ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.23
Committed: 2003-12-05T13:37:56Z (20 years, 9 months ago) by gbeauche
Branch: MAIN
Changes since 1.22: +4 -2 lines
Log Message:
Use an alternate stack base while servicing PowerPC interrupts.

File Contents

# User Rev Content
1 gbeauche 1.1 /*
2     * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3     *
4     * SheepShaver (C) 1997-2002 Christian Bauer and Marc Hellwig
5     *
6     * This program is free software; you can redistribute it and/or modify
7     * it under the terms of the GNU General Public License as published by
8     * the Free Software Foundation; either version 2 of the License, or
9     * (at your option) any later version.
10     *
11     * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15     *
16     * You should have received a copy of the GNU General Public License
17     * along with this program; if not, write to the Free Software
18     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19     */
20    
21     #include "sysdeps.h"
22     #include "cpu_emulation.h"
23     #include "main.h"
24 gbeauche 1.3 #include "prefs.h"
25 gbeauche 1.1 #include "xlowmem.h"
26     #include "emul_op.h"
27     #include "rom_patches.h"
28     #include "macos_util.h"
29     #include "block-alloc.hpp"
30     #include "sigsegv.h"
31     #include "cpu/ppc/ppc-cpu.hpp"
32     #include "cpu/ppc/ppc-operations.hpp"
33 gbeauche 1.18 #include "cpu/ppc/ppc-instructions.hpp"
34 gbeauche 1.21 #include "thunks.h"
35 gbeauche 1.1
36     // Used for NativeOp trampolines
37     #include "video.h"
38     #include "name_registry.h"
39     #include "serial.h"
40 gbeauche 1.16 #include "ether.h"
41 gbeauche 1.1
42     #include <stdio.h>
43    
44     #if ENABLE_MON
45     #include "mon.h"
46     #include "mon_disass.h"
47     #endif
48    
49 gbeauche 1.10 #define DEBUG 0
50 gbeauche 1.1 #include "debug.h"
51    
52 gbeauche 1.15 // Emulation time statistics
53     #define EMUL_TIME_STATS 1
54    
55     #if EMUL_TIME_STATS
56     static clock_t emul_start_time;
57     static uint32 interrupt_count = 0;
58     static clock_t interrupt_time = 0;
59     static uint32 exec68k_count = 0;
60     static clock_t exec68k_time = 0;
61     static uint32 native_exec_count = 0;
62     static clock_t native_exec_time = 0;
63     static uint32 macos_exec_count = 0;
64     static clock_t macos_exec_time = 0;
65     #endif
66    
67 gbeauche 1.1 static void enter_mon(void)
68     {
69     // Start up mon in real-mode
70     #if ENABLE_MON
71     char *arg[4] = {"mon", "-m", "-r", NULL};
72     mon(3, arg);
73     #endif
74     }
75    
76 gbeauche 1.23 // From main_*.cpp
77     extern uintptr SignalStackBase();
78    
79 gbeauche 1.21 // PowerPC EmulOp to exit from emulation looop
80     const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
81    
82 gbeauche 1.2 // Enable multicore (main/interrupts) cpu emulation?
83 gbeauche 1.9 #define MULTICORE_CPU (ASYNC_IRQ ? 1 : 0)
84 gbeauche 1.2
85 gbeauche 1.1 // Enable Execute68k() safety checks?
86     #define SAFE_EXEC_68K 1
87    
88     // Save FP state in Execute68k()?
89     #define SAVE_FP_EXEC_68K 1
90    
91     // Interrupts in EMUL_OP mode?
92     #define INTERRUPTS_IN_EMUL_OP_MODE 1
93    
94     // Interrupts in native mode?
95     #define INTERRUPTS_IN_NATIVE_MODE 1
96    
97     // Pointer to Kernel Data
98 gbeauche 1.4 static KernelData * const kernel_data = (KernelData *)KERNEL_DATA_BASE;
99 gbeauche 1.1
100 gbeauche 1.17 // SIGSEGV handler
101     static sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
102    
103 gbeauche 1.20 // JIT Compiler enabled?
