ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/video_vosf.h
(Generate patch)

Comparing BasiliskII/src/Unix/video_vosf.h (file contents):
Revision 1.15 by cebix, 2001-03-06T18:41:12Z vs.
Revision 1.24 by cebix, 2001-07-01T21:09:29Z

# Line 24 | Line 24
24   // Note: this file is #include'd in video_x.cpp
25   #ifdef ENABLE_VOSF
26  
27 < /*
28 < *  Page-aligned memory allocation
29 < */
27 > #include <fcntl.h>
28 > #include <sys/mman.h>
29 > #include "sigsegv.h"
30 > #include "vm_alloc.h"
31 >
32 > #ifdef ENABLE_MON
33 > # include "mon.h"
34 > #endif
35 >
36 > // Variables for Video on SEGV support
37 > static uint8 *the_host_buffer;  // Host frame buffer in VOSF mode
38 > static uint32 the_buffer_size;  // Size of allocated the_buffer
39 >
40 > struct ScreenPageInfo {
41 >    int top, bottom;                    // Mapping between this virtual page and Mac scanlines
42 > };
43 >
44 > struct ScreenInfo {
45 >    uintptr memBase;                    // Real start address
46 >    uintptr memStart;                   // Start address aligned to page boundary
47 >    uintptr memEnd;                             // Address of one-past-the-end of the screen
48 >    uint32 memLength;                   // Length of the memory addressed by the screen pages
49 >    
50 >    uint32 pageSize;                    // Size of a page
51 >    int pageBits;                               // Shift count to get the page number
52 >    uint32 pageCount;                   // Number of pages allocated to the screen
53 >    
54 >        bool dirty;                                     // Flag: set if the frame buffer was touched
55 >    char * dirtyPages;                  // Table of flags set if page was altered
56 >    ScreenPageInfo * pageInfo;  // Table of mappings page -> Mac scanlines
57 > };
58 >
59 > static ScreenInfo mainBuffer;
60 >
61 > #define PFLAG_SET_VALUE                 0x00
62 > #define PFLAG_CLEAR_VALUE               0x01
63 > #define PFLAG_SET_VALUE_4               0x00000000
64 > #define PFLAG_CLEAR_VALUE_4             0x01010101
65 > #define PFLAG_SET(page)                 mainBuffer.dirtyPages[page] = PFLAG_SET_VALUE
66 > #define PFLAG_CLEAR(page)               mainBuffer.dirtyPages[page] = PFLAG_CLEAR_VALUE
67 > #define PFLAG_ISSET(page)               (mainBuffer.dirtyPages[page] == PFLAG_SET_VALUE)
68 > #define PFLAG_ISCLEAR(page)             (mainBuffer.dirtyPages[page] != PFLAG_SET_VALUE)
69 >
70 > #ifdef UNALIGNED_PROFITABLE
71 > # define PFLAG_ISSET_4(page)    (*((uint32 *)(mainBuffer.dirtyPages + (page))) == PFLAG_SET_VALUE_4)
72 > # define PFLAG_ISCLEAR_4(page)  (*((uint32 *)(mainBuffer.dirtyPages + (page))) == PFLAG_CLEAR_VALUE_4)
73 > #else
74 > # define PFLAG_ISSET_4(page) \
75 >                PFLAG_ISSET(page  ) && PFLAG_ISSET(page+1) \
76 >        &&      PFLAG_ISSET(page+2) && PFLAG_ISSET(page+3)
77 > # define PFLAG_ISCLEAR_4(page) \
78 >                PFLAG_ISCLEAR(page  ) && PFLAG_ISCLEAR(page+1) \
79 >        &&      PFLAG_ISCLEAR(page+2) && PFLAG_ISCLEAR(page+3)
80 > #endif
81 >
82 > // Set the selected page range [ first_page, last_page [ into the SET state
