbeauche 1.7 break;
1017     case NATIVE_MAKE_EXECUTABLE:
1018     MakeExecutable(0, (void *)GPR(4), GPR(5));
1019 gbeauche 1.26 break;
1020     case NATIVE_CHECK_LOAD_INVOC:
1021     check_load_invoc(GPR(3), GPR(4), GPR(5));
1022 gbeauche 1.2 break;
1023 gbeauche 1.1 default:
1024     printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
1025     QuitEmulator();
1026     break;
1027     }
1028 gbeauche 1.15
1029     #if EMUL_TIME_STATS
1030     native_exec_time += (clock() - native_exec_start);
1031     #endif
1032 gbeauche 1.1 }
1033    
1034     /*
1035     * Execute 68k subroutine (must be ended with EXEC_RETURN)
1036     * This must only be called by the emul_thread when in EMUL_OP mode
1037     * r->a[7] is unused, the routine runs on the caller's stack
1038     */
1039    
1040     void Execute68k(uint32 pc, M68kRegisters *r)
1041     {
1042     current_cpu->execute_68k(pc, r);
1043     }
1044    
1045     /*
1046     * Execute 68k A-Trap from EMUL_OP routine
1047     * r->a[7] is unused, the routine runs on the caller's stack
1048     */
1049    
1050     void Execute68kTrap(uint16 trap, M68kRegisters *r)
1051     {
1052 gbeauche 1.21 SheepVar proc_var(4);
1053     uint32 proc = proc_var.addr();
1054     WriteMacInt16(proc, trap);
1055     WriteMacInt16(proc + 2, M68K_RTS);
1056     Execute68k(proc, r);
1057 gbeauche 1.1 }
1058    
1059     /*
1060     * Call MacOS PPC code
1061     */
1062    
1063     uint32 call_macos(uint32 tvect)
1064     {
1065     return current_cpu->execute_macos_code(tvect, 0, NULL);
1066     }
1067    
1068     uint32 call_macos1(uint32 tvect, uint32 arg1)
1069     {
1070     const uint32 args[] = { arg1 };
1071     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1072     }
1073    
1074     uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1075     {
1076     const uint32 args[] = { arg1, arg2 };
1077     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1078     }
1079    
1080     uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1081     {
1082     const uint32 args[] = { arg1, arg2, arg3 };
1083     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1084     }
1085    
1086     uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1087     {
1088     const uint32 args[] = { arg1, arg2, arg3, arg4 };
1089     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1090     }
1091    
1092     uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1093     {
1094     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1095     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1096     }
1097    
1098     uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1099     {
1100     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1101     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1102     }
1103    
1104     uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1105     {
1106     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1107     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1108     }
1109    
1110     /*
1111     * Resource Manager thunks
1112     */
1113    
1114     void get_resource(void)
1115     {
1116     current_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1117     }
1118    
1119     void get_1_resource(void)
1120     {
1121     current_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1122     }
1123    
1124     void get_ind_resource(void)
1125     {
1126     current_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1127     }
1128    
1129     void get_1_ind_resource(void)
1130     {
1131     current_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1132     }
1133    
1134     void r_get_resource(void)
1135     {
1136     current_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1137     }