104     static inline bool enable_jit_p()
105     {
106     return PrefsFindBool("jit");
107     }
108    
109 gbeauche 1.1
110     /**
111     * PowerPC emulator glue with special 'sheep' opcodes
112     **/
113    
114 gbeauche 1.18 enum {
115     PPC_I(SHEEP) = PPC_I(MAX),
116     PPC_I(SHEEP_MAX)
117     };
118    
119 gbeauche 1.1 class sheepshaver_cpu
120     : public powerpc_cpu
121     {
122     void init_decoder();
123     void execute_sheep(uint32 opcode);
124    
125     public:
126    
127 gbeauche 1.10 // Constructor
128     sheepshaver_cpu();
129 gbeauche 1.1
130     // Condition Register accessors
131     uint32 get_cr() const { return cr().get(); }
132     void set_cr(uint32 v) { cr().set(v); }
133    
134     // Execute 68k routine
135     void execute_68k(uint32 entry, M68kRegisters *r);
136    
137 gbeauche 1.2 // Execute ppc routine
138     void execute_ppc(uint32 entry);
139    
140 gbeauche 1.1 // Execute MacOS/PPC code
141     uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
142    
143     // Resource manager thunk
144     void get_resource(uint32 old_get_resource);
145    
146     // Handle MacOS interrupt
147 gbeauche 1.4 void interrupt(uint32 entry);
148 gbeauche 1.10 void handle_interrupt();
149 gbeauche 1.2
150 gbeauche 1.1 // Lazy memory allocator (one item at a time)
151     void *operator new(size_t size)
152     { return allocator_helper< sheepshaver_cpu, lazy_allocator >::allocate(); }
153     void operator delete(void *p)
154     { allocator_helper< sheepshaver_cpu, lazy_allocator >::deallocate(p); }
155     // FIXME: really make surre array allocation fail at link time?
156     void *operator new[](size_t);
157     void operator delete[](void *p);
158 gbeauche 1.17
159     // Make sure the SIGSEGV handler can access CPU registers
160     friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
161 gbeauche 1.1 };
162    
163     lazy_allocator< sheepshaver_cpu > allocator_helper< sheepshaver_cpu, lazy_allocator >::allocator;
164    
165 gbeauche 1.10 sheepshaver_cpu::sheepshaver_cpu()
166 gbeauche 1.20 : powerpc_cpu(enable_jit_p())
167 gbeauche 1.10 {
168     init_decoder();
169     }
170    
171 gbeauche 1.1 void sheepshaver_cpu::init_decoder()
172     {
173     #ifndef PPC_NO_STATIC_II_INDEX_TABLE
174     static bool initialized = false;
175     if (initialized)
176     return;
177     initialized = true;
178     #endif
179    
180     static const instr_info_t sheep_ii_table[] = {
181     { "sheep",
182 gbeauche 1.13 (execute_pmf)&sheepshaver_cpu::execute_sheep,
183 gbeauche 1.1 NULL,
184 gbeauche 1.18 PPC_I(SHEEP),
185 gbeauche 1.7 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
186 gbeauche 1.1 }
187     };
188    
189     const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
190     D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
191    
192     for (int i = 0; i < ii_count; i++) {
193     const instr_info_t * ii = &sheep_ii_table[i];
194     init_decoder_entry(ii);
195     }
196     }
197    
198     // Forward declaration for native opcode handler
199     static void NativeOp(int selector);
200    
201 gbeauche 1.2 /* NativeOp instruction format:
202     +------------+--------------------------+--+----------+------------+
203     | 6 | |FN| OP | 2 |
204     +------------+--------------------------+--+----------+------------+
205     0 5 |6 19 20 21 25 26 31
206     */
207    
208     typedef bit_field< 20, 20 > FN_field;
209     typedef bit_field< 21, 25 > NATIVE_OP_field;
210     typedef bit_field< 26, 31 > EMUL_OP_field;
211    
212 gbeauche 1.1 // Execute SheepShaver instruction
213     void sheepshaver_cpu::execute_sheep(uint32 opcode)
214     {
215     // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
216     assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
217    
218     switch (opcode & 0x3f) {
219     case 0: // EMUL_RETURN
220     QuitEmulator();
221     break;