83 > #define PFLAG_SET_RANGE(first_page, last_page) \
84 >        memset(mainBuffer.dirtyPages + (first_page), PFLAG_SET_VALUE, \
85 >                (last_page) - (first_page))
86 >
87 > // Set the selected page range [ first_page, last_page [ into the CLEAR state
88 > #define PFLAG_CLEAR_RANGE(first_page, last_page) \
89 >        memset(mainBuffer.dirtyPages + (first_page), PFLAG_CLEAR_VALUE, \
90 >                (last_page) - (first_page))
91 >
92 > #define PFLAG_SET_ALL do { \
93 >        PFLAG_SET_RANGE(0, mainBuffer.pageCount); \
94 >        mainBuffer.dirty = true; \
95 > } while (0)
96 >
97 > #define PFLAG_CLEAR_ALL do { \
98 >        PFLAG_CLEAR_RANGE(0, mainBuffer.pageCount); \
99 >        mainBuffer.dirty = false; \
100 > } while (0)
101 >
102 > // Set the following macro definition to 1 if your system
103 > // provides a really fast strchr() implementation
104 > //#define HAVE_FAST_STRCHR 0
105 >
106 > static inline int find_next_page_set(int page)
107 > {
108 > #if HAVE_FAST_STRCHR
109 >        char *match = strchr(mainBuffer.dirtyPages + page, PFLAG_SET_VALUE);
110 >        return match ? match - mainBuffer.dirtyPages : mainBuffer.pageCount;
111 > #else
112 >        while (PFLAG_ISCLEAR_4(page))
113 >                page += 4;
114 >        while (PFLAG_ISCLEAR(page))
115 >                page++;
116 >        return page;
117 > #endif
118 > }
119 >
120 > static inline int find_next_page_clear(int page)
121 > {
122 > #if HAVE_FAST_STRCHR
123 >        char *match = strchr(mainBuffer.dirtyPages + page, PFLAG_CLEAR_VALUE);
124 >        return match ? match - mainBuffer.dirtyPages : mainBuffer.pageCount;
125 > #else
126 >        while (PFLAG_ISSET_4(page))
127 >                page += 4;
128 >        while (PFLAG_ISSET(page))
129 >                page++;
130 >        return page;
131 > #endif
132 > }
133 >
134 > #ifdef HAVE_PTHREADS
135 > static pthread_mutex_t vosf_lock = PTHREAD_MUTEX_INITIALIZER;   // Mutex to protect frame buffer (dirtyPages in fact)
136 > #define LOCK_VOSF pthread_mutex_lock(&vosf_lock);
137 > #define UNLOCK_VOSF pthread_mutex_unlock(&vosf_lock);
138 > #else
139 > #define LOCK_VOSF
140 > #define UNLOCK_VOSF
141 > #endif
142  
143 < // Align on page boundaries
144 < static uintptr align_on_page_boundary(uintptr size)
143 > static int log_base_2(uint32 x)
144 > {
145 >        uint32 mask = 0x80000000;
146 >        int l = 31;
147 >        while (l >= 0 && (x & mask) == 0) {
148 >                mask >>= 1;
149 >                l--;
150 >        }
151 >        return l;
152 > }
153 >
154 > // Extend size to page boundary
155 > static uint32 page_extend(uint32 size)
156   {
157          const uint32 page_size = getpagesize();
158          const uint32 page_mask = page_size - 1;
159          return (size + page_mask) & ~page_mask;
160   }
161  
162 < // Allocate memory on page boundary
163 < static void * allocate_framebuffer(uint32 size, uint8 * hint = 0)
162 >
163 > /*
164 > *  Initialize mainBuffer structure
165 > */
166 >
167 > static bool video_init_buffer(void)
168   {
169 <        // Remind that the system can allocate at 0x00000000...