222 gbeauche 1.8
223 gbeauche 1.1 case 1: // EXEC_RETURN
224 gbeauche 1.12 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
225 gbeauche 1.1 break;
226    
227     case 2: // EXEC_NATIVE
228 gbeauche 1.2 NativeOp(NATIVE_OP_field::extract(opcode));
229     if (FN_field::test(opcode))
230     pc() = lr();
231     else
232     pc() += 4;
233 gbeauche 1.1 break;
234    
235     default: { // EMUL_OP
236     M68kRegisters r68;
237     WriteMacInt32(XLM_68K_R25, gpr(25));
238     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
239     for (int i = 0; i < 8; i++)
240     r68.d[i] = gpr(8 + i);
241     for (int i = 0; i < 7; i++)
242     r68.a[i] = gpr(16 + i);
243     r68.a[7] = gpr(1);
244 gbeauche 1.2 EmulOp(&r68, gpr(24), EMUL_OP_field::extract(opcode) - 3);
245 gbeauche 1.1 for (int i = 0; i < 8; i++)
246     gpr(8 + i) = r68.d[i];
247     for (int i = 0; i < 7; i++)
248     gpr(16 + i) = r68.a[i];
249     gpr(1) = r68.a[7];
250     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
251     pc() += 4;
252     break;
253     }
254     }
255     }
256    
257     // Handle MacOS interrupt
258 gbeauche 1.4 void sheepshaver_cpu::interrupt(uint32 entry)
259 gbeauche 1.1 {
260 gbeauche 1.15 #if EMUL_TIME_STATS
261     interrupt_count++;
262     const clock_t interrupt_start = clock();
263     #endif
264    
265 gbeauche 1.4 #if !MULTICORE_CPU
266 gbeauche 1.2 // Save program counters and branch registers
267     uint32 saved_pc = pc();
268     uint32 saved_lr = lr();
269     uint32 saved_ctr= ctr();
270 gbeauche 1.4 uint32 saved_sp = gpr(1);
271 gbeauche 1.2 #endif
272    
273 gbeauche 1.4 // Initialize stack pointer to SheepShaver alternate stack base
274 gbeauche 1.23 gpr(1) = SignalStackBase() - 64;
275 gbeauche 1.1
276     // Build trampoline to return from interrupt
277 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
278 gbeauche 1.1
279     // Prepare registers for nanokernel interrupt routine
280 gbeauche 1.5 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
281     kernel_data->v[0x018 >> 2] = htonl(gpr(6));
282 gbeauche 1.1
283 gbeauche 1.5 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
284 gbeauche 1.2 assert(gpr(6) != 0);
285 gbeauche 1.1 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
286     WriteMacInt32(gpr(6) + 0x144, gpr(8));
287     WriteMacInt32(gpr(6) + 0x14c, gpr(9));
288     WriteMacInt32(gpr(6) + 0x154, gpr(10));
289     WriteMacInt32(gpr(6) + 0x15c, gpr(11));
290     WriteMacInt32(gpr(6) + 0x164, gpr(12));
291     WriteMacInt32(gpr(6) + 0x16c, gpr(13));
292    
293     gpr(1) = KernelDataAddr;
294 gbeauche 1.5 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
295 gbeauche 1.1 gpr(8) = 0;
296 gbeauche 1.21 gpr(10) = trampoline.addr();
297     gpr(12) = trampoline.addr();
298 gbeauche 1.8 gpr(13) = get_cr();
299 gbeauche 1.1
300     // rlwimi. r7,r7,8,0,0
301     uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
302     record_cr0(result);
303     gpr(7) = result;
304    
305     gpr(11) = 0xf072; // MSR (SRR1)
306 gbeauche 1.8 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
307 gbeauche 1.1
308     // Enter nanokernel
309     execute(entry);
310    
311 gbeauche 1.2 #if !MULTICORE_CPU
312     // Restore program counters and branch registers
313     pc() = saved_pc;
314     lr() = saved_lr;
315     ctr()= saved_ctr;
316 gbeauche 1.4 gpr(1) = saved_sp;
317 gbeauche 1.2 #endif
318 gbeauche 1.15
319     #if EMUL_TIME_STATS
320     interrupt_time += (clock() - interrupt_start);
321     #endif
322 gbeauche 1.1 }
323    
324     // Execute 68k routine
325     void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
326     {
327 gbeauche 1.15 #if EMUL_TIME_STATS
328     exec68k_count++;
329     const clock_t exec68k_start = clock();
330     #endif
331    
332 gbeauche 1.1 #if SAFE_EXEC_68K
333     if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
334     printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
335     #endif
336    
337     // Save program counters and branch registers
338     uint32 saved_pc = pc();
339     uint32 saved_lr = lr();
340     uint32 saved_ctr= ctr();
341 gbeauche 1.8 uint32 saved_cr = get_cr();
342 gbeauche 1.1
343     // Create MacOS stack frame
344 gbeauche 1.6 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
345 gbeauche 1.1 uint32 sp = gpr(1);
346 gbeauche 1.6 gpr(1) -= 56;
347 gbeauche 1.1 WriteMacInt32(gpr(1), sp);
348    
349     // Save PowerPC registers
350 gbeauche 1.6 uint32 saved_GPRs[19];
351     memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
352 gbeauche 1.1 #if SAVE_FP_EXEC_68K
353 gbeauche 1.6 double saved_FPRs[18];
354     memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
355 gbeauche 1.1 #endif
356    
357     // Setup registers for 68k emulator
358 gbeauche 1.2 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
359 gbeauche 1.1 for (int i = 0; i < 8; i++) // d[0]..d[7]
360     gpr(8 + i) = r->d[i];
361     for (int i = 0; i < 7; i++) // a[0]..a[6]
362     gpr(16 + i) = r->a[i];
363     gpr(23) = 0;
364     gpr(24) = entry;
365     gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
366     gpr(26) = 0;
367     gpr(28) = 0; // VBR
368 gbeauche 1.5 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
369     gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
370 gbeauche 1.1 gpr(31) = KernelDataAddr + 0x1000;
371    
372     // Push return address (points to EXEC_RETURN opcode) on stack
373     gpr(1) -= 4;
374     WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
375    
376     // Rentering 68k emulator
377     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
378    
379     // Set r0 to 0 for 68k emulator
380     gpr(0) = 0;
381    
382     // Execute 68k opcode
383     uint32 opcode = ReadMacInt16(gpr(24));
384     gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
385     gpr(29) += opcode * 8;
386     execute(gpr(29));
387    
388     // Save r25 (contains current 68k interrupt level)
389     WriteMacInt32(XLM_68K_R25, gpr(25));
390    
391     // Reentering EMUL_OP mode
392     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
393    
394     // Save 68k registers
395     for (int i = 0; i < 8; i++) // d[0]..d[7]
396     r->d[i] = gpr(8 + i);
397     for (int i = 0; i < 7; i++) // a[0]..a[6]
398     r->a[i] = gpr(16 + i);
399    
400     // Restore PowerPC registers
401 gbeauche 1.6 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
402 gbeauche 1.1 #if SAVE_FP_EXEC_68K
403 gbeauche 1.6 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
404 gbeauche 1.1 #endif
405    
406     // Cleanup stack
407 gbeauche 1.6 gpr(1) += 56;
408 gbeauche 1.1
409     // Restore program counters and branch registers
410     pc() = saved_pc;
411     lr() = saved_lr;
412     ctr()= saved_ctr;
413 gbeauche 1.8 set_cr(saved_cr);
414 gbeauche 1.15
415     #if EMUL_TIME_STATS
416     exec68k_time += (clock() - exec68k_start);
417     #endif
418 gbeauche 1.1 }
419    
420     // Call MacOS PPC code
421     uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
422     {
423 gbeauche 1.15 #if EMUL_TIME_STATS
424     macos_exec_count++;
425     const clock_t macos_exec_start = clock();
426     #endif
427    
428 gbeauche 1.1 // Save program counters and branch registers
429     uint32 saved_pc = pc();
430     uint32 saved_lr = lr();
431     uint32 saved_ctr= ctr();
432    
433     // Build trampoline with EXEC_RETURN
434 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
435     lr() = trampoline.addr();
436 gbeauche 1.1
437     gpr(1) -= 64; // Create stack frame
438     uint32 proc = ReadMacInt32(tvect); // Get routine address
439     uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
440    
441     // Save PowerPC registers
442     uint32 regs[8];
443     regs[0] = gpr(2);
444     for (int i = 0; i < nargs; i++)
445     regs[i + 1] = gpr(i + 3);
446    
447     // Prepare and call MacOS routine
448     gpr(2) = toc;
449     for (int i = 0; i < nargs; i++)
450     gpr(i + 3) = args[i];
451     execute(proc);
452     uint32 retval = gpr(3);
453    
454     // Restore PowerPC registers
455     for (int i = 0; i <= nargs; i++)
456     gpr(i + 2) = regs[i];
457    
458     // Cleanup stack
459     gpr(1) += 64;
460    
461     // Restore program counters and branch registers
462     pc() = saved_pc;
463     lr() = saved_lr;
464     ctr()= saved_ctr;
465    
466 gbeauche 1.15 #if EMUL_TIME_STATS
467     macos_exec_time += (clock() - macos_exec_start);
468     #endif
469    
470 gbeauche 1.1 return retval;
471     }
472    
473 gbeauche 1.2 // Execute ppc routine
474     inline void sheepshaver_cpu::execute_ppc(uint32 entry)
475     {
476     // Save branch registers
477     uint32 saved_lr = lr();
478    
479 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
480     WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
481     lr() = trampoline.addr();
482 gbeauche 1.2
483     execute(entry);
484    
485     // Restore branch registers
486     lr() = saved_lr;
487     }
488    
489 gbeauche 1.1 // Resource Manager thunk
490 gbeauche 1.5 extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
491 gbeauche 1.2
492 gbeauche 1.1 inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
493     {
494 gbeauche 1.2 uint32 type = gpr(3);
495     int16 id = gpr(4);
496    
497     // Create stack frame
498     gpr(1) -= 56;
499    
500     // Call old routine
501     execute_ppc(old_get_resource);
502    
503     // Call CheckLoad()
504 gbeauche 1.5 uint32 handle = gpr(3);
505 gbeauche 1.2 check_load_invoc(type, id, handle);
506 gbeauche 1.5 gpr(3) = handle;
507 gbeauche 1.2
508     // Cleanup stack
509     gpr(1) += 56;
510 gbeauche 1.1 }
511    
512    
513     /**
514     * SheepShaver CPU engine interface
515     **/
516    
517     static sheepshaver_cpu *main_cpu = NULL; // CPU emulator to handle usual control flow
518     static sheepshaver_cpu *interrupt_cpu = NULL; // CPU emulator to handle interrupts
519     static sheepshaver_cpu *current_cpu = NULL; // Current CPU emulator context
520    
521 gbeauche 1.7 void FlushCodeCache(uintptr start, uintptr end)
522     {
523     D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
524     main_cpu->invalidate_cache_range(start, end);
525     #if MULTICORE_CPU
526     interrupt_cpu->invalidate_cache_range(start, end);
527     #endif
528     }
529    
530 gbeauche 1.2 static inline void cpu_push(sheepshaver_cpu *new_cpu)
531     {
532     #if MULTICORE_CPU
533     current_cpu = new_cpu;
534     #endif
535     }
536    
537     static inline void cpu_pop()
538     {
539     #if MULTICORE_CPU
540     current_cpu = main_cpu;
541     #endif
542     }
543    
544 gbeauche 1.1 // Dump PPC registers
545     static void dump_registers(void)
546     {
547     current_cpu->dump_registers();
548     }
549    
550     // Dump log
551     static void dump_log(void)
552     {
553     current_cpu->dump_log();
554     }
555    
556     /*
557     * Initialize CPU emulation
558     */
559    
560 gbeauche 1.3 static sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
561 gbeauche 1.1 {
562     #if ENABLE_VOSF
563 gbeauche 1.3 // Handle screen fault
564     extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
565     if (Screen_fault_handler(fault_address, fault_instruction))
566     return SIGSEGV_RETURN_SUCCESS;
567 gbeauche 1.1 #endif
568 gbeauche 1.3
569     const uintptr addr = (uintptr)fault_address;
570     #if HAVE_SIGSEGV_SKIP_INSTRUCTION
571     // Ignore writes to ROM
572     if ((addr - ROM_BASE) < ROM_SIZE)
573     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
574    
575 gbeauche 1.17 // Get program counter of target CPU
576     sheepshaver_cpu * const cpu = current_cpu;
577     const uint32 pc = cpu->pc();
578    
579     // Fault in Mac ROM or RAM?