170 <        return mmap((caddr_t)hint, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, zero_fd, 0);
169 >        if (use_vosf) {
170 >                const uint32 page_size  = getpagesize();
171 >                const uint32 page_mask  = page_size - 1;
172 >                
173 >                mainBuffer.memBase      = (uintptr) the_buffer;
174 >                // Round up frame buffer base to page boundary
175 >                mainBuffer.memStart             = (uintptr)((((unsigned long) the_buffer) + page_mask) & ~page_mask);
176 >                mainBuffer.memLength    = the_buffer_size;
177 >                mainBuffer.memEnd       = mainBuffer.memStart + mainBuffer.memLength;
178 >
179 >                mainBuffer.pageSize     = page_size;
180 >                mainBuffer.pageCount    = (mainBuffer.memLength + page_mask)/mainBuffer.pageSize;
181 >                mainBuffer.pageBits     = log_base_2(mainBuffer.pageSize);
182 >
183 >                if (mainBuffer.dirtyPages) {
184 >                        free(mainBuffer.dirtyPages);
185 >                        mainBuffer.dirtyPages = NULL;
186 >                }
187 >
188 >                mainBuffer.dirtyPages = (char *) malloc(mainBuffer.pageCount + 2);
189 >
190 >                if (mainBuffer.pageInfo) {
191 >                        free(mainBuffer.pageInfo);
192 >                        mainBuffer.pageInfo = NULL;
193 >                }
194 >
195 >                mainBuffer.pageInfo = (ScreenPageInfo *) malloc(mainBuffer.pageCount * sizeof(ScreenPageInfo));
196 >
197 >                if ((mainBuffer.dirtyPages == NULL) || (mainBuffer.pageInfo == NULL))
198 >                        return false;
199 >                
200 >                mainBuffer.dirty = false;
201 >
202 >                PFLAG_CLEAR_ALL;
203 >                // Safety net to insure the loops in the update routines will terminate
204 >                // See "How can we deal with array overrun conditions ?" hereunder for further details
205 >                PFLAG_CLEAR(mainBuffer.pageCount);
206 >                PFLAG_SET(mainBuffer.pageCount+1);
207 >
208 >                uint32 a = 0;
209 >                for (int i = 0; i < mainBuffer.pageCount; i++) {
210 >                        int y1 = a / VideoMonitor.mode.bytes_per_row;
211 >                        if (y1 >= VideoMonitor.mode.y)
212 >                                y1 = VideoMonitor.mode.y - 1;
213 >
214 >                        int y2 = (a + mainBuffer.pageSize) / VideoMonitor.mode.bytes_per_row;
215 >                        if (y2 >= VideoMonitor.mode.y)
216 >                                y2 = VideoMonitor.mode.y - 1;
217 >
218 >                        mainBuffer.pageInfo[i].top = y1;
219 >                        mainBuffer.pageInfo[i].bottom = y2;
220 >
221 >                        a += mainBuffer.pageSize;
222 >                        if (a > mainBuffer.memLength)
223 >                                a = mainBuffer.memLength;
224 >                }
225 >                
226 >                // We can now write-protect the frame buffer
227 >                if (vm_protect((char *)mainBuffer.memStart, mainBuffer.memLength, VM_PAGE_READ) != 0)
228 >                        return false;
229 >        }
230 >        return true;
231   }
232  
233  
234   /*
235 < *      Screen fault handler
235 > * Screen fault handler
236   */
237  
238 < const uintptr INVALID_PC = (uintptr)-1;
52 <
53 < static inline void do_handle_screen_fault(uintptr addr, uintptr pc = INVALID_PC)
238 > static bool screen_fault_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
239   {
240 +        D(bug("screen_fault_handler: ADDR=0x%08X from IP=0x%08X\n", fault_address, fault_instruction));
241 +        const uintptr addr = (uintptr)fault_address;
242 +        
243          /* Someone attempted to write to the frame buffer. Make it writeable
244 <         * now so that the data could actually be written. It will be made
244 >         * now so that the data could actually be written to. It will be made
245           * read-only back in one of the screen update_*() functions.
246           */
247          if ((addr >= mainBuffer.memStart) && (addr < mainBuffer.memEnd)) {
248                  const int page  = (addr - mainBuffer.memStart) >> mainBuffer.pageBits;
249 <                caddr_t page_ad = (caddr_t)(addr & ~(mainBuffer.pageSize - 1));
249 >                caddr_t page_ad = (caddr_t)(addr & -mainBuffer.pageSize);
250                  LOCK_VOSF;
251                  PFLAG_SET(page);
252 <                mprotect(page_ad, mainBuffer.pageSize, PROT_READ | PROT_WRITE);
252 >                vm_protect((char *)page_ad, mainBuffer.pageSize, VM_PAGE_READ | VM_PAGE_WRITE);
253                  mainBuffer.dirty = true;
254                  UNLOCK_VOSF;
255 <                return;
255 >                return true;
256          }
257          
258          /* Otherwise, we don't know how to handle the fault, let it crash */
259          fprintf(stderr, "do_handle_screen_fault: unhandled address 0x%08X", addr);
260 <        if (pc != INVALID_PC)
261 <                fprintf(stderr, " [IP=0x%08X]", pc);
260 >        if (fault_instruction != SIGSEGV_INVALID_PC)
261 >                fprintf(stderr, " [IP=0x%08X]", fault_instruction);
262          fprintf(stderr, "\n");
263 <        
264 <        signal(SIGSEGV, SIG_DFL);
265 < }
266 <
79 < #if defined(HAVE_SIGINFO_T)
80 <
81 < static void Screen_fault_handler(int, siginfo_t * sip, void *)
82 < {
83 <        D(bug("Screen_fault_handler: ADDR=0x%08X\n", sip->si_addr));
84 <        do_handle_screen_fault((uintptr)sip->si_addr);
85 < }
86 <
87 < #elif defined(HAVE_SIGCONTEXT_SUBTERFUGE)
88 <
89 < # if defined(__i386__) && defined(__linux__)
90 < static void Screen_fault_handler(int, struct sigcontext scs)
91 < {
92 <        D(bug("Screen_fault_handler: ADDR=0x%08X from IP=0x%08X\n", scs.cr2, scs.eip));
93 <        do_handle_screen_fault((uintptr)scs.cr2, (uintptr)scs.eip);
94 < }
95 <
96 < # elif defined(__m68k__) && defined(__NetBSD__)
97 <
98 < # include <m68k/frame.h>
99 < static void Screen_fault_handler(int, int code, struct sigcontext *scp)
100 < {
101 <        D(bug("Screen_fault_handler: ADDR=0x%08X\n", code));
102 <        struct sigstate {
103 <                int ss_flags;
104 <                struct frame ss_frame;
105 <        };
106 <        struct sigstate *state = (struct sigstate *)scp->sc_ap;
107 <        uintptr fault_addr;
108 <        switch (state->ss_frame.f_format) {
109 <                case 7:         // 68040 access error
110 <                        // "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown
111 <                        fault_addr = state->ss_frame.f_fmt7.f_fa;
112 <                        break;
113 <                default:
114 <                        fault_addr = (uintptr)code;
115 <                        break;
116 <        }
117 <        do_handle_screen_fault(fault_addr);
118 < }
119 <
120 < # elif defined(__powerpc__) && defined(__linux__)
121 <
122 < static void Screen_fault_handler(int, struct sigcontext_struct *scs)
123 < {
124 <        D(bug("Screen_fault_handler: ADDR=0x%08X from IP=0x%08X\n", scs->regs->dar, scs->regs->nip));
125 <        do_handle_screen_fault((uintptr)scs->regs->dar, (uintptr)scs->regs->nip);
126 < }
127 <
128 < # else
129 < #  error "No suitable subterfuge for Video on SEGV signals"
130 < # endif
131 < #else
132 < # error "Can't do Video on SEGV signals"
263 > #if EMULATED_68K
264 >        uaecptr nextpc;
265 >        extern void m68k_dumpstate(uaecptr *nextpc);
266 >        m68k_dumpstate(&nextpc);
267   #endif
268 <
269 <
270 < /*
271 < *      Screen fault handler initialization
138 < */
139 <
140 < #if defined(HAVE_SIGINFO_T)
141 < static bool Screen_fault_handler_init()
142 < {
143 <        // Setup SIGSEGV handler to process writes to frame buffer
144 <        sigemptyset(&vosf_sa.sa_mask);
145 <        vosf_sa.sa_sigaction = Screen_fault_handler;
146 <        vosf_sa.sa_flags = SA_SIGINFO;