580     bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize));
581     if (mac_fault) {
582    
583     // "VM settings" during MacOS 8 installation
584     if (pc == ROM_BASE + 0x488160 && cpu->gpr(20) == 0xf8000000)
585     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
586    
587     // MacOS 8.5 installation
588     else if (pc == ROM_BASE + 0x488140 && cpu->gpr(16) == 0xf8000000)
589     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
590    
591     // MacOS 8 serial drivers on startup
592     else if (pc == ROM_BASE + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
593     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
594    
595     // MacOS 8.1 serial drivers on startup
596     else if (pc == ROM_BASE + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
597     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
598     else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
599     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
600    
601     // Ignore all other faults, if requested
602     if (PrefsFindBool("ignoresegv"))
603     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
604     }
605 gbeauche 1.3 #else
606     #error "FIXME: You don't have the capability to skip instruction within signal handlers"
607 gbeauche 1.1 #endif
608 gbeauche 1.3
609     printf("SIGSEGV\n");
610     printf(" pc %p\n", fault_instruction);
611     printf(" ea %p\n", fault_address);
612     printf(" cpu %s\n", current_cpu == main_cpu ? "main" : "interrupts");
613 gbeauche 1.1 dump_registers();
614     current_cpu->dump_log();
615     enter_mon();
616     QuitEmulator();
617 gbeauche 1.3
618     return SIGSEGV_RETURN_FAILURE;
619 gbeauche 1.1 }
620    
621     void init_emul_ppc(void)
622     {
623     // Initialize main CPU emulator
624     main_cpu = new sheepshaver_cpu();
625     main_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
626     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
627    
628 gbeauche 1.2 #if MULTICORE_CPU
629 gbeauche 1.1 // Initialize alternate CPU emulator to handle interrupts
630     interrupt_cpu = new sheepshaver_cpu();
631 gbeauche 1.2 #endif
632 gbeauche 1.1
633 gbeauche 1.3 // Install the handler for SIGSEGV
634     sigsegv_install_handler(sigsegv_handler);
635 gbeauche 1.4
636 gbeauche 1.1 #if ENABLE_MON
637     // Install "regs" command in cxmon
638     mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
639     mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
640     #endif
641 gbeauche 1.15
642     #if EMUL_TIME_STATS
643     emul_start_time = clock();
644     #endif
645 gbeauche 1.1 }
646    
647     /*
648 gbeauche 1.14 * Deinitialize emulation
649     */
650    
651     void exit_emul_ppc(void)
652     {
653 gbeauche 1.15 #if EMUL_TIME_STATS
654     clock_t emul_end_time = clock();
655    
656     printf("### Statistics for SheepShaver emulation parts\n");
657     const clock_t emul_time = emul_end_time - emul_start_time;
658     printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
659     printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
660     (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
661    
662     #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
663     printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
664     printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
665     double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
666     100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
667     } while (0)
668    
669     PRINT_STATS("Execute68k[Trap] execution", exec68k);
670     PRINT_STATS("NativeOp execution", native_exec);
671     PRINT_STATS("MacOS routine execution", macos_exec);
672    
673     #undef PRINT_STATS
674     printf("\n");
675     #endif
676    
677 gbeauche 1.14 delete main_cpu;
678     #if MULTICORE_CPU
679     delete interrupt_cpu;
680     #endif
681     }
682    
683     /*
684 gbeauche 1.1 * Emulation loop
685     */
686    
687     void emul_ppc(uint32 entry)
688     {
689     current_cpu = main_cpu;
690 gbeauche 1.10 #if DEBUG
691 gbeauche 1.1 current_cpu->start_log();
692 gbeauche 1.10 #endif
693     // start emulation loop and enable code translation or caching
694 gbeauche 1.19 current_cpu->execute(entry);
695 gbeauche 1.1 }
696    
697     /*
698     * Handle PowerPC interrupt
699     */
700    
701 gbeauche 1.11 #if ASYNC_IRQ
702     void HandleInterrupt(void)
703     {
704     main_cpu->handle_interrupt();
705     }
706     #else
707 gbeauche 1.2 void TriggerInterrupt(void)
708     {
709     #if 0
710     WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
711     #else
712 gbeauche 1.10 // Trigger interrupt to main cpu only
713     if (main_cpu)
714     main_cpu->trigger_interrupt();
715 gbeauche 1.2 #endif
716     }
717 gbeauche 1.4 #endif
718 gbeauche 1.2
719 gbeauche 1.10 void sheepshaver_cpu::handle_interrupt(void)
720 gbeauche 1.1 {
721     // Do nothing if interrupts are disabled
722 gbeauche 1.16 if (*(int32 *)XLM_IRQ_NEST > 0)
723 gbeauche 1.1 return;
724    
725 gbeauche 1.2 // Do nothing if there is no interrupt pending
726     if (InterruptFlags == 0)
727 gbeauche 1.1 return;
728    
729     // Disable MacOS stack sniffer
730     WriteMacInt32(0x110, 0);
731    
732     // Interrupt action depends on current run mode
733     switch (ReadMacInt32(XLM_RUN_MODE)) {
734     case MODE_68K:
735     // 68k emulator active, trigger 68k interrupt level 1
736     assert(current_cpu == main_cpu);
737     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
738 gbeauche 1.10 set_cr(get_cr() | tswap32(kernel_data->v[0x674 >> 2]));
739 gbeauche 1.1 break;
740    
741     #if INTERRUPTS_IN_NATIVE_MODE
742     case MODE_NATIVE:
743     // 68k emulator inactive, in nanokernel?
744     assert(current_cpu == main_cpu);
745 gbeauche 1.10 if (gpr(1) != KernelDataAddr) {
746 gbeauche 1.1 // Prepare for 68k interrupt level 1
747     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
748     WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
749     ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
750     | tswap32(kernel_data->v[0x674 >> 2]));
751    
752     // Execute nanokernel interrupt routine (this will activate the 68k emulator)
753 gbeauche 1.2 DisableInterrupt();
754     cpu_push(interrupt_cpu);
755 gbeauche 1.1 if (ROMType == ROMTYPE_NEWWORLD)
756 gbeauche 1.4 current_cpu->interrupt(ROM_BASE + 0x312b1c);
757 gbeauche 1.1 else
758 gbeauche 1.4 current_cpu->interrupt(ROM_BASE + 0x312a3c);
759 gbeauche 1.2 cpu_pop();
760 gbeauche 1.1 }
761     break;
762     #endif
763    
764     #if INTERRUPTS_IN_EMUL_OP_MODE
765     case MODE_EMUL_OP:
766     // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
767     if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
768     #if 1
769     // Execute full 68k interrupt routine
770     M68kRegisters r;
771     uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
772     WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
773 gbeauche 1.2 static const uint8 proc[] = {
774     0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
775     0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
776     0x40, 0xe7, // move sr,-(sp) (saved SR)
777     0x20, 0x78, 0x00, 0x064, // move.l $64,a0
778     0x4e, 0xd0, // jmp (a0)
779     M68K_RTS >> 8, M68K_RTS & 0xff // @1
780 gbeauche 1.1 };
781     Execute68k((uint32)proc, &r);
782     WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
783     #else
784     // Only update cursor
785     if (HasMacStarted()) {
786     if (InterruptFlags & INTFLAG_VIA) {
787     ClearInterruptFlag(INTFLAG_VIA);
788     ADBInterrupt();
789 gbeauche 1.22 ExecuteNative(NATIVE_VIDEO_VBL);
790 gbeauche 1.1 }
791     }
792     #endif
793     }
794     break;
795     #endif
796     }
797     }
798    
799     static void get_resource(void);
800     static void get_1_resource(void);
801     static void get_ind_resource(void);
802     static void get_1_ind_resource(void);
803     static void r_get_resource(void);
804    
805     #define GPR(REG) current_cpu->gpr(REG)
806    
807     static void NativeOp(int selector)
808     {
809 gbeauche 1.15 #if EMUL_TIME_STATS
810     native_exec_count++;
811     const clock_t native_exec_start = clock();
812     #endif
813    
814 gbeauche 1.1 switch (selector) {
815     case NATIVE_PATCH_NAME_REGISTRY:
816     DoPatchNameRegistry();
817     break;
818     case NATIVE_VIDEO_INSTALL_ACCEL:
819     VideoInstallAccel();
820     break;
821     case NATIVE_VIDEO_VBL:
822     VideoVBL();
823     break;
824     case NATIVE_VIDEO_DO_DRIVER_IO:
825     GPR(3) = (int32)(int16)VideoDoDriverIO((void *)GPR(3), (void *)GPR(4),
826     (void *)GPR(5), GPR(6), GPR(7));
827     break;
828 gbeauche 1.16 #ifdef WORDS_BIGENDIAN
829     case NATIVE_ETHER_IRQ:
830     EtherIRQ();
831     break;
832     case NATIVE_ETHER_INIT:
833     GPR(3) = InitStreamModule((void *)GPR(3));
834     break;
835     case NATIVE_ETHER_TERM:
836     TerminateStreamModule();
837     break;
838     case NATIVE_ETHER_OPEN:
839     GPR(3) = ether_open((queue_t *)GPR(3), (void *)GPR(4), GPR(5), GPR(6), (void*)GPR(7));
840 gbeauche 1.1 break;
841 gbeauche 1.16 case NATIVE_ETHER_CLOSE:
842     GPR(3) = ether_close((queue_t *)GPR(3), GPR(4), (void *)GPR(5));
843 gbeauche 1.1 break;
844 gbeauche 1.16 case NATIVE_ETHER_WPUT:
845     GPR(3) = ether_wput((queue_t *)GPR(3), (mblk_t *)GPR(4));
846 gbeauche 1.1 break;
847 gbeauche 1.16 case NATIVE_ETHER_RSRV:
848     GPR(3) = ether_rsrv((queue_t *)GPR(3));
849 gbeauche 1.1 break;
850 gbeauche 1.16 #else
851     case NATIVE_ETHER_INIT:
852     // FIXME: needs more complicated thunks
853     GPR(3) = false;
854 gbeauche 1.1 break;
855 gbeauche 1.16 #endif
856 gbeauche 1.1 case NATIVE_SERIAL_NOTHING:
857     case NATIVE_SERIAL_OPEN:
858     case NATIVE_SERIAL_PRIME_IN:
859     case NATIVE_SERIAL_PRIME_OUT:
860     case NATIVE_SERIAL_CONTROL:
861     case NATIVE_SERIAL_STATUS:
862     case NATIVE_SERIAL_CLOSE: {
863     typedef int16 (*SerialCallback)(uint32, uint32);
864     static const SerialCallback serial_callbacks[] = {
865     SerialNothing,
866     SerialOpen,
867     SerialPrimeIn,
868     SerialPrimeOut,
869     SerialControl,
870     SerialStatus,
871     SerialClose
872     };
873     GPR(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](GPR(3), GPR(4));
874 gbeauche 1.16 break;
875     }
876     case NATIVE_GET_RESOURCE:
877     case NATIVE_GET_1_RESOURCE:
878     case NATIVE_GET_IND_RESOURCE:
879     case NATIVE_GET_1_IND_RESOURCE:
880     case NATIVE_R_GET_RESOURCE: {
881     typedef void (*GetResourceCallback)(void);
882     static const GetResourceCallback get_resource_callbacks[] = {
883     get_resource,
884     get_1_resource,
885     get_ind_resource,
886     get_1_ind_resource,
887     r_get_resource
888     };
889     get_resource_callbacks[selector - NATIVE_GET_RESOURCE]();
890 gbeauche 1.1 break;
891     }
892 gbeauche 1.2 case NATIVE_DISABLE_INTERRUPT:
893     DisableInterrupt();
894     break;
895     case NATIVE_ENABLE_INTERRUPT:
896     EnableInterrupt();
897 gbeauche 1.7 break;
898     case NATIVE_MAKE_EXECUTABLE:
899     MakeExecutable(0, (void *)GPR(4), GPR(5));
900 gbeauche 1.2 break;
901 gbeauche 1.1 default:
902     printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
903     QuitEmulator();
904     break;
905     }
906 gbeauche 1.15
907     #if EMUL_TIME_STATS
908     native_exec_time += (clock() - native_exec_start);
909     #endif
910 gbeauche 1.1 }
911    
912     /*
913     * Execute 68k subroutine (must be ended with EXEC_RETURN)
914     * This must only be called by the emul_thread when in EMUL_OP mode
915     * r->a[7] is unused, the routine runs on the caller's stack
916     */
917    
918     void Execute68k(uint32 pc, M68kRegisters *r)
919     {
920     current_cpu->execute_68k(pc, r);
921     }
922    
923     /*
924     * Execute 68k A-Trap from EMUL_OP routine
925     * r->a[7] is unused, the routine runs on the caller's stack
926     */
927    
928     void Execute68kTrap(uint16 trap, M68kRegisters *r)
929     {
930 gbeauche 1.21 SheepVar proc_var(4);
931     uint32 proc = proc_var.addr();
932     WriteMacInt16(proc, trap);
933     WriteMacInt16(proc + 2, M68K_RTS);
934     Execute68k(proc, r);
935 gbeauche 1.1 }
936    
937     /*
938     * Call MacOS PPC code
939     */
940    
941     uint32 call_macos(uint32 tvect)
942     {
943     return current_cpu->execute_macos_code(tvect, 0, NULL);
944     }
945    
946     uint32 call_macos1(uint32 tvect, uint32 arg1)
947     {
948     const uint32 args[] = { arg1 };
949     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
950     }
951    
952     uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
953     {
954     const uint32 args[] = { arg1, arg2 };
955     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
956     }
957    
958     uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
959     {
960     const uint32 args[] = { arg1, arg2, arg3 };
961     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
962     }
963    
964     uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
965     {
966     const uint32 args[] = { arg1, arg2, arg3, arg4 };
967     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
968     }
969    
970     uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
971     {
972     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
973     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
974     }
975    
976     uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
977     {
978     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
979     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
980     }
981    
982     uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
983     {
984     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
985     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
986     }
987    
988     /*
989     * Resource Manager thunks
990     */
991    
992     void get_resource(void)
993     {
994     current_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
995     }
996    
997     void get_1_resource(void)
998     {
999     current_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1000     }
1001    
1002     void get_ind_resource(void)
1003     {
1004     current_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1005     }
1006    
1007     void get_1_ind_resource(void)
1008     {
1009     current_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1010     }
1011    
1012     void r_get_resource(void)
1013     {
1014     current_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1015     }