147 <        return (sigaction(SIGSEGV, &vosf_sa, NULL) == 0);
148 < }
149 < #elif defined(HAVE_SIGCONTEXT_SUBTERFUGE)
150 < static bool Screen_fault_handler_init()
151 < {
152 <        // Setup SIGSEGV handler to process writes to frame buffer
153 <        sigemptyset(&vosf_sa.sa_mask);
154 <        vosf_sa.sa_handler = (void (*)(int)) Screen_fault_handler;
155 < #if !EMULATED_68K && defined(__NetBSD__)
156 <        sigaddset(&vosf_sa.sa_mask, SIGALRM);
157 <        vosf_sa.sa_flags = SA_ONSTACK;
158 < #else
159 <        vosf_sa.sa_flags = 0;
268 > #ifdef ENABLE_MON
269 >        char *arg[4] = {"mon", "-m", "-r", NULL};
270 >        mon(3, arg);
271 >        QuitEmulator();
272   #endif
273 <        return (sigaction(SIGSEGV, &vosf_sa, NULL) == 0);
273 >        return false;
274   }
163 #endif
275  
276  
277   /*
# Line 169 | Line 280 | static bool Screen_fault_handler_init()
280  
281   // From video_blit.cpp
282   extern void (*Screen_blit)(uint8 * dest, const uint8 * source, uint32 length);
283 < extern bool Screen_blitter_init(XVisualInfo * visual_info, bool native_byte_order);
283 > extern bool Screen_blitter_init(XVisualInfo * visual_info, bool native_byte_order, video_depth mac_depth);
284 > extern uint32 ExpandMap[256];
285  
286   /*      How can we deal with array overrun conditions ?
287          
# Line 204 | Line 316 | There are two cases to check:
316          than pageCount.
317   */
318  
319 < static inline void update_display_window_vosf(void)
319 > static inline void update_display_window_vosf(driver_window *drv)
320   {
321          int page = 0;
322          for (;;) {
# Line 218 | Line 330 | static inline void update_display_window
330                  // Make the dirty pages read-only again
331                  const int32 offset  = first_page << mainBuffer.pageBits;
332                  const uint32 length = (page - first_page) << mainBuffer.pageBits;
333 <                mprotect((caddr_t)(mainBuffer.memStart + offset), length, PROT_READ);
333 >                vm_protect((char *)mainBuffer.memStart + offset, length, VM_PAGE_READ);
334                  
335                  // There is at least one line to update
336                  const int y1 = mainBuffer.pageInfo[first_page].top;
337                  const int y2 = mainBuffer.pageInfo[page - 1].bottom;
338                  const int height = y2 - y1 + 1;
339                  
340 <                const int bytes_per_row = VideoMonitor.bytes_per_row;
229 <                const int bytes_per_pixel = VideoMonitor.bytes_per_row / VideoMonitor.x;
230 <                int i = y1 * bytes_per_row, j;
231 <                
232 <                if (depth == 1) {
340 >                if (VideoMonitor.mode.depth < VDEPTH_8BIT) {
341  
342                          // Update the_host_buffer and copy of the_buffer
343 +                        const int src_bytes_per_row = VideoMonitor.mode.bytes_per_row;
344 +                        const int dst_bytes_per_row = drv->img->bytes_per_line;
345 +                        const int pixels_per_byte = VideoMonitor.mode.x / src_bytes_per_row;
346 +                        int i1 = y1 * src_bytes_per_row, i2 = y1 * dst_bytes_per_row, j;
347                          for (j = y1; j <= y2; j++) {
348 <                                Screen_blit(the_host_buffer + i, the_buffer + i, VideoMonitor.x >> 3);
349 <                                i += bytes_per_row;
348 >                                Screen_blit(the_host_buffer + i2, the_buffer + i1, VideoMonitor.mode.x / pixels_per_byte);
349 >                                i1 += src_bytes_per_row;
350 >                                i2 += dst_bytes_per_row;
351                          }
352  
353                  } else {
354  
355                          // Update the_host_buffer and copy of the_buffer
356 +                        const int src_bytes_per_row = VideoMonitor.mode.bytes_per_row;
357 +                        const int dst_bytes_per_row = drv->img->bytes_per_line;
358 +                        const int bytes_per_pixel = src_bytes_per_row / VideoMonitor.mode.x;
359 +                        int i1 = y1 * src_bytes_per_row, i2 = y1 * dst_bytes_per_row, j;
360                          for (j = y1; j <= y2; j++) {
361 <                                Screen_blit(the_host_buffer + i, the_buffer + i, bytes_per_pixel * VideoMonitor.x);
362 <                                i += bytes_per_row;
361 >                                Screen_blit(the_host_buffer + i2, the_buffer + i1, bytes_per_pixel * VideoMonitor.mode.x);
362 >                                i1 += src_bytes_per_row;
363 >                                i2 += dst_bytes_per_row;
364                          }
365                  }
366  
367 <                if (have_shm)
368 <                        XShmPutImage(x_display, the_win, the_gc, img, 0, y1, 0, y1, VideoMonitor.x, height, 0);
367 >                if (drv->have_shm)
368 >                        XShmPutImage(x_display, drv->w, drv->gc, drv->img, 0, y1, 0, y1, VideoMonitor.mode.x, height, 0);
369                  else
370 <                        XPutImage(x_display, the_win, the_gc, img, 0, y1, 0, y1, VideoMonitor.x, height);
370 >                        XPutImage(x_display, drv->w, drv->gc, drv->img, 0, y1, 0, y1, VideoMonitor.mode.x, height);
371          }
254
372          mainBuffer.dirty = false;
373   }
374  
375  
376   /*
377   *      Update display for DGA mode and VOSF
378 < *      (only in Direct Addressing mode)
378 > *      (only in Real or Direct Addressing mode)
379   */
380  
381   #if REAL_ADDRESSING || DIRECT_ADDRESSING
# Line 276 | Line 393 | static inline void update_display_dga_vo
393                  // Make the dirty pages read-only again
394                  const int32 offset  = first_page << mainBuffer.pageBits;
395                  const uint32 length = (page - first_page) << mainBuffer.pageBits;
396 <                mprotect((caddr_t)(mainBuffer.memStart + offset), length, PROT_READ);
396 >                vm_protect((char *)mainBuffer.memStart + offset, length, VM_PAGE_READ);
397                  
398                  // I am sure that y2 >= y1 and depth != 1
399                  const int y1 = mainBuffer.pageInfo[first_page].top;
400                  const int y2 = mainBuffer.pageInfo[page - 1].bottom;
401                  
402 <                const int bytes_per_row = VideoMonitor.bytes_per_row;
403 <                const int bytes_per_pixel = VideoMonitor.bytes_per_row / VideoMonitor.x;
402 >                const int bytes_per_row = VideoMonitor.mode.bytes_per_row;
403 >                const int bytes_per_pixel = VideoMonitor.mode.bytes_per_row / VideoMonitor.mode.x;
404                  int i, j;
405                  
406                  // Check for first column from left and first column
407                  // from right that have changed
408 <                int x1 = VideoMonitor.x * bytes_per_pixel - 1;
408 >                int x1 = VideoMonitor.mode.x * bytes_per_pixel - 1;
409                  for (j = y1; j <= y2; j++) {
410                          uint8 * const p1 = &the_buffer[j * bytes_per_row];
411                          uint8 * const p2 = &the_buffer_copy[j * bytes_per_row];
# Line 305 | Line 422 | static inline void update_display_dga_vo
422                  for (j = y2; j >= y1; j--) {
423                          uint8 * const p1 = &the_buffer[j * bytes_per_row];
424                          uint8 * const p2 = &the_buffer_copy[j * bytes_per_row];
425 <                        for (i = VideoMonitor.x * bytes_per_pixel - 1; i > x2; i--) {
425 >                        for (i = VideoMonitor.mode.x * bytes_per_pixel - 1; i > x2; i--) {
426                                  if (p1[i] != p2[i]) {
427                                          x2 = i;
428                                          break;